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Foreword

Programming the Commodore 64 is the definitive guide. It covers virtually every

aspect of the Commodore 64, from simple BASIC commands to complex machine

language techniques. Every explanation is written in depth and with clarity. The re

sult is a comprehensive, easy-to-understand reference that thoroughly explains the

64's capabilities.

If you program in BASIC, you'll find the detailed, annotated listings of every

BASIC command a tremendous aid. And if you're writing in machine language,

you'll be especially interested in the ROM maps and listings of Kernal routines. No

matter what your experience with the Commodore 64, you'll find the numerous pro

gram examples both useful and informative.

Beginning with a brief introduction to Commodore BASIC and BASIC program

ming, this book goes on to discussions of more advanced programming, including

sophisticated machine language techniques. Specialized sound and graphics applica

tions are included as well. Complete chapters are devoted to disk and tape storage,

and to the selection and use of various peripheral devices.

Author Raeto Collin West, one of the world's foremost authorities on Com

modore computers, has distilled years of experience into Programming the Commodore

64. You'll discover new information on each page.

The author has included scores of practical programs to demonstrate many of

the techniques discussed. To help you enter the programs correctly, we've included

"The Automatic Proofreader," an error-checking program. As a convenience, COM

PUTE! Publications is also making available for purchase a disk that contains most of

the significant programs from this book. To order a disk, use the coupon in the back

or call 800-334-0868 (in North Carolina 919-275-9809).

This is the first book to thoroughly cover every aspect of 64 programming. It's

certain to become an indispensable work for any Commodore 64 owner.
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Chapter 1

About This Book

Introduction
The two main objectives of this book are to teach competent programming on the

Commodore 64, and to provide a comprehensive reference book for people wanting

quick, accurate answers to questions about the 64. These two goals are difficult

enough to achieve. For example, while virtually everyone begins with BASIC and

progresses to machine language (ML), it is often desirable to use both ML and

BASIC in examples, which means comparative newcomers to the 64 find themselves

skipping sections of temporarily difficult text. It is practically impossible to arrange

the material so that everything falls into a natural sequence for all readers, because

many of the chapter headings themselves can't be understood properly without

some knowledge of the machine's structure.

This book explains BASIC and ML in sequence from simple to complex, ending

with a chapter on mixing ML with BASIC, an efficient 64 programming method.

These chapters are interspersed with machine organization details and are followed

by in-depth examinations of major topics—sound, graphics, tape, and so on.

For these reasons, the text contains two kinds of programs. First, there are very

short routines, intended to be typed in quickly (and therefore with little chance of er

ror). Second, there are longer, more practical programs, which use graphics, sound,

tape, disks, and all the other features of the 64. The shorter, example programs cover

how BASIC commands are used, how special features work (notably the VIC and

SID chips), and how to use ML. Many useful routines are included, and these can be

used successfully without any knowledge of their internal operation. Many readers will

thus be able to acquire BASIC and ML experience painlessly as they use this book.

Programming the Commodore 64 is one of a set of three books, which also in

cludes Programming the VIC and the earlier Programming the PET/CBM. The books

have been written entirely independently of Commodore; they contain criticisms,

comments, hints, and a great deal of otherwise unpublished information.

Programming Your 64
The 64 is one of the world's most popular microcomputers; like all big-selling

computers it is both rather inexpensive and rather easy to use. But many owners

have found that however easy using other people's programs may be, writing their

own programs for the 64 is not so simple. Reliable information has been difficult to

find—until now.

Programming the Commodore 64 shows you how to plan and write BASIC pro

grams, how to move programs from tape to disk to save time, and how to play mu

sic while a program runs. It also explains how to program the function keys, round

numbers to two places, use high-resolution graphics, design and store your own

graphics characters, display a screenful of sprites, make the screen scroll smoothly,

and save sections of memory to tape. This is only a small sample of problems which

have puzzled many 64 users. All these and more are comprehensively discussed

here.
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The 64 is at times a difficult machine to program, in spite of what you may have

heard. But programming is easier if you have a good overall understanding of the

machine, and Programming the Commodore 64 attempts to generalize results rather

than give isolated facts. For example, the way the VIC chip determines what kind of

graphics to display is crucially important to understanding the system, and there is a

handy table to illustrate this.

This book is just above the introductory level. There's not enough room to cover

the elementary topics (which are often better learned directly at the keyboard or

from a friend who knows the machine) and still provide the information you need

on advanced topics. But prior knowledge of Commodore systems is not essential, so

anyone with intelligence and some microcomputer experience ought to be able to

grasp the fundamentals of the 64 fairly easily.

Several versions of the 64 exist: the repackaged SX-64, the PET 64 (which has

no sound chip and only monochrome graphics), and 64s with slightly different

ROMs. As Chapter 8 explains, these computers run software similarly, but not ex

actly alike. Most of the book is applicable to all these machines, but emphasis is on

the more common models.

The programs have been tested and will almost always work without difficulty.

If there are problems, a program may have been entered incorrectly, or the soft

nature of the 64 may be to blame—there are many special memory locations in the

64, any one of which can cause odd results if altered. The first thing to do when a

program will not run properly is to check the program carefully. If that doesn't work,

it's usually easiest to save the program, turn the 64 off, then back on, reload the pro

gram, and try again. Some of the programs in this book use the "Automatic Proof

reader," Appendix C, which allows you to quickly and easily check each line you

have entered for accuracy.

Information with the widest appeal—BASIC, graphics, music, and full use of the

64's RAM capacity—is documented fully. However, minority interests are not ex

cluded. Programming the Commodore 64 doesn't gloss over difficulties and evade im

portant topics. Many people have gone to great lengths to check the information in

this book, for it is intended to be reliable. Nevertheless, there are certain to be errors,

and for any resulting inconvenience or bafflement, we apologize in advance.

Conventional Terms
The special Commodore logo key (located at the bottom left of the 64's keyboard)

will be called the Commodore key. Program listings and short examples, like SYS

64738, will usually be in capitals to mimic their appearance on the screen and print

ers of the 64 in its uppercase mode. This is the mode the 64 is in when you turn the

power on. Text can, of course, appear in lowercase mode, usually after pressing

SHIFT-Commodore key. (Don't type the hyphen; just hold down the SHIFT key and

press the Commodore key.) In either case, programs are mostly entered using

unSHIFTed keys. Named keys (CLR/HOME, SHIFT, CTRL, fl, and so on) are gen

erally referred to as they appear on the keyboard of the 64.

Some BASIC listings have been made with a program which prints the screen

editing commands, colors, and other special characters, such as {HOME}, {CYN},

{Fl}, and so on, in place of the less readable 64 characters. With apologies to people
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who can spell, the book uses the spelling Kernal for the ROM routines which handle

the screen, keyboard, and input/output devices (this is the spelling Commodore

uses). This book also uses ML as a handy abbreviation for machine language.

Hexadecimal numbers are represented here with a leading dollar sign ($). If you

don't understand hexadecimal notation, read Chapter 6. In accordance with 6502

convention, the number symbol (#) indicates a value, not an address, so that LDA

#$00 denotes the command to load the accumulator with the number 0, while LDA

$00 loads the accumulator with the value in location 0.

Many 64 BASIC programs begin with a few commands to change color from the

usual light blue characters on a dark blue background. The following line sets a

green background, white border, and black characters:

POKE 53281,5: POKE 53280,1: POKE 646,0

Some of the demonstration programs include this line; others assume that CTRL-

WHITE or some similar command has already been used to improve clarity.

Acknowledgments
Several chapters, notably those on sound and graphics, are partially the work of

Marcus West. Additional hardware information has been provided by Rod Eva of Y2

Computers, Watford, U.K. COMPUTE! Publications, Inc. in the U.S., TPUG (Toronto

PET Users Group) of Canada, and ICPUG (Independent Commodore Products Users

Group) of the U.K. have provided information.
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Chapter 2

Getting to Know the 64

Commodore has been making computers for a decade or so, and became a house

hold word with the introduction of the low-priced VIC-20, followed more recently in

the early 1980s by the Commodore 64. Both machines proved remarkably successful,

far outselling other Commodore Business Machine (CBM) computers in volume.

CBM's earlier experience enabled a range of appropriately priced peripherals (tape

drives, disk drives, printers, modems) to be produced at about the same time. All

CBM machines have strong resemblances, and straightforward BASIC programs

which run on one CBM machine are likely to run on others, too. But programs of

any complexity will generally run only on the machine for which they were written.

The 64's Connectors
The back panel of the 64 has these features (left to right viewed from the back):

The cartridge socket is where ROM cartridges are plugged in. (Only those de

signed for the 64 will work.) Be sure to insert cartridges correctly. Chapter 5 has fur

ther information. Some other peripherals are designed to plug into this socket,

including the CP/M cartridge and the Magic Voice speech module.

The channel selector switch selects channel 3 or 4 on TVs in the U.S. (Com

modore 64s for PAL-type TVs in Europe and elsewhere don't have this switch.)

The RF modulator output jack provides a combined video and audio signal

that can be used directly by a standard television. The RF (radio frequency) modu

lator inside the 64 performs the function of a tiny TV station, converting (modulat

ing) the computer's video and audio signals into a signal that can be received via the

TV's antenna connectors.

The audio-video socket provides high-quality output from the 64's sound and

video chips, for use by video monitors or even hi-fi sound equipment. This is a DIN

socket. Earlier 64s have five-pin sockets; some later models may have eight-pin sock

ets. A cable for the five-pin socket will work with the eight-pin connector, but not

vice versa.

The serial port is a modified version of the parallel IEEE input/output port of

the earlier CBM computers. The signal format on the port, unique to Commodore, is

designed for use with VIC and 64 devices (disk drives, printers) but is not directly

compatible with much else. (This should not be confused with the user port, which

provides RS-232 serial communication.) Chapters 15 (disk drives) and 17 (printers)

have more information.

The cassette port is designed to power and control CBM's Datassette tape drive.

Other devices sometimes draw power from this socket. Chapter 14 has full details

about tape.

The user port is compatible in size and function with VIC equipment. It is de

signed to allow communication with the outside world with a Commodore modem,

or for other purposes, including the control of electronic instruments. Chapter 5 ex

plains how it's programmed.

The side panel of the 64 has these features, again from left to right:

Control ports 1 and 2 allow one or two joysticks to be connected to the 64. The

joystick nine-pin D-connector is standard. Port 2 is often preferred, as it's a little
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easier to program. Pairs of paddles (rotary controllers) can be plugged into either

port. A light pen can be plugged into port 1. Chapter 16 has full programming infor

mation on these and other controllers.

The power switch, as you might have guessed, is where you turn the power

on.

The power input socket is where you plug in the connector from the power

supply unit, which requires standard household current.

The Keyboard
Chapter 6 discusses the keyboard in depth. Here, we'll briefly survey the keys and

their functions as they act just after the computer is turned on, before they are modi

fied by a program (this is called their default arrangement). Alphabetic, numeric, and

symbol keys appear as the keytop legend implies, subject to the changes mentioned
below.

SHIFT selects uppercase lettering or the right-hand graphics set, depending on

the character set in use.

Commodore key accesses the left-hand graphics set or, with the color keys, se

lects one of eight additional colors not named on the standard 64 keyboard. Where

these don't apply, the Commodore key acts as an alternative SHIFT key.

SHIFT-Commodore key (SHIFT and Commodore key together) changes the

display from uppercase, with the full keytop graphics set, to upper- and lowercase

lettering, plus the left-hand graphics set.

CTRL (Control) acts with the color keys and reverse keys to change the color of

the characters or to turn reverse video printing on and off. CTRL-A through CTRL-Z

generate CHR$(1) through CHR$(26), acting as a conventional control key—see

Chapter 3. CTRL also slows screen scrolling; this is useful when listing a program.

Function keys (f1 through f8) display nothing. In BASIC, GET is the easiest

way to detect them. (See Chapter 6 for program information.)

RUN/STOP interrupts BASIC programs. The command CONT allows resump

tion of BASIC, subject to certain conditions.

SHIFT-RUN/STOP (SHIFT and RUN/STOP together) loads, then runs the

next BASIC program on tape. Note that almost any key followed by SHIFT-

RUN/STOP runs the BASIC program in memory. A normal disk LOAD command

followed by a colon, then SHIFT-RUN/STOP will load the specified program from

disk, then run it.

RUN/STOP-RESTORE acts like a panic button; the system returns to its nor

mal state, retaining the BASIC program in memory. Chapter 6 explains both RE

STORE and RUN/STOP in detail.

CLR/HOME places the cursor at the top left of the screen; SHIFT-CLR/HOME

also erases the screen, leaving it blank, with the cursor flashing in the home

position.

INST/DEL (insert/delete) is part of the screen editing system—the set of opera

tions which allow the alteration of any part of the screen. Both keys repeat, although

INST has little effect if it isn't followed by characters on its BASIC line. The screen

editing is powerful and easy to use, despite having a few small quirks in quote

mode. To delete characters to the left of the flashing cursor, press the key

unSHIFTed; to insert characters to the right of the cursor, press SHIFT-INST/DEL.

10
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CRSR keys (cursor keys) move the flashing cursor in the directions printed on

the keytops. UnSHIFTed, the cursor will move in the direction printed below the let
ters CRSR on the key. SHIFTed, the cursor will move in the direction shown above

CRSR. These keys automatically repeat to save time. Movement down the screen

eventually causes the text on the screen to scroll up.
RETURN is the key used by the 64 to signal that information on the screen is

ready for processing. For example, if you type:

PRINT 'HELLO"

on the screen, pressing RETURN causes HELLO to appear. Similarly, RETURN sig

nals that data typed at the keyboard in response to an INPUT statement is ready for

the 64 to process.

SHIFT-RETURN or Commodore key-RETURN moves the cursor to the next

BASIC line (not the same as the next screen line—see below), but without causing

the 64 to take in the information. (For example, if you begin to correct a line of

BASIC, but change your mind, SHIFT-RETURN leaves the line as it was.)

Quotation marks (SHIFT-2) are important in BASIC; quotation marks designate

the start or end of a string (a group of characters) that you may want to print, assign

to a variable, or manipulate in some other way. When in quote mode (more on this

later), several special characters which follow double-quotes are stored as reversed

characters. See SHIFT-RETURN above.

The space bar repeats if held down. Chapter 6 gives full information.

Editing BASIC on the 64
Everything entered into the 64 is treated as BASIC, unless some special language has

been loaded into memory. The 64 operates in several modes, which are described

below.

Direct mode. We've seen how PRINT "HELLO" is interpreted as an instruction

to print the word HELLO. Because of the instant response to the command, this is

called direct or immediate mode.

Program mode. Type the following line, followed by RETURN:

10 PRINT "HELLO"

Apparently, nothing happens. In fact, however, the line is stored in the 64's memory

as a line of a BASIC program; any line beginning with a number (up to 63999) is

interpreted as a program line and stored. This is called program mode or deferred

mode. LIST displays the BASIC program in memory; RUN executes it. If you run the

above example, you should see HELLO on the screen.

Quote mode. In quote mode, the 64's special characters are stored for future

use. Quote mode enables you to use the 64's powerful screen control features,

including cursor moves and screen clearing, from within programs.

BASIC Terms

Variables are algebraic in nature; X=10: PRINT X prints the number 10 on the

screen, since the variable, X, has been given the value 10. The value can be altered,

so X is referred to as a variable. The next chapter explains this more fully.

Keywords are the commands recognized by BASIC; PRINT is one. All the

11
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keywords are listed, with examples, in the next chapter. Note that most keywords

can be entered in a shortened form. For example, PRINT can be abbreviated with a

question mark.

10?

followed by LIST reads as:

10 PRINT

Device numbers allow the 64 to communicate with external hardware devices,

selectively. The tape unit, for example, is device 1. Tape is the default device, which

means that if no other device is specifically requested by number, the tape unit will

be selected. Data can also be written to or read from other devices, but there are

restrictions; you can read and write to tape, but only write to a printer, for example.

The commands for reading and writing also require a reference number, which is

called a logical file number. Sometimes these commands will need a secondary address

as well. For details, see OPEN and CLOSE in the reference section in the next

chapter.

The 64 has 25 screen lines, each with 40 characters. But BASIC can link together

the information on two screen lines into one program line—hence, the distinction

between screen lines and BASIC lines (sometimes called physical and logical lines,

respectively). Try typing PRINT, followed by quotes and several lines of asterisks (or

other characters). You'll find that the third and subsequent lines aren't included as

part of the program line.

Finally, BASIC has built-in error messages, which are designed to help with

debugging (removing mistakes from) your programs. The final section of Chapter 3

lists the error messages alphabetically with explanations.

12
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Chapter 3

BASIC Reference Guide

BASIC Syntax
BASIC is now the most popular language for personal computers. It's easy to write,

test, and edit BASIC, and simple programs can be written by people with very little

computing experience, which is exciting and encouraging. BASIC is sometimes de

scribed as being like English, but the resemblance is tenuous.

Almost every machine has its own version of BASIC. As a result, expressions

work differently on different machines. The information in this book applies to the

version of BASIC contained in the 64.

Numbers and Literals

Numbers and literal character strings are constants, as opposed to variables. Exam

ples of^umbers are 0, 2.3 E —7, 1234.75, and —744; examples of literals are

"HELLO", "ABC123", and "%!£/"', where the quotation marks are delimiters (not
part of the literal). The rules which determine the validity of these forms are com

plex; generally, numbers are valid if they contain 0-9, +, —, E, or a decimal point

in legal combinations. Thus, 1.2.3 is not valid (only one decimal point may be used);

nor is 2EE3 (only one E is permitted). But either 0E or a single decimal point is ac

cepted as 0.

Exponential notation (using E) may be unfamiliar to some; the number following

E is the number of positions left or right that the decimal point must be moved to

produce a number in ordinary notation. (1.7E3 means 1.7 X 10 to the third power,

or 1.7 X 1000, which is 1700. The form 9.45E-2 is simply another notation for the

number .0945.) Be careful when typing these numbers in, because SHIFT-E is not ac

cepted. Values outside the ranges .01 to 999,999,999 and -.01 to -999,999,999 are

printed in exponential form.

Strings can contain any of the Commodore 64's ASCII characters; all characters

can be accessed with the CHR$ function, including quotes, CHR$(34), and RETURN,

CHR$(13). The maximum length of a string is 255 characters.

Variables

A variable is an algebraic symbol used to represent a number or string of characters.

X, X%, and X$, respectively, are numeric (values between ±2.93873588E-39 and

±1.70l4ll83E38), integer (whole numbers between -32768 and +32767), and
string (up to 255 characters) variables. If the variables haven't been assigned values,

numeric and integer variables default to 0, strings to the null character, a string of

zero length.

A variable, as the name implies, can be changed at will. The direct mode line

X=l: PRINT X: X=2: PRINT X

illustrates this point.

Names of variables are subject to these rules:

• The first character must be alphabetic.

• The next character may be alphanumeric.

15
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• Any further alphanumerics are allowed, but not considered part of the variable

name.

• The next character may be % or $, denoting integer and string variables,

respectively.

• The next character may be (to denote a subscripted variable.

• A name cannot include reserved words, since the BASIC interpreter will treat them

as keywords. Note that reserved variables (TI, ST) can be incorporated in names

(but not used by themselves as variable names), since they are not keywords.

All these rules remove ambiguity and make storage convenient and fast. If 1A

were a valid variable name, for example, the line 100 1A=1 would require special

treatment to distinguish it from 1001 A=l. And if symbols other than alpha-

numerics were permitted—so that B= were a valid name, for instance—this would

cause problems.

Conversion between different types of numeric variables is automatic; however,

string-to-numeric and numeric-to-string conversions require special functions. For ex

ample, L%=L/256 automatically truncates L/256 (removing the fractional portion,

but not rounding it) and checks that the result is in the range —32768 to +32767.

L$= STR$(L) and L=VAL(L$) are for converting between numbers and strings. Two

other conversion functions are CHR$ and ASC, which operate on single bytes and

enable expressions which would otherwise be treated as special cases to be

processed.

Operators

Binary operators take two items of the same type and generate a single new item of

the same type from them. Unary operators modify a single item. The numeric op

erators supported by BASIC on the 64 are standard, much like those supported by

other computer languages, while the string and logical operators are less similar.

When a string or arithmetic expression is evaluated, the result depends on the

priority assigned to each operator and the presence or absence of parentheses. In

both string and arithmetic calculations, parentheses insure that the entire expression

within the parentheses is evaluated as a unit before the other operations are per

formed. The rules for using parentheses dictate levels of priority, so that an ex

pression in parentheses within another set of parentheses will be evaluated first. In the

absence of parentheses, priority is assigned to operators in this order, starting with

the highest level:

t Exponents

+ or — Unary plus or minus sign—positive or negative number

• or / Multiply or divide

+ or — Binary plus or minus—addition or subtraction

< = or > Comparisons—less than, equal to, greater than

NOT Logical NOT—unary operator

AND Logical AND—binary operator

OR Logical OR—binary operator

Logical operators are also called Boolean operators. In an expression like A AND

B, A and B are called operands.

16
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Arithmetic operators work in a straightforward way, but string comparisons are

not as simple. Strings are compared on a character-by-character basis until the end

of the shorter string is reached. If the characters in both strings are identical up to

the end of the shorter string, the shorter one is considered the lesser by string

comparison logic. Characters later in the ASCII sequence are considered greater than

those earlier in the series. Therefore, the string "1" is less than the string "10", but

"5" is greater than "449".

Functions

Some BASIC keywords are valid only when followed by an expression in paren

theses; they may be used on the right of assignment statements or within ex

pressions. These are functions: They return a value dependent on the expression in

parentheses. Numeric functions return numeric values and include SQR, LOG, and

EXP; string functions, which include LEFT$, MID$, RIGHTS, and CHR$, return

string values. (The last character of all string functions is a $, like that of string vari

able names.) PEEK, though not a function in the mathematical sense, has the syntax

of a numeric function and is considered one. Some functions (like FRE) take a so-

called dummy argument: an expression required by the interpreter's syntax-checking

routine, but ignored by the code which evaluates the function. Typically, the dummy

parameter is a 0, for convenience. The line below is an example:

PRINT FRE(O)

Expressions

A numeric expression is a valid arrangement of numbers, numeric functions, real and

integer variables, operators and parentheses, or logical expressions. Numeric ex

pressions can replace numbers in many BASIC constructions, for example, the right

side of the assignment statement:

X=SQR(M)+PEEK(SCREEN + J)

A string expression is an arrangement of one or more literals, string functions,

string variables, the string operator +, or parentheses. String expressions can replace
literals in many BASIC constructions, like this:

X$=MID$("HI" + NAME$,1,L)+ CHR$(13)

A logical (or Boolean) expression evaluates as true or false (—1 or 0, respectively,

in BASIC) and usually contains one or more relational operators (<, =, or >), logical

operators, parentheses, numeric expressions, or string expressions. Their main use is

in IF statements.

IF X$="Y" OR X$="N" GOTO 100

contains logical expressions.

BASIC doesn't distinguish sharply between logical and arithmetic expressions;

they are evaluated together and can be mixed. This allows constructions like:

IF INT(YR/4)*4=YR AND MN=2 THEN PRINT "29 DAYS"

which is fairly simple, but also trickier lines like:

DAYS = 31 + 2*(M=2) + (M=4 OR M=6 OR M=9 OR M=11)
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where the value — 1, generated by a true statement, is used in the calculation of

days in a month. (These lines are examples only, not complete routines that you

should type in and run.)

Another aspect of logical expressions is that logical operators can easily be

wrongly programmed; because mistyping may be undetected by BASIC, the priority

of logical expressions is low (they're executed last), and the meaning of expressions is

easily misunderstood. For example:

IF PEEK(X)=0 AND PEEK(X+1)=O THEN END

looks for two zero bytes, then ends, which is the desired result, but:

IF PEEK(X) AND PEEK(X+1)=O THEN END

ends whenever PEEK(X) is nonzero and PEEK(X+1)=O.

True and false are actually two-byte expressions like integer variables; — 1 (true)

means all bits are 1; 0 (false) means all bits are 0. Chapter 5 explains in detail.

Every intermediate result in an expression must be valid; numerals must be in

the floating-point range, strings no longer than 255 characters, and logical ex

pressions in the integer range.

Statements

A statement is a syntactically correct portion of BASIC separated from other state

ments by an end-of-line marker or a colon. All statements begin with a BASIC

keyword, or, where LET has been omitted, with a variable. The different types of

statements are discussed below.

• Assignment statements. LET variable = expression. (LET is optional; but its presence

makes the intention behind arithmetically impossible statements, like X=X+1,
clearer for the beginner. Languages like Pascal indicate assignments with the sym

bol :=, which is read as "becomes.")

• Conditional statements. IF logical expression THEN statement.

• Program control statements. For example, GOTO, GOSUB, RETURN, STOP.

• Input statements. Fetch data from device or from DATA statement: INPUT, GET,

INPUT#, GET#, READ.

• Looping statements. FOR-NEXT loops, for example.

• Output statements. Send data to screen, disk, cassette, or other device: PRINT,

PRINT#.

• REM statements. These allow the programmer to include comments for documenta

tion. The interpreter detects the REM statement and ignores the remainder of the

line when the program runs. Program lines which are never run and lines that con

tain only colons can be included in this category.

• Conversion statements. These convert between string variables and literals, real vari

ables and numbers, and integers and numerals. Functions like ASiC, CHR$, STR$,

and VAL are examples.

BASIC programs are made up of numbered program lines; each program line is

made up of statements, separated from eacft other by colons where two or more

statements are used on the same program jihe. Spaces generajjy are ignored outside

quotation marks, as are multiple colons.
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BASIC Keyword Dictionary
This section lists every BASIC keyword, with explanations and examples, in a uni

form format. Details of error messages are not included here, but collected in an

alphabetic list after this section.

Each command's syntax is given in a standard way. Parameters are usually nu

meric expressions, string expressions, or variables, and these are always carefully

distinguished; for example, ABS (numeric expression) means that any valid numeric

expression is usable with ABS, which in turn implies ABS can be used with vari

ables, as in ABS(X).

Square brackets denote optional parameters; where such a parameter is omitted,
a default value is assumed by the system.

Numeric functions probably cause most errors. First, there's a chance of a simple

SYNTAX ERROR, perhaps an arithmetically wrong construction or omitted paren

thesis. Second, number parameters have a wide assortment of range restrictions: byte

values must be 0-255, memory addresses must be 0-65535, integer and logical ex
pressions must be within —32768 and +32767, no numbers can be outside approxi

mately — 1E38 and +1E38, zero denominators are not valid, square roots cannot
exist for negative numbers, and so on. These errors are relatively easy to correct, so

errors are mentioned only when, as in DATA, some noteworthy feature exists.

Chapter 11 is a guide to the Commodore 64's ROMs and includes information
on the keywords. In a few cases, information is provided in this chapter, where it

helps clarify some aspect of BASIC, and tokens are listed for programmers interested
in looking into BASIC storage in memory.

ABS
Type: Numeric function

Syntax: ABS(numeric expression)

Modes: Direct and program modes are both valid.

Token: $B6 (182)

Abbreviated entry: A SHIFT-B

Purpose: ABS returns the absolute value of the parenthesized numeric expression. In
other words, ABS makes a negative number or expression positive.

Examples:

1. 50 IF ABS(TARGET-X) <.01 THEN PRINT "DONE": END

This shows how to check for approximate equality; when TARGET is 6, the
program ends only if X is between 5.99 and 6.01. This kind of text is typically

used in iterative computations in which a calculated value is expected to converge
to a given value.

2. 100 IF ABS(X1-X2)<3 AND ABS(Y1-Y2)<3 GOTO 90

From a game program, this recalculates starting positions on screen for two

players if randomly generated starting positions are too close.
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AND
Type: Logical operator

Syntax: Logical or numeric expression AND logical or numeric expression

Modes: Direct and program modes are both valid.

Token: $AF (175)

Abbreviated entry: A SHIFT-N

Purpose: AND applies the logical AND operator to two expressions. For the pur

poses of the AND comparison, numeric expressions are evaluated as 16-bit signed

integers, so each operand must be in the range —32768 to 32767. Values outside this

range result in an 7ILLEGAL QUANTITY ERROR. Each of the 16 bits in the first op

erand is ANDed with the corresponding bit in the second operand, resulting in a 16-

bit, two-byte integer. The four possible combinations of corresponding individual bits

are:

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

The result becomes 1 only if both bits are 1.
AND has two separate uses in BASIC. First, it allows the truth-value of several

logical expressions to be calculated together, as in:

IF X>2 AND X<3

where X must be between 2 and 3 for the condition to be true. Second, AND turns

off selected bits, as in:

POKE 1, PEEK(l) AND 254

This forces bit 1 of location 1 to 0, regardless of its previous value (which switches

in RAM in place of the BASIC ROM).
Although these uses appear to be different, AND behaves identically in each. A

logical expression is treated as false when 0 (all bits in the result are zero), and is
considered true when — 1 (all bits in the result are 1) or nonzero.

Examples:

1. 100 IF PEEK(J) AND 128=128 GOTO 200
Line 200 will be executed if bit 7 of the PEEKed location is set; the other bit

values are ignored.

2. X=X AND 248
This converts X into X less its remainder on division by 8, so 0-7 become 0,

8-15 become 8, and so on. This is significantly faster than X= INT(X/8)*8. It
works (for X up to 256) because 248 = %11111000. Therefore, X AND 248 clears

the three rightmost bits to 0.

3. OK= YR>84 AND YR<90 AND MN>0 AND MN<13 AND OK
Part of a date validation routine, this uses OK as a variable to validate mul

tiple inputs over several lines of BASIC. Use:

IF NOT OK THEN line number

to branch for reinput if the data was unacceptable.
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ASC
Type: Numeric function

Syntax: ASC(string expression at least one character long)

Modes: Direct and program modes are both valid.

Token: $C6 (198)

Abbreviated entry: A SHIFTS

Purpose: This function returns a number in the range 0-255 corresponding to the

ASCII value of the first character in the string expression. It is generally used when

this number is easier to handle than the character itself. See the Appendices for a
table of ASCII values.

Note that the converse function to ASC is CHR$, so ASC(CHR$(N)) is the same
as N, and CHR$(ASC(//P//)) is the character P. All keys except RUN/STOP, SHIFT,
CTRL, the Commodore key, and RESTORE can be detected with GET and ASC.

Examples:

1. X = ASC (X$+CHR$(0))

Calculates the ASCII value of any character X$. Adding CHR$(0) allows
detection of the null character, which otherwise gives 7ILLEGAL QUANTITY
ERROR.

2. X = ASC(X$)-192

Converts uppercase (SHIFTed) A-Z to 1-26. Useful when computing
checksums, where each letter has to be converted to a number.

3. 1000 IF PEEK(L)=ASC("*") THEN PRINT "FOUND AT" L

Shows how using ASC can make your programs more readable; the example
is part of a routine to search memory for an asterisk.

ATN
Type: Numeric function

Syntax: ATN(numeric expression)

Modes: Direct and program modes are both valid.

Token: $C1 (193)

Abbreviated entry: A SHIFT-T

Purpose: This is the arc tangent, or inverse tangent, function. This function returns,
in radians in the range — tt/2 to + v/2, the angle whose tangent is the numeric ex
pression. The expression may take any value within the valid range for floating-point
numbers, approximately ±1.7E38.

To convert radians to degrees, multiply by 180/tt. This changes the range of val
ues of ATN from - n/2 through tt/2 to -90° through 90°.

In some cases, ATN(X) is a useful transformation to apply, since it condenses al
most the entire number range into a finite set from about —1.57 to +1.57.

Examples:

1. R=ATN((E2-E1)/(N2-N1))

From a program for surveyors, this computes a bearing from distances east
ing and northing.
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2. DEF FN AS(X)=ATN(X/SQR(1-X*X))

DEF FN AC(X)=t/2-ATN(X/SQR(1-X*X))

These function definitions evaluate arc sine and arc cosine, respectively.

Remember that the arc tangent can never be exactly 90 degrees; if necessary, test

for this extreme value to avoid errors.

CHR$
Type: String function

Syntax: CHR$(numeric expression)

Modes: Direct and program modes are both valid.

Token: $C7 (199)

Abbreviated entry: C SHIFT-H (This includes the $.)

Purpose: CHR$ converts a numeric expression (which must evaluate and truncate to

an integer in the range 0-255) to the corresponding ASCII character. It is useful for
manipulating special characters like RETURN and quotes which are CHR$(13) and
CHR$(34), respectively. Check the Appendices for a table of ASCII values. Note that

ASC is the converse function of CHF*

Examples:
1. A$=CHR$(18)+NAME$+CHR$(146)

This adds {RVS} and {OFF} around NAME$, so PRINT A$ prints NAME$

in reverse video.
2. FOR J=833 TO 848: PRINT CHR$(PEEK(J));:NEXT

This prints the name of the most recently loaded tape program, by reading
the characters from the tape buffer, assuming the buffer hasn't been altered by a

program.

3. PRINT#4, CHR$(27)"E08"
The above command sends the ASCII ESC (escape) character, plus a com

mand, to a printer. Special printer features are often controlled like this, and the
codes will vary from one brand of printer to the next.

4. OPEN 2,2/0/CHR$(38)+CHR$(60)

A command which opens a file to a modem. The two CHR$ parameters are

required in this format by BASIC.
CHR$(0) represents the null character, but, unlike the null string, "", it has a

length of one, and can be added to strings. See ASC for an application. Embedded
null characters, as in Y$="12"+CHR$(0)+"34" can cause strange results.

CLOSE
Type: Input/output statement

Syntax: CLOSE numeric expression

Modes: Direct and program modes are both valid.

Token: $A0 (160)

Abbreviated entry: CL SHIFT-0
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Purpose: CLOSE completes the processing of the specified file and deletes its file
number, device number, and secondary address from the file tables.

A numeric expression may be used as a logical file number; it must evaluate to a
number in the range 0-255. No error message is given if the file is not open. (Ac
tually CLOSE shares OPEN's syntax checking, so four parameters are valid after
CLOSE, but only the first is used.)

Notes:

1. Files opened for reading do not have to be closed, but files opened for saving to
tape or disk should always be closed, or tape files will lose the last portion of data

held in the buffer, while disks may be corrupted. Chapters 14 and 15 have details.
(OPEN 15,8,15: CLOSE 15 is an easy way to correctly close disk files, perhaps
after a program stops with 7SYNTAX ERROR while writing to disk.)

2. CLOSE is a straightforward command, but it is made more complicated by the

behavior of CMD, which must be followed by a PRINT# command to switch out
put back to the TV or monitor.

Example:

OPEN 4,4: PRINT#4/'HELLO": CLOSE 4

The line above opens a file, sends data to a printer through the file, then closes

the file. The second number in the OPEN command is a device number, which selects
the printer (device 4).

CLR
Type: Statement

Syntax: CLR

Modes: Direct and program modes are both valid.

Token: $9C (156)

Abbreviated entry: C SHIFT-L

Purpose: CLR clears the memory area currently allocated to variables, leaving the

BASIC program, if there is one, unchanged. Any machine language routines in RAM

are left unaltered. Additional effects are noted below.

Note: CLR is actually part of NEW, and does most of the things NEW does, while

keeping the current program intact. CLR operates by resetting pointers, and doesn't

actually erase variables, so in principle these could be recovered. It has other func

tions, too. Following is the complete list:

• The string pointer is set to top-of-memqjy, and the end-of-variables and end-of-

arrays pointers are set to end-of-BASIC. AH variables and arrays are thus effectively

lost.

• The stack pointer is reset, but the previous address is retained; therefore, all FOR-

NEXT and GOSUB-RETURN references are lost, and also, if CLR executes within a

program, that program continues at the same place.

• The DATA pointer is set to start.

• Input/output activity is aborted.

• Files are aborted (but not closed), and keyboard and screen become the

input/output devices.
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Examples:

1. POKE 55,0: POKE 56,48: CLR
Sets the top of the BASIC program storage area to 48*256=$3000, typically

to reserve space for graphics in VIC bank 0.

2. 1000 CLR: GOTO 10
This sort of operation is useful in some simulation programs; all existing

variables are erased and the program continues. RUN 10 has a similar effect.

CMD
Type: Output statement

Syntax: CMD numeric expression [, any expression]
The numeric expression, a file number, must evaluate to a number in the range

1-255. The optional expression does not include the brackets shown above, but must
follow a comma; it is printed to the specified file and can be used to put a header on

a printout.

Modes: Direct and program modes are both valid.

Token: $9D (157)

Abbreviated entry: C SHIFT-M

Purpose: CMD is identical to PRINT#, except that the output device is left listening.

Therefore, a CMD statement followed by a device number redirects printed output

from TV to the specified device. The effect usually lasts until PRINT# unlistens the

device.

Notes:

1. CMD is a convenient way to cause a program with many PRINT statements to di

vert its output to a printer. This is easier than changing all PRINT statements to

PRINT# statements. However, CMD has bugs; GET and sometimes GOSUB will

redirect output to screen. Where this is a problem, use PRINT#.

2. CMD is necessary in order to list programs to printers.

Examples:

1. OPEN 4,4: CMD4,"TITLE":LIST

This will list the current program (or disk directory file, if present in mem

ory) to a printer. Follow this with:

PRINT#4: CLOSE4

to return output to the screen.

2. 100 INPUT "DEVICE NUMBERED: OPEN D,D: CMD D

Allows PRINT to direct output either to device 3 (screen), device 4 (printer),

or elsewhere.
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CONT
Type: Command

Syntax: CONT

Modes: Only direct mode is available. (In program mode CONT enters an infinite

loop.)

Token: $9A (154)

Abbreviated entry: C SHIFT-O

Purpose: CONT resumes execution of a BASIC program stopped by a STOP or END

statement, or by the RUN/STOP key. CONT cannot be used to restart a program

that has stopped due to any sort of error. Also, CONT cannot be used if you edit

any program lines after the program stops.

For debugging purposes, STOP instructions may be inserted at strategic points in

the program, and variables may be PRINTed and modified after the program has

stopped. CONT will continue, provided you make no error. ?CAN'T CONTINUE ER

ROR has several causes. In such cases, GOTO a line number serves a similar purpose

as CONT.

Note: Because STOP aborts files, CONT may be accepted, but not actually continue

as before; for example, output which ought to go to a printer may be displayed on

the screen after CONT.

Example:

10 PRINT J: J=J + 1: GOTO 10

Run this, then press the RUN/STOP key. The BASIC command CONT will

cause the program to continue. You can change J, by typing J=10000 in direct mode,

for example, and CONT will resume (using the new value).

COS
Type: Numeric function

Syntax: COS(numeric expression)

Modes: Direct and program modes are both valid.

Token: $BE (190)

Abbreviated entry: None

Purpose: COS returns the cosine of the numeric expression, which is assumed to be

an angle expressed in radians.

Examples:

1. PRINT COS(45*tt/180)

The above statement prints the cosine of 45 degrees (conversion from radi

ans to degrees is accomplished by multiplying the value in radians by tt and

dividing by 180).

2. FOR J=0 TO 1000 STEP ?r/10: PRINT COSfl): NEXT

This shows the cyclical nature of COS. Large values of the argument don't

introduce significant error, because COS uses only the remainder in the range 0 to
2*7T.
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DATA
Type: Statement

Syntax: DATA list of data separated by commas

Modes: Only program mode is available.

Token: $83 (131)

Abbreviated entry: D SHIFT-A

Purpose: DATA enables numeric or string data to be stored in a program. The READ

statement retrieves the data in DATA statements in the same order it's stored in the

program.

Notes:

1. DATA statements to store ML programs can be generated automatically: See

Chapter 9.

2. A 7SYNTAX ERROR in a valid DATA statement line means that the READ and

DATA statements don't match properly.

3. Unnoticed or omitted commas can cause baffling bugs:

DATA R,O,Y,G,,B/P,

contains eight data items, two of them (between G and B, and following P) null

characters.

4. Because DATA statements are handled in sequence (RESTORE restarts the se

quence), take care when adding more data (for example, by appending a sub

routine) in case data from a wrong routine is read.

Examples:

1. 100 DATA "7975, LAZY RIVER ROAD"
This shows that quotes enable commas, colons, leading spaces, and other

special characters to be included in strings.

2. 1000 DATA CUCOPPER^e^FEJRON^S.l

This illustrates how sets of data can be stored. Typically, a loop with READ

A$,M$,W inside might be used to read each set of three items.

3. 10000 DATA SUB1 :REM MARKS START OF SUBl's DATA
Here's a trick that might be used to insure that the correct data is being read.

Use the following line to locate SUB1:

1000 READX$: IF X$<> "SUB1" GOTO 1000

DEFFN
Type: DEF FN, statement; FN, numeric function

Syntax: DEF FN valid variable name (real variable)^ arithmetic expression

Modes: Only program mode is available.

Token: DEF: $96 (150); FN: $A5 (165)

Abbreviated entry: DEF: D SHIFT-E (FN has no abbreviated form)

Purpose: DEF FN sets up a numeric (not string) function, with one dependent vari

able, which can be called by FN. Function definitions help save space where an ex-
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pression needs to be evaluated often. However, their main advantage is improving

BASIC'S readability.

Notes:

1. Direct mode is forbidden, but function definitions are stored along with ordinary

variables. See Chapter 6 on storage. Once defined, functions can be called by FN

in direct mode.

2. ?UNDEF'D FUNCTION ERROR results if DEF FN hasn't been encountered before

FN is used. 7SYNTAX ERROR, when caused by a definition, refers to the line

using FN, even when that line is valid.

3. After loading a new program from within BASIC, redefine any functions; other

wise, they'll probably not work. Chapter 6 explains why.

4. Function definitions work by calling a routine to evaluate expressions. Therefore,

each definition must fit into one line of BASIC; IF-THEN statements aren't al

lowed in the function definition, so logical expressions may be necessary—see the

examples. Calling another function definition is valid, however.

5. The dependent variable need not be used in the definition; if not, it's called a

dummy variable.

Examples:

1. 100 DEF FN DEEK(X) = PEEK(X)+256*PEEK(X+1)

110 PRINT FN DEEK(50)

These lines print the decimal value of the two-byte quantity stored in mem

ory locations 50 and 51. (DEEK is a double-byte PEEK.)

2. 100 DEF FN MIN(X) = -(A>B)*B-(B>A)*A

This will return the smaller of A and B. Note that X is a dummy variable in

this case; any other variable could be used. The awkward form of the expression

is necessary to fit it into a single statement.

3. 100 DEF FN PV(I) = 100/ (1+1/100)

This sets up a present value function, where I is an annual interest rate.

4. 1000 DEF FN E(X) = 1 + X +X*X/2 + X*X*X/6 + FN E1(X)

1010 DEF FN El(X)=X*X*X*X/24 + X*X*X*X*X/120

The above lines show in outline how a very long expression can be spread

over several lines of BASIC.

DIM
Type: Statement

Syntax: DIM variable name [, variable name..]

Modes: Direct and program modes are both valid.

Token: $86 (134)

Abbreviated entry: D SHIFT-I

Purpose: DIM is short for DIMension. It sets up space above the BASIC program in

memory for variables in the order the variables are listed in the DIM statement. This

command is automatically carried out when a variable is given a value (for example,

a line that contains the expression X=l), so there's no need for DIM, unless arrays
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with dimensions greater than 10 are needed. All variables set up by DIM are set to 0

(if numeric) or null (if strings).

Notes:

1. Arrays can use numeric expressions in their DIM statements, so their size can be

determined by some input value; they don't have to be of fixed size. Arrays start

with the zeroth element, so DIM X(4) sets up a numeric array with five storage

locations, X(0) through X(4). Dimensions can have a maximum of 32767 elements,

and not more than 255 subscripts may be used in multidimensional arrays; in

practice, an ?OUT OF MEMORY ERROR will result long before you reach these

limits.

2. Arrays are stored in memory above regular variables. Chapter 6 explains the con

sequences in detail, but here are a couple:

• New variables introduced after an array has been set up cause a delay.

• Arrays can be deleted with:

POKE 49,PEEK(47): POKE 50,PEEK(48)

So if intermediate results are computed with a large array, this can be deleted

when you are finished.

3. Integer arrays are efficient, while the efficiency of string arrays depends on the

lengths of the strings.

PRINT FRE(O)

gives a quick indication of spare RAM at any time. RAM space occupied by arrays

is explained in Chapter 6.

4. Large string arrays are vulnerable to garbage collection delays, also explained in

Chapter 6. The total number of separate strings, not their lengths, is the signifi

cant factor in garbage collection.

Examples:

1. 100 INPUT "NUMBER OF ITEMS";N: DIM IT$(N)

This might be used in a sorting program, where any number of items may

be sorted.

2. DIM X,YJ,L,P$ :REM SET ORDER OF VARIABLES

Ordering variables, with the most frequently used ones dimensioned first,

will help increase the speed of BASIC programs.

3. 100 DIM A(20): FOR J=l TO 20: INPUT A(J): A(0)=A(0)+A(J): NEXT

The above line uses the zeroth element to keep a running total.

4. DIM X%(10,10,10)
This sets up an array of 1331 integers, perhaps to store the results of three

11-point questionnaires.

END
Type: Statement

Syntax: END

Modes: Direct and program modes are both valid.
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Token: $80 (128)

Abbreviated entry: E SHIFT-N

Purpose: END causes a program to cease execution and exit to immediate mode.

This command may be used to set breakpoints in a program; CONT causes a pro

gram to continue at the instruction after END. BASIC doesn't always need END; a

program can simply run out of lines, but END is needed to finish the program in the

middle. END leaves BASIC available for LISTing; you may prefer to prevent this

with NEW or SYS 64738 in place of END. (Note: Early computers always needed

END, to separate each program's punch cards. Now this isn't so.)

Examples:

1. 10000 IF ABS(BEST-V) <.001 THEN PRINT BEST: END

This causes the program to end when a repeating process has found a solu

tion to a problem within a desired accuracy range.

2. 100 GOSUB 1000: END: GOSUB 2000: END: GOSUB 3000: END

These lines are from a program being developed; this shows a use of END to

set breakpoints. CONT resumes the program after each subroutine is tested.

EXP
Type: Numeric function

Syntax: EXP(numeric expression)

Modes: Direct and program modes are both valid.

Token: $BD (189)

Abbreviated entry: E SHIFT-X

Purpose: EXP calculates e (2.7182818...) to any power within the range -88 to +88,
approximately. The result is always positive, approaching 0 with negative arguments,
becoming large with positive arguments. EXP(0) is 1.

Note: EXP is the converse of LOG. Sometimes logarithms of numbers are used in

calculations; EXP transforms the results back to normal. EXP(Q) could be replaced by
2.7182818TQ, but the shorter form is more readable.

Examples:

1. PRINT EXP(LOG(N))

The above line prints N (possibly with rounding error), demonstrating that
EXP and LOG are converse operations.

2. 100 P(N) = MtN * EXP(-M)/FACT(N)

This is a typical statistical formula, for the probability of exactly N rare

events happening when the average is M. FACT(N) holds N! for a suitable range

of values. (EXP is important for its special property that it equals its own rate of
growth; it tends to turn up in scientific calculations.)

FOR-TO (STEP)
Type: Statement

Syntax: FOR simple numeric variable=numeric expression TO numeric expression
/STEP numeric expression]
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Modes: Direct and program modes are both valid.

Token: FOR: $81 (129); TO: $A4 (164); STEP: $A9 (169)

Abbreviated entry: FOR: F SHIFT-O; TO: None; STEP: ST SHIFT-E

Purpose: FOR-TO [STEP] provides a method to count the number of times a portion

of BASIC is executed.

Notes:

1. How FOR-NEXT loops work. The syntax after FOR is checked, rejecting, for ex

ample, FOR X%= 1 TO 10. Then the stack is tested to see if FOR with the present

variable exists; if it does, the previous loop is deleted, so

FOR X=l TO 10: FOR X=l TO 10

is treated as a single FOR statement. Now, 18 bytes are put on the stack, if there's

room. Once they are placed there, they won't change, so the upper limit of the

loop FOR X=l TO N won't change after the looping starts, even if the value of N

is changed within the loop.

10 FOR X=489 TO 506: PRINT PEEK(X): NEXT

lists 18 bytes from the stack; these are the FOR token, the two-byte address of the

loop variable, the STEP size in floating-point format, the sign of the STEP, the

floating-point value of the upper limit of the loop, the line number of the FOR,

and the address to jump to after the loop is finished. The STEP value defaults to 1.

Because NEXT determines whether the loop will continue, every FOR-NEXT

loop is executed at least once, even FOR J=l TO 0: NEXT. NEXT also checks the

loop variable, so NEXT X,Y, for example, helps insure correct nesting of loops—it

must be preceded by FOR Y and FOR X statements. NEXT adds the STEP size to

the variable value; if the result exceeds the stored limit (or is less, if a negative

STEP size was used), processing continues with the statement following NEXT.

There's no way the system can detect a missing NEXT; if a set of loops is un

expectedly fast, this may be the reason.

When the STEP size is held exactly, there is no loss of accuracy in using

loops. So:

FOR J=l to 10000 STEP .5

is exact, as is the default STEP size of 1. On the other hand:

FOR M=l TO 1000 STEP 1/3: PRINT M: NEXT

will produce errors. Chapter 6 explains this in more detail.

This description should enable you to pinpoint bugs in loops, which can be

difficult to locate without detailed information.

2. Loop execution speed. When fine-tuning a long program for speed, pay special

attention to loops, because inefficiencies are magnified in proportion to the loop's

size. If you dimension variables in decreasing order of importance, this can in

crease the speed of execution (don't dimension any variables inside the loop,

though, as this will cause an error condition).

3. Exiting from loops. One of the best ways to exit from a loop is from the NEXT

statement, and changing the loop variable is a simple way to accomplish this. For

example:
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5 FOR J=l TO 9000: GET X$: IF X$="A" THEN J=9000

10 NEXT

finishes early if the A key is pressed.

4. Other loops. The extended command DO WHILE can be simulated with:

FOR J= -1 TO 0: statements you wish to execute : J=CONDITION: NEXT

Processing continues until J is false. Obviously, more intricate looping structures

are possible.

Examples:

1. PRINT "{CLR}": FOR J=l TO 500: PRINT "*";: NEXT

The above example line prints 500 asterisks.

2. K=0: FOR J=1024 TO 1024+255: POKE J,K: K=K+1: NEXT

This POKEs characters 0 to 255 sequentially into screen memory. K counts

along with J.

3. FOR J=2048 TO 9E9: IF PEEK(J)<>123 THEN NEXT:PRINT J

These statements search memory from 2048 upward for a byte equal to 123.

When the loop ends, PRINT J gives the location.

4. 5 FOR J=l TO 12

10 IF M$<>MID$("JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC",
3*J-2,3) THEN NEXT

The above lines match a correctly entered month abbreviation, previously in

put as M$. When the program is finished running, J will be a number from 1 to
12, indicating the month (or 13 if no match was found).

Type: Numeric function

Syntax: FRE (numeric expression)

Modes: Direct and program modes are both valid.

Token: $B8 (184)

Abbreviated entry: F SHIFT-R

Purpose: FRE computes the number of bytes available to BASIC. If there are more
than 32767, the value returned is negative; adding 65536 converts this to the true

figure. The Commodore 64 has 64K of RAM memory, but 24K of this is normally
hidden by overlying ROM and doesn't appear in the total of free bytes. See Chapter
5. FRE is useful for removing unused dynamic strings, which take up variable space
in RAM and are a potential source of ?OUT OF MEMORY ERRORs. FRE first per

forms a garbage collection (see Chapter 6) before returning its value. FRE uses a

dummy expression; usually a zero is used, so the expression is FRE(0).

Examples:

1. 1000 IF FRE(0)<100 PRINT "SHORT OF RAM"

The above example prints a message when free memory is below 100 bytes

or returns a negative value. This routine would need to be modified to be useful,

because of the negative values FRE returns (see explanation above).
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2. F=FRE(O): DIM X$(50): PRINT F-FRE(O)

This prints the number of bytes used to dimension X$ to 50.

3. 200 F=FRE(0)-(FRE(0)<0)*65536

This calculates the number of free bytes under any circumstances, storing the

answer in F.

GET
Type: Input statement

Syntax: GET variable name [, variable name...]

Mode: Only program mode is available.

Token: $A1 (161)

Abbreviated entry: G SHIFT-E

Purpose: GET reads a single character from the current input device, usually the

keyboard, and assigns it to the named variable. If the keyboard buffer is empty,

string variables are assigned a null, and numeric variables are given a value of 0.

GET (unlike INPUT, or GET on some other computers) doesn't wait for a keypress,

so BASIC can test for a key and continue if there isn't one. GET X$ is more powerful

than GET X, which crashes when it detects a nonnumeric key; so the string form of

GET is nearly always used, and conversions are made when necessary. The string

GET works with any ASCII character, but the RUN/STOP, Commodore, SHIFT,

CTRL, and RESTORE keys aren't detected by GET.

Chapter 6 explains the keyboard buffer and associated keyboard features in

depth. Chapter 4 explains how GET may be used to write reliable INPUT-like

routines.

Examples:

1. 5 GET X$: IF X$="" GOTO 5: REM AWAIT KEY

10 PRINT "{CLR}" X$ ASC(X$): GOTO 5

This short program waits for a key to be pressed, then clears the screen and

prints the key pressed and its ASCII value. There are a few exceptions, like quotes

and the color controls. You'll see how RETURN is read, plus all the normal keys.

Chapter 4 discusses this in more depth.

2. 100 DIM IN$(200): FOR J=l TO 200: GET IN$fl): NEXT

This line gets 200 characters into an array, most of which will be nulls.

3. 200 GET A$,B$,C$

This is a syntactically valid statement, but this format is more appropriate

with the GET# statement. The syntax is accepted because GET, GET#, INPUT,

and READ largely use the same Kernal routines, and the 64's designers felt it was

not worth removing the relatively useless alternatives.

GET#
Type: Input statement

Syntax: GET# numeric expression, variable name ^variable name...]
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The numeric expression, a file number, must evaluate and truncate to a number

in the range 1-255.

Mode: Only program mode is available.

Token: $A1 (161) then $23 (35). This is GET then #; GET# has no token of its own.

Abbreviated entry: G SHIFT-E #

Purpose: GET# reads a single character from the specified file, which must be open

to an input device or a ?FILE NOT OPEN ERROR will result. Unlike the INPUT#

statement, GET# can read characters like colons, quotes, and RETURNS. GET# can

read files character by character in a way impossible with INPUT# and is not limited

to 88 characters per string.

Notes:

1. GET# can read from screen or keyboard, although there's usually no real advan

tage in this.

2. GET# from tape sets the status variable (ST) to a value of 64 when it reaches the

end-of-file, so programs can evaluate ST to test for the end of data if no special

marker was used. ST is immediately reset, so the test is needed after each GET#.

Chapter 14 has full details.

3. GET# from disk also sets ST=64 at end-of-file; from then on, ST is set to 66,

which indicates end-of-file plus device not responding. Chapter 15 has full details.

Examples:

1. 1000 IN$=""

1010 GET#1,X$: IF ASC(X$)=13 GOTO 2000 :REM RETURN FOUND

1020 IN$=IN$+X$: GOTO 1010 :REM BUILD STRING

This program extract reads in a string, character by character, from tape or

disk, building IN$ from each character, and exiting to the next part of the program

when RETURN indicates the end of a string. A routine at line 2000 would handle

the string after the GET# process was complete.

2. 100 GET#8,X$: IF ST=64 GOTO 1000: REM END OF DATA

The above line shows how to use ST to detect that no more data is on file,

and how to jump to another part of the program based on that information.

3. 100 GET#1,X$,Y$

This example program line GETs a pair of consecutive characters from file 1,

which has already been opened to an input device.

GO
Type: Dummy statement

Syntax: Always part of GO TO

Modes: Direct and program modes are both valid.

Token: $CB (203)

Abbreviated entry: None

Purpose: The sole function of GO is to allow GO TO as a valid form of GOTO,

which occasionally gives problems. For example, some renumbering programs ignore

it, some early CBM machines don't have it. Chapter 8 shows how you can modify

GO to suit your own purposes.
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GOSUB
Type: Statement

Syntax: GOSUB line number

Modes: Direct and program modes are both valid.

Token: $8D (141)

Abbreviated entry: GO SHIFT-S

Purpose: GOSUB jumps to the specified BASIC line, saving the address of the orig

inal line on the stack, so that the RETURN statement in a program can transfer con

trol back to the statement immediately following the GOSUB statement. This means

a subroutine can be called from anywhere in BASIC while keeping normal program

flow. IF or ON allows conditional calls to be made to subroutines.

Notes:

1. Testing subroutines in direct mode. It is often simple to test parts of a large program

while in direct mode. For example:

L=1234: GOSUB 500

tests the decimal/hex converter in Chapter 6's "PRINT USING."

2. Processing GOSUB. Line numbers following GOSUB are scanned by a routine simi

lar to VAL; numbers are input until a nonnumeric character is found. (For ex

ample, GOSUB and GOSUB NEW and GOSUB OXX are treated as GOSUB 0.)

This allows ON-GOSUB to work, since it can then skip commas. After this,

GOSUB puts five bytes on the stack.

10 GOSUB 20

20 FOR J=500 TO 504: PRINT PEEK(J);: NEXT

The above program prints five bytes from the stack, which are a GOSUB

token (141), GOSUB's line number, and a pointer to the GOSUB statement. The

line number is used in the error message if the destination line doesn't exist. It's

slightly faster to collect subroutines at the start of BASIC, to reduce the time spent

searching for them, and it's also slightly faster to number lines with the smallest

possible numbers to cut down time spent processing line numbers.

Note that GOSUBs without RETURNS can fill the stack and cause ?OUT OF

MEMORY ERROR. Type and run the following one-line program to see the effect:

100 GOSUB 100

3. Miscellaneous. Chapter 6 has a computed GOSUB, and a POP to delete GOSUB

statements that don't have matching RETURN statements. GOSUB 500: RETURN

is identical to GOTO 500 in its effect, but uses more space on the stack.

Structured programming makes a lot of use of subroutines; rewriting pro

grams which use multiple IFs or other complex constructions into subroutines

helps make programs clearer. See Chapter 4 for more on this.

Examples:

1. 100 EM$="DISK NOT IN DRIVE//:GOSUB2000

110 END

2000 PRINT "{HOME} {RVS}*** ERROR " EM$ " {OFF}"

2010 FOR J=l TO 2000: NEXT: RETURN
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Part of a simplified error message routine, this excerpt prints an error (EM$

must be set before GOSUB 2000) in reverse at the top of the screen.

2. 500 GOSUB 510

510 PRINT"*"

520 RETURN

This shows how a subroutine can have several entry points. Here, GOSUB

510 prints an asterisk, while GOSUB 500 prints it twice.

GOTO; GO TO
Type: Statement

Syntax: GOTO line number; GO TO line number

Modes: Direct and program modes are both valid.

Token: GOTO: $89 (137). Separate GO and TO tokens are also accepted.

Abbreviated entry: G SHIFT-0

Purpose: GOTO jumps to the specified BASIC line. IF and ON allow conditional

GOTO statements.

Notes:

1. Using GOTO in direct mode. Direct mode GOTO executes the program in memory

without executing CLR, so if the program has been previously run, the variables

are retained. This is similar to CONT, except that any line can be selected as the

starting point. Variables can be changed, but these will be lost if any BASIC pro

gram lines are edited.

2. Line numbers are read by the same routine that handles GOSUB's line numbers,

and similar restrictions apply.

Examples:

1. TI$="235910": GOTO 1000

This is a direct mode example; the clock is set just short of 24 hours, then

the program in memory is executed from line 1000 on, retaining the value of TI$.

2. 100 GET A$: IF A$="" GOTO 100

This simple loop awaits a keypress.

IF-THEN
Type: Conditional statement

Syntax: IF logical expression THEN line number

IF logical expression GOTO line number

IF logical expression THEN statement [: statement...]

Modes: Direct and program modes are both valid.

Token: IF: $8B (139); THEN: $A7 (167)

Abbreviated entry: IF: None; THEN: T SHIFT-H

Purpose: IF-THEN statements allow conditional branching to any program line or

conditional execution of statements after THEN.
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The expression after IF is treated as Boolean (that is, if zero it's false, if nonzero

true). If the expression is true, the statement after THEN is performed; if it is false,

the remainder of the line is ignored, and processing continues with the next line. (If

the expression is a string, the effect depends on the last calculation to use the

floating-point accumulator, so IF X$ THEN may be true or false.)

Examples:

1. 1000 LC=LC+1: IF LC=60 THEN LC=0: GOSUB 5000

This program excerpt increments the line count (LC); if LC is 60, it resets the

count value to 0 and calls a form advance subroutine at 5000 before continuing.

2. 700 IF X=l THEN IF A=4 AND B=9 THEN PRINT "*"

This is a composite IF statement, identical in effect to:

IF X=l AND A=4 AND B=9 THEN PRINT "*"

but probably a little faster.

3. 500 IF X THEN PRINT "NONZERO"

This example illustrates that IF X THEN is the same as IF X<>0 THEN.

INPUT
Type: Input statement

Syntax: INPUT [string prompt in quotes;] variable name ^variable name...]

Modes: Only program mode is available.

Token: $85 (133)

Abbreviated entry: None

Purpose: INPUT is an easily programmed command which takes in data from the 64

and assigns it to a variable. INPUT echoes the data to the screen, so editing features

like DEL can be used. Pressing the RETURN key signals the end of INPUT.

Notes:

1. INPUTS prompts. INPUT N$ and INPUT "NAME";N$ illustrate the two forms of

INPUT. Both print a question mark followed by a flashing cursor, but the second

version also prints NAME, giving NAME? as the prompt. When you use an IN

PUT statement with multiple variables—for example, INPUT X$,Y$—two consec

utive question marks (??) will be displayed on the screen if only the first string is

entered, followed by RETURN. In response to the double question marks, you

simply enter the remaining data. Typing the two entries, separated by a comma

(FIRST, SECOND) assigns both strings, with no further prompt.

These demonstration lines show how the prompt string can be used:

100 INPUT "{CLR}{DOWN}{RIGHT}";X$

This clears the screen and moves the cursor (and the question mark prompt)

down and to the right of the home position.

100 INPUT "{2 SPACES}-{LEFT} {LEFT} {LEFT} {LEFT}",X$

This illustrates the technique of indicating the expected length of the input

data. There should be two spaces after the first quote, and two more cursor-lefts

than hyphens.
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100 INPUT "{RED}{RVS}NAME",N$

This prints the prompt in red and reverse video. Long prompt strings may

cause problems. If the user's response is long enough to cause the cursor to wrap

around (move to the next line), the prompt may be added to the input. To avoid

this, you may want to use a combination of PRINT and INPUT statements:

PRINT "A LONG PROMPT MESSAGE";:INPUT X$

You may not have to worry about this problem, since recent 64s are free

from this bug.

Another approach is to POKE the keyboard buffer; in this way the question

mark can be eliminated. Type and run the following line:

100 POKE 198,1: POKE 631,34: INPUT X$

This inserts a quote in the keyboard buffer, effectively pressing quote just

after INPUT is run, allowing strings like LDA $A000,X to be input despite their

containing commas or colons. Chapter 6 has more on this.

2. How input data is handled. When you press RETURN, the line of data is put into

the input buffer to await processing. Chapter 6 has a more detailed discussion, but

note that one effect of this is the inability to use INPUT in direct mode. Chapter 7

explains how ML can solve this problem. After entry, the data in the buffer is

matched with the list of variables after INPUT. The message 7EXTRA IGNORED

means too many separate items were entered; the prompt ?? means too few items

were entered and requests more; and 7REDO FROM START means the variable

types didn't match the data entered.

100 INPUT X

The above line causes the computer to expect numeric input; it will accept

123.4 and even 1E4, but not HELLO.

100 INPUT X$,Y$

In the above example, the computer expects two strings to be entered. It will

accept HELLO, THERE but as two separate strings; if HELLO, THERE, 64 is en

tered, the computer will accept HELLO as the first string, THERE as the second,

and will not accept the characters 64, but will instead respond with 7EXTRA

IGNORED.

Generally, these aren't serious problems, unless a program is intended to be

foolproof, in which case the GET statement is essential (see Chapter 4 for more

information). Without some kind of error trapping, a user could type HOME,

CTRL-WHT, SHIFT-RUN/STOP, or quotes and the INPUT statement would be

wrecked.

Note: All prompts (?, ??, 7EXTRA IGNORED) are suppressed when INPUT#

is in use. When using INPUT:

POKE 19,1

has this effect. Similarly, the following line, which opens a file to the keyboard,

suppresses prompts:

OPEN 1,0: INPUT#1,X$
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Examples:

1. INPUT "ENTER NAME";N$: PRINT "HELLO, " N$

This is a straightforward string input of N$, followed by a personal greeting.

2. FOR J=l TO 10: INPUT Xfl): NEXT

The above line inputs ten numbers into an array.

3. 100 INPUT "DEVICE{2 SPACES}3{LEFT}{LEFT}{LEFT}";D

This example shows one method to allow a default value for INPUT. In this

case, simply pressing RETURN assigns the value 3 to D, which saves time for the

user. Another method, which doesn't print the default under the cursor, is this:

4. 100 X$="YES": INPUT X$

If the user simply presses RETURN, X$ retains the value "YES".

INPUT#
Type: Input statement

Syntax: INPUT# numeric expression, variable name ^variable name...]

The numeric expression, a file number, must evaluate and truncate to a number

in the range 1-255.

Mode: Only program mode is available.

Token: $84 (132)

Abbreviated entry: I SHIFT-N (This includes the #.)

Purpose: INPUT# provides an easy method to read variables from a file, usually on

tape or disk. The format is the same as with PRINT#; the data consists of ASCII

characters separated by RETURN characters. Provided INPUT# matches PRINT#,

this command should be trouble-free.

Note: INPUT# is closely similar to INPUT. Below is a list of differences between the

two:

• Since the device generally can't use it, no prompt is printed.

• Some characters are ignored (like spaces without text, and screen editing characters)

unless preceded by quotes. Similarly:

PRINT#1,"HELLO:THERE"

is read by INPUT# as two strings, because the colons are treated as separators.

Usually, PRINT# with straightforward variables will help you avoid these bugs.

• INPUT# can't take in a string longer than 88 characters, as this results in a

7STRING TOO LONG ERROR. Screen input doesn't have this problem, since part

of an overlong string is simply ignored.

• ST signals the end-pf-file point, as it does with the GET# statement.

Example:

10 OPEN 1 :REM READ TAPE FILE

20 DIM D$(100): FOR J=l TO 100: INPUT#1,D$(J): NEXT

This example reads 100 strings from a previously written tape file into an array.
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INT
Type: Numeric function

Syntax: INT(numeric expression)

Modes: Direct and program modes are both valid.

Token: $B5 (181)

Abbreviated entry: None

Purpose: INT, the integer function, converts the numeric expression to the nearest

integer less than or equal to the expression. Two sample results of the integer func

tion are INT(10.4) is 10, and INT(—2.2) is -3. The expression is assumed to be in

the full range for numerals, between about -1.7 E38 and +1.7 E38. So

L=INT(123456.7) is valid. But L%=INT(123456.7) gives an error, since the result is

too large for an integer variable.

Examples:

1. 100 PRINT INT(X+.5) :REM ROUND TO NEAREST WHOLE NUMBER

The above example rounds numbers—including negative numbers—to the

nearest whole numer.

2. 100 PRICE = INT(.5 + P*(l+MARKUP/100))

This calculates price to the nearest cent from percentage markup and pur

chase price in cents.

LEFT$
Type: String function

Syntax: LEFT$(string expression, numeric expression)

Modes: Direct and program modes are both valid.

Token: $C8 (200)

Abbreviated entry: LE SHIFT-F (This includes the $.)

Purpose: LEFT$ returns a substring consisting of the leftmost characters of the orig

inal string expression. The numeric expression (which must evaluate to 0-255) is

compared with the length of the string; the smaller of the two determines the length

of the substring.

Examples:

1. FOR J=0 TO 20: PRINT LEFT$("HELLO THERE",J): NEXT

This prints 20 strings, "", "H", "HE", "HEL", and so on. As J increases, the

number of characters printed does, too. However, the number of characters

printed never exceeds 11, the length of the original string. Thus, the eleventh

through twentieth strings printed will be identical.

2. PRINT LEFT$(X$ + " ",20)

This formatting trick pads X$ to exactly 20 characters with hyphens. This

way the output is always 20 characters long.

3. PRINT LEFT$(" ",20-LEN(X$)); X$

This line right justifies X$, preceding it with hyphens. (X$ is assumed not to

be longer than 20. Other characters, notably spaces, are usable in the same way to

format output.)
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LEN
Type: Numeric function

Syntax: LEN(string expression)

Modes: Direct and program modes are both valid.

Token: $C3 (195)

Abbreviated entry: None

Purpose: LEN determines the length of a string expression. The result is always be

tween 0 and 255 (see Chapter 6 for more details).

Examples:

1. 10 PRINT SPC(20-LEN(MSG$)/2);MSG$

This line will center a short message on the computer screen by adding lead

ing spaces.

2. 50 IF LEN(IN$)oL THEN PRINT "MUST BE" L "DIGITS": GOTO 40

The above excerpt rejects an input string of the wrong length, sending the

program back to line 40, where another attempt may be tried.

3. 100 FOR J=l TO LEN(W$): IF L$=MID$(W$,J,1) GOTO 200: NEXT
110 PRINT "NOT FOUND"

This checks word W$ for the presence of letter L$. The use of LEN(W$) al

lows the program to set the loop counter for any length of W$.

LET
Type: Statement

Syntax: [LET] numeric variable = numeric or logical expression

[LET] integer variable — numeric expression in range —32768 to +32767 or logical

expression

[LET] string variable = string expression

Modes: Direct and program modes are both valid.

Token: $88 (136)

Abbreviated entry: L SHIFT-E

Purpose: LET assigns a number or string to a variable. The statement LET is usually

omitted, since the 64 assumes LET by default. Simple or array variables may be

used, and if a simple or array variable doesn't already exist, LET makes room for it

in the variable storage area in memory. LET will dimension an array to the default

size of 11 (elements 0 through 10) if it has not been previously dimensioned with a

DIM statement.

Notes:

1. Chapter 6 has full details on variable storage; it also has a routine, VARPTR,

showing how LET can be used from ML. Since LET is rarely used, it can be

modifed by the user (Chapter 7 demonstrates this).

2. Variables can be reassigned freely, so be careful not to try using a variable for two

purposes simultaneously. This is often a problem when using subroutines, because

it is harder to keep track of variables.
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Examples:

1. X=123456: LET X=123456

Both of these statements set X to 123456.

2. Q%=Q/100

The above line sets Q% equal to the integer portion of Q/100, so if

Q= 1234, Q%= 12.

3. LET QH%=Q/256: LET QL%=Q-QH%*256

This sets QH% and QL% equal to the high and low bytes of the number Q.

LIST
Type: Command

Syntax: LIST [line number] [-] [line number]

Modes: Direct and program modes are both valid.

Token: $9B (155)

Abbreviated entry: L SHIFT-I

Purpose: LIST displays part or all of BASIC in memory to the screen, or (with CMD)

to disk, tape, or other output device.

Notes:

1. Line numbers must be ASCII characters, not variables.

2. LIST uses many RAM locations; it always exits to READY mode if used within a

program.

3. LOAD errors and other errors may show up in LIST. For example, if a machine

language program designed for some other part of memory is loaded into the

BASIC program area, an attempt to LIST will show only random characters.

4. Chapter 6 lists BASIC tokens and has examples of BASIC storage in memory.

Also, a LIST reference has programs to modify LIST in useful ways. (Chapter 8

shows how it's done.) The entry for REM has notes on the way LIST interprets

screen-editing and other characters. TRACE is a modified LIST which works while

a program runs. UNLIST shows ways to protect your programs.

Examples:

1. LIST 2000-2999

The line above displays the BASIC lines from 2000 through 2999.

2. LOAD "$",8 followed by LIST

This displays a disk directory, which is stored in memory as though it were a

BASIC program.

3. 1000 LIST -10

This lists all lines up to and including line 10 of a BASIC program. As

shown in this example, LIST can be included within a BASIC program line. How

ever, execution of this line will stop the program, and CONT will not restart it.

4. LIST 1100-

This displays all lines in the current BASIC program with line numbers of

1100 or greater. If there is no line 1100 in the current program, the listing begins

with the first existing line greater than 1100.
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LOAD
Type: Command

Syntax:

Tape: LOAD [string expression [,numeric expression^ numeric expression]]]

All parameters are optional. The first numeric expression, if used, must evaluate

to 1 (device number). The second normally evaluates to 0 (BASIC LOAD) or 1

(forced LOAD). Chapter 14 has full details.

Disk: LOAD string expression, numeric expression [, numeric expression]

A name and a numeric expression, typically 8, which is the device number, are

required. The second numeric parameter has the same meaning as in tape LOAD.

Chapter 15 has full details.

Modem: LOAD cannot be used with a modem. Attempting to use device number

2, therefore, will result in an error.

Modes: Direct and program modes are both valid. (See "Notes" below.)

Token: $93 (147)

Abbreviated entry: L SHIFT-O

Purpose: LOAD reads from an external device, filling RAM with a BASIC program,

ML, graphics, or other data. In its simplest form, LOAD {RETURN}, then RUN {RE

TURN} loads BASIC from tape and runs it. (SHIFT-RUN/STOP does this, too.)

Notes:

1. LOAD is followed by a standard set of messages, like PRESS PLAY ON TAPE, OK

when the cassette starts, and so on. These are listed in the chapters on tape and

disk usage. Program mode LOADs don't have these messages (apart from PRESS

PLAY ON TAPE, which can't be avoided), so the screen layout can be kept tidy.

2. Tape LOAD blanks the TV screen to the border color during any tape reading.

When a program or file header is found, a FOUND message is displayed on

screen for about ten seconds, after which loading takes place if the program name

is acceptable, and the screen temporarily blanks again. Otherwise, the process of

searching goes on. Pressing the Commodore key, or one of several other keys, cuts

the ten-second pause short.

3. A BASIC program LOAD nearly always requires that LOAD'S third parameter be

0. This allows LOAD to relink BASIC, so that any start-of-BASIC position is

acceptable. For example:

LOAD "BASIC PROG"

loads that program from tape into the 64 with any memory configuration and pre

pares it for RUN. In fact:

POKE 43,LO: POKE 44,HI: POKE HI*256+LO,0: NEW

followed by the correct disk or tape LOAD can put a BASIC program anywhere

you choose, if there's room for it.

4. Loading ML, graphics definitions, and other data is generally trickier than loading

BASIC programs, and needs a LOAD format like this:

LOAD "CHARSET",1,1
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to insure that the data is put back where it came from. Supermon's .L load com

mand (see Chapter 7) does this. Block LOAD in Chapter 6 explains how blocks of

bytes can be loaded without disturbing BASIC.

5. Program mode LOADs generally chain BASIC; see CHAIN in Chapter 6, and also

OLD, which explains how to chain a long program from a shorter one.

Examples:

1. LOAD: LOAD "",1

These are tape LOADs and have identical effects. Either loads the first

BASIC program found on tape.

2. LOAD "PROG"
This loads the program with the filename PROG from tape. Actually, be

cause of the filename checking scheme used, the first program encountered on

tape having a name beginning with PROG (PROGRAM, or PROGDEMO, for ex

ample) will be loaded.

3. LOAD "PROG",8

This line will load only PROG from disk. No other program with a name

beginning with PROG will be loaded if PROG is not found; instead, a ?FILE NOT

FOUND ERROR will be reported.

4. LOAD "PAC*",8

This illustrates a typical disk pattern-matching LOAD command, which will

load PACMAN, PACKER, or the first program beginning with PAC.

5. 10000 PRINT "PLEASE WAIT": LOAD "PART2"

The above line loads and then runs the tape program PART2 from within

BASIC. If the correct key on the tape deck is pressed, no message appears on the

TV.

6. 10 IF X=0 THEN X=l: LOAD "GRAPHICS",1,1

20 REM THE PROGRAM CONTINUES HERE AFTER THE LOAD

This loads the graphics into a fixed area of memory. A LOAD command

from within a program causes that program to be run again from the start. The

variable, X, is used as a flag, which prevents GRAPHICS from being loaded

repeatedly and allows the program to continue.

LOG
Type: Numeric function

Syntax: LOG(numeric expression)

Modes: Direct and program modes are both valid.

Token: $BC (188)

Abbreviated entry: None

Purpose: LOG returns the natural logarithm (log to the base e) of a positive

arithmetic expression. This function is the converse of EXP.

Logarithms transform multiplication and division into addition and subtraction;

for example, LOG(l) is 0 since multiplication by 1 has no effect. Logarithms are used

mainly in scientific work; their susceptibility to rounding errors makes them less suit

able for commercial work.
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Examples:

1. PRINT LOG(X)/LOG(10) :REM LOG TO BASE 10

PRINT LOG(X)/LOG(2) :REM LOG TO BASE 2

PRINT EXP(LOG(A)+LOG(B)) :REM PRINTS A*B

These are all standard uses of the LOG function.

2. LF=(N+.5)*(LOG(N)-1) + 1.41894 + 1/(12*N)

This defines LF, an approximation of LOG(N!), so that EXP(LF) approxi

mately equals N!. This illustrates how LOG helps when using very large numbers.

MID$
Type: String function

Syntax: MlD$(string expression, numeric expression ^numeric expression])

Modes: Direct and program modes are both valid

Token: $CA (202)

Abbreviated entry: M SHIFT-I (This includes the $.)

Purpose: MID$ extracts any required substring from a string expression. The first nu

meric parameter is the starting point (1 represents the first character of the original

string, 2 the second, and so on). The final parameter is the length of the substring to

be extracted. If this isn't used, the substring extends to the end of the original string.

Examples:

1. N$=MID$(STR$(N),2) :REM REMOVE LEADING SPACE FROM N

This is useful when a number's leading spaces aren't wanted. It works with

any positive numbers in the correct range.

2. 10 INPUT X$: L=LEN(X$)

20 FOR J=l TO L: PRINT MID$(X$,L-J+1,1);: NEXT
This inputs a string, then prints it out backward, one character at a time.

NEW
Type: Command

Syntax: NEW

Modes: Direct and program modes are both valid.

Token: $A2 (162)

Abbreviated entry: None

Purpose: NEW allows a new BASIC program to be entered, by ignoring any pre

vious program. It corrects pointers after a forced (nonrelocating) LOAD like:

LOAD "ML",1,1

so BASIC can operate without an ?OUT OF MEMORY ERROR.

Notes:

1. Actually, most of BASIC and all ML routines and data are unaltered; NEW puts

zero bytes at the start of BASIC, resets pointers, and performs a CLR, which
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aborts files, among other things. OLD in Chapter 6 will recover BASIC after NEW

(or after resetting by the method described in Chapter 5), provided new program

lines haven't been entered.

2. NEW may sometimes generate 7SYNTAX ERROR. (See the error message notes.)

Examples:

1. NEW

In direct mode, NEW readies the 64 for a new program. (Without NEW, the

program would be simply added to the one currently in BASIC as extra or replace

ment lines.)

2. 20000 NEW: REM PROGRAM NO LONGER WANTED

This exits to READY mode. The program won't LIST and appears erased.

NEXT
Type: Statement

Syntax: NEXT [numeric variable][,numeric variable...]

Modes: Direct and program modes are both valid.

Token: $82 (130)

Abbreviated entry: N SHIFT-E

Purpose: NEXT marks the end of a FOR-NEXT loop. See FOR, which has a detailed

account of loop processing.

Examples:

1. FOR 1=1 TO 10: FOR J=l TO 10: PRINT I*J;:NEXT J: PRINT: NEXT

This prints an unformatted multiplication table for values up to 10 X 10.

Note that NEXT:PRINT:NEXT works, too. In fact, it's a little faster. NEXT J: NEXT

I can be replaced with NEXT J,I. Once a program is debugged, the variables

following NEXT statements can generally be removed; however, they do improve

readability.

2. 80 FOR J=l TO 2000: GET X$: IF X$="" THEN NEXT

81 FOR J=0 TO 0: NEXT

This delays approximately ten seconds, unless a key is pressed; if it is, line

81 gets rid of the still active J loop.

3. 10 FOR J=l TO 3: GOTO 40

20 NEXT K

30 NEXT J: END

40 FOR K=l TO 2: GOTO 20

NEXT can appear anywhere, allowing clumsy constructions like the one

above.

NOT
Type: Logical operator

Syntax: NOT logical or numeric expression

Numeric expressions must evaluate after truncating to —32768 to +32767.
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Modes: Direct and program modes are both valid.

Token: $A8 (168)

Abbreviated entry: N SHIFT-O

Purpose: NOT computes the logical NOT of an expression. Logical expressions are

converted from false to true, and vice versa. Numeric expressions are converted to

16-bit signed binary form, and each bit is inverted. The result, like the original, is al

ways in the range —32768 to +32767, and always equals —1 minus the original

value. So NOT of arithmetic expressions does not necessarily convert true to false.

Note: NOT has precedence over AND and OR. Thus:

NOT A AND B

is identical to:

(NOT A) AND B

The usual rules of logic apply to NOT, AND, and OR.

Examples:

1. 55 IF X$=CHR$(34) THEN Q=NOT Q

This line flips a quote mode flag, denoting whether quote mode is on or off.

2. IF NOT OK THEN GOSUB 20000: REM ERROR MESSAGE AT 20000

The above line uses the result of variable OK, set in earlier tests, to test for

errors.

ON
Type: Conditional statement

Syntax: ON numeric expression GOTO line number [,line number...]

ON numeric expression GOSUB line number [,line number...]

The numeric expression must evaluate and truncate to 0-255.

Modes: Direct and program modes are both valid.

Token: $91 (145)

Abbreviated entry: None

Purpose: ON allows a conditional branch to one of the listed line numbers, depend

ing on the value of the expression after ON. If it is 1, the first line number is used; if

it is 2, the second is used, and so on. If the value is 0 or too large for the list, the

line is ignored and processing continues with the next statement. This provides a

readable method of programming multiple IFs, provided a variable takes consecutive

values 1, 2, 3, ...

Examples:

1. ON SGN(X)+2 GOTO 100,200,300

The above line branches three ways, depending on X being negative, zero, or

positive.

2. 90 ON ASC(IN$)-64 GOTO 100,200,300,400

This line jumps to one of the lines listed, depending on IN$ being A, B, C,

or D.
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3. 30 ON 6*RND(1)+1 GOSUB 100,200,300,400,500,600

This selects at random one of six subroutines in a game.

4. 100 ON X GOTO 400,410,420,430,440,450

101 ON X-6 GOTO 460,470,480

Above is an example of how options can be spread over several program

lines (provided X is not 0).

OPEN
Type: Input/output statement

Syntax:

Tape: OPEN numeric expression [,numeric expression [.numeric expression [.string

expression]]]

The first numeric expression, the file number, must evaluate to 1-255; the sec

ond is the device number, which is 1; the third sets read or write type; and the op

tional string expression is the filename. Chapter 14 has full details.

Disk: OPEN numeric expression, numeric expression, numeric expression [,string ex

pression].

Here, the file number must be 1-255, the device number is usually 8, the

secondary address is usually between 2 and 15, and the string expression a com

mand like "SEQ FILE,W", which the disk drive itself, not BASIC, processes. Chapter

15 has full details.

Modems and other RS-232 devices: The same as for a disk drive, except that the

device number is 2, and the string expression is a pair of bytes which set transmit/

receive features. Chapter 17 has full details.

Printers Hfid other write-only devices: These require file and device numbers. The

string expression is irrelevant with these devices, while the third numeric parameter

may or may not matter. See Chapter 17.

Tape and disk filenames can't exceed 16 characters.

Modes: Direct and program modes are both valid.

Token: $9F (159)

Abbreviated entry: O SHIFT-P

Purpose: OPEN sets up a file to write or read (sometimes both) data to or from ex

ternal devices like tape or disk drives. For example, the statement:

OPEN 1,1,1/TAPE FILE"

opens logical file 1, called "TAPE FILE", to the cassette. After this, the statement:

PRINT#1

followed by data will write the data to tape, and

CLOSE 1

leaves a complete new file called "TAPE FILE", which can be read back later, typi

cally by OPEN 1 and INPUT#1,X$ or similar statements.

As many as ten files (enough for almost any purpose) can be open at once; each

must have a different logical file number (the first parameter of OPEN) so that they
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are distinguished. In addition, the secondary addresses of disk files must all be dif

ferent. Three tables in RAM store the file numbers along with their device numbers

and other information.

Note: Opening a file to tape blanks the screen during tape read/write activity. OPEN

1 in direct mode (valuable for reading a program header's information) pauses for

ten seconds before returning to READY unless the Commodore key, space bar, or

one of a few other keys is pressed. OPEN 1 in program mode does not result in a

pause.

Examples:

1. OPEN 2,l,0,"TAX"

The above example opens a file from tape called TAX (or TAXI, TAXI

DERMY, etc.) for reading (since the third parameter is 0), and assigns it logical file

2, so INPUT#2 or GET#2 will fetch data from the file. This is identical to OPEN

2, except that the file is asked for by name; OPEN 2 opens the first file it finds.

With tape, OPEN reads tape until it finds a header.

2. OPEN 1,8,3/'ORDINARY FILE,S,R"

The line above opens a sequential file (specified by the ,S after the filename)

on disk called ORDINARY FILE for reading (specified by the ,R after the filename)

by INPUT#1 or GET#1 statements.

3. OPEN 2,2,0,CHR$(6)

This is an OPEN which prepares the modem (device 2) for PRINT#2 and

INPUT#2. The string expression is used to set modem parameters such as parity

and data transfer rate.

4. OPEN 4,4: REM OPENS FILE#4 TO DEVICE#4

This line opens a file to a printer, assuming that the printer (and interface, if

one is used) operate like a standard Commodore printer.

OR
Type: Logical operator

Syntax: Logical or numeric expression OR logical or numeric expression

Numeric expressions must evaluate after truncating to -32768 to +32767.

Modes: Direct and program modes are both valid.

Token: $B0 (176)

Abbreviated entry: None

Purpose: OR calculates the logical OR of two expressions, by performing an OR on

each of the bits in the first operand and the corresponding bits in the second. For the

purposes of the OR comparison, numeric expressions are evaluated as 16-bit signed

binary numbers. The four possible combinations of single bits are:

0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 = 1

The result is 0 only if both bits are 0.
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It follows that a logical OR is true if either or both of the original expressions
were true. And it follows that:

380 OR 75 = 383

though verifying this by finding the binary arithmetic forms of 380 and 75 is some
what tedious.

Examples:

1. 560 IF (A<1) OR (A>20) THEN PRINT "OUT OF RANGE"

This is a typical validation test; A must be a value from 1 to 20.
2. POKE 328,PEEK(328) OR 32

The above POKE and PEEK combination sets bit 5 of location 328 to 1,

whether or not it was 1 before, leaving the other bits unaltered. OR can set bits
high; AND can clear them to 0.

Type: Numeric function

Syntax: PEEK(numeric expression)

The expression must evaluate to a number in the range 0-65535; the value re

turned will be in the range 0-255.

Modes: Direct and program modes are both valid.

Token: $C2 (194)

Abbreviated entry: P SHIFT-E

Purpose: PEEK returns the decimal value of the byte in a memory location. PEEK

allows BASIC programs and their variables and pointers to be examined, plus other

internal memory, like ML programs, the BASIC interpreter, hardware registers, and

so on.

Notes:

1. PEEK (like POKE) is unusual in that it is easily replaced by ML routines. Chapter

17, for example, has ML routines to read joystick values, which are much faster

than using PEEK in BASIC.

2. A number of locations are modified by hardware and therefore have values which

vary: joystick, paddle, and keyboard locations are obvious examples. Some loca

tions vary as a result of software modification; much of the memory area from

locations 0-255 (called the zero page) is used by BASIC as it operates, and numer

ous locations in the range 256-1023 are used from time to time during BASIC

execution. Most of the memory above 32768 can be reallocated for different uses

and is largely controlled by the byte in memory location 1, as Chapter 5 explains.

Examples:

1. PRINT CHR$(34);: FOR J=2048 TO 2147: PRINT CHR$(PEEK(J));: NEXT

This prints 100 characters PEEKed from the start of the 64's normal BASIC

program storage area. (The quotation mark generated by CHR$(34) is an attempt

to prevent spurious control characters from clearing the screen, etc.)

2. 500 IF (PEEK(653) AND 1)=1 THEN PRINT "SHIFT KEY"

This tests bit 0 of location 653—the byte that stores the SHIFT, Commodore

key, and CTRL key flags—to determine if the SHIFT key is pressed.
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POKE
Type: Statement

Syntax: POKE numeric expression, numeric expression
The first numeric expression is an address, and the second is a one-byte value,

so the ranges must be 0-65535 and 0-255, respectively.

Modes: Direct and program modes are both valid.

Token: $97 (151)

Abbreviated entry: P SHIFT-O

Purpose: POKE stores the byte specified by the second expression into the address
given by the first. POKE can store ML routines into memory from DATA statements,

alter BASIC pointers, alter hardware registers, and perform other useful functions.

Notes:

1. POKE (like PEEK) can be replaced by simple ML routines; replacing a POKE to

the screen with the ML equivalent is aij ideal introduction to ML (see Chapter 7).

2. A careless POKE to an uninitialized variable, like:

POKE A0,0

in place of:

POKE A,0

will gltfr the direction register at location 0; this affects tape and the 64's

RAM/ROM bank switching.

Examples:

1. POKE 53281,9

This changes the screen background color by altering a VIC chip register.

2. Chapter 6 has a large number of programs which READ values from DATA state

ments, then POKE them into RAM.

3. FOR J=0 TO 499: POKE 1024+J, PEEK(2048+J): POKE 55296+J,0: NEXT

This puts |0P bytes of BASIC program data onto the screen in j^lack, by

POKEing values "to both screen and color memory. '*;
4. FOR J=40960 TO 49151: POKE J, PEEKg): NEXT: POKE 1,54

This moves the BASIC ROM ($A000-$BpFF) into RAM, then switches that

part of memory to RAM, so the BASIC interpreter is now held in RAM. Normally,

POKE J, PEEK(J) has no effect, of course. The example works only because the 64

is designed so that POKEd information goes into RAM which is underneath ROM.

(This means that either the usual ROM or alternative RAM may be used. This

technique will not work with most other computers.)

POS
Type: Numeric function

Syntax: POS(numeric expression)

The numeric expression is a dummy expression, as with FRE.

Modes: Direct and program modes are both valid.
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Token: $B9 (185)

Abbreviated entry: None

Purpose: POS returns the position of the cursor on its current logical line as seen by

BASIC. Normally, POS(O) is 0-79, but some PRINT statements may return values up
to 255. POS's usefulness is confined to the screen; it won't work with printers, for
example.

Examples:

1. 90 FOR J=l TO 100: PRINT W$(J-1)" ";

92 IF POS(0) + LEN(W$(J))>38 THEN PRINT

94 NEXT

The above program lines print the words in array W$ in a tidy format, with

out allowing wraparound to following lines. (This assumes that no string longer
than 38 characters will be allowed.)

2. Chapter 9 contains a routine (to convert ML into DATA) which uses POS.

PRINT
Type: Output statement

Syntax: PRINT [expression]

The expression may be any type, separated by one or more of the following:

SPC(numeric expression), TAB(numeric expression), space, comma, semicolon, or no

separator (where this causes no ambiguity).

Modes: Direct and program modes are both valid.

Token: $99 (153)

Abbreviated entry: Question mark (?)

Purpose: PRINT evaluates and prints string, numeric, and logical expressions to an

output device, usually the TV or monitor. The punctuation of the material after the

PRINT statement affects the appearance of the output, which also depends on the

internal character set being used. (See "PRINT USING" in Chapter 6, for infor

mation on ML formatting of numbers.)

Notes:

1. Built-in graphics. The entire character set can be printed, but {RVS} is necessary to

complete the set using PRINT statements (POKE, of course, does not require the

use of {RVS}). Color and other controls are easy to include in strings, either in
quote mode or with CHR$. PRINT "{RED}HELLO{BLU}" and PRINT

CHR$(28)"HELLO''CHR$(31) are equivalent. Because {RVS} is necessary to print
some graphics, it's not always easy to convert a picture on the TV into PRINT

statements in a program. Homing the cursor, inserting spaces, and typing line

numbers followed by ?" and RETURN will sometimes work. This method, how

ever, won't accept reversed characters, so be careful when designing graphics di

rectly on the screen. Chapter 12 has detailed information on graphics.

Note that the SHIFT-Commodore key combination normally toggles between

two different character sets, one with lower- and uppercase (good for text), and

one with uppercase and extra graphics characters. Printing CHR$(14) selects the
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lowercase/uppercase set, CHR$(142) selects the uppercase/graphics set, CHR$(8)
locks out SHIFT-Commodore key switching, and CHR$(9) enables SHIFT-

Commodore key character set switching.
2. User-defined graphics. PRINT operates with ASCII characters, and their onscreen

appearance is irrelevant, so user-defined characters can be handled by PRINT, too.
In most cases, it's easiest to keep most characters as usual, so that program listings

on the screen are readable. See Chapter 12 for full details.

3. Punctuating PRINT:

• Expressions, as stated at the start of this chapter, are fairly straightforward. Nu

meric expressions can include numbers, TI, ST, the value 7r, and so on; string ex

pressions may include TI$.

• SPC and TAB allow the print position to be altered.
• Commas tabulate output into the first, eleventh, twenty-first, or thirty-first col

umns. For example, try:

PRINT 1,2,3,4,5

• Semicolons prevent print position from skipping to the next line, and therefore

act as neutral separators. Try this line:

PRINT 1;2;3;: PRINT 4

Remember that numbers are output with a leading space (in case there is a neg

ative sign) and a trailing space. Often the semicolon isn't needed, as in:

PRINT X$ Y$ "HELLO" N% A

where the interpreter will correctly identify everything.

• Colons end the statement, and in the absence of a semicolon move print position

to the next line. The following line advances the print position two lines:

PRINT: PRINT

• Spaces (unless within quotation marks) are generally ignored, so:

PRINT X Y;2 4

does the same as PRINT XY;24.

Examples:

1. PRINT X+Y; 124; P*(l+R%/100) :REM NUMERIC EXPRESSIONS

This prints three numbers on the same line. Notice, though, that if the first

semicolon is left out, X + Yl is printed.

2. PRINT "HI " NAMES$ ", HOW ARE YOU?" :REM STRING EXPRESSION

The above line prints output on a single line (if there's room).

3. FOR J=l TO 20: PRINT J,: NEXT :REM SHOWS USE OF COMMA

This illustrates the tabbing effect of the comma in PRINT statements.

PRINT#
Type: Output statement

Syntax: PRINT# numeric expression ^expression]

There must be no space between PRINT and #; the numeric expression is a file
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number—the file must be open; and subsequent expressions should use format simi
lar to PRINT.

Modes: Direct and program modes are both valid.

Token: $98 (152)

Abbreviated entry: P SHIFT-R (This includes #, and ?# does not wort)

Purpose: PRINT# sends data to an output device, usually a printer, tape, disk drive,
or a modem.

Notes:

1. Punctuating PRINT*. The effect of punctuation in PRINT# statements is identical
to PRINT, except for a few cases: Eleven spaces are always written after a comma,
and expressions in TAB or POS will not work.

PRINT#4,X$

writes X$ followed by CHR$(13), but:

PRINT#4,X$;:

writes X$ alone.

PRINT#128/X$:

writes X$ followed by a carriage return and linefeed; this feature of files numbered
128 or more is useful with certain non-Commodore printers.

2. PRINT* and INPUT*. Remember that INPUT# cannot handle strings longer than
88 characters, so this limit must be observed when setting up data files with
PRINT#.

3. PRINT* and CMD. PRINT#4,;: unlistens the device using file 4, while CMD4,;:
leaves it listening, so these expressions are opposites. See Chapter 17 for full de
tails on printers and modems.

Examples:

1. OPEN 1,1,1/TAPE FILE": INPUT X$: PRINT#1,X$: CLOSE 1

This opens TAPE FILE to tape and, after allowing the user to enter a string,
writes the string to tape. Chapter 14 has full details on tape; Chapter 15 has infor
mation on disk files.

2. 100 FOR J=32768 TO 40959: PRINT #l,CHR$(PEEKg));: NEXT

This prints the bytes in RAM or ROM in the plug-in area to file 1. Note the

semicolon to prevent characters having a RETURN character following each one

(making the file twice as long). The resulting file must be read back with GET#,
since it is ML and not formatted for INPUT# to handle.

READ
Type: Statement

Syntax: READ variable [,variable...]

Modes: Direct and program modes are both valid.

Token: $87 (135)

Abbreviated entry: R SHIFT-E
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Purpose: READ assigns data stored in DATA statements to a variable, or variables.
If the type of variable doesn't match the data (for example DATA "ABC": READ

X), ?TYPE MISMATCH ERROR is printed when the program runs. ?OUT OF DATA
ERROR is given when all the data has been read and the program has encountered
an extra READ statement; a RESTORE statement is used to start reading data from

the beginning again.

Examples:
1.100 READ X$: IF X$o"ML ROUTINE" GOTO 100

This shows how a piece, or group, of data can be found anywhere in the
DATA statements. This construction (with RESTORE) allows data to be mixed
fairly freely throughout BASIC program space.

2. 10 READ X: DIM N$(X): FOR J=l TO X: READ X$0): NEXT
The above line shows how string variables (for example, words for a word

game) can be read into an array effectively, by putting the word count at the start,

like this:

1000 DATA 2,RED,YELLOW.

Type: Statement

Syntax: REM [anything]

Modes: Direct and program modes are both valid.

Token: $8F (143)

Abbreviated entry: None

Purpose: REM allows documentation to be included in a program. Everything on the
BASIC line after REM is ignored by the BASIC interpreter. REM statements take
space in memory, and a little time to execute, so final versions of programs will gen

erally have the REM statements removed.

Note: See the section on REM in Chapter 6 for some special effects. Chapter 7 ex

plains how ML can be stored in REM statements.

Examples:

1. GOSUB 51000: REM PRINT SCREEN WITH INSTRUCTIONS

Above is a sample REM comment.

2. 70 FOR J=l TO 1000: REM MAIN LOOP

80 Ag)=J*A: NEXT

This shows poor placing of REM, because the REM executes 1000 times.

Move the REM to line 69 to increase speed.

3. 15998 REM

15999 REM *** SUB 16000 PRINTS TITLE ***
These lines show how REM statements can be made easy to read in long

programs.
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RESTORE
Type: Statement

Syntax: RESTORE

Modes: Direct and program modes are both valid.

Token: $8C (140)

Abbreviated entry: RE SHIFTS

Purpose: RESTORE resets the data pointer, so that subsequent READs retrieve data

starting from the first DATA statement. NEW, RUN, and CLR all perform RESTORE
as part of their functions.

Note: This command has no connection with the RESTORE key.

Examples:

1. 2000 READ X$: IF X$="**" THEN RESTORE: GOTO 2000

This example is the first line of a loop to read the same block of DATA

continuously—perhaps the notes for a tune to be repeated. When ** is en

countered as the last element of the data, the RESTORE resets the data pointer,
and the line executes again.

2. 130 RESTORE: FOR L=l TO 9E9: READ X$: IF X$o"MLROUTINEl"

THEN NEXT

140 FOR L=328 TO 336: READ V: POKE L, V: NEXT

9000 DATA 27, 32, SUB, MLROUTINE1,169, 0, 141, 202, 3, 162,1, 160, 20

This shows how data can be labeled to insure that the correct section is read;

line 130 reads the data until it reaches the label MLROUTINE1, which is followed
by the desired data.

3. RESTORE: GOTO 100

This is a direct mode command of the sort helpful in testing programs which

contain DATA statements, since after the RESTORE statement, all the data will be

reread from the start.

RETURN
Type: Statement

Syntax: RETURN

Modes: Direct and program modes are both valid.

Token: $8E (142)

Abbreviated entry: RE SHIFT-T

Purpose: RETURN transfers program control to the statement immediately after the

most recent GOSUB statement. GOSUB and RETURN therefore permit subroutines

to be automatically processed without the need to store return addresses in

programs.

Notes:

1. See GOSUB for a full account of subroutine processing.

2. This command has no connection with the RETURN key.
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Example:
10 INPUT L: GOSUB 1000: GOTO 10 :REM TEST SUBROUTINE 1000

1000 L=INT(L+.5)

1010 PRINT L: RETURN
This example repeatedly inputs a number and calls the subroutine at 1000 to

process it; the RETURN causes execution to resume with the GOTO 10 statement.

RIGHT$
Type: String function

Syntax: RlGHT$(string expression, numeric expression)

Modes: Direct and program modes are both valid.

Token: $C9 (201)

Abbreviated entry: R SHIFT-I (This includes the $.)

Purpose: RIGHTS returns a substring made up from the rightmost characters of the
original string expression. The numeric expression (which must evaluate to a value
between 0 and 255) is compared with the original string's length, and the smaller

value determines the substring's length.

Examples:

1. FOR J=l TO 7: PRINT SPC(8-J) RIGHT$("AMAZING",J): NEXT
prints seven substrings of "AMAZING", aligned using SPC.

2. 100 PRINT RIGHT$(" "+STR$(N),10)
is another method for right justification; each string is padded with leading spaces,

making a total length of ten.

RND
Type: Numeric function

Syntax: RND(numeric expression)

Modes: Direct and program modes are both valid.

Token: $BB (187)

Abbreviated entry: R SHIFT-N

Purpose: RND generates a pseudorandom number in the range 0-1, but excluding
these limits. RND can help generate test data, mimic random events in simulations,

and introduce unpredictability in games.

Notes:

1. RND's argument The argument used in the parentheses as part of the RND state

ment affects the way the number will be generated:

• Positive. The value of the number is irrelevant. RND(l) and RND (1234) behave
identically. The sequence of numbers generated is always the same, starting with

.185564016 immediately after the computer is turned on.

• Zero. This causes RND to take values from CIA timers; the result is more truly
random, although short ML loops, for example, may show repetitiveness.
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• Negative. The random number is reseeded with a value dependent on the argu
ment. A negative argument always returns the same value; RND (—1) is always

2.99 E—8, for example. Chapter 8 has information on RND and explains why
negative integers give very small seed values.

• Programming with RND. During program development with random numbers,

start with, say, X=RND(-1.23) to seed a fixed value, then use RND(l) while

testing the program, which will always follow the same sequence. The final ver

sion of the program might use X=RND(0) to start seeding with a random value.

2. To obtain a random number between A and B (but excluding the exact values of A
and B), use:

A + RND(1)*(B-A)

For example:

-1 + RND(1)*2

generates numbers between —1 and +1.

Integers are equally simple. To obtain an integer value between A and B

(including the exact values A and B), use:

A + INT(RND(1)*(B-A+1))

For example:

1 + INT(RND(l)*10)

generates integers from 1 to 10 with equal probability.

Examples:

1. FOR J=0 TO 3000*RND(l): NEXT

The above line causes a random delay of up to roughly three seconds.

2. 100 RESTORE: FOR J=0 TO 100*RND(l): READ X$: NEXT

This example reads a random number of items from DATA statements (be

tween 1 and 100); thus, the last item read into X$ will be retained as a randomly

selected string. This could be used perhaps to choose a word for a language test

from a list of 100 data items.

3. 1000 IF RND(1)<.1 THEN PRINT "A VERY GOOD DAY TO YOU"

This line has a one-in-ten chance of printing its message.

4. 500 INPUT N: DIM D$(N): FOR J=l TO N: D$(J)=

LEFT$("ABCDEFGHIJ",RND(l)*10 +1): NEXT

This technique is useful in generating test data. The construction generates

an array holding N strings, of random lengths between 1 and 10 characters.

5. ON RND(1)*4+1 GOSUB 200,300,400,500

The above line selects one of the four subroutines at random.

RUN
Type: Command

Syntax: RUN [line number]

The line number must be ASCII numerals; anything else is ignored.

Modes: Direct and program modes are both valid.
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Token: $8A (138)

Abbreviated entry: R SHIFT-U

Purpose: RUN executes a BASIC program in memory, either from its beginning or

from a line number. In effect, RUN starts by executing a CLR, so variable values are

lost; GOTO [line number] retains variable values.

Notes:

1. RUN doesn't execute a LOAD. The program must be read into memory

beforehand.

2. 7SYNTAX ERROR as the result of a RUN means the start-of-BASIC pointers have

been altered. See the information about CLR.

3. Chapter 8 shows how to run BASIC with ML.

Examples:

1. RUN

RUN 1000

These are two straightforward direct mode examples of the RUN command.

2. IF LEFT$(YN$,1)="Y" THEN RUN

The above example is for use after:

INPUT "ANOTHER RUN";YN$

This starts the program from scratch after Y, or YES, is typed in.

SAVE
Type: Command

Syntax: SAVE [string expression ^numeric expression^ numeric expression]]]

Identical to that for LOAD. The interpretation of the final parameter is different,

however, when using a tape drive: 0 allows a relocating LOAD, so a BASIC program

can work whatever its starting address; 1 forces LOAD to put the program where it

was saved from; 2 and 3 are like 0 and 1 but additionally write an end-of-tape

marker. Chapter 14 has full details on saving to tape, and Chapter 15 discusses disk

SAVEs.

Modes: Direct and program modes are both valid.

Token: $94 (148)

Abbreviated entry: S SHIFT-A

Purpose: SAVE writes the BASIC program in memory to tape or disk, so the pro

gram is stored for future use. Programs must be saved to disk by name, but tape

programs need not have names (although names can be useful in identifying tape

contents).

ML, graphics characters, and other continuous blocks of RAM can be saved, too.

Only two pointers have to be changed (in four memory locations), effectively

redefining the position of BASIC'S program area. The pointers are locations 43 and

44 (start), as well as 45 and 46 (end). See Block SAVE in Chapter 6. Saving BASIC

with its variables is also possible. For example, BASIC followed by integer arrays

holds data in a very compact form, and both variables and BASIC can be saved to

gether, although this is tricky (and strings are best excluded). BASIC followed by
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graphics definitions can be saved like this, too—see Chapter 12. (In each case only
the pointer in 45 and 46 need be altered before saving.)

Note: As with LOAD, standard messages prompt the user when saving to tape.

PRESS PLAY AND RECORD ON TAPE is the first. The system can't distinguish

these keys from PLAY on its own, so if you're careless you may find you've recorded
nothing.

Examples:

1. SAVE :REM SAVES BASIC TO TAPE WITH NO NAME

SAVE "PROG",1,2:REM SAVE TO TAPE, WITH END-OF-TAPE MARKER

Above are two BASIC program SAVE commands for use with tape. (SAVE

with forced LOAD address is generally used only with ML, where the correct loca

tion of the program in memory is essential.)

2. SAVE "PROGRAM"+TI$,8

Here is a sample disk SAVE command. This adds a clock value to keep track

of several versions of a given program. The third parameter is ignored when sav

ing to disk; there is no SAVE with forced LOAD address for disk.

SGN
Type: Numeric function

Syntax: SGN(numeric expression)

Modes: Direct and program modes are both valid.

Token: $B4 (180)

Abbreviated entry: S SHIFT-G

Purpose: SGN computes the sign of a numeric expression; it yields — 1 if the ex
pression is negative, 0 if it has a value of zero, and +1 if the expression is positive.

This is related to logical expressions and to ABS and the comparison operators. For

example, SGN(X-Y) is 0 if X=Y, 1 if X exceeds Y, and -1 if X is less than Y.

Examples:

1. ON SGN(X)+2 GOTO 400,600,800

This statement causes program execution to branch to 400 if X is negative, to

600 if X is 0, and to 800 if X is positive.

2. FOR J= -5 TO 5: PRINT J;SGNa);SGNg)*J;SGN(J)*INT(ABS(J)): NEXT

This example prints several results; the last is like INT but rounds negative

numbers up.

SIN
Type: Numeric function

Syntax: SlN(numeric expression)

Modes: Direct and program modes are both valid.

Token: $BF (191)

Abbreviated entry: S SHIFT-I
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Purpose: SIN returns the sine of the numeric expression, which is assumed to be an
angle in radians. (Multiply degrees by V180 t0 convert to radians.)

See ATN for the converse function.

Examples:

1. FOR J=0 TO 90: PRINT J SIN(J* tt/180): NEXT

The above line prints sines of angles from 0 to 90 degrees in one degree

steps.

2. 120 X=A+SIN(A)/2: Y=A+SIN(A)*3/2

This calculates the x and y coordinates of a geometrical shape.

SPC(
Type: Special output function

Syntax: SPC(numeric expression)

SPC appears only in PRINT and PRINT# statements. The numeric expression

must evaluate to a value in the range 0-255.

Modes: Direct and program modes are both valid.

Token: $A6 (166)

Abbreviated entry: S SHIFT-P (This includes the open parenthesis mark.)

Purpose: SPC helps format screen or printer output. The name is misleading: With a

TV or monitor, 0 to 255 cursor-rights can be printed, but these aren't spaces. Try the

following:

PRINT SPC(200)"HI!"

However, with any other device, spaces are output, since cursor-rights are not in

the ASCII system. TAB is exactly the same except that it moves from the leftmost

column, rather than moving from the current position.

Examples:

1. 100 PRINT "{HOME}";: FOR J=0 TO 21: PRINT "X" SPC(38) "X";: NEXT

This prints a border down each side of the screen, without disturbing the

screen characters between the borders.

2. 90 OPEN 1,3: CMD 1

Add this line to the previous; note how an open file causes spaces, not
cursor-rights, to be output.

SQR
Type: Numeric function

Syntax: SQR(numeric expression)

The numeric expression must be positive, or an 7ILLEGAL QUANTITY ERROR
will result.

Modes: Direct and program modes are both valid.

Token: $BA (186)

Abbreviated entry: S SHIFT-Q
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Purpose: SQR calculates the square root of a positive argument. This is a special case

of the power (up-arrow) function. SQR actually works faster than XT .5, though, and
is also more familiar to many people.

Examples:

1. PRINT SQR(2) :REM PRINTS 1.41412356

This prints the square root of 2.

2. Xl=(-B + SQR(B*B - 4*A*C)) / (2*A)

X2=(-B - SQR(B*B - 4*A*C)) / (2*A)

These are both solutions of the equation AX2 + BX + C = 0.

ST
Type: Reserved variable

Syntax: ST is treated like a numeric variable, except that no value can be assigned to

ST. (For example, X=ST is correct, but ST=X is not allowed.)

Modes: Direct and program modes are both valid.

Token: Not applicable

Abbreviated entry: Not applicable

Purpose: ST indicates the status of the system after any input or output operation to

tape, disk, or other peripheral. ST is set to 0 before GET, INPUT, and PRINT as well

as CMD, GET#, INPUT# and PRINT#, so ST is rather ephemeral; where it is used it

should be used after every command.

ST is a compromise method of signaling errors to BASIC without stopping it. It

can often be ignored. Table 3-1 shows the meaning of different values of ST for dif

ferent devices. (Where more than one error occurs, they are ORed together, so

ST=66 combines the conditions indicated by 64 and 2.) Chapters 14, 15, and 17

provide details on ST with tape units, disk drives, and modems, respectively.

Table 3-1. Status Variable (ST) Values

ST

1

2

4

8

16

32

64

-128

Tape

Read

Short block on input

Long block on input

Mismatch on checking

Checksum error

End-of-file on input

End-of-tape marker

Write

None

Modem

Parity error

Framing error

Rx buffer full

Rx buffer empty

CTS missing

DSR missing

Break detected

Serial Bus (e.g., Disk)

Read

Input time-out

End-of-file (EOI)

Write

Print time-out

Device not present

Note: ST for tape and disks is stored in location 144; ST for RS-232 devices is held

in location 663. ST (like TI and TI$) is checked when a variable is set up; normally,

no ST variable exists in RAM, and ST is processed by special routines. ST isn't a

tokenized keyword or even a normal variable; this is why BEST=2 is accepted, and

means BE=2, despite the apparent presence of ST.
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ST (like TI and TI$) can be POKEd to any value in the legal range. ST can be

used from ML. See Chapter 8, which deals with Kernal routines for information on

this and on methods for reading errors from the disk drive.

Examples:

1. OPEN 11,11: PRINT#11,X$
The above line opens a file to a nonexistent device: This sets ST= —128.

2. 150 INPUT#8,X$: IF ST=64 GOTO 1000

This is a typical end-of-file check, for use when reading data from disk or

tape. Line 1000 might be an exit routine to print totals of all the data, then finish.

STOP
Type: Statement

Syntax: STOP

Modes: Direct and program modes are both valid.

Token: $90 (144)

Abbreviated entry: S SHIFT-T

Purpose: Like the RUN/STOP key, the STOP statement returns the program to

READY mode and prints a BREAK message showing the line number at which the

program stopped. Like END, STOP can set breakpoints in BASIC, but it's better be

cause the line numbers allow you to insert as many STOPs as you want. See CONT

(and GOTO if CONT can't continue) for information on using breakpoints.

Example:

80 GET X$: IF X$="" GOTO 100

90 IF X$="*" THEN STOP :REM STOP IF ASTERISK PRESSED

This is typical of a test for keypress, which allows a program to be stopped at a

particular point.

STR$
Type: String function

Syntax: STR$(numeric expression)

Modes: Direct and program modes are both valid.

Token: $C4 (196)

Abbreviated entry: ST SHIFT-R (This includes the $.)

Purpose: STR$ converts any floating-point number into a string, so that the number

can be edited. It formats numbers as PRINT does, so STR$(10.0) is " 10" (with a

leading space), and STR$(-123) is "-123".

Examples:

1. FOR J=l TO 100: PRINT STR$g)+".0" NEXT

This line prints 1 as 1.0, 2 as 2.0, and so forth.

2. PRINT "0" + MID$(STR$(X),2)
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outputs X as "0.57", etc., where X is between 0.01 and 1.0; MID$ and STR$ to

gether remove the leading space. (Remember that numbers from 0 to 0.01 are out

put in exponential notation.)

SYS
Type: Statement

Syntax: SYS numeric expression

The expression must evaluate to a number between 0 and 65535.

Modes: Direct and program modes are both valid.

Token: $9E (158)

Abbreviated entry: S SHIFTY

Purpose: SYS transfers control to ML at the address following SYS. The ML is exe

cuted and will return to BASIC and execute the statement after SYS if the machine

language routine ends with an RTS instruction (or the equivalent). The registers A,

X, Y, and SR are loaded with values from locations 780-783 by SYS, and their val

ues after the subroutine call are replaced in 780-783. This offers a useful way to

check short ML routines for errors.

Notes:

1. Chapter 7 introduces ML programming on the 64; Chapter 6 has many examples

which use SYS. Many of them end with a DATA value of 96, which is the decimal

value of RTS. A jump to a ROM subroutine ending with RTS (DATA 76,XX,XX)

also works, and RTI is sometimes used, too (a decimal value of 64).

2. Careless SYS calls may crash or corrupt BASIC, and perhaps cause odd results

sometime later in the same programming session. Try:

SYS 47175

as an example. (This sets the decimal flag in the chip.)

3. ROM occupies locations 40960-49151 and 57344-65535 in the Commodore 64,

unless one or both ROMs have been switched out (Chapter 5 explains this).

Usually, SYS calls into these regions have repeatable and predictable effects with

the 64, as explained in Chapter 11. Such calls will not work with other computers,

which means they are machine-specific.

Examples:

1. 10 SYS PEEK(43) + 256*PEEK(44) + 30

The above SYS calls ML stored within BASIC; this form works regardless of

BASIC'S start address. Chapter 9 explains these techniques in depth.

2. SYS 64738

This well-known ROM routine call resets the 64 as though it were turned

off, then on again. Chapter 11 lists ROM call addresses, and some (such as the

screen routines in Chapter 6) are listed elsewhere.

3. POKE 780,ASC("$"): SYS 65490: REM KERNAL ROUTINE

This puts the dollar character in the storage location for A, then calls a

Kernal output routine at $FFD2. (Kernal routines are explained in depth in Chap

ter 8.) The effect is to print a dollar sign.
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TAB(
Type: Special output function

Syntax: TAR(numeric expression)

TAB appears only in PRINT or PRINT# statements. There must be no space be

tween B and ( and the expression must evaluate to a number in the range 0-255.

Modes: Direct and program modes are both valid.

Abbreviated entry: T SHIFT-A (This includes the open parenthesis.)

Purpose: TAB prints an expression at the desired position on the line (values be

tween 0 and 255) specified by the parameter, unless this position is to the left of an

earlier TAB in the same PRINT statement (like typewriter TABs, TAB doesn't work

from right to left).

Note: TAB is nearly identical to SPC; the difference is that TAB subtracts its current

position on the line from the TAB value, then issues that number of moves right.

TAB's use of cursor-rights and spaces is the same as SPC's. In reverse mode, cursor-

rights show as square brackets.

Example:

FOR J=l TO 10: PRINT J TAB(4)J*J TAB(10)J*J*J: NEXT

The above example produces a tabbed table of squares and cubes.

TAN
Type: Numeric function

Syntax: TAN(numeric expression)

Modes: Direct and program modes are both valid.

Token: $C0 (192)

Abbreviated entry: None

Purpose: TAN calculates the tangent of any numeric expression, which is assumed to

be an angle in radians. The values tt/2 (90 degrees) and other equivalent values

cause 7DIVISION BY ZERO errors and should be tested for to avoid program

crashes. TAN divides SIN by COS; it is slower and less accurate than either.

Example:

90 A=ATN(TAN(A))*180/tt

This converts any radian measurement into its equivalent from —90 to +90

degrees.

Tl and Tl$
Type: Reserved variables

Syntax: TI is treated like a numeric variable, and TI$ like a string variable, except

that no value may be assigned to TI (TI=X is never allowed). TI$ = string expression

of length 6 is allowed, but expressions with more or fewer than six characters cause

an error.

Modes: Direct and program modes are valid.
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Token: Not applicable

Abbreviated entry: Not applicable

Purpose: TI and TI$ access the internal software clock. It's kept running by BASIC as

a normal part of its operation. A feature known as an interrupt operates this (and al

lows access to the keyboard); about every 1/60 second, locations 160-162 are in

cremented, and their collective value is used to obtain TI and TI$. See Chapter 5 for

information on the hardware side of this and the end of Chapter 8 for programming

information. (The interrupt rate can be changed by POKEing 56324 and 56325 with

different values.) The clock isn't all that reliable; tape operation makes it run much

faster than usual, and any programs which disable (turn off) interrupts stop it. The

64 does include two time-of-day clocks which are completely accurate to 1/10 sec

ond. Chapter 5 explains their use.

The maximum value for TI is 5184000, the number of 1/60 second intervals in a

day. TI is equal to:

65536*PEEK(160) + 256*PEEK(161) + PEEK(162)

where the last of the three bytes changes fastest. Try writing a loop that repeatedly

PEEKs location 162 for a demonstration. The easiest way to change the clock setting

is with the statement:

TI$="101500"

The above line would set the clock to a quarter after ten. Note that ML can be

used to set and read TI$; Chapter 8's section on Kernal ROM routines gives full

information.

Note: Like ST, these variables are intercepted by BASIC, not set up in the normal

variables section of memory located above BASIC program space. TIME and TIME$

are treated like TI and TI$, but ANTIC is treated as AN, and the characters TI are

ignored.

Examples:

1. 50 TI$=HH$ + MM$ + SS$

This program line combines three previously entered two-digit strings into

TI$

2. T$=TI$: PRINT MID$(T$,1,2) + ":" + MID$(T$,3,2) ":" + MID$(T$,5,2)

The above line prints TI$ in the format HH:MM:SS. Note that T$ stores the

value in case TI$ changes while the strings are being calculated (for example, from

11:59:59 to 12:00:00).

3. 10 DIM T1/T2J: T1=TI

20 FOR J= 1 TO 1000:NEXT

30 T2=Tl-58 :REM FIGURE MAY VARY A BIT

40 PRINT T2/60 'THOUSANDTHS OF SEC"

Shows how individual BASIC operations can be timed. The first line insures

that TI, T2, and J are placed at the start of variables; the number in line 30 must

be set so that the program as it stands prints a value of 0. This means that any

additional commands put in the loop in line 20 are timed exactly. You'll find that:

POKE 7680,123

takes 8/1000 second, a colon takes about 1/10,000 second, and so on. See Chap

ter 6 for more on this topic.
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USR
Type: Numeric function

Syntax: USR(numeric expression)

Modes: Direct and program modes are both valid.

Token: $B7 (183)

Abbreviated entry: U SHIFTS

Purpose: USR allows you to define a function in machine language. This requires a

thorough understanding of ML; in BASIC, it's nearly always easier to use a DEF FN

expression, and not much slower. In Chapter 8, the section on calculations has a

complete explanation of this function with examples.

VAL
Type: Numeric function

Syntax: VAL(string expression)

Modes: Direct and program modes are both valid.

Token: $C5 (197)

Abbreviated entry: V SHIFT-A

Purpose: VAL converts a string into a number, so calculations can be performed on

it. If the string is not a valid number representation, as much as possible is con

verted, and the remainder ignored with no error message. Valid characters are

spaces, signs, numerals, unSHIFTed E, and periods in certain combinations. VAL is

the converse of STR$.

Example:

PRINT VALr 0.77") :REM PRINTS .77

PRINT VAL(//1.72E3//) :REM PRINTS 1720

PRINT VALC' +773 DOLLARS'') :REM PRINTS 773

IN$=//1.2.3//: PRINT VAL(IN$) :REM PRINTS 1.2

PRINT VAL("12"+"."+"01") :REM PRINTS 12.01

IF VAL(IN$)<0 OR VAL(IN$)>10 THEN PRINT "ERROR"

These should be self-explanatory. Note that the last of these tests an input num

ber, avoiding bugs caused by comparing strings with each other.

VERIFY
Type: Command

Syntax: VERIFY [string expression [.numeric expression^ numeric expression]]]

Identical syntax as LOAD. Syntax should match that of the LOAD or SAVE

statement preceding VERIFY.

Modes: Direct and program modes are both valid.

Token: $95 (149)

Abbreviated entry: V SHIFT-E
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Purpose: VERIFY reads and compares a BASIC or ML program from disk or tape

with the program already in memory. If they aren't identical, 7VERIFY ERROR is re

ported. When VERIFY is used at all (it often isn't), it's generally to verify that a pro

gram has saved correctly. (It can be used in program mode, so a program can verify

itself.)

Because programs may load into different addresses depending on LOAD's

parameters, VERIFY should match the parameters of LOAD. Even so, BASIC can

generate spurious 7VERIFY ERROR messages, as explained in the notes at the end of

this chapter.

VERIFY cannot be used with most data files, since these cannot be loaded like

programs.

Examples:

1. SAVE "NEWPROG",8

VERIFY "NEWPROG",8

The above commands save a program to disk, then verify that it has been

saved correctly.

2. 10 PRINT "REWIND TO VERIFY"

20 GET X$: IF X$="" GOTO 20: REM WAIT FOR KEY PRESS TO VERIFY

30 VERIFY

At the start of a tape program, this verifies in program mode.

3. LOAD "VERSION6",8

VERIFY "VER 6",8

If you have two programs which you believe may be identical, VERIFY will

compare them. OK means that your two programs are indeed identical. This is

often useful when a disk contains lots of versions of a program, including security

duplicates, saved during program development.

WAIT
Type: Statement

Syntax: WAIT numeric expression, numeric expression [.numeric expression]

The first parameter is an address (in the range 0-65535); the others are in the

range 0-255 and will be converted to integers. The optional third parameter defaults

to 0.

Modes: Direct and program modes are both valid.

Token: $92 (146)

Abbreviated entry: W SHIFT-A

Purpose: This statement waits until one or more bits of the memory location are

cleared (given a value of 0) or set (given a value of 1) in the way specified by the

two parameters. The contents of the location are Exclusive-ORed with the third

parameter, then ANDed with the second parameter. If all bits are still 0, the

comparison is repeated; otherwise, BASIC continues with the next instruction.

Notes:

1. The location read by WAIT must be one whose contents can change, or the pro

gram will wait indefinitely. Chapter 11 has a list of locations which WAIT might
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use. Note, however, that WAIT commands don't usually work on other computers.

In fact, they're often better replaced, as they always can be, by an equivalent

statement using PEEK.

2. The operation of WAIT can be hard to explain. First, consider Exclusive-OR (EOR

is the 6502 mnemonic, so we'll use it as an abbreviation). Its truth table is:

0 EOR 0 = 0

0 EOR 1 = 1

1 EOR 0 = 1

1 EOR 1 = 0

If both bits tested are the same, the result of an EOR is 0. If the bits are different,

the result is 1. To put it another way, EOR is true if either but not both bits are set.

The statement:

WAIT address,a,b

first EORs the byte in address with b. This allows any bit, or bits, to be flipped (set

bits will be cleared and clear bits will be set). The result is ANDed with a, which

allows any bit to be turned off (in this case, ignored). Since a zero result makes

WAIT loop again (continue waiting), we can select a and b to respond so that any

single bit changing either to on or off, can cause the program to exit from WAIT

and execute the next statement. In the special case:

WAIT address,a

there is no EOR parameter. (Actually, the value in address is EORed with a zero

byte, so the result is always the same as the original value in address.) Thus:

WAIT address,16

waits until bit 4 is set. If it never is, WAIT continues forever. This is why WAIT

addresses should only be in RAM or in a hardware register which can change.

Examples:

1. POKE 162,0: WAIT 162,16

This line causes the computer to wait until the jiffy clock TI counts to 16
(about 1/4 second).

2. 100 POKE 198,0: WAIT 198,1

This example waits for a keypress (until one character is in the keyboard
buffer).

3. WAIT 56321,32,32

This waits until bit 5 of location 56321 is off. This happens when the Com
modore key is pressed.

4. 10 WAIT 53265,128: POKE 53281,RND(1)*16: GOTO 10

The above line waits until bit 8 of the raster line becomes 1, indicating bot

tom of screen is reached, before changing screen color. Chapter 12 has more
examples of these techniques.
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BASIC Error Message Dictionary
(Disk error messages are handled separately from BASIC: see Chapter 15.)

?BAD SUBSCRIPT

The value given an array subscript is negative, or larger than that in the DIM state

ment (larger than 10 if the array has not been explicitly dimensioned). This message

is also given if the wrong number of subscripts is used.

?BREAK

The RUN/STOP key was pressed before LOAD or SAVE was complete.

?CAN'T CONTINUE

The program cannot be continued using CONT because of one of the following

conditions:

• The program halted due to a SYNTAX ERROR, instead of the RUN/STOP key,

STOP, or END;

• CLR has erased its variables;

• the program was edited after it stopped, effectively erasing variables;

• a direct mode error occurred, which the system can't distinguish from a program

error; or

• the program has not been run.

?DEVICE NOT PRESENT
This means the printer, disk drive, or other device does not respond, typically on

GET# or INPUT#, because it is unplugged, off, addressed by a wrong device num

ber, or is nonstandard and unresponsive. Also, this error occurs when an end-of-tape

marker is found.

7DIVISION BY ZERO

An attempt has been made to divide by zero, which BASIC does not allow, generally

when a denominator underflows to zero. TAN(7r/2) contains an implicit division by

zero.

?EXTRA IGNORED
Given when the response to INPUT contains more items than asked for by INPUT'S

parameter list. The extra items are lost. INPUT# behaves identically, but doesn't

print the error message. Often this is caused by the inclusion of commas or colons in

an input string; avoid this with leading quotes.

?FILE DATA
The type of data in a file doesn't match the variables to which it is assigned by

GET# or INPUT#. This happens when INPUT#X tries to read a string.
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?FILE NOT FOUND

A disk file or program is not present on current disk, or the name is misspelled.

(Tape gives 7DEVICE NOT PRESENT if the end of the tape is reached before the

specified file is found.)

?FILE NOT OPEN

This indicates that the logical file number referred to in a statement has not been

opened.

?FILE OPEN

This means that a logical file number referred to in an OPEN statement has already

been opened.

7FORMULA TOO COMPLEX

This is given if a string expression contains three or more parenthesized

subexpressions. String storage (the string descriptor stack at $19—$21) is exhausted.

For example, PRINT //A//+(//A//+(//A'/+//A//)) will give this error.

?ILLEGAL DEVICE NUMBER

This means either that a command has been issued to an unacceptable device, like

saving to the keyboard or loading from the screen, for example, or that the tape

buffer has been moved below $0200.

?ILLEGAL DIRECT

This indicates that a statement requiring the input buffer has been entered in direct

mode, typically GET or INPUT, or that DEF FN was entered in direct mode.

?ILLEGAL QUANTITY

An expression used as the argument of a function or in a BASIC command is outside

the legal range. Attempting a POKE with either parameter negative, using a logical

file number greater than 255, and asking for the square root of a negative number

are examples.

I/O ERROR (1-9)

These are Kernal error messages, only visible in BASIC after executing POKE 157,64.

See Kernal notes in Chapter 8.

?LOAD

A tape or disk program was not loaded successfully. See Chapter 14 (tape) or Chap

ter 15 (disk) for information on how to read the status byte to determine the cause of

the error.

?MISSING FILE NAME

LOAD and SAVE must include a program name when using the disk drive.
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?NEXT WITHOUT FOR

This message is given when the interpreter cannot find a FOR entry on the stack

corresponding to the NEXT it has just encountered. This may happen if one of the

following conditions exists:

• The stack has no FOR entries on it at all, because more NEXTs than FORs have

been encountered;

• the variable in the NEXT statement is misspelled and doesn't match any FOR en

tries on the stack;

• the required FOR entry has been flushed from the stack by an incorrectly ordered

NEXT in a nested loop; or

• an active GOSUB exists, as in:

10 FOR J=l TO 20: GOSUB 100

100 NEXT

?NOT INPUT FILE

Given in response to an attempt to INPUT# or GET# from a file opened to be writ

ten to. For example, a tape data file opened in write mode cannot be read.

?NOT OUTPUT FILE
An attempt has been made to PRINT to an input file. A disk file opened in read

mode cannot be written to, and the attempt will give this error. A file to the key

board may be OPENed, and read from, but ?NOT OUTPUT FILE will be given if the

attempt is made to write to it, as the keyboard cannot act as an output device.

?OUT OF DATA

There were no remaining unread DATA items when a READ statement was en

countered. Pressing RETURN over the READY prompt generates this message. RE

STORE resets the data pointer.

?OUT OF MEMORY

This message indicates one of the following:

• The 64 does not have enough RAM for the program and its variables (especially if

dimensioning large arrays or inputting long strings);

• temporary storage on the stack has run out, having been filled with GOSUBs
(about 24 maximum), FOR-NEXT loops (about 10 maximum), and intermediate

calculation results:

PRINT (l+(2+(3+(4+(5+(6+(7+(8+(9+(10+(ll+(12)))))))))»)

• the end-of-program pointer in locations 45 and 46 has been set (perhaps by a
LOAD into high memory) greater than the end-of-BASIC-stOrage pointer in 55 and

56. (Reset the pointer or use NEW to correct this.)
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7OVERFLOW

The value of a calculation is outside the valid range for floating-point numbers,

approximately — 1.7E38 to +1.7E38. If a result is within the valid range, this error

may be avoidable by restructuring the computation using, for example:

PRINT (5/4)tl00

instead of:

5U00/4T100

?REDIM'D ARRAY

An attempt has been made to dimension an array that has already been dimen

sioned. It may have been dimensioned automatically. A reference to X(8), for ex

ample, implicitly performs DIM X(10) if the array doesn't yet exist in memory.

?REDO FROM START

This message is given when the response to an INPUT statement (but not to IN-

PUT#) contains items of the wrong type. The whole INPUT statement is executed
again.

7RETURN WITHOUT GOSUB

A RETURN has been encountered without a GOSUB having first been executed.

7STRING TOO LONG

String expressions must have 0 to 255 characters; this error is given if a string ex

pression evaluates to a string longer than this. This message is output when an at

tempt has been made to read a string 89 or more characters long into the input
buffer, typically by INPUT#.

?SYNTAX

This indicates that a BASIC statement is unacceptable. There are many causes. The
64 anticipates a sequence of statements; if a statement doesn't start with a keyword

or the equivalent of LET, if a variable name isn't ASCII, if a statement isn't ter
minated with colon or null, or if parentheses, commas, and other symbols are mis

placed, 7SYNTAX ERROR often results. This message is also given after NEW if the
first byte of BASIC is nonzero.

POKE PEEK(44)*256,0: NEW

typically avoids this error.

?TOO MANY FILES

This is given in response to an OPEN statement if ten logical files, the maximum
number, have already been opened.
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?TYPE MISMATCH
This message is output if the interpreter detects a numeric expression where a string

expression is expected, or vice versa.

?UNDEF'D FUNCTION
An undefined function has been used in an expression; it should first have been de

fined with DEF FN.

?UNDEF'D STATEMENT
The target line number of a GOTO, GOSUB, or RUN does not exist.

7VERIFY

The program in memory isn't identical to the disk or tape file it is being compared
with by VERIFY. Spurious VERIFY errors occur if BASIC programs are loaded into
64 memory at different addresses from where they were saved; the link pointers be

tween lines are different, but the BASIC statements may be the same.
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Chapter 4

Effective Programming in BASIC

How to Become Fluent in BASIC
BASIC is a language, with its own vocabulary and syntax, which requires a certain

amount of creativity on the programmer's part to get good results, just as the ability

to write novels or articles requires more than only a knowledge of words and syntax.

The challenge for a novice programmer is to develop style and fluency.

Perhaps the best way to learn to write is to read and write a lot; similarly, the

best way to learn BASIC, once you know the vocabulary, is to examine other

people's programs and adopt good techniques while developing your own style. At

first, use only a few BASIC statements in your programs, and limit your attempts to

small tasks. As you gain more experience, you can add new BASIC words to your

vocabulary. There are, however, some BASIC statements that you may never need to

use, just as there are probably words in your native language that you have never

spoken.

When writing programs, you have an advantage over writers who don't use

BASIC; you can experiment freely and find out immediately whether your way of

expressing your intentions is acceptable or not. If you fail, no harm is done, provided

the experiments are kept away from your working programs and important data.

With this in mind, it makes good sense to try several approaches to any program

ming task.

No matter what kind of programming you would like to do in BASIC, it is im

portant that you have an appreciation of the capabilities and limitations of your

computer, BASIC, and the intended user. This is largely a matter of experience. The

remainder of this chapter consists of advice and information that may help you write

reliable and easy-to-use programs. The final programming decisions, of course, are

always yours.

Programs, Systems, and People
Before considering program design, we'll overview the software market and the atti

tudes of software producers and users. First, there are three main program types:

Autonomous, stand-alone programs. These don't depend on other programs,

but stand alone. These programs contain all graphics and data necessary to function

properly without support. Most games are like this. "Diet Calculator" (later in this

chapter) is an example of an autonomous program.

Program systems (groups of programs). These generally have many programs

and files of data stored outside the computer. Interactive systems allow information

to be put into or taken out of files directly; batch systems store new data on file,

after which another program processes it, perhaps merging it into an already existing

file. "Wordscore" (below) is a simple system which the 64 can run.

Pseudosystems (programs resembling systems). Single programs with a family

resemblance to each other might be classified as midway between autonomous pro

grams and systems. For example, multiple-choice and other educational programs

collectively can be regarded as systems.

The concepts are important here, not the names. Systems are likely to be more
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difficult to program than autonomous programs, needing validation and checks un

necessary in the other types. Programs that resemble systems are likely to be easy to

program, provided standardized methods have been developed.

Second, there are different types of users. Microcomputer owners can generally

be classified as business, scientific, educational, or personal users.

Business. The 64, with disk drives and a printer, is capable of handling data in

moderate quantities, where speed isn't crucial in day-to-day organization. Mailing

lists, telephone lists, customer information, billing notices, small financial calcula

tions using spreadsheets, and letter writing on word processors are examples of the

uses for the 64 in small businesses.

A number of problems exist, though, such as unacceptable slowness. People

who purchase a system program may not be able to describe accurately the features

they want, or understand that new features, like fast searches and sorts, may be

impossible or may require the entire system to be completely rewritten. The office

staff may not be willing to key in data, particularly if instructions aren't provided in

nontechnical language. And there will be problems if programs don't have thorough

error trapping, or if correction and updating of information is difficult. There may be

security problems in addition to these concerns, since most businesses keep records

(even interoffice memos) that are not intended for all to see. This is perhaps a rather

negative picture, but programmers should keep these possible difficulties in mind

when designing systems.

Commercially sold software packages may be inadequate for several reasons.

First, published reviews are unlikely to be of much value, because comprehensive

testing takes months of work. Second, software packages are continually under

development, and a purchaser may be unable to establish how recent and reliable

the version being shown is. Third, there may not be a commercial program system

that will do what the particular business needs. Still, for many small businesses,

commercial software will be adequate, and programmers should try to include simi

lar features to those of successful programs in their own works, improving them as

much as possible.

Scientific. Controlling external hardware for monitoring experiments or control

ling equipment (like large computer-operated telescopes) is a specialized area (see

Chapter 5 for more information on software). Calculations and simulations are the

other uses for which micros are suitable. Desk-top computers are often used to solve

complex equations; anything with a definite formula is a potential task for a com

puter program, from architectural stress calculations to zoo nutrition, provided the

computer's memory is large enough to hold the data.

Educational. The continued drop in the price of computing (apparent rather

than real in many cases, after making allowance for separate disk units, printers,

RAM expanders, and so on), plus skillful marketing (playing on parents' fears that

their children might miss out on the computer revolution), have created a boom in

computer education. Nevertheless, in spite of the huge sums paid for education, not

that much is spent on computers. And it is unreasonable to expect great computer

expertise from teachers who haven't themselves been trained.

A common situation has evolved where classes have one model of an expensive

computer, while the students who have one at home own a less expensive or dif

ferent computer. There are two different attitudes toward microcomputer education,
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broadly dividing people who do not have programming skills and those who do.
The first group sees, with some relief, a rdomful of unruly children settle down to

play a number game, and thinks, "It is remarkable to see them working in an or

derly way for hours. Increased equality of education is possible. Unmotivated stu

dents find their intejr^st reawakened, and their confidence grows."

The other group's argument is, "Computers are unparalleled at teaching logical

thought. They provide great oppbrtunities for students to display their creativity, and

this may be the most important part of their schooling." When the experts disagree,

it is hard to know what makes good educational software.

Multiple-choice tests, with question-and-answer programs, graded by year and

subject, make a potentially attractive package. In principle, dozens of programs could

be used as refreshers and tests in a range of subjects. Multiple-choice questions are

easy to program, since the only reply needed is typically 1, 2, 3, or 4, without the

need to interpret a verbal answer. To discourage guessing, wrong answers could

score —1/4 point, so completely random answers would score around zero.

Single-concept programs, like children's counting programs and alphabetic-

recognition programs, are becoming available commercially. Good graphics can add

a lot of appeal and help to hold the user's attention longer. More advanced examples

include foreign language vocabulary and translation tests; economics concepts like

price elasticity, supply-and-demand curves, and marginal costs; musical relationships

between frequency and pitch; population simulations; and math techniques and con

cepts like graph plotting, limits, sums of series, calculus, and simulations of random

ness with coins, roulette, and so on. (See "Dice" page 97.)

Personal. This rapidly expanding area of the market includes games and educa

tional and home business programs. Several magazines are currently being published

which include programs in the magazine that can be typed in at home, and therefore

are practically free.

Program Design
We've distinguished programs from systems, and noted that systems require more

planning and knowledge; in the commercial world this is reflected in the job separa

tion between analysts and programmers. On the relatively mddest scale of the 64,

it's equally true; experienced programmers can almost unconsciously plan ambitious

projects out of reach of beginners. This section covers the sort of thought processes

necessary in programming and in design, with a concrete example of each to give

substance to the generalities. Bear in mind that many programmers write in an un

organized, ad hoc fashion and don't always worry about tidy, theoretical schemes. If

your programs are messy and patched together, don't worry too much—many other

people's programs are, too.

Program Example: Number Guessing Game

We'll write a program which thinks of a number from 1 to 99, then accepts guesses

typed into the keyboard. Where the guess is wrong, it prints TOO LARGE or TOO

SMALL, as the case may be. Correct input is rewarded by an encouraging message

plus the total number of guesses. Putting this into BASIC requires four steps, which

may be formally written down or simply carried out mentally, but always take the

form outlined below.
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Understand the problem. The example is quite simple: Many computer prob

lems are not.

Express it in a computerizable way. This is where programming experience is

essential. For example, if you haven't grasped the idea of computer fU.es, you'll obvi

ously not be able to appreciate their use in storing data. If you haven't understood

that the computer has to count lines of print to know where it is on a page, you

won't be able to print titles on page tops. Knowledge of the logic of programming

equips you with methods and tricks to process data, but experience is probably the

best way to learn the physical limitations and capabilities of a particular computer.

This flow chart expresses an approach to our game in a form that can be written

as BASIC. Entries in the boxes are shorter than usual to avoid clutter. You should be

able to trace how the variable, N, records the number of guesses, and how all three

possible outcomes of the comparison between the correct number, X, and the current

guess are processed.

Figure 4-1. Number Guessing Game Flow Chart
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Flow charts generally use diamonds to indicate options and rectangles for opera

tions; direction of flow is usually down, with loops and branches generated by the

options arranged clockwise, as in this diagram. Many other, less common symbols

are also used. Virtually all programs have loops and decision points, and flow charts

show these clearly. However, they are hard to modify and they take up space, so

many people prefer to make outlines and notes—stylized lines of English resembling

programs. There's no correct notation; and the sad fact is that any complex program

remains complex in whatever way it is written down.

Write it in BASIC. If it's a complex program, write parts of it and test them in

dividually as subroutines. This is where past practice is invaluable, not only because

of skill in BASIC per se, but because experience suggests efficient ways of getting

results.

Algorithms are rules with explicit instructions and no exceptions, which generate

correct results. Math algorithms can be used by anyone, without understanding any

of the underlying theory. For example, linear programming (solving such problems

as finding the least expensive combination of foods which supply all known nutri

ents) involves long calculations, which give the right answer. At a simpler level,

arranging dates in the format YYMMDD makes them sort numerically into chrono

logical sequence, while MMDDYY requires more work to sort properly. A version of

3-D tic-tac-toe requires the winner to avoid a line; the algorithm start in the center

and make opposite moves always wins for the first player.

Algorithms can be used to deal with very complex situations: often the rule is

found to give good results and is therefore used in lieu of anything better.

Warnsdorf's rule in chess, to generate knight's tours around the whole board, illus

trates this. The rule is: Move the knight to the square with fewest exit squares. This

often (but not always) gives a solution. Many games—bridge, for example—are in

effect often played algorithmically, as the players follow rules that sum up the expe

rience of good players. Chess openings can be generated with simple algorithms as

well; a common example is moving to maximize the area under attack by your

pieces, while minimizing the opponent's range of replies. Reversi (or Othello™)

played on an 8 X 8 board, with pieces white on one side and black on the other,

can be played by the following simple algorithm: For about 10 moves, occupy cen

tral squares, reversing as few of the opponent's pieces as possible; for another 10

moves, keep the total number of your pieces to about ten; after this, go for maxi

mum points.

Our number game, Program 4-1, is too simple to require such intricate al

gorithms, though.

Program 4-1. Number Guessing Game

10 PRINT "{CLRjGUESS MY NUMBER (1-99)": PRINT

20 X=INT(RND(1)*99)+1: N=0

30 INPUT "YOUR GUESS";G: N=N+1

40 IF G<X THEN PRINT "TOO SMALL": GOTO 30

50 IF G>X THEN PRINT "TOO LARGE": GOTO 30

60 PRINT "GOT IT1 IN " N "TRIES"
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Lines 0-30 correspond exactly to the first boxes of the flow chart; after this, be

cause IF allows only two options, the lines cannot exactly match boxes, but the logic

is identical. Note that line 60 doesn't need to test IF G=X, since no other possibility

exists.

Test and improve. Our example could include:

70 FOR J=l TO 3000: NEXT: GOTO 10

effectively replacing the box END with a delay loop and a branch back to the PRINT

TITLE box. Values could be checked to insure that they are integers in the correct

range, and you could add color.

Testing is difficult, and many commercial programmers spend most of their time
removing bugs from programs. Ideally, with good planning, bugs would not appear,

but in practice it's seldom possible to foresee every potential problem.

System Example: Wordscore Analysis
"Wordscore" is a demonstration program (see the end of this chapter under string

handling) which evaluates five-letter words on a score-per-letter basis. In other

words, each letter is assigned a value, and the value of a word is the sum of the val

ues of all the letters. The letters B-I-N-G-0 must be included vertically, horizontally,

or diagonally to form an acceptable combination of words.

The first step toward finding an algorithm is to consider the potential data base

of words, and several assumptions will provide the basis for this algorithm. A typical

dictionary lists about 2000 five-letter words (based on a sampling of pages), so only

about 400 can be expected to exist which contain one or more letters of BINGO. The

Commodore 64, even without disk or tape, easily has enough memory to store 400

short words. The demonstration shows how values can be assigned to letters A to Z

before checking the words, stored on a tape or disk file. Using BASIC to select the

highest-scoring words in the form Bxxxx, Ixxxx, and so on (there are 29 relevant for

mats) isn't difficult. The conclusion is that the 64 could be valuable for this applica

tion. (Other factors—acceptable dictionaries, competition rules—are likely to

complicate matters.)

System Design
In addition to the normal programming concerns, system planning takes three major

steps, which are discussed below.

Ask if the project is feasible. Time may be a problem; sorts, searches, graphics,

and tape processing may be too slow; the program's response time may be inad

equate; the data may take too long to key in. You may want to write a test program

to check the feasibility of the task. Machine language always outperforms BASIC,

but is often more difficult to program.

Generally, if much data is to be processed, estimate the total storage needed in

bytes and estimate whether it can coexist with BASIC, or whether stored files would

help. Perhaps splitting a program into smaller subprograms would be advisable. Less

tangible problems might be user attitudes, reliability, and recovery of lost data if

problems should occur. A little time spent in advance on all these questions is

usually worthwhile. Even so, there will be cases where a feasibility study requires a

lot of work.
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Write a solution. Often it is helpful to do some prewriting, to organize your

ideas before putting them into program form.

Write the programs. These should preferably be structured so that they are easy

to understand later. Programs written in modules, each having only one entry and

one exit point, are generally easier to modify and debug. Figure 4-2 and Table 4-1

show two ways of analyzing system programming. The first shows a file's structure,

and a diagram of a modular program structured to read it, which has a left-right

flow. Table 4-1 is a condition table, which lists alternative actions in tabular form,

which may allow complex decisions to be checked more easily than long sections of

IF statements would permit.

Figure 4-2. File Structure and Related Program
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Table 4-1. Condition Table

Conditions

Actions

Stock > reorder level?

Stock minus stock out > reorder level?

Stock out > stock?

Issue stock

Issue reorder request

Part issue stock / increase commitments

Y

Y

N

X

-

-

Y

N

N

X

X

-

Y

N

Y

-

X

X

N

N

N

X

-

-

N

N

Y

-

-

X

N

N

N

-

-

-

Serious and Less Serious Programming
There's no single correct way to program. If it's your computer, you can do what

you like; otherwise, you may need to conform to some set style, either of program

ming or of finished appearance. This section lists a number of considerations which
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are relevant when deciding on a program's readability, ease of maintenance, use,

modification, and so on.

Conventions for line numbers, variable names, and remarks. You may want

to avoid putting REM statements on lines that are the target of either GOTO or

GOSUB statements, so deleting them will have no effect on the program. If standard

subroutines are used, consider retaining the same line numbers in different pro

grams. As for BASIC variables, to be sure that variables can't be accidentally

changed, either list every variable as it's used (and make the names meaningful) or
establish a convention. For example, local variables could end in 9 (A9, B9, ...), or I,

J, K, and so on could be for local use only—initialized, then used anywhere in the

program. It is still a good idea to keep track of the other variables.

REM statements make a program more readable, but take up space and slow

execution speed. You may find it worthwhile to document standard routines for fu

ture reference and delete the REM statements when the routines are used in larger

programs. Program 4-2 converts a four-digit hex number (see Chapter 5) to decimal

and prints it. The subroutine does not perform error checking. This is a feature you

may want to add later. Notice the remarks which tell what the routine does, how to

use it, and which variables are used.

Program 4-2. Hex-to-Decimal Conversion Subroutine

560 REM{2 SPACES}SHORT SUBROUTINE TO CONVERT A STR

ING OF

565 REM 4 HEX DIGITS TO DECIMAL AND PRINT RESULT

575 REM EXAMPLE OF USE:

580 REM L$=MABCD": GOSUB 600{4 SPACES}PRINTS 43981

590 REM USES VARIABLES H,J,L, AND L$
600 L=0:FORJ=lTO4:L%=ASC(MID$(L$,J)):L%=L%-48+(L%>

64)*7:L=16*L+L%:NEXT:PRINTL

610 RETURN

A similar decimal-to-hexadecimal conversion subroutine follows; it uses the

same four variables, except L is used instead of L$.

1000L=L/4096:FORJ=lT04:L%=L:L$=CHR$(48+Lo/o-(L%>9)*7)

1010PRINTL$;:L=16*(L-L%):NEXT:RETURN

Documentation. Program documentation could include an operator manual

(explaining how to use the computer, handle and copy disks, and so on), a user's

manual (explaining file structure, validation methods, the correct sequence of pro

grams), and a system manual (providing a complete reference to the system pro

grams and files).

Ease of modification. The term hard coding means that significant parts of a

program use constants; soft coding means variables are used. Soft coding is easier to

modify, but as a rule more tedious to write. See the program "Payroll Analyzer" be

low; the first line can be altered to change the program. The BASIC line:

OPEN N,N:PRINT#N

illustrates soft coding as well. When N=3, output is to the TV, and when N=4, out

put is to a printer. A program may include a menu of parameters at the start, so the
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user's own requirements can be keyed in. For example, modem programs often begin

with a menu for setting baud rate, parity, and stop bits.

Error messages. These signal that a mistake has been made and should indicate

the error. Program 4-3 is a subroutine that handles error messages. Before sending

the program to the subroutine, place the error message text in the variable EM$:

EM$="TOO LONG": GOSUB 10000

This will print the message on the screen in reverse video to attract attention. You

could use this in a large program before resetting cursor position and returning for

reinput.

Program 4-3. Error Message Subroutine

10000 PRINT "{HOME}11: FOR J=l TO 23: PRINT "{DOWN)
117 : NEXT

10010 PRINT "{RVS}"EM$7: FOR J=l TO 2500: NEXT

10020 FOR J=l TO LEN(EM$): PRINT "{LEFT} {LEFT}";:
NEXT

10030 RETURN

Easy data input. The BASIC INPUT statement is fine in many cases, but doesn't
give the programmer full control. To make a program as easy to use as possible, un
desirable keys should be blocked out or ignored. Integer input (see the section below
on string and integer input) will accept only numbers, not cursor keys, color keys, or

alphabetic characters. RUN/STOP and RESTORE may need to be disabled (see
Chapter 6), and the length of the integer checked if there's a maximum value. None
of this is very difficult, but it takes time and memory.

How easy a program is to use is important. Prompts, telling the user what to
type, and instructions, providing an overview, are helpful. The programmer must al
ways balance the program's features with memory usage and execution speed. The
lines below illustrate how to combine PRINT and INPUT into a relatively friendly
input routine and show that this requires extra memory.

100 PRINT "ENTER THE DISCOUNT"

110 PRINT "PERCENTAGE (E.G., 13.25)"

120 INPUT "AND PRESS RETURN"; PC

Menus. These are elaborate prompts, which help the user select his or her own
path through a program; often a help option is available from the menu. Data entry
can be simplified by presenting a summary of input at appropriate places in the pro
gram, allowing for easy corrections.

The best menu design allows the user to indicate the desired option by pressing
a single number or letter. If a menu program stands alone, it has to load and run a
new program (see "Chain" in Chapter 6). Of course, all or most of the options may

exist as one program in memory, if there is room. Tape units don't have the flexibil
ity of disk drives when it comes to loading one program of several, of course, be
cause tape stores programs in sequence, rather than allowing equally rapid access to
each one.

Program 4-4 is a menu which calls one of three routines based on user input.
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Program 4-4. Simple Menu

100 PRINT "I, INTEREST RATE

110 PRINT "2. TIME PERIOD

120 PRINT "3. MORTGAGE

200 GET X$: IF X$<M1M OR X$>M3" GOTO 200

210 ON VAL(X$) GOTO 1000, 2000, 3000

Formatting output. Tidy output, particularly of numbers, requires some work.

See "Rounding" (later) and "PRINT USING" (Chapter 6), which show how to print

numbers using a standard format.

Subroutines. Standard subroutines allow programs to be developed and tested

as modules; it's easier to check isolated parts of a program than entire programs, and

it's also possible for several people to work simultaneously, provided the variables
and line numbers are determined beforehand (see the section on conventions, above)

so no conflicts arise. Subroutines often save space and improve clarity.
Testing. Thorough testing ideally requires every possible combination of data to

be tried. Generally, this is impossible. In practice, depending on the program or sub
routine, you can use a loop to generate ascending values and check the effect, or use
RND to make up strings or numbers of the right size. Rounding includes a loop
demonstration; the sort routines in Chapter 6 use random data to test sorting.

In practice, there are complications. First, there may be extreme or boundary
values which have strange effects. Negative numbers, numbers below .01 (which are
printed in exponential notation), and the quotation mark key, are all likely to crash
INPUT subroutines unless they're tested for. Second, programming errors may show
up only when several events occur at once, making bugs hard to trace because of
their apparent random appearance. Third, unconscious bias may influence the choice
of test data, so that tricky areas may be avoided. For this reason, commercial systems
are tested with data supplied by the user, who also checks that the output is what it
should be. This, of course, is rather unfair, since the user may not appreciate the im
portance of testing with obviously wrong data which the system ought to reject. In
any case, it is best to have someone else test your programs, instead of simply rely

ing on your own testing. #
Validation. This is the process of checking to make sure that data is the correct

type, without checking the actual values. For example, a date entered as 19/19/86 is
invalid and should be rejected; 9/9/86 would be valid, but may be incorrect. In its
simplest form, validation simply causes the program to wait for data, as in the menu
example above. More sophisticated checking routines include error messages.

Checksums provide additional validation and are easy to implement with
computers. Typically, a single letter or number is added to the end of a reference
number (or even a program line listed in a book). The suffix is calculated from the
data, using an algorithm, so the composite data is internally consistent. For example,
International Standard Book Numbers (ISBNs) have nine digits, plus an extra
checkdigit. This final digit is computed by multiplying the first number by 1, the sec
ond by 2, and so forth, up to the ninth, then adding the results together, dividing by
11 and using the remainder, 0-9, or X, (to represent a remainder of 10). The system
is not foolproof, but it is simple, and the most common errors (entry of one wrong

digit or transposition of adjacent digits) are trapped.
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Debugging BASIC Programs
This section lists common faults in BASIC programs. While such a listing cannot be

exhaustive, it should help pinpoint errors. The BASIC STOP statement allows you to

set breakpoints at which you can check the values of important variables, and

PRINT allows you to check key variables while the BASIC program runs.

SYNTAX ERRORS. These occur when the 64 finds something which isn't

BASIC. Generally, it's up to you to find the mistake.

RUN errors. These occur in BASIC that is syntactically correct, but which is try

ing to manipulate data that isn't valid. The final section of Chapter 3 is a list of all

these errors. Validation routines which pass only acceptable values are a solution.

Errors of program logic. The program may run without errors, but still do the

wrong thing. These are often caused by the following:

• There may be a keyword misunderstanding, so that the statement does something

unexpected. This is common with logical expressions where parentheses have been

omitted.

• A variable's value may be altered by mistake. All BASIC variables are global, not

local, and a subroutine which uses J can easily be called without its effect on J be

ing noticed. In fact, the same variable may be repeated by mistake—you may forget

that D already means decimal position and use it for dollars. Also, the variable may

be misspelled.

• Subroutines may be poorly structured, so that program flow drops through to the

following lines. This occurs when the RETURN statement is omitted in one of

many subroutines.

• The BASIC pointers may be wrong: graphics definitions and ML at the top of

BASIC memory need to be protected from being overwritten by BASIC strings.

Chaining (see Chapter 6) may be difficult. BASIC may assume a hardware or soft

ware arrangement which is incorrect.

• Omitting FN will cause a function to be read as an array; PRINT FN HYPTN(5) is

not the same as PRINT HYPTN(5). The latter will print the value of the array ele

ment HY(5).

• System errors are usually caused by errors in loops, particularly the zeroth and fi

nal elements in buffers. Loops are often used to POKE data into memory, and these
are prime sources of errors.

• DATA statements may have been put in the wrong order by typing an incorrect

line number.

Unusual characteristics of BASIC itself. BASIC has a number of small pe

culiarities, some of which are:

• ASC of a null character crashes.

• CLOSE to printer or disk file should be preceded by a PRINT#.

• FOR-NEXT and GOSUB-RETURN require caution.

• FRE is slow if there are very many strings.

• INPUT# has no error message if it finds extra data.

• PRINT attempts to print anything; for instance, a stray decimal point can appear as

a zero or can cause a number to be split into two numbers.

• Numbers are not held with infinite accuracy, as Chapter 6 explains in detail.
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Examples in BASIC
The following sections illustrate some of the fundamentals of BASIC programming.

One of the best ways to learn BASIC is by looking at program examples and modify

ing them to suit your needs. Most of your programming will involve the elementary

skills discussed here, in one way or another.

Input

Programs 4-5 and 4-6 use GET to build an input string, IN$. In Program 4-4, the

cursor flash POKEs in lines 110 and 130 simulate the way BASIC'S INPUT looks to

the user. The program gets individual characters into X$ in line 120. Line 140 allows

the INST/DEL key to operate. All other special keys are disallowed, except

RUN/STOP and RUN/STOP-RESTORE, which can be disabled if you wish (see

Chapter 6). line 150 defines the range of acceptable characters, so for integer input

the line should be changed (by placing a 0 inside the first pair of quotation marks

and a 9 inside the second pair).

Program 4-5. String and Integer Input

10 GOSUB 100: PRINT: PRINT IN$: GOTO 10

100 IN$=""

110 POKE 204,0: POKE 207,0

120 GET X$: IF X$=IMI GOTO 120

130 IF X$=CHR$(13) THEN PRINT " ";: POKE 204,1: RE

TURN

140 IF ASC(X$)=20 AND LEN(IN$)>0 THEN IN$=LEFT$(IN

$,LEN(IN$)-1):GOTO 170

150 IF NOT (X$>=M " AND X$<="Z/') GOTO 110

160 IN$=IN$+X$

170 PRINT X$;: GOTO 110

Decimal input is a bit more complicated, as Program 4-6 illustrates, and extra
programming is needed to insure that only one decimal point can be entered. This

version allows only two digits after the decimal (this can be modified at line 152).
All these features can, of course, be changed, but be sure to test the results.

Program 4-6. Decimal Input
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 GOSUB 100: PRINT: PRINT D$: GOTO 10: :rem 118

100 D$=llfl: D=-l :rem 147

110 POKE 204,0: POKE 207,0 : rem 17

120 GET X$: IF X$="M GOTO 120 :rem 129

130 IF X$=CHR$(13) THEN PRINT " ";: POKE 204,1: RE

TURN :rem 67

140 IF ASC(X$)=20 THEN IF LEN(D$)>0 THEN D$=LEFT$(

D$,LEN(D$)-1):D=D-1: GOTO 170 :rem 145

142 IF ASC(X$)=20 GOTO 110 srem 52

144 IFX$=H." THEN FOR J=0 TO LEN(D$):IF MID$(D$,J+
1,1 )<>"." THEN NEXT srem 100
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146 IF X$=M." AND (J=LEN(D$)+1) THEN D=0: GOTO 160

:rem 222

150 IP NOT (X$>="0M AND X$<="9M) GOTO 110 :rem 226

152 IF D>=2 GOTO 110 :rem 227

154 IF D>-1 THEN D=D+1 : rem 89

160 D$=D$+X$ :rem 75

170 PRINT X$;: GOTO 110 :rem 225

GET can build strings in any format. Machine part numbers might be of the

form ###XXX (that is, three digits followed by three letters), and a routine to input

these should test for the correct input and ignore anything else. Where an

INST/DEL key is allowed, this is a little more difficult. An input string might be ac

cepted, then tested for correct format; if an error were found, the program would

loop back for data reentry, perhaps after displaying an error message.

The discussion of INPUT in Chapter 3 explains some tricks, like forcing quotes

after the prompt.

Pressing RETURN on INPUT leaves everything unchanged; so a line like:

100 X=50: INPUT "NEW X (OR RETURN=50)"; X

allows easy data entry with automatic default values.

Output

Many times you will want to print information in some special format. This is

especially important in financial calculations. Program 4-7 is an error-trapping and

output-formatting routine for use with numeric data.

Program 4-7. Rounding
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

20 FOR V=-20 TO 200 STEP 12.7: GOSUB 100: PRINT V;

V$: NEXT: END :rem 75

100 T9$=STR$(V) :rem 67

105 E9=0: FOR J9=l TO LEN(T9$): IF MID$(T9$,J9,1)=

"E" THEN E9=J9 :rem 31

110 NEXT: IF E9>0 AND MID$(T9$#E9+1,1)="-" THEN T9

$=M0.00": GOTO 150 :rem 146

115 IF E9>0 AND MID$(T9$,E9+1,1)="+ " THEN T9$="***

OVERFLOW11: GOTO 150 :rem 80

120 IF MID$(T9$,2,1)=M." THEN T9$=LEFT$(T9$,1)+M0"

+MID$(T9$,2) :rem 127
125 D9=0: FOR J9=l TO LEN(T9$): IF MID$(T9$,J9,1)=

"." THEN D9=J9 :rem 8

130 NEXT :rem 211

135 IF D9=0 THEN D9=LEN(T9$)+l: T9$=T9$+M."

:rem 174

140 T9$=T9$+M00M :rem 3

145 T9$=LEFT$(T9$,D9+2) :rem 223

150 V$= RIGHT$(M{12 SPACES}M+T9$,12) :rem 239
155 RETURN :rem 123
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Line 20 demonstrates the routine by producing test values and going to the sub

routine at line 100, where the number is converted to a string. Lines 105-115 test for

an E in the string equivalent of the value, V, and check for under- or overflow. Line

120 retains the minus sign, where applicable, so every possibility is tested for. Lines

125-150 handle the decimal point and trailing zeros, and control the length of the

string, V$, in its processed form.

Routines like this are valuable for such purposes as printing invoices, receipts,

and reports. Chapter 6 (see "PRINT USING") contains a machine language im

plementation of the same idea. The following line of BASIC is a simple method for

rounding a number to two decimal places:

X=INT(100*X 4- .5)/100

Calculations

Below are some examples of calculation and report programs. The first of these pre

dicts weight change based on information entered by the user (weight, sex, calorie

intake, and level of activity).

Program 4-8. Diet Calculator

100 PRINT "{CLR}"

110 INPUT "WEIGHT (POUNDS)";P

120 INPUT "INTENDED DAILY CALORIE INTAKE";C

130 INPUT "INACTIVE, FAIRLY, OR VERY ACTIVE (0-2)"

7A

140 INPUT "MALE, FEMALE (M OR F)";S$: S$=LEFT$(S$,

1)
150 S=l: IF S$="F" THEN S=.9

200 PRINT "{CLR}" S$ "{2 SPACESjWEIGHT NOW:" P

210 PRINT "CALORIE INTAKE:" C

220 PRINT

300 FOR W=0 TO 16

310 PRINT "WEEK" W INT(P*10)/l0

400 FOR J=l TO 7

410 M=P*(14.3+A)*S + C/10

420 D=M-C

430 DW=D/3500

440 P=P-DW

450 NEXT J

500 NEXT W

Lines 400-450 calculate weight change per week. Line 410 contains the formula

to determine the number of calories needed to maintain the same weight; lines 420

and 430 calculate DW, the change in weight for one day. The results of 16 weeks are

printed out. The algorithm makes standard assumptions that one pound of fat is

equivalent to 3500 calories, and that a fairly constant ratio exists between total

weight and static weight calorie intake.

Program 4-9 works out the smallest bill and coin combinations to pay the sepa

rate amounts of a payroll. Line 60 is a DATA line, which can be changed, for ex-

90



Effective Programming in BASIC

ample, to eliminate hundred dollar bills, add twenty dollar bills, or convert to other

currencies (the first value on this line is the number of different denominations

used). Line 130 adds a small correction to each figure so there is no chance of round

ing errors.

Program 4-9. Payroll Analyzer
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix G

60 DATA 11,100,50,10,5,2,1,.5,.25,.1,-05,.01

:rem 46

70 READ NUMBER OF DENOMS: DIM NC(NU),QU(NU) :rem 6

80 FOR J=l TO NU: READ NC(J): NEXT :rem 72

110 INPUT M{CLR}# OF EMPLOYEES"; EMPLOYEES: DIM SA

LARIES OF (EMPLOYEES) :rem 83

120 FOR J=l TO EM: PRINT "EMPLOYEE #"J; :rem 122

130 INPUT SALARY OF (J): SA(J)=SA(J) + NC(NU)/2
: rem 6

140 NEXT :rem 212

210 FOR J=l TO EMPLOYEES :rem 136

220 FOR K=l TO NUMBER :rem 160

230 X=INT(SAL(J)/NC(K)): SAL(J)=SAL(J)-X*NC(K): QU

(K)=QU(K)+X :rem 4

240 NEXT K :rem 32

250 NEXT J :rem 32

310 PRINT "{CLR} ANALYSIS:" :rem 150

320 FOR J=l TO NU: IF QU(J)=0 THEN 340 :rem 183

330 PRINT QU(J) "OF $" NC(J) :rem 141

340 NEXT :rem 214

Program 4-10 employs a math technique to find solutions to equations; lines 2

and 3 are examples, and the program is set up to perform an interest calculation. It

will tell you, for example, that if ten payments of $135 will cancel a $1,000 loan,

there was a 5.865 percent interest rate per payment period. This calculation is or

dinarily difficult, because the formula assumes that the interest rate is known.

The program allows for guesses to be entered as well, which is sometimes im

portant if a problem has more than one solution. Line 60 controls the precision of

the answer—greater precision takes longer. The program is not foolproof and could

be improved by asking for a guess and by adding error checking.

Program 4-10. Equation Solver
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

2 REM *** EXAMPLE:{2 SPACESjDEF FN Y(X)=X*X - 2 SO

LVES SQR(2) :rem 10

3 REM *** EXAMPLE:{2 SPACESjDEF FN Y(X)=Xt3 + 5*Xt
2-3 SOLVES Xt3+5Xf2=3 :rem 181

10 DEF FN Y(X) = P*(l-l/(l+X)tN)/ X - S :rem 68

11 INPUT "NO. OF PAYMENTS";N :rem 144

12 INPUT "TOTAL SUM";S :rem 62

13 INPUT "EACH PAYMENT IS";P :rem 142
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20 GUESS=.1{2 SPACES}:REM SET GUESS AT 10% PER PAY

MENT INTERVAL :rem 155

30 DX=1/1024 :REM SMALL INCREMENT WITH NO ROUNDING

ERROR :rem 104

40 GRADIENT = (FN Y(GUESS+DX) - FN Y(GUESS))/DX

:rem 137

50 GUESS=GUESS - FN Y(GUESS)/GRADIENT :rem 31

60 IF ABS(GUESS-Gl)<.00001 THEN PRINTMSOLUTION=" G

UESS: END : rem 245

70 G1=GUESS: GOTO 40:{2 SPACES}REM PRINT Gl TO WAT

CH CONSECUTIVE GUESSES :rem 30

Program 4-11 calculates fractional approximations for decimal values. It tells

you, for example, that w is about 22/7, and that 355/113 is much closer; it approxi

mates any constant and may provide an easily remembered fraction to use in

converting currency or measuring systems.

Program 4-11. Fraction Maker
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

110 INPUT A: T=A:{2 SPACES}B=1 :rem 89

120 IF ABS(T-INT(T+.0001))>.001 THEN T=T*10: B=INT

(B*10+.l): GOTO 120 :rem 98

130 T=INT(T+.l) :rem 63

140 DIM A(50),T(50),B(50) :rem 192

150 A(1)=INT(T/B): T=T-INT(T/B)*B :rem 80

210 X=l :rem 89

220 X=X+1: A(X)=INT(B/T) :rem 63

230 B1=T: T=B-A(X)*T: B=B1 jrem 103

240 IF Bol AND T<>0 GOTO 220 :rem 176

250 IF X>16 THEN X=16 :rem 78

310 T(1)=A(1): B(l)=l irem 214

320 T(2)=A(1)*A(2)+1: B(2)=A(2) :rem 182

330 FOR J=3 TO X :rem 50

340 T(J)=A(J)*T(J-1) + T(J-2) :rem 143

350 B(J)=A(J)*B(J-1) + B(J-2) :rem 90

360 NEXT :rem 216

410 FOR J=l TO X: PRINT T(J)M/"B(J) :rem 53

420 NEXT srem 213

String Handling

Words are handled by BASIC as strings; this allows constructions like:

10 INPUT "NAME";N$: PRINT "HELLO, " N$

This feature is useful for games, especially text adventures, and can be used to

personalize the replies the computer makes to the user. Typing trainer programs use

the same principle. At a more involved level, any individual characters can be se

lected at will, using MID$, LEFTS, or RIGHTS (actually, MID$ is enough), and any

combination of characters can be generated with the aid of the string concatenation
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operator (+). Program 4-7, "Rounding," showed how to scan a string for the charac

ter E. Program 4-12 shows how a number can be scanned (in its string form) to re

place the number 0 with the letter O, which many people prefer.

Program 4-12. Oh, Zeros

10 INPUT "WHAT NUMBER" ;N$

20 L=LEN(N$)

30 FOR J=l TO L: IF MID$(N$,J,1)="0" THEN N$=LEFT$

(N$,J-1) +"O"+ RIGHT$(N$,L-J)

40 NEXT

50 PRINT N$

When storage space is short, data compression may be necessary, and Program

4-13 illustrates how long numbers can be packed into about half their normal length,

using string handling:

Program 4-13. Packing Numbers
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 INPUT "NUMBER"; NS$ :rem 254

99 REM PACK NUMBER STRING NS$ INTO NP$ :rem 214

100 IF LEN(NS$) <> INT(LEN(NS$)/2)*2 THEN NS$="0"

{SPACE}+ NS$ :rem 18

110 NP$="": FOR J=l TO LEN(NS$) STEP 2 :rem 180

120 NP$ = NP$ + CHR$(VAL(MID$(NS$,J,2))+33): NEXT

:rem 247

199 REM UNPACK NP$ INTO NUMBER STRING NS$ :rem 170

200 NS$="": FOR J=l TO LEN(NP$): NI$=STR$(ASC(MID$

(NP$#J))-33) :rem 40

210 NI$=RIGHT$(NI$,LEN(NI$)-1):REMOVE LEADING SPAC

E :rem 22

220 NI$=RIGHT$("00"+NI$,2): NS$=NS$+NI$: NEXT:REM

{SPACE}ADD LEADING ZEROS :rem 53

300 PRINT NS$ " " NP$: GOTO 10 :rem 191

Analogous tricks include collecting similar characters together and selecting from

them with MID$. For example, there's no simple connection between color keys and

their ASCII values, but:

C$="{BLK} {WHT} {RED} {CYN} {PUR} {GRN} {BLU} {YEL}"

is a character string holding eight of them, and PRINT MID$(C$,J,1) prints the Jth

color, where J is 1-8.

Program 4-14, a simple version of the word game Bingo, illustrates a small-

system program that evaluates five-letter words by giving each letter a point value

(which you may vary between runs).
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Program 4-14. Wordscore
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 REM 'RUN1 BUILDS FILE OF WORDS; :rem 202

11 REM 'RUN 200* ASSESSES WORDS. :rem 66

13 REM TAPE USE{2 SPACES}101 OPEN 1,1,1,"5-LETTER

{SPACE}WORDS" :rem 63
14 REM AND{7 SPACES}301 OPEN 1,1,0,"5-LETTER WORDS

:rem 253

98 REM BUILD FILE OF WORDS ON DISK :rem 209

101 OPEN 1,8,2,"5-LETTER WORDS,S,W" :rem 234

110 INPUT W$ :rem 157

120 IF LEN(W$)<>5{2 SPACESjGOTO 110: REM 5 LETTERS
ONLY :rem 255

130 PRINT*1,W$ :rem 28

140 IF W$O"END**" GOTO 110: REM SIGNALS END

:rem 89

150 CLOSE 1: END :rem 78

198 REM PUT IN LETTER VALUES :rem 182

200 DIM V(26) :rem 123

210 FOR J=l TO 26 :rem 61

220 PRINT CHR$(64+J); :rem 141

230 INPUT " VALUE"; V(J) :rem 18

240 NEXT :rem 213

298 REM READ DISK & PRINT WORD VALUES : rem 141

301 OPEN 1,8,2,"5-LETTER WORDS,S,R" :rem 231

310 INPUT#1,W$ :rem 31

320 IF W$="END**" THEN CLOSE 1: END :rem 50

330 PRINT W$; :rem 217

340 S=0: FOR J=l TO 5:REM COMPUTE SCORE BY EVALUAT

ING EACH LETTER :rem 43

350 L$=MID$(W$,J) :rem 133

360 A=ASC(L$) - 64 :rem 70

370 S=S + V(A): NEXT : rem 9

380 PRINT S :rem 123

390 GOTO 310 :rem 105

The first part of the program accepts five-letter words (note the check in line

120) and writes them to disk, stopping when the end-of-file indicator (END**) is

typed in. RUN 200 runs the second phase: 26 values corresponding to A-Z are en

tered by the user, and the Commodore 64 reads back all the words on file and prints

word values. Line 360 converts each letter into a number from 1 (for A) to 26 (for Z).

The variable, S, in line 370 is the total for the word which has been read from file;

this shows how MID$ can analyze the individual letters in a word.

The program can be refined by categorizing the words, for example, into those

beginning B, I, and so on, and rejecting words whose total value is less than the

highest so far, or by using a different file for each type of word.
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Sorting, Searching, Shuffling, and Randomizing
Sorting is commercially important in applications like bill processing, book catalogu

ing, and mail distribution. Chapter 6 has examples of sorts for the 64, written in

both BASIC and ML.

Searching is necessary whenever you have a lot of data in memory or on a file,

but have no index to directly locate a record. For example, a corporate mailing data

base might store names and addresses/ surname first, so that a printout of all names

and addresses is easy. Often, however, it is necessary to access a given name quickly.

Rather than read through all the names, a typical search method (the binary search)

is fast and effective.

The binary search technique assumes the data is already sorted, hence its inclu

sion here. The idea is simple; it's the method you probably use everyday to find a

name in a phone book or a word in the dictionary. You open the book exactly mid

way, comparing the name you want with the names at the top of the open page, and

repeat the process with earlier or later halves, depending on whether the target

name is before or after the current position.

A binary search works like this (don't type this in, since it is not a program):

X Input and validate item to be searched for (NA$ = name item).

Set Nl and N2 to lowest and highest record numbers.

Y R=INT ((Nl +N2)/2): Calculate new midpoint.

Read the appropriate field of record number R, for instance R$.

IF R$=NA$ THEN Z: Go to line Z if item is found.

IF N1>=N2 THEN PRINT "RECORD NOT ON FILE":GOTO X: This handles

failed searches.

IF R$>NA$ THEN N2=R-1: GOTO Y: This revises the upper limit downward.

N1=R+1: GOTO Y: This revises the lower limit upward.

Z Continue processing once record is located.

Nl and N2 converge, sandwiching the correct record number, R, between them.

The binary search is easy to program and converges quite rapidly. Even the first and

last items, which take the most tests to find, can be located quickly. Table 4-2 shows

the approximate average number of searches to find an item.

Table 4-2. Average Binary Searches Required to Locate an Item

Number of data items

Average number of searches

50

5

100

6

200

7

500

8

1000

9

2000

10

4000

11

9000

12

Shuffling is the converse of sorting. Program 4-15 prints a randomly dealt whole

deck of electronic cards:

Program 4-15. Shuffler

10 POKE 53280,1: POKE 53281,1

100 DIM S(52): FOR J=l TO 52: S(J)=J: NEXT
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110 FOR J=l TO 51

120 J% = J + INT(RND(1)*(53-J))

130 TEMP=S(J): S(J)=S(J%): S(J%)=TEMP

140 NEXT

300 FOR J=l TO 52

310 N=S(J)-1

400 S=INT(N/13)
410 PRINT MID$("{BLK}A{RED}j3{RED}£{BLK}XM,S*2+l,2)

500 V=N - INT(N/13)*13

510 IF V=l{2 SPACES}THEN PRINT "A, ";: GOTO 600

520 IF V=ll THEN PRINT "J, ";: GOTO 600

530 IF V=12 THEN PRINT "Q, ";: GOTO 600

540 IF V=0{2 SPACESjTHEN PRINT "K, ";: GOTO 600

550 PRINT MID$(STR$(V),2,LEN(STR$(V))-1)M{BLK},
600 NEXT

Lines 100-140 of the above program generate numbers from 1 to 52, without

producing the same number twice. Lines 300-410 print the suit and set the correct

color, while lines 500-600 convert the number to the card's value. Although Pro

gram 4-15 is fast, it is not as easy to understand as Program 4-16, a simpler method

of shuffling the cards.

Program 4-16. Simpler Shuffler

100 DIM S(52): FOR J=l TO 52

110 C=INT(52*RND(1)) + 1: REM RANDOM NUMBER 1-52

120 IF S(C)>0 THEN 110:REM IF USED RETRY

130 S(C)=J: PRINTC: NEXT: REM SET J: GO BACK

"Simpler Shuffler" puts each of the 52 numbers into an array element. If the

random array position is already occupied, it tries again with another random num

ber. This way, every possible number is used and none is repeated.

Randomizing is using somewhat unpredictable (pseudorandom) numbers for

games, simulations, problem solving, and so forth. Program 4-17 uses random num

bers to find the chessboard positions of queens, such that no queens attack each

other. Rather than testing completely random boards, the program retains most of an

unsuccessful test, moving an attacking queen at random, and producing results quite

rapidly. The speed decreases greatly with larger boards; analysis of a 20 X 20 chess

board could take hours.

Lines 10-50 generate the starting positions of the queens, and lines 100-150 test

the board to see if any queens are attacking each other. Lines 200-300 generate the
printout of the positions.

Program 4-17. Queens
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 INPUT "SIZE OF BOARD";N :rem 246

20 DIM Q(N) :rem 44
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30 FOR J=l TO N: Q(J)=0: NEXT: FOR J=1 TO N

:rem 201

40 R=l + INT(RND(1)*N): IF Q(R)>0 GOTO 40 : rem 49

50 Q(R)=J: NEXT :rem 89

100 FOR J=l TO N-l :rem 127

110 FOR K=J+1 TO N :rem 152

120 IF ABS(Q(J)-Q(K)) <> K-J THEN NEXT: NEXT: GOTO

200 :rem 119

130 R=l + INT(RND(1)*N) :rem 153

140 IF R=J OR R=K GOTO 130 :rem 69

150 TEMP=Q(R): Q(R)=Q(K): Q(K)=TEMP: GOTO 100

:rem 243

200 FOR J=l TO N: FOR K=l TO N :rem 237

210 IF K<>Q(J) THEN PRINT "{RVS}{WHTJw"; :rem 252

220 IF K= Q(J) THEN PRINT "{RVSHbLK} "; : rem 116

230 NEXT: PRINT: NEXT: PRINT :rem 219

300 GOTO 30 :rem 47

Random numbers can be used to solve simulation problems of many kinds. Pro

gram 4-18 prints the sum of the values of two dice and also keeps a running score. It

keeps track of the average number of throws required to produce a 7 (the answer is

it takes an average of six throws to score a 7).

Program 4-18. Dice

10 S=S+1

20 D1%=1 + 6*RND(1)

30 D2%=1 + 6*RND(1)

40 PRINT Dl% D2%

50 IF Dl%+D2% <> 7 GOTO 10

60 N=N+1: T=T+S: S=0:{2 SPACES}REM N=NO OF 7S; T=T

HROWS

70 PRINT flSEVENl"{2 SPACES}T/N: GOTO 10

Data Structures

BASIC'S data structures are files, DATA statements, variables, and RAM storage.

Files, which store data externally on tape or disk, aren't limited by available RAM

and are necessary in handling large amounts of data. Disk files have more scope

than tape, since several files can be accessed at once and search time is greatly re

duced. Chapters 14 and 15 give full details of tape and disk programming, respec

tively. "Wordscore" (above) is an introductory example of file handling.

We've seen examples using DATA statements as well. Obviously, data cannot be

changed in the same way variables can, and we needn't say more about it here.

Simple variables are used often in BASIC. Chapter 6 explains exactly where they

are placed in memory and how their values are stored.

Arrays (subscripted variables) offer a powerful extension to the concept of vari

ables and are worth mastering for many serious applications. They provide a single

name for a whole series of related strings or numbers, using one or more subscripts

to distinguish the separate items or elements.
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One-dimensional arrays have a single subscript, which may take any value from

0 to the value used in the DIM statement that defined the array (or 10 if DIM wasn't

used). The line:

DIM A$(50), N%(100), SX(12)

defines three arrays: string, integer, and real number, respectively. Space is allocated

in memory for them, except for the string arrays. Arrays can be visualized as a set of

consecutively numbered pigeon holes, each capable of storing one value, and initial

ized with contents 0. A typical application is the lookup table. A string array might

hold values like this:

A$(0)="ZERO", A$(1)="ONE",

and so forth, so that this line:

PRINT A$(P

would print the value of J as a word, provided J fell into the correct range. It might

hold a list of names, ready for sorting, so that A$(0), A$(l), and so on, would be ar

ranged alphabetically after sorting. Numeric arrays can be used to store the results of

calculations. Many of the examples in this section use such arrays. For example,

numbers ranging from 1 to 52 can represent playing card values; numbers from 1 to

8 can represent the position of queens on a chessboard, indicating the row on which

that column's queen is placed. It's often worthwhile to set up tables of the results of

calculations, which can be looked up rather than recalculated. Chapter 13's sound

calculations illustrate this technique.

Array variables are slower than simple variables, because of the processing re

quired, but they are versatile. DIM A$(50) makes room for 51 variables (remember

the zero element) and assigns each a unique name. Without this facility you'd have

to define 51 individual names, and the resulting slowing effect would be

considerable.

Two-dimensional arrays have two subscripts.

DIM C(8,8)

defines a number array with room for 81 numbers, which might be used to record a

chess position, pieces being represented by positive or negative numbers, with sign

representing color, and magnitude, the type of piece. Two-dimensional arrays are

valuable for storing data for business reports. (Three dimensions or more are concep

tually a bit more difficult, but are occasionally useful.) For example, sales figures

may be available for ten items in 12 different outlets. An array can keep the sets of

data distinct. Subtotals and overall totals can be conveniently stored in the often ne

glected zeroth elements.

Integer arrays, which store numbers from —32768 to +32767 in slightly more

than two bytes apiece, are particularly efficient in storing data and can be loaded

from disk as a block of memory, as the following section explains. It's possible to

telescope surprisingly large amounts of data into memory like this, although the

programming is likely to be difficult.

Multi-dimensional arrays—at least those with more than two or three dimen

sions—aren't used much, probably because of the difficulty of visualizing the data's

storage pattern. Three-dimensional arrays can be pictured as rooms in a building,
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having height, width, and depth. After this, depiction becomes progressively more

complicated. In practice, large numbers of dimensions soon exhaust the 64's

memory.

RAM storage: Data may be poked into RAM for future use, or loaded from disk

or tape, although this is not strictly BASIC. Chapter 6 discusses this technique and

gives many examples.

BASIC data can be treated in the same way, although generally this is worth

doing only when integer arrays store data to be saved directly to disk or tape—

which is far more efficient than writing to a file. Chapter 6 explains block SAVEs, the

relevant area being that from PEEK(47)+256*PEEK(48) to PEEK(49)+256*PEEK(50).

Control Structures
Some BASIC enhancement utilities offer structures like REPEAT-UNTIL and DO-

WHILE. It's possible to simulate these forms with BASIC; see FOR in Chapter 3, and

this example:

100 FOR J=0 TO -1 STEP 0

110 REM INSERT UNTIL COMMANDS HERE

120 J= (A=B)

130 NEXT

This has the same effect as REPEAT-UNTIL A=B, since J becomes -1 only

when the logical expression in line 120 sets J true.

IF-THEN-ELSE is another structure missing from the 64's BASIC. ON-GOTO or

ON-GOSUB is the nearest approach. Where ON isn't suitable, because an expression

evaluating to 1, 2, 3, ... doesn't exist, GOTOs will probably be necessary to process

both the THEN and ELSE parts of the program.

Processing Dates

Dates are sometimes difficult to handle; this section has routines to help validate

them, to compute the day of the week given the date, and to calculate the number of

days between two dates. (Note that leap years are, of course, allowed for, but the

years 2000 and 1600, which don't count as leap years, have not been corrected for.)

Program 4-19 is a date validation routine, which checks to make sure the day,

month, and year combination is valid. D, M, and Y should be input as one- or two-

digit numbers.

If OK is true, D, M, and Y are acceptable. Line 1005 expects M to be from 1 to

12, and Y to be 85 or 86; you can modify the limits for your own purposes. Line

1010 checks that the day does not exceed 28, 29, 30, or 31, whichever applies to its

month and year.

Program 4-19. Date Validator

1000 INPUT "D,M,YM;D,M,Y

1005 OK = M>0 AND M<13 AND D>0 AND Y>84 AND Y<87

1010 OK=OK AND D<32 + (M=4 OR M=6 OR M=9 OR M=ll)

{SPACE}+ (M=2)*(3+(INT(Y/4)*4=Y))

1020 IP OK THEN PRINT"DATE IS ACCEPTABLE.":END

1030 IF NOT OK THEN PRINT"DATE IS UNACCEPTABLE."
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Program 4-20 calculates the day of the week from the date. The weekday is

found by an algorithm usually called Zeller's Congruence.

Program 4-20. Day of the Week Calculator
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

3 REM ENTER 3,12,86 FOR MARCH 12 1986 :rem 126

4 REM C=19 FOR 1900S; C=18 FOR 1800S :rem 45

20 DATA SUN,MON,TUE,WED,THU,FRI,SAT :C=19 :rem 16

30 FOR J=0 TO 6: READ D$(J): NEXT :rem 172

40 INPUT "MONTH,DAY,YEAR"; M,D,Y :rem 162

50 M = M-2: IF M<1 THEN M=M+12: Y=Y-1 :rem 57

60 J = INT(2.6*M - .19) + D + Y + INT(Y/4) + INT(C

/4) - 2*C :rem 234

70 J = J - INT(J/7)*7 :rem 178

80 PRINT D$(J) :rem 248

Program 4-21 calculates the number of days between two dates by taking the

difference between days elapsed from an arbitrary early date to the two requested

dates.

Program 4-21. Days Between Two Dates
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 DATA 0,31,59,90,120,151,181,212,243,273,304,334

:rem 137

20 DIM D(12): FOR J=l TO 12: READ D(J): NEXT

:rem 193

100 INPUT " FIRST DATE (M,D,Y)M; M,D,Y :rem 27

110 GOSUB 1000: DX=DE :rem 111

120 INPUT "SECOND DATE (M,D,Y)"; M,D,Y :rem 81

130 GOSUB 1000: DY=DE :rem 114

200 PRINT DY-DX "DAYS": END :rem 11

1000 DE = D + D(M) + 365*Y + INT((Y-l)/4) - ((INT(

Y/4)*4=Y) AND (M>2)) :rem 146

1010 RETURN :rem 162

Making BASIC Run Faster
Compiling BASIC converts it into ML, which is from 3 to 20 times faster than BASIC.

See Chapter 6 ("Compile") for details.

Flne-Tuning BASIC
The following methods individually have little effect, but collectively can be useful.

They're arranged in approximate order of ease of implementation:

• Turning off the VIC chip takes about 5-1/2 percent off running time (providing you

don't need to watch the TV or monitor). POKE 53265,0 turns off the chip; POKE

53265,27 is the usual value to reenable the screen. See Chapter 5.
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• Reducing the interrupt rate by POKE 56325,255 gives the 6510 more time to pro

cess BASIC, less to scan the keyboard. Speed is increased by a couple of percentage

points.

• You should DIM variables in their order of importance at the start of the program.

This has some effect on speed, depending on the number of variables in the pro

gram; Chapter 6 explains why. New variables defined after arrays have been set up

cause a one-time delay, too.

► Using large numbers of strings causes garbage collection delays; these can be cut

down only by reducing the number of strings or by using fewer string operations.

See Chapter 6.

• Crunching (removing spaces from BASIC programs, except within quotes, and

collecting the program into as few lines as possible) improves speed by an amount

which depends on the waste in the original program.

» Altering BASIC to run efficiently comes with practice, but a typical example is mov

ing REM statements outside loops; if they're inside, the REM statements are exe

cuted many times. Streamlining unnecessarily repetitive programs will generally

provide significant speed improvement.

• The discussion in Chapter 8 about moving BASIC into RAM includes a few simple

commands to alter the operation of RUN. As a result, BASIC programs run about

3-1/2 percent faster.
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Chapter 5

Commodore 64 Architecture

Introductory Hardware Topics
This chapter takes you a step beyond general knowledge of the BASIC programming

language, into the specifics of the Commodore 64 as a machine. The information

here can be used with BASIC or machine language (ML) programming on the 64,

but much of it will not apply to other computers because it is so detailed. This in

troductory section discusses several topics that will help you understand the rest of

the book: binary and hexadecimal numbers, microchips, memory maps, the use of

computers with televisions, and other hardware (machine rather than program-

oriented) subjects.

Binary Numbers

A bit, or frmary digit, is a single, tiny electronic switch, which can be either on or off.

It can be pictured as an ordinary switch, which either passes or blocks current. It is

actually a tiny area of a computer chip that either holds an electrical charge or

doesn't. Hundreds of thousands of these switches are contained in a Commodore 64,

inside the black rectangular integrated circuit chips.

Each bit has a choice of only two values: on or off. According to convention, the

binary voltage values are assigned numbers (no voltage is represented by 0, and

voltage high is represented by 1). The systems are then structured so that binary

arithmetic works correctly. The values aren't actually 0 or 1, but this provides a

convenient way of talking about them.

In principle, three values could be used, making trinary arithmetic possible, but

binary hardware is by now so firmly established that this is not likely to become im

portant. As several computer manufacturers have found already, there is often little

economic sense in introducing hardware based on such novel processes.

All Commodore 64 operations are binary. In hardware terms this is reflected in

the large number of electronic lines needed to carry data within the Commodore 64.

The expansion port, for example, has 44 separate lines. Every line, apart from those

which supply power or are grounded, is treated by the system as carrying either

high or low voltage values. Each additional line roughly doubles the system's poten

tial for information handling.

A full understanding of programming requires a grasp of the relation between

binary numbers and ordinary numbers. Fortunately, this is not difficult, although it

can look forbidding at first. Binary arithmetic uses a notation of 0's and l's only.

However, it represents ordinary numbers and is merely a different way of writing

them, just as MCMLIX is a different way of writing 1959.

A digit's position within a decimal number determines the magnitude of that

digit; thus, 123 and 1230 mean different things. In the same way, the positions of 0's

and l's within a binary number determine the value of that number. Binary

10101100 is different from 00101011, with the leftmost number being the most

significant. And just as decimal digit positions increase in value by powers of ten (1,

10, 100, 1000, 10000, . . .), from right to left, binary digits increase in value by pow

ers of two (1, 2, 4, 8, 16, . . .).

To avoid confusion, a binary number will be written as a series of 0's and l's
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prefaced by a percentage sign (%). This lets us be sure, for example, that the decimal
number 10 is not confused with %10, which represents the decimal value 2 in binary
notation.

The word byte is a derivation of the word bit. It is supposed to imply a larger,

scaled-up version of a bit, and that is more or less what it is. A byte is a collection of

8 bits which are dealt with by the system as though they were a single unit. This is

purely a hardware matter: IBM invented 8-bit bytes, but other numbers such as 4 or

6 bits are in use, too. A 4-bit binary number is called a nybble.

The 6502-based (6510) microprocessor which operates your Commodore 64 is

called an 8-bit chip because it is designed to deal with data 8 bits at a time. Its

addressing uses 16 bits, but only by dividing up each address into two sets of 8 bits

each, called the low byte (the less significant) and the high byte (the more significant).

Since each of the 8 bits can be either on or off, you have 28 = 2*2*2*2*2*2*2*2

= 256 potential combinations for each byte. That is the reason that PRINT

PEEK(address) always yields a value between 0 and 255. It also explains why a 16-bit

address cannot exceed 65535, which is 216 — 1 (since 0 is one of the combinations).

There is a total of 65536 addressable memory locations, with addresses ranging from

0 to 65535.

Binary and Decimal Arithmetic

Since binary and decimal are only different notations for the same thing, it is pos

sible to translate binary numbers into decimal. Consider only 8-bit numbers now,

since they are common in programming the 64. The convention is to number the bits

by their corresponding power of two, reading from the left, as 7, 6, 5, 4, 3, 2, 1, 0.

Table 5-1 shows how this works.

Table 5-1. 8-Bit Binary and Decimal Conversion

Bit Number: 7 6 5 4 3 2 10

Decimal Value: 128 64 32 16 8 4 2 1

Sample Bytes:

%0000 0000=

%0000 1111 =

%1000 0001 =

%11111111=

0

0

128

128

0

0

0

64

0

0

0

32

0

0

0

16

0

8

0

8

0

4

0

4

0

2

0

2

0 = decimal

1 = decimal

1 = decimal

1 = decimal

0

15

129

255

Table 5-1 shows some binary numbers and their decimal equivalents and also

demonstrates certain features of the bit pattern of binary numbers. For example, if

bit 7 is 1, the number must have a decimal value of 128 or more. If bit 0 is 0, the

number must be even because only bit 0 can take the value 1 and make a number

odd. If a bit pattern is moved as a whole to the right one position, its value is exactly

halved (provided the smallest bit isn't a 1 and therefore lost when the shift takes

place). Finally, if a bit pattern is inverted (so that all l's become 0's and all 0's be

come l's), the two individual values will always add to 255 (because 255 is

%11111111). Observations like these, which are analogous to ordinary base 10

arithmetic, are crucial to the understanding of ML programs.
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Hexadecimal Numbers

Hexadecimal (base 16, called hex for short) is another notation that is useful when

programming. BASIC programmers usually ignore hex, but ML programmers find it

useful. It relates directly to the internal design of the computer, and this relation

helps ML programmers and hardware designers.

Hex uses 16 different numeral symbols for its arithmetic—the ordinary numeral

symbols 0-9 and the letters A-F. To avoid confusion with ordinary numbers, hex

numbers are preceded by the dollar sign ($). Thus, $1 is a valid hex number, as are

$A000, $1234, $21, $ACE, and $BEER The decimal equivalents of these numbers are

40960, 4660, 33, 2766, and 48879. They can be looked up in conversion tables or

converted with a programmer's calculator.

It is important to notice the relationship between binary and hex numbers,

which results from the fact that 16 (hex's base) is a power of 2 (binary's base). It

turns out that any 16-digit binary number (2 bytes) can be represented in only 4 hex

digits. This saves space and is easier to remember.

Because each memory location in the 64 can hold one 8-bit byte (having a deci

mal value 0-255), it is common to write single bytes in hex using two digits, even if

the leading digit is 0. Thus, the range is $00-$FR That makes for neater programs,

because the numbers line up evenly. Similarly, since memory addresses can only

range from 0 to 65535, they are written as 4-digit hex numbers. It is not necessary

that leading zeros be included ($033C and $33C are the same number), but many

ML programs are written to expect such an arrangement.

Hex and Decimal Arithmetic

While programming in BASIC, you are likely to use decimal rather than hex. But

there will be times when you wish to convert between the two bases (for example,

to find a SYS address). It is usually easiest to convert using a program, a calculator,

or a set of conversion tables. With practice, though, translation between decimal and

hex as well as addition and subtraction in hex become easier.

Like binary and decimal numbers, hex values use a position convention; the fur

ther left the digit, the greater its value. The numeral 1 can mean 1, 10, 100, or 1000

(or any power of 10), depending on where it is located within a number. Similarly, a

1 in hex can represent a decimal value of 1, 16, 256, or 4096 (or any power of 16).

Remember that hex arithmetic uses all 16 digits (0-F). Thus, $09 plus $01 is

$0A, not $10, and $0F plus $01 is $10. Similarly, $1234 plus $0F is $1243. Table 5-2

illustrates some hexadecimal numbers and their decimal equivalents.

Table 5-2 Hexadecimal-to-Decimal Number Conversion

Decimal Value:

Sample Hexadecimal Numbers:

$A0

$11

$1000

$FFFF

4096 256 16 1

0

0

1*4096

15*4096

0

0

0

15*256

10*16

1*16

15*16

0

1

0

15

= Decimal

= Decimal

= Decimal

= Decimal

160

17

4096

65535

107



Commodore 64 Architecture

To convert $1234 into decimal, multiply 1 by 163 (or 4096), adding 2 times 162

(or 256), adding 3 times 161 (or 16), and finally adding 4 times 16° (or 1). Conver

sion from decimal to hex can be done by dividing by 4096 first, then repeatedly mul

tiplying remainders by 16 to find the next digit.

Computer memory is measured in kilobytes (K), where IK is 1024 (210) bytes.

Note that $1000 is 4096, exactly 4K, and that there are exactly sixteen 4K blocks of

memory in the 64, $0000-0FFF, $1000-$lFFF, and so on.

Hardware, Chips, and Addressing

The 64 contains a printed circuit board where the integrated circuit chips are

mounted, a power supply, and ports for input and output. A quartz crystal clock,

generating several million pulses per second, controls overall timing. The 64's central

processing unit (CPU) is a 6510 chip, which is an updated version of the 6502

microprocessor. It handles most of the 64's work. The address bus consists of 16 lines

to the 6510 that allow a choice of 216 (65536, or 64K) different memory locations to

be written to or read from. The other lines determine which chips are active at any

time, and carry signals between chips; most lines carry either about 5 volts or 0

volts.

The 6510 can address 64K because, although it deals in 8-bit bytes, it can treat 2

bytes as one address, by using the first byte as the low byte and the second byte as

the high byte. (The second byte is multiplied by 256, then added to the first byte.

The result is the address, which can range from 0 to 65535, since 255 added to the

quantity, 255 X 256, equals 65535.) The 6510, which controls all of this data and

addressing, has no position (no address) in memory.

Chips often start at addresses like $8000 because it's easier to wire them that

way. This is one reason why hex is often more meaningful than decimal when

discussing computers. BASIC expressions which convert hex, like MEM=13*4096 or

SYS 8*16f 3, make it clear that $D000 or $8000 (in these two examples) is the rele

vant address.

Random Access Memory (RAM) is one kind of memory in the 64. It is volatile,

which simply means that the information is lost when you turn the computer off.

RAM can be changed and examined—written to and read from—and can hold pro

grams or data. When RAM is changed (overwritten) accidentally, the data is de

scribed as being corrupt. Meaningless data left over from earlier programs is called

garbage. The Commodore 64 can be set, or configured, to have 64K of RAM.

Read Only Memory (ROM) cannot be overwritten, modified, or corrupted. The

64's built-in ROMs hold BASIC and the Kernal, among other things, but they can be

switched out—replaced by RAM or external cartridge ROM.

Briefly, here is how the 64's memory works. POKEing or PEEKing a value

means the hardware has to set 16 address lines high or low in the correct bit pattern,

and simultaneously set the 8 data bus lines to the correct value to be POKEd. The

circuit must be designed so that only the correct location is addressed. The chip se

lect line of the appropriate chip must be turned on, and the write line enabled. Dur

ing read or write, the power consumption of the chip rises considerably. Data is

transferred only when voltages have settled, at one specific stage in the clock cycle.

ROMs are made with their programs permanently burned in. They are mass-

produced in long production runs and are subject to risks of inventory holding and
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manufacturing problems, and are therefore not designed for direct use of the average

consumer.

On the other hand, an EPROM (Erasable Programmable Read Only Memory)

chip resembles a ROM chip, but is made in much smaller quantities. Any program

can be burned in with inexpensive, widely available equipment. EPROMs have a

window in the top, usually covered by a label. If this label is removed, exposure to

strong ultraviolet light will erase the EPROM for reprogramming. This is how bugs

in an EPROM program can be corrected. A PROM (Programmable Read Only

Memory) is similar to an EPROM, but not erasable. Many cartridge products, printer

interfaces, and other products under development use EPROMs or PROMs.

There is an intermediate form of memory in which data stored in RAM can be

in effect converted to ROM, by disabling the RAM chip's write-enable line. Battery

backup allows such a package to store data even when disconnected from the usual

house current. This capability could become important, in view of the relatively low

price of RAM.

The 64's Input/Output (I/O) chips are the VIC-II (Video Interface Chip), which

generates the signal for the color TV; SID (Sound Interface Device), which controls

the 64's sound output; and two CIAs (Complex Interface Adapters), which are ex

plained later in this chapter. They control most timing and input/output (keyboard,

tape, and disk). All these chips have special addresses in the memory map.

Like the 6510, the PLA (Programmed Logic Array) is invisible, or transparent, to

the programmer. It supervises hardware operations within the 64. For example, it

turns off RAM when a ROM cartridge is plugged in (so the cartridge can be read)

and turns off the 6510 at intervals to allow the VIC-II to generate the TV picture.

Most computer hardware has these features. For example, a typical printer has

an I/O chip to read input, a CPU with a program in ROM to process and decide

what to do with its input, RAM for temporary storage of text, and character ROM to

select dot-matrix characters. Printers will behave differently according to the ROM

fitted inside. Another example which illustrates how simple hardware fixes work is

Chapter 15's modification to change disk drive device numbers.

Another interesting if not useful feature of the 64 is incomplete address de

coding, which happens when some address lines are left unconnected. Since the

VIC, SID, and CIA chips all have repeating images in memory, there's actually a

choice of many equivalent addresses for the same functions on these chips. For ex

ample, POKE 53600,0 has the same effect as POKE 53280,0—it changes the border

color to black.

Finding Your Way with a Memory Map

A memory map is a list of a computer's addresses and functions. The 64 is designed

to allow different features to be bank-selected, like choosing cartridge ROM rather

than RAM. It therefore has several different memory maps. Moreover, every chip

has its own memory map—usually a small one. The VIC-II chip's map is significant,

and crucial to understanding Commodore 64 graphics (see Chapter 12). Most of this

book uses the term memory map to mean the memory locations that are connected to

the 6510 chip.

The ROM in the 64 contains several different kinds of information, all of which
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contribute to its overall operation. They are discussed below (see Chapter 11 for a

detailed look at Commodore 64 ROM).

Tables. These contain data, not programs, and have innumerable uses. The

screen link table and ROM keywords are typical examples. The screen table is in

RAM because it has to be able to change to reflect the screen's organization. The

high bit of the last character of each ROM keyword is on, which makes the character

appear reversed on the screen when using Program 5-1 below. File tables, which

hold details about each currently open file, are another example.

Buffers. A buffer is a section of RAM reserved for input or output. Buffers in the

64 include the input buffer, the keyboard buffer, and the 192-byte tape buffer at

$033C-$03FB (828-1019), which is important when reading from and writing to

tape.

Pointers. Zero page (memory locations 0-255) contains many pairs of adjacent

bytes that are pointers to special locations. Information about the top and bottom of

BASIC text, arrays, and strings is held in this manner, for example. The pair of bytes

forms an address in the low-byte/high-byte format described above. For example,

locations 43 and 44 are the pointer to the beginning of BASIC program storage. On

the 64, the normal values held in these locations are 1 ($01) and 8 ($08), indicating

that program storage starts at location 1+(8*256)=2049 ($0801).

Vectors. These resemble pointers, as they are also pairs of bytes that constitute

addresses. However, while pointers merely hold address information, vectors are

used to tell the computer where to find routines to perform important operations.

Each vector is set up to point to a routine within BASIC or the Kernal operating sys

tem when the system is turned on or reset. Altering these values enables many func

tions of the 64 to be modified.

The memory examination program described below changes the vector to the

interrupt routine, which looks at the keyboard every 1/60 second. Sometimes ROM

contains vectors; the Kernal jump table is a good illustration. It is different, though,

in that each address is preceded by a 6502/6510 JMP instruction and therefore occu

pies three bytes instead of two.

Flags. These keep track of a wide variety of events while a program is run,

ranging from whether the machine is in immediate mode to the position of the

cursor on the screen.

Programs. Most of ROM is subdivided into the BASIC interpreter and the

Kernal, a collection of related machine language routines. The only substantial pro

gram outside ROM is CHRGET, a routine at locations $73-$8A (115-138) that

fetches individual BASIC characters. CHRGET is copied out of ROM into RAM when
the system is turned on or reset. Having the routine in RAM is faster than using a

ROM routine, and it permits new BASIC keywords to be added using a program

called a wedge, which will be explained later.

Accumulators. Several number storage areas exist in RAM: two floating-point

accumulators, where numbers are added, multiplied, and so on ($61-$70), and the
realtime clock ($A0-$A2). You can use Program 5-1 to view the three bytes of the

clock changing.

The stack. The stack is discussed in more detail in later chapters. Essentially, it

is 256 bytes of RAM from $100 to $1FF (256-511) that are used by the 6510

microprocessor to store temporary information, particularly information relating to
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subroutines. It is normally best left alone. Short machine language routines can be
stored in the lower portion of the stack; if tMpe drive is in use, a safe starting location

is $013F.

Looking Inside Your 64

Program 5-1 display^ the contents of any section of the 64's memory, up to 255

bytes long, at the top of the screen. Characters are POKEd into screen RAM 60 times

a second, so you can watch as the bytes in some registers change. (Because the

characters are POKEd into the screen memory section instead of being printed, the

@ represents a zero byte, and setting lowercase mode with SHIFT-Commodore key

makes alphabetic characters more readable).

To use the "MicroScope" program, type it in and run it. The PRINT statements

suggest a few interesting areas of memory. Press RUN/STOP-RESTORE to turn the

display off, and SYS49152 to turn it on again.

Program 5-1. MicroScope
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix G

4 DATA 32,115,0,240,27,32,138,173,32,247 :rem 163

5 DATA 183,132,252,133,253,32,155,183,134 :rem 223

6 DATA 254,120,169,44,141,20,3,169,192,141 :rem 15

7 DATA 21,3,96,120,169,49,141,20,3,169,234 :rem 18

8 DATA 141,21,3,96,164,254,136,177,252,153 :rem 26

9 DATA 0,4,169,1,153,0,216,192,0,208,241,76,49,234

:rem 150

10 FOR J=49152 TO 49215: READ X: POKE J,X: NEXT

:rem 218

20 PRINT M{CLR}{YEL}{6 DOWN}SYS 49152, START, NUMB
ER OF LOCATIONS :rem 156

40 PRINT H{DOWN}SYS 49152,512,80 IS INPUT BUFFER,

:rem 146

50 PRINT "SYS 49152,217,24=SCREEN LINK TABLE,

:rem 47

60 PRINT "SYS 49152,255,18=NUMBER OUTPUT BUFFER,

:rem 83

70 PRINT "SYS 49152,41110,255=SOME ROM KEYWORDS.

:rem 10

100 PRINT "{BLK}{DOWN}SYS 49152, TURNS ROUTINE OFF

:rem 174

You can see how 40-column lines are linked by a table into 80-character lines or

watch the activity in zero page. PRINT USING (Chapter 6) relies on the number out

put routine. Watch ten characters (normally) line up in the keyboard queue (which

starts at 631), as you press keys quickly. For more interesting places to peek around,

check a memory map.

The 64 and Your TV

Commodore's designers had the problem of interfacing the 64 with TVs, which

aren't directly controlled by the computer. Their solution was effective and relied on
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isolating the TV-specific parts of the computer's operations as much as possible.

Computers generate three types of video signals: RGB, which directly controls

the voltages applied to red, green, and blue circuits, and isn't available on the 64;

composite video, a mixture of these signals, available from the audio-video socket;

and modulated, where the audio and video signals are superimposed on a high-

frequency carrier to mimic ordinary TV signals. This is available from the 64's phono

plug, but some loss of quality occurs in the process.

Some TVs do not work well with personal computers. In general, newer TVs are

better than old ones because the manufacturers now consider computers when

designing their sets. Automatic tuning circuitry and field synchronization (without

which the picture flutters up) have been two difficult areas, but neither square-wave

sound nor static-charge noise (when a screen suddenly blanks) has posed major

problems. However, it is still a good idea to keep the brightness level below its

maximum.

Monitors are modified TVs designed to give good-quality monochrome or color

pictures from computer output. Commodore's 1700 series, for example, works with

the 64's composite signals. The 64's audio-video socket has luminance (brightness)

and composite video, and the later 8-pin sockets have a chroma pin, which is pure

color information. A monochrome monitor should be connected to use luminance

alone, since color information will degrade the picture. The situation is more com

plex with color monitors. With 5-pin DINs, the luminance output (pin 1) should be

wired to the luminance, or luma, input and the composite video output (pin 4), to

the chroma input. With 8-pin DINs, the chroma signal should be connected to the

chroma input and the luminance output to the monitor's luma input. The cable pro

vided may not make these connections; you may have to make up leads yourself.

VCR recording requires a TV/computer switch and a band separator. This al

lows switching between recording regular TV programs and recording the 64's

output.

If you are planning to take pictures of the screen, use an exposure not faster

than about 1/30 second. Faster shutter speeds will capture the image of a dark band

on the screen, because all TVs use interlace, tracing only half the picture in each

scan. This creates the illusion of movement without flicker.

TV sets in the United States, Canada, Japan, and much of South America use

the NTSC (National Television Standards Committee) standard of 525 lines per

screen. The screen is refreshed 60 times per second. Most of Europe (excluding

France), Australia, and some other countries use PAL (Phase Alternation by Line),

which uses a 625-line picture and refreshes it 50 times per second. France and the

USSR use SECAM, a system resembling PAL but with certain parameters changed.

64 Hardware Tidbits
The Schematic. This is a useful diagram in the Commodore 64 Programmer's Ref

erence Guide. It corresponds, more or less, to the internal arrangement of your 64.

The power input is defined in terms of a 5-volt DC line, two 9-volt AC lines, and

ground. Since these are supplied outside the 64, the same 64 can be used in coun

tries with different house current types, provided a local Commodore adapter is

used, and the crystal, jumper, and VIC-II chip match the TV. The VIC-II's power

supply is separate from the SID's.
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A system reset connects all the major chips' RESET pins and is triggered by a

timer. The address bus (labeled A0-A15) and the data bus (D0-D7) appear as solid

lines. The game control ports have power supplied to them, and joysticks are wired

with the keyboard, which has two pairs of eight wires, plus a RESTORE key. Note

how CIA l's interrupt request line connects to IRQ on the 6510, while CIA 2's con

nects to NMI. Port A of CIA 2 controls the serial bus and also selects the VIC-II's

bank; port B is connected to the user port and therefore handles RS-232

communications.

The PLA. Inputs are drawn on the left, outputs on the right. The 16 input lines

allow 65,536 combinations, all of which are processed within the chip to give 8 out

puts, though, as we've seen, only 5 input lines determine most of the memory

configuration, selecting BASIC or Kernal ROMs, the character generator, or some

other area of memory. The PLA controls which banks of memory are active and
distinguishes between reading from and writing to chips, allowing otherwise

meaningless BASIC statements like POKE J, PEEKfl) which PEEK from ROM but
POKE to underlying RAM at the same address.

Different 64s. All computers are subject to redesign as improved layouts and
technology are introduced and errors removed. This process has helped Commodore
reduce prices while generally improving the hardware.

At present there are three main types of 64s. All have Microsoft BASIC 2.0

(which CBM owns the rights to). The BASIC statement PRINT PEEK(65408) returns
the Kernal release number.

The earlier 64s (5-pin audio-video socket) have a 1982 printed circuit board with
two CIAs, BASIC ROM 01, Kernal ROM 01 (release 0), character-generator ROM
(socketed), 6510, and PLA. The SID and VIC are enclosed in a box. RAM chips oc
cupy the bottom left, with the fuse at the right. BASIC had a few bugs, notably an
occasional lockup on screen editing, and an INPUT bug.

The 1983 revision (8-pin audio-video socket) has Kernal ROM 03 (release 2),
which removed most bugs (and also made screen POKEs invisible). The design is
somewhat different, with improved video layout (under a perforated screen) and a
better TV modulator and power supply. Most chips, except VIC-II and SID, are sol
dered, not socketed.

The SX-64 (release 96) has a restyled casing and small monitor, but is very simi
lar to the 64. Its power-up message is different and it has a white background de
fault color, since light blue on blue is unsuitable for the small monitor. Tape
software, although mostly still in ROM, is branched over, so device 1 no longer ex
ists, since there is no tape port. SHIFT-RUN/STOP puts LOAD "*",8 (with a RE
TURN character), then RUN (with another RETURN) into the keyboard buffer, so it
will load and run the first program from disk. The rest of BASIC is unchanged.

MAX. The ULTIMAX was to have been a cartridge-compatible games machine.
It never appeared. It was to have no keyboard, BASIC or Kernal ROM, or character
generator, a different VIC-II memory map, and only 2K RAM. Some 64 hardware
features were designed with it in mind.

VIC-II and SID Chips. Chapter 12 explains how to program the VIC-II chip.
The SID chip is explained in Chapter 13.

From the hardware viewpoint the VIC-II chip is important because it sometimes
disturbs the timing of other chips, since the calculations it has to do are so complex,
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particularly with sprites enabled. This can affect the use of tape, disk, and RS-232,

though not SID's sound output. VIC-II has two on/off bits, one (DEN) in register 17,

which turns off screen processing (but not sprites), and another (RESET) in register

22, which in later VIC chips has no effect. To cut out this effect, sprites must be off

and DEN set. The BA (Bus Acknowledge) line on the cartridge port allows for this

effect when, for example, an external Z80 microprocessor controls the 64. The fact

that VIC-II doesn't work instantaneously, but is continually calculating whicji dots to

put on the screen, can be important to grasp. For example, sprite collision registers

cannot be instantly updated after they've been read; some time has to pass before

the next screen scan.

The 64's Memory Configurations
Five of the PLA's input lines are vital to the 64's memory management. These lines

are CHAREN, HIRAM, and LORAM (which are controlled by RAM locations 0 and

1), as well as EXROM and GAME, which are controlled by hardware plugged into

the cartridge socket.

CHAREN, HIRAM, and LORAM
Location 1 has six active bits, three controlling tape. Only bits 2, 1, and 0 involve

memory allocation.

Location 0 is the data direction register. As long as its bits 2, 1, and 0 are set,

location 1 controls the lines. POKE 0,0 disables the control.
EXROM and GAME are pins 9 and 8 of the cartridge socket. When a cartridge is

connected, it may ground one or both of these lines, causing the PLA to reinterpret

the memory map.

Figures 5-1 through 5-4 show all possible memory configurations:

No Cartridge Connected
When you turn on the 64, you have 38K BASIC RAM plus 4K free RAM at $C000-
$CFFF. BASIC ROM can be switched out, giving 52K RAM plus the Kernal, or both
BASIC and Kernal can be switched out. Chapter 11 deals thoroughly with the tech

niques for modifying BASIC in RAM.

Memory with Cartridge and BASIC
At power up, this arrangement has an 8K cartridge, usually designed to autostart, 4K
free RAM, and BASIC with 30K RAM, which you may or may not be returned to.
Most cartridges using 8K or less—even pure ML—use this arrangement, since they
can also borrow BASIC subroutines. Some utilities coexist with BASIC or intercept

BASIC in order to add their own commands. Some utilities relocate their cartridge
ML to RAM at $C000, altering BASIC vectors, then switch themselves out by reset
ting EXROM high. This allows another cartridge to operate, but means that RAM

from $C000 must remain untouched.
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Figure 5-1. Memory with No Cartridge Connected

CHAREN

1

0

1

0

1

0

1

0

Software

HIRAM

1

1

1

1

0

0

0

0

LORAM

1

1

0

0

1

1

0

0

Hardware

EXROM GAME

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

A000 C000 D000 E000 FFFF

BASIC RAM I/O Kernal

BASIC RAM

Chr.

ROM Kernal

I/O Kernal

Chr.

ROM Kernal

I/O RAM

Chr.

ROM RAM

If EXROM is grounded with no cartridge present, the 64 will print 30719 bytes

free when turned on; it loses 8K of ROM, so $8000-$9FFF is read as garbage, but

written as RAM. If GAME alone is grounded when the computer is turned on, the

64 crashes, since the Kernal is deactivated. The examples in Figure 5-2 show how
the PLA detects cartridges.
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Figure 5-2. Memory with Cartridge and BASIC
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Identical to EXROM high (Figure 5-1)

Memory with Cartridge but Without BASIC
This allows a 16K ML autostart cartridge to use Kernal and I/O. It's often called the
application configuration, based on the theory that 16K will hold a serious program.

However, it's often not enough and it's common to find cartridges using bank
switching themselves. COMAL (a structured programming language) has four banks

here, using 64K of ROM.
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Figure 5-3. Memory with Cartridge but Without BASIC
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Intended to allow a 16K autostart cartridge, including its own I/O routines with 4K
of RAM.

Figure 5-4. Max Memory
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Overview of 64 Memory Maps

64K of RAM is available under ROM. This is because the PLA insures that whenever

ROM coexists with RAM, reading comes from ROM, but writing goes to the hidden

RAM (or the I/O chips). You'll need to alter the LORAM or HIRAM bits to read the

RAM back, as explained in Chapter 8. However, the VIC-II chip is wired to read

RAM—except where it sees character ROM. Also, of course, the PLA has to switch

in external ROM cartridges when detected, giving them priority over internal RAM

and ROM. Note that, when the 64 is turned on, CHAREN, HIRAM, and LORAM are

all set to 1, so the maps with lots of RAM must be switched in using software. They

aren't necessarily easy to use; the Kernal and I/O are important if you wish to use

the keyboard and screen, for example.

There are severe limitations on the amount of external ROM which the 64 can

take. No external ROM can be added below $8000 without external decoding (so

you must use RAM below $8000), and ROM above $8000 is confined to several

blocks, arranged around the BASIC, Kernal, and character ROMs. Paradoxically, the

system is in some ways less flexible than the VIC-20, where several chunks of empty

memory can be filled with ROM or RAM packs.

Turnkey (ready to go) systems use the $8000 autostart feature. A cartridge can be
mimicked in RAM by POKIng five bytes into $8004-$8008 to defeat a reset switch
(unless EXROM is grounded). However, a cartridge which uses its own area of
underlying RAM won't work if it's simply copied in RAM, and an external RAM
pack, which would mimic ROM, can't be written to. So, from the software security

point of view, this design is good.

Commodore 64 Ports
CBM computers are designed so that similar ports are compatible and dissimilar
ports, incompatible. For example, the 64's cartridge port is a different size from the
VIC-20's and the Plus/4's, since ML programs can't usually run on more than one of
these computers. Tape ports on the 64 and VIC-20, but not the Plus/4, are compat
ible. And the 64 and VIC-20 user ports are similar enough for VICModem to operate
correctly with either. Commodore reversed the VIC's pin numbering on the cartridge

socket of the 64.
Audio/video ports. All 64s have TV-modulated output through a phono-plug.

Early 64s have five-pin audio/video sockets, with luminance, audio in, audio out,
composite video, and ground; later models have eight pins, partly to avoid confusion
with VIC-20's five-pin socket (6V, ground, audio, two videos) which has to go
through a modulator. Connecting the audio signal and ground to a hi-fi is quite easy,
but putting signals into the port requires some electronics experience.

Cartridge port. This is the port at the left of the 64, looking from the rear. It has
44 connections, 22 on each side, all of which are connected. Two tracks, usually
wired together, carry the +5-volt power supply to the cartridge; these are pins 2 and
3, near the top right, from the back of the 64. (As mentioned, the VIC-20 has a re
versed numbering convention.) The tracks are rather close, and the possibilities of a
short-circuit or arcing make it inadvisable to insert or remove cartridges when the
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power is on, though with care it is generally safe. Note that edge connectors are de

signed for the replacement of faulty computer parts during maintenance; they aren't

really ideal for cartridges.

The pinouts on the cartridge circuit board (not viewing the computer, but the

cartridge) are as follows:

Figure 5-5. 64 Cartridge Pinout Diagram

Top:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

The pins function as described below:

Top

1 Ground. All four ground lines are usually tied together.
2,3 5-volt power supply to the cartridge.

4 IRQ. As long as this is low, it requests an interrupt.

Read/write line. Reads when low, writes when high.
8 MHz dot clock input, for your own video control.

I/O 1 goes low when 64 detects use of $DE00-$DEFF; can be used with
CP/M.

GAME replaces BASIC ROM with external cartridge ROM when grounded.
EXROM replaces RAM from $8000 to $9FFF with cartridge ROM when
grounded.

I/O 2 goes low when 64 detects use of $DF00-$DFFF.

ROML chip enable selects ROM $8000-$9FFF when EXROM is low; needs
address bits A0-A12.

BA (Bus Acknowledge). To use, pull DMA low. An external device can control
the 64 while BA is high.

DMA (Direct Memory Access). See BA.

5

6

7

8

9

10

11

12

13

14-21 D7 through DO. The data bus carries eight bits of data.
22 Ground.

Bottom

A Ground.

B ROMH selects external ROM at $A000-$BFFF (or $E000-$FFFF, for MAX) when
GAME or EXROM is low; needs address bits A0-A12.

C RESET detects a positive voltage, resetting when rising from ground to +5 volts.
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D NMI connects to 6510 Non-Maskable Interrupt line. It is spike sensitive—needs

a pulse in either direction. Normally high, so many devices can signal NMI.

E 02 system clock. Essential for I/O timing, but not necessary for external

ROM.

F,H,J,K,L,M,N,P,R,S,T,U,V,W,X,Y, Address bus (A15-A0). The full 16 address lines

are necessary for DMA.

Z Ground.

A typical 16K game or word processor on cartridge uses the ground and power

lines, GAME and EXROM, ROML and ROMH (for access to cartridge ROM at

$8000-$BFFF), and the data bus, plus address lines A0-A12. All ROM addresses

from OXXX through 1XXX, plus ROML or ROMH, are therefore accessible. An 8K

cartridge doesn't need GAME or ROMH.

Interfaces typically use I/O 1 and I/O 2 to control two storage buffers and R/W

and <*> 2 to control timing.

Cassette port. Most CBM machines (excluding the SX-64, C16, and Plus/4)
have identical tape ports. See Chapter 14. Sometimes this port's 5-volt power supply

is used to drive other hardware.
Controller and game ports. See Chapter 16 for full details.
Serial port. This operates disk drives, printers, and plotters, allowing

daisychaining (stringing devices together in series, each separately addressable by
device number). Chapter 17 has information. It is a slow, nonstandard modification
of the IEEE system found in PET/CBM machines (see Programming the PET/CBM for
a description). CBM IEEE devices can operate with the 64, but require interfacing.

User port. This is a 24-pin port, mostly connected to CIA 2. The name is in
tended to suggest that users (with hardware expertise) can interface gadgetry to the
64 All CBM machines (except the Plus/4 series) have a similar user port, though the
64's has (for example) CNT (CIA counter) lines which the VIC-20's doesn't, and the
VIC-20 port has cassette, joystick, and light pen lines missing from the 64 port. As a
result, not all hardware items can be expected to work on both machines.

This is sometimes called the parallel user port to emphasize its potential for
simultaneous eight-bit transmission, but this is a misnomer, since it can handle serial

data transmission just as well.
Figure 5-6 shows the pinout as it appears from the back of the 64:

Figure 5-6. 64 User Port Pinout

GND +5V RESET CNT1 SP1 CNT2 SP2 PC2 ATN +9VAC+9VAC GND {
Top I "

! 2 3 4 5 6 7 8 9 10 11 12

ABCDEFHJK L M N ^

Top I "
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Programming the CIAs
The Complex Interface Adapter (CIA, or 6526) is a 40-pin chip, in the same series as

the 6510, designed to handle interfacing. It's a descendant of the PIA and VIA chips

in other Commodore machines, but it's easier to program. CIAs are versatile, but

much of their capability isn't needed by the 64: the user port makes it possible for

hardware specialists to use it fully. Some knowledge of CIAs is necessary to under

stand input/output routines, setting and reading the internal timers, and changing

the interrupt rate.

Understanding the CIA

The 64 has two CIAs, numbered Ul and U2 on the schematic in the Programmer's

Reference Guide, They are connected to the keyboard (though not the

RUN/STOP-RESTORE key), joysticks, the cassette read line, the 64's serial port, the

PLA lines controlling VIC-II's bank switching, both interrupt pins (IRQ and NMI) of

the 6510 processor, and to many pins of the user port. As we've seen, RS-232 input

and output (usually with a modem), which is serial, goes via the user port. CIAs also

help control light pen and potentiometer (paddle) readings.

CIA 1, labeled Ul on the schematic, appears in the 64's memory at

$DC00-$DC0F (56320-56335), occupying 16 bytes. CIA 2, labeled U2, appears at
$DD00-$DD0F (56576-56591). Both chips have repeated images.

Both chips have an eight-bit data bus, usually labeled DB0-DB7, There are four

address, or register select, bits, RS0-RS3, allowing 16 addresses to be distinguished,

plus a chip select line, which activates the chip when low. There are also reset,

clock, IRQ, read/write, +5V power, and ground lines, which have the normal func
tions of setting the chip when the computer is turned on, synchronizing timing,

sending interrupt request signals when the IRQ line is held low, deciding whether to

read the chip or write to it, and so on. In addition, the TOD (Time Of Day) pin has a

50 or 60 Hz AC input, which is used for accurate timing to 1/10 second.

The other 20 lines actually used in CIA interfacing are the 8 lines making up

port A, the 8 lines of port B, and the 4 control lines, one of which is connected to

the eight-bit serial register (not used by the 64). All these locations operate in the

normal way of being either high (about +5 volts) or low (about 0 volts). Port A,

port B, and the serial register each occupy one byte and take up 3 of the 16 locations

of each CIA's memory map. Their individual bits are referred to as PA0-PA7,
PB0-PB7, and SP0-SP7. The other 13 registers all control the CIA. Note that the

control lines don't actually show up on the memory map; their effects have to be in

ferred. And remember that both CIAs have the same structure: each has a port A, for
example, so be sure you've got the correct chip in mind when programming.

Figure 5-7 is a general memory map of the CIA, showing the locations and their
functions.
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Commodore 64 Architecture

A discussion of the CIA memory map follows:

CIA bit conventions. Fortunately, the CIA registers are accessed in the usual

way, for the most part. Many registers, including the clock, timers, and ports, are

simply POKEd in the usual way with an eight-bit value (or PEEKed for reading).

Single bits are also used as flags. A single bit value can configure a line for output,

set or read an output line, enable an interrupt to occur (or show that an interrupt has

been detected), or set other features of the CIA.

If you're unacquainted with I/O chips, you may be surprised to find that many

registers don't behave like RAM. For example, reading the interrupt control register

clears the interrupt flags automatically.

Ports. Ports A and B have individual lines labeled PA0-PA7 in port A and

PB0-PB7 in port B. Each line (controlled by a single bit) can be configured for either

input or output; very often all eight are configured identically (for instance, to scan

the keyboard). When configured for input, PEEKing shows whether bits are high or

low. When configured for output, POKEs of 1 or 0 set high or low voltages. Hard

ware expertise is needed to insure that too much power isn't drawn from the chip or

put into it.

PB6 and PB7 in port B can be programmed to override their normal function

and act like control lines, carrying timer information, from timer A or B, respectively,

either as a pulse or alternating like a square wave (toggling). We'll see an example of

this feature later.

The CIA serial register (not used by the 64, and not to be confused with the

more complex serial bus) is connected to a shift register, which allows user-written

serial-parallel conversion. The direction and timing are controlled by control register A.

Data direction registers. DDRA and DDRB are the data direction registers for

ports A and B, which set each bit of these ports for input or output. POKEing $00

into a data direction register configures the entire port for input, while $FF sets the

entire port for output, and so on. Note that when the computer is turned on, the re

set line to the CIA causes all the internal registers to be set to 0, so the data direction

is set for input.

Control lines. Each CIA has four control lines, each connected to its own pin on

the chip. Only one of the eight is used by the unmodified 64, while many go to the

user port. Control lines are necessary when transmitting or reading data between de

vices, which otherwise would hardly ever synchronize. For example, they signal

when data is ready to be transmitted. The control lines are discussed below:

CNT is an event counter for counting inputs, or a signal to line SP when the se

rial register generates output. CNT is not used by the 64, but is available on the user

port.

SP is the shift-register pin, which is connected to the user port for RS-232.

FLAG sets the FLAG interrupt when low. This can be used with another CIA's

PC line.

PC is used for handshaking. Since PC goes low for one cycle after a port B read

or write, use port A first when transferring 16 bits. PCI is not connected. PC2 goes

to the user port.

Timers. Each CIA has two 16-bit timers, TA and TB, occupying two registers

^apiece. Both always count down. They always generate an interrupt request upon
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underflow (when they decrement below 0), but the interrupt must be enabled to ac

tually occur.

Timers have two functions. One is timing in the usual sense; the other is count

ing. The first provides a regular measure of time, for instance, when sending out bits

at accurate intervals; the other can perform such tasks as counting eight incoming

bits, even when these are received irregularly.

Each timer has its own 8-bit control register. This includes a bit to start the time

(if the bit is set to 1) or stop it (if it is cleared to 0). Any POKE into a timer is latched

(the value is kept): Once the timer underflows or is started, it reloads with the

POKEd value, so the timer's interrupt rate can be altered. However, a strobe bit al

lows a new value to be loaded instantly, without waiting for the timer to pass 0.

A timer can run in continuous mode (generating regular interrupts) or one-time

mode (counting only once instead of continually repeating). The first mode is used to

scan the keyboard; the second is used for such purposes as tracing ML commands

one at a time, or detecting the presence of hardware by timing its response.

If a timer counts down with the 64's clock, the maximum time interval between

interrupts is about $FFFF millionths (roughly 1/15) of a second. Timer B can count

timer A, though, extending this interval considerably. Another feature allows timer B

to count timer A, but only when CNT is held high.

The serial register. This 8-bit register is connected to the line SP. On com

mand, it performs eight shifts, either moving the byte in the serial register out onto

SP, as eight single bits, high bit first, or (if configured for input) reading eight bits

from SP one at a time into the serial register. A shift register within the CIA does the

work. When a whole byte has been shifted, an interrupt flag is set, so serial-parallel

conversion can be made automatic.

The shift register is controlled by TA. It can be timed by the 64's clock or by the

CNT line, which therefore can be used in handshaking.

Control registers of the CIA. Three bytes control the configuration of every

thing about the CIA. Register 13, called the interrupt control register (ICR), controls

the five sources of CIA interrupts.

Writing to the ICR with bit 7 low clears sources of interrupts whose bits are set;

this is why POKEing the register with 127 disables all interrupts. Writing with bit 7

high enables interrupts whose bits are POKEd high, so POKEing with 129 enables

timer A's interrupts, but no others.

After reading the register, if the high bit is set, an interrupt has been triggered

by that CIA. The bit pattern will indicate the cause. If the high bit is not set, no

interrupt took place, but it's still possible for one or more of the five bits to be high,

since they register even if their interrupt isn't enabled. There are examples in Chap

ter 8, Chapter 12 (on VIC-II), and later in this section.

CIAs in the 64

CIAl

Port A is normally set for output and port B defaults to input. Timer A generates

IRQ interrupts at regular intervals to service the keyboard, which shares lines with

the joysticks and paddles. CIA 1 reads tape, using the FLAG line.

CIA 2

This chip controls NMIs, the serial bus, and RS-232 processing.
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Figure 5-8. Diagram of CIA 1
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Figure 5-9. Diagram of CIA 2
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CIA Programming Methods
The same programming principles apply in both BASIC and ML, apart from speed-

sensitive processing; so the user port can often be controlled from BASIC with

POKEs and PEEKs.

Program 5-2 lets you watch the CIA bit patterns change. To change a register,

press any key, then type in the register address and its bit pattern. For example, you

can start the internal time-of-day clock by using the register address 56328 and the

bit pattern 00000000.

Program 5-2. Investigating the CIA
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

2 REM FOR CIA#2, USE FORJ=56576TO56591 IN LINE 30

:rem 130

4 REM LINES 50 & 120 HANDLE BIT PATTERN :rem 90

10 PRINT "{CLR}" :rem 197

20 PRINT "{HOME}11 s rem 70

30 FOR J=56320 TO 56335 :rem 122

40 PRINT J;: P=PEEK(J) :rem 253
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50 Q=P/256: FOR K=l TO 8; Q=2*Q: PRINT INT (Q)M

{LEFT}";: Q=Q-INT(Q): NEXT :rem 245

60 PRINT " " P "{LEFT}{3 SPACES}" :rem 104
70 NEXT :rem 166

80 GET X$: IF X$="" GOTO 20 :rem 37
100 INPUT "WHICH REGISTER";R :rem 202

110 INPUT "BIT PATTERN";B$ :rem 4

120 X=0: FOR K=l TO 8 :X=X+2T(8-K)*VAL(MID$(B$,K,1
)): NEXT :rem 80

130 POKE R,X: GOTO 20 :rem 110

CIA 1 and the keyboard. Chapter 6 explains how CIA 1 reads and decodes

information from the keyboard. Setting PB6 or PB7 for output makes the keyboard

unreadable and prevents the use of RUN/STOP-RESTORE to reset the machine.

Joysticks, light pens, and potentiometers. All these are shared with the key

board, under the control of CIA 1. See Chapter 16 for full details.

Interrupt handling. Each CIA has an IRQ (Interrupt ReQuest) line, which is

normally set, but can be cleared. CIA 1 connects to the 6510's IRQ line, and CIA 2

to the NMI line; each chip generates a different type of interrupt.

You should temporarily turn off IRQs to alter the IRQ vector to insert your own

ML program or to read the character-generator ROM. POKE $DC0D (56333) with

127 to turn off all CIA 1 interrupts. Later, POKE with 129 (%1000 0001) to turn on

timer A interrupts, which normally control the IRQ rate. Chapter 8 shows how NMI

interrupts can be used with BASIC.

Tape drives. Only tape reading is controlled by a CIA (see Chapter 14 on writ

ing tape, checking the cassette keys, and controlling the motor). CIA l's FLAG line

reads tape. Tape input is signaled on FLAG, and any negative transition sets an

interrupt. Reading the interrupt register clears the interrupt flag, and as long as it's

reset a low condition exists.

Timers. Program 5-2 allows you to see the timers updating on the screen. Timer

Abnormally controls the IRQ rate, which is why POKEs to $DC04 and $DC05 (56324
and 56325) alter the cursor flash rate. TA counts down with the system clock about

60 times per second, too fast for Program 5-2 to show a pattern. Note, though, that

register 5 ($DC05 or 56335) never exceeds 66; this latched value was selected be

cause 65*256/1,000,000 is about 1/60 second. When the computer is turned on,

$DC0D (56333) has bit 0 set high, enabling an IRQ interrupt to the 6510, although

PEEKing won't show this.

To link timers, set $DC0F (56335) to 65 (%0100 0001). This sets timer B to fol

low timer A (decrementing once each time A underflows) and starts timer B. Now

timer B counts down from $FFFF relatively slowly—about 60 times per second—tak

ing about four seconds for the low register to reach 0, and therefore about 15 min

utes for the whole register B to count down.

If a timer isn't started, latching has no visible effect. Set $DC06 (56326) to 0,

$DC07 (56327) to 1, so CIA 1 timer B's latched value is $0100. Now set $DC0F

(56335) to 81 (%0101 0001), which follows timer A, forces in timer B's value, and

starts timer B. Now timer B still counts down with timer A, but is reloaded with $100.
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Enter direct mode, and type the following line to set $DC0D to %1000 0010:

POKE 56333,127: POKE 56333,130

This turns off timer A and enables timer B as an interrupt source. You'll see that the

cursor is flashing much slower than it normally does. The first POKE is necessary,

since without it both interrupt sources are enabled.

The CNT line. Line 4 of the user port connects to CIA l's CNT line. Latch

timer B with $FFFF by POKEing 255 ($FF) into $DC06 and $DC07 (56326 and

56327). Now POKE $DC0F (56335) with 49 (%0011 0001), which sets timer B to

count CNT, forces $FFFF into timer B, and starts timer B. Now, timer B remains at

$FFFF until pin 4 is grounded. Note that proper debounce circuitry must be used or

the count will decrement very rapidly.

Time-of-day (TOD) clocks. Every CIA has a TOD clock, but we'll use CIA l's.

Four registers hold hours (1-12, high bit for p.m.), minutes, seconds, and tenths of

seconds in binary coded decimal (BCD) format. The clock starts only when the

tenths register is POKEd or PEEKed, and it stops whenever the hours register is

POKEd or PEEKed. This prevents errors when reading the time. For example, if the

time in the clock registers happened to be 10:59:59.9, the clock could advance be

tween the time you read the hours and the time you read minutes. This means your

reading could be wrong by an hour. With CIAs, read the hours register first and the

tenths register last.

You'll need BCD conversion equations to use the TOD with BASIC. This func

tion converts a number from 0 to 59 into its BCD form:

DEF FN BCD(T) = INT(T/10)*16 + T - INT(T/10)*10

The following function converts a BCD value into the corresponding number in the

range 0-59:

DEF FN TD(P) = INT(P/16)*10 + (P AND 15)

Program 5-3 is a machine language program, POKEd into memory with a

BASIC loader, which reads clock 1 and prints the time. Type it in and save it, being

sure to use the "Automatic Proofreader." Run the program, and then SYS 49152

each time you want to see the time. ML programmers may want to add special fea

tures to this simple clock routine.

Program 5-3. ML Clock
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 REM FOR 12-HR CLOCK, REPLACE 18 IN LINE 501 WIT

H 0 :rem 20

100 FOR J=49152 TO 49220:READ XrPOKE J,X:NEXT

: rem 6

500 DATA 169,5,32,210,255,24,173,11,220,16,6,248

:rem 46

501 DATA 41,127,105,18,216,32,46,192,173,10,220,32

:rem 139

502 DATA 46,192,173,9,220,32,46,192,173,8,220,9,48

:rem 166
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503 DATA 32,210,255,169,154,32,210,255,96,72,74,74

srem 166

504 DATA 74,74,9,48,32,210,255,104,41,15,9,48,32

:rem 60

505 DATA 210,255,169,58,76,210,255 :rem 148

510 POKE56328,0 :rem 41

To use the alarm feature, POKE the registers from BASIC to start the clock, have

interrupt processing ready, and set register 15's alarm bit high before POKEing in

the alarm value.

POKE 56333,127: POKE 788,0: POKE 789,192: POKE 56333,129: POKE 56335,PEEK(56335)

OR 128

directs interrupts to $C000 (49152), with this ML outline:

C000 LDA $DC0D ; READ AND CLEAR INTERRUPT FLAGS

AND #04

BEQ EXIT

PROCESS ALARM ...

EXIT JMP $EA31

This checks the alarm interrupt flag. In this way, lapse of a measured amount of

time can end a game, display a score, or whatever. TOD alarms have a minor bug:

the alarm is often triggered a second or third time, so it makes sense to turn off the

alarm bit in register 15 when it's not needed.

Users of 50-cycle house current should note that the TOD is timed by house

alternating current. Its accuracy relies on the electricity supplied to it, rather than

interrupts. In register 14, 50 Hz or 60 Hz is selectable. But all 64s set 60 Hz even

with PAL TVs. Press RUN/STOP-RESTORE or execute a SYS 64738 to return to 60

Hz. To insure 50 Hz:

POKE 56334, PEEK(56334) OR 128

or, if the Kernal is in RAM, POKE 64943,136 to alter the reset.

Program Recovery and Resetting
No matter how good you are at programming the 64, occasionally a program will

crash. Suddenly, you have no control and no backup copy. There are several ways to

recover your program, and they are discussed below.

The RUN/STOP key. This key works with BASIC, unless it has been disabled

(see Chapter 6). It can be checked for in an ML routine, using the Kernal STOP rou

tine (Chapter 8).

The RUN/STOP-RESTORE key combination. This is a panic button, de

signed to return BASIC and ML to the READY state. Hold down the RUN/STOP

key and tap the RESTORE key sharply. The restore sequence has some bugs. Since it

doesn't initialize the SID chip, sound may still leak out. It doesn't alter location 648;

if you've moved the screen you'll need POKE 648,4, and the keys can be disabled

(see Chapter 6).

RUN/STOP-RESTORE doesn't work in the following cases:

129



Commodore 64 Architecture

Serial bus problems can cause a lockup. For example, the printer may be in a

loop or disabled; turn it off, then on.

In early 64s (release 0), the screen editor can corrupt a CIA, locking the key

board. (Enter a long BASIC line starting at the screen bottom. Now type a line num

ber at the bottom left and delete back. The keyscan sequence may not work now.

Press #, then PLAY on tape, then RUN/STOP after a few seconds to recover.)

When you have an X2 crash caused by an internal loop in the 6510, only a reset

switch (see below), followed by OLD can recover BASIC. SYS 40965 is an example.

(See Chapter 6.) A so-called X2 crash occurs when the microprocessor tries to exe

cute any opcode (other than $A2) that ends with 2 (see Appendices).

When the Computer Is Reset

First, the 6510 and all special chips are reset—they're wired to the common RESET

line. Next, the reset routine at $FCE2 (64738) is entered, provided the Kernal isn't

switched out by GAME. After this, locations $8003-$8007 are tested. If a specific se

quence of bytes (see below) is found, JMP ($8000) takes place. This allows a car

tridge to take over the 64.

Otherwise, four subroutines are called. These subroutines set CIA registers, clear

pages 0, 2, and 3, then test RAM nondestructively by POKEing $55's into RAM,

then $AA's, and replacing the original bytes if RAM is indicated. A few other things

are set, including BASIC memory and the screen. CHAREN, HIRAM, and LORAM

are all set to 1. Because BASIC RAM isn't changed, it follows that the startup routine

leaves RAM from 2051 containing garbage.

JMP ($A000) is next. This is an indirect jump, which usually sends execution to

the BASIC cold start routine at $E394. But if both EXROM and GAME are grounded,

and a cartridge hasn't been signaled at $8000, then $A000 provides an autostart.

Note that RESTORE jumps indirectly through (8002) or (A002), using the same

tests. This is the so-called warm start at $E37B.

Reset switch. Pin C of the expansion port or pin 3 of the user port starts the re

set sequence when grounded. Because the 64's circuitry varies, it's crucial to use a

properly designed circuit. Be careful to get the right pins; grounding a 9V user-port

line will blow the fuse on the 64 (or worse).

A reset switch has a similar effect to switching on, except that the contents of

RAM from $0800 up are left completely intact, apart from a few zero bytes at the

start, caused, in effect, by NEW. The whole of BASIC, and its variables, can be

recovered; Chapter 6's OLD shows how.

A reset gives control of the 64 to BASIC and the Kernal ROM, but after giving

priority to the hardware EXROM and GAME lines. This insures that the computer al

ways starts correctly when turned on. Use of BASIC in RAM is overridden by a reset

switch. But if the reset sequence detects the five bytes that indicate a cartridge is

present (whether one is actually there or not), execution can be deflected to any ad

dress you choose. This is how software can be made reasonably invulnerable to

resetting.

SYS 64738 behaves very much like a hardware reset: both call the same routines

and set the 64 to its startup condition, except that RAM above $0800 is retained by
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SYS 64738. OLD can then be used to restore BASIC, and ML in memory remains in

tact. SYS 64738 is therefore better than turning the 64 off, then on again, but it has a
few odd effects when BASIC'S ROMs are switched to RAM, as detailed in Chapter 8.

Autostarting

Autostart cartridge ROMs usually start at $8000, like this:

$8000-$8001: Startup jump address in cartridge.

$8002-$8003: RESTORE key jump address in cartridge.

$8004-$8008: Standard five-byte identifier sequence, $C3, $C2, $CD, $38, $30

(CBM80).

If the reset routine detects the correct identifier sequence, the jump address is taken.

Typically, it still goes through most of the normal initialization routines before

continuing with its own program.

A cartridge starting at $A000 will autostart without needing identifying bytes,

unless it finds the five-byte sequence at $8004. Obviously, such a cartridge must re

place the BASIC ROM by grounding GAME and EXROM.

Bypassing cartridge autostart. If you want to run BASIC or ML normally, but

have a cartridge which you don't want to unplug, you may want to reset the 64 to its

normal state by bypassing autostart. This is easy if you have a good expansion

board: just switch the unwanted cartridge off and use SYS 64738.

Cartridges that return you to BASIC are fairly easy to disable. Try the following:

• RUN/STOP-RESTORE.

• SYS 64760.

• Mimic the reset sequence without the cartridge test, by POKEing these bytes into

49152 (and subsequent locations): 120, 162, 255, 154, 232, 76, 239, 252. Call the

routine with SYS 49152.

This leaves the cartridge in memory, so SYS 64738 will act like turning the com

puter on and SYS 49152 will return the machine to normal. Thus, with OLD, BASIC

could be switched at will to run with or without some BASIC utility.

Cartridges that don't return you to BASIC can't be bypassed without an expan

sion board (which has a switch or other means to disconnect EXROM or GAME or

both). It is not recommended that you plug in a cartridge while the power is on; you

may damage the computer or at least cause it to crash. If this is done, however, the

cartridge may become fully present in memory without autostarting.

Commercial Software and Hardware
Programs for the 64 come in several formats, and new devices are being introduced

every month. Commodore is only one company making products for the 64, and

outside manufacturers are making hardware that is Commodore-compatible. The

following section briefly discusses some of the devices which are available.

Cartridge Programs

ROM programs plug into the cartridge port and usually autostart when the computer

is turned on—this is convenient and fast.
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Because cartridges, even with EPROMs, are much more expensive to make than

the easily duplicated tape or disk software, major programs are often supplied on

disk. Cartridges therefore often contain games. Sometimes there's a compromise:

plug-in software may immediately load another program from disk. Since many

applications require a disk anyway, this isn't a problem, and it has the advantage of

permitting corrections to be made in the code if bugs are found in the disk program.

The 64's design insures that cartridges compete for the same parts of memory,

so some form of expansion board is necessary if you want a choice of easily acces

sible cartridges. The only exception is some interface cartridges, which relocate their

ML and then turn themselves off. But even these can't really be made with an exten

sion piggyback socket, since other cartridges may have incompatible software. In

other words, be prepared for your cartridges only to operate individually.

Most cartridges have software protection to prevent a RAM copy of the cartridge

from working properly. For instance, an ML instruction like INC $8300 increments

the contents of $8300 in RAM, but has no effect on ROM, so an ML program that al

ters memory locations within itself will work in ROM but not RAM.

It's actually possible to store BASIC programs in cartridge form, with their vari

ables lower in RAM, so that they can autostart without having to be loaded. This is

rarely done, since there's only space for 8K.

Cartridges tend to look rough when taken apart. Often there is just a printed cir

cuit board with a ROM or EPROM, plus some other circuitry. If you open the car

tridge, you'll be able to follow the tracings and infer the function of much of the

hardware. Note how the dominant direction of tracks on top is often perpendicular

to that below, allowing connections between the surfaces to be made more easily.

The casing provides protection, but isn't necessary to the working of most of these

devices, which can be plugged in as plain printed circuit boards.

Examples. Many games and utility programs are packaged as autostart car

tridges, as are programming languages like COMAL. Most languages switch BASIC

out completely.

BASIC extensions and aids are available on cartridges as well. Simons' BASIC is

16K of ROM from $8000 to $BFFF. It switches the BASIC ROM in and out by

controlling the GAME line. Other utilities have features like fast tape operating sys

tems, additions to the disk operating system, extra graphics, and so on. Unfortu

nately, the programs you write using these cartridges may not run without the

cartridge in place. And watch for subtle changes in BASIC—the ',8' may no longer

be needed to use the disk drive, or you may find tape no longer works.

Voice and music synthesizers, with extra commands like SPEAK, generally use

the SID chip if they don't add hardware to the audio-video socket.

Eighty-column software can be prepared as a cartridge as well. It intercepts vec

tors, controlling screen output and graphics format to produce characters four dots

wide. (There are 320 pixels across the screen to use, so 64 columns are possible, too,

with characters five dots wide.) All the normal colors may not be available. Eighty-

column output usually requires a monitor, not a TV.

CP/M is an operating system which runs on the Z80 chip. The 64's DMA (Di

rect Memory Access) line allows a Z80 or other chip to control the 64: when held

low, the Z80 controls data, addressing, and input/output, though VIC-II still has ac-
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cess to and controls the display. The Z80's memory addresses are offset $1000 bytes

from 6510 addresses, seeing $1000 as $0, and so on.
CP/M has three parts: console processing (CPP), disk operating system (BDOS),

and input/output (BIOS), all at the high end of memory. The programs start at $100.
But the disk and input/output is specific to the 64 and not transferrable. The Kernal,

of course, can be run only by the 6510, not the Z80. In the Commodore package, a
hardware switch at $DE00 selects the processor. A CP/M cartridge is necessary to

use the Z80; then software is usually loaded from the 1541 disk drive. You may need

to transfer information to other machines by modem, since the 1541 disk drives are

not compatible with those of most other manufacturers. If you want to try CP/M

with minimum hassle, be sure that the programs you'd like to run are available for

the 64.

Programs on Disk
Disk programs are often long and slow to load. Because these programs go into

RAM, copying can be relatively easy, and this is a problem for the software publish

ers. Various methods are used to deter copying, like making the directory unreadable

and causing the program to force-load in memory, then decode itself in complicated

ways (explained in Chapter 15). Don't be surprised if the disk directory looks

strange.

Examples. Most cartridge programs of the types listed above are available on

disk as well: games, 80-column software, terminal software, some BASIC enhance

ments. Exceptions include the rare, very long ROM programs, which require bank

switching and can't fit into the 64's RAM.

Applications software (word processing, spreadsheets, and data bases) is often

available on disk. Unfortunately, the 64 can't autoboot (automatically load and run)

software from the disk when the computer is turned on. You have to type in at least

a LOAD command. Commodore's EasyScript word processor is a typical disk-based

application package. LOAD "ES",8,1 forces a load which automatically runs.

EasyScript's ML actually starts at $8000.

Programs on Tape
Tape is perhaps the cheapest storage medium, and programs of most types listed

above come on tape. Tape access is also usually very slow. But the 64 has plenty of

room for alternative tape LOAD programs. Some commercial tapes first load a fast

tape-read routine, which reads the specially formatted main program very rapidly.

There are several recording methods like this, which are often harder to audio-copy

because of the higher frequencies they use.

Another example is BASICODE, which uses a subset of Microsoft BASIC in or

der to make each program run on a number of different computers. It includes stan

dard routines, different for each computer (for example, GOSUB 100 to clear the

screen), and is without significant color, sound, or graphics. Programs can be broad

cast by radio and recorded with an ordinary cassette recorder. A special program for

the 64 reads this as normal BASIC, which can be saved in conventional 64 tape or

disk format.

Transferring tape software to disk. Straightforward programs can be read from

tape, then stored on disk. There are public domain utilities available which help with
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this. Chapter 14 explains how to load standard tape programs anywhere in RAM.

But protection methods make this more difficult. For example, programs which use

the tape buffer can cause problems. And programs that load and run another pro

gram won't work unless the device number is changed from 1 to 8. Nonstandard for

mats are difficult to put on disk as well: If the loaded program disables RESTORE,

mimics a ROM cartridge at $8000, and also uses RAM around $300, resetting with

EXROM grounded will sometimes work, but will wipe out the software in low

memory.

Hardware Devices

These peripherals perform functions which software alone can't. There's a wide vari

ety, made somewhat confusing because there are often several different ways to

achieve the same result. Here is a quick look at the most important broad categories.

Interfaces. Interfaces connect the 64 to non-Commodore equipment so that the

external hardware device will work properly. The problem is that since the 64 has no

standard interface, it must use an interfacing device with a 64-compatible socket on

one end and a socket to fit standard equipment on the other.

If you want to connect a daisywheel typewriter or non-CBM matrix printer to

the 64, you'll find this equipment typically uses either Centronics or RS-232 inputs,

or both. Be warned that there may well be problems with incompatibility: Test

equipment before you buy it to make sure that your software works correctly with it.

Another interfacing problem is CBM's IEEE disks and printers. The double disk

drives, like the 8050, are much faster and store far more data than the 1541, but they

won't plug in directly to the 64.

The Centronics interface is a 36-pin parallel system found on most good-quality

printers and also on some typewriters. It has its own handshaking system and has

no need for a baud rate to be set. Some of these interfaces have special features rele

vant to Commodore machines, like printing BASIC control characters as {RED} or

{HOME}, so program listings are more readable.

User port interfaces use port B (plus two lines to control handshaking) as a par

allel port. All that's required in hardware is a Centronics cable fitted with an edge

connector to plug in the user port. Software controls the user port.

Serial port interfaces connect the serial socket in the 64 (or at the disk) to the

Centronics device via hardware, which usually includes an external power supply,

some way to define its device number, and some control over the type of ASCII it

passes to the printer.

The cartridge port can be used as well, but of course is likely to conflict with

other software on cartridge.

RS-232 is a standard for transmitting serial data, which tends to be slower but

less expensive to implement than parallel transmission. The RS-232 connector has 25

pins arranged in two rows. The 64 requires voltage conversion to convert its user

port output to the correct levels of —12 and +12 volts; Chapter 17 has more details

on CBM interfaces.

RS-232 devices are assigned device number 2 when a file is opened with a state

ment like OPEN 10,2,secondary address,baud rate, and subsequent input or output

uses two buffers at the top of BASIC memory for storage. Software has to be written
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with this in mind; if it assumes a printer is device 4, it won't work without modifica

tion. Also, the baud rate must be set. (Generally, Centronics interfaces are likely to

be easier to work with.)

Some IEEE interfacing cartridges plug into the main socket. One type prints its

sign-on message, relocates its ML to start at $C000, alters BASIC vectors, then dis

connects EXROM so that it disappears from the memory map. Finally, it loads and

runs a program from disk. The 24-pin IEEE edge connector protrudes from the car

tridge to run CBM IEEE disks and printers.

Another type also has an IEEE connector, but adds BASIC 4.0 commands like

CATALOG (which can be found on the later CBM/PET machines) and an ML mon

itor program, making it highly compatible with other CBM products. The extra soft

ware is relocatable. While this is versatile, to make full use of it, you need to know

how to determine where programs are stored in memory.

It is also possible to move BASIC into RAM and alter the output routines. This

way you can customize and enhance BASIC to meet your needs.

Linking devices. Interpod is a CBM product which plugs into the serial port,

converting the 64's serial bus signals into a form acceptable to IEEE devices, and vice

versa. Since it has an external power supply, ROM and RAM, an IEEE socket and an

other serial socket, either or both types of hardware can be connected to the 64's se

rial bus. This system has the advantage of being transparent, not interfering with

normal operations. But since 64 software will not nominally expect IEEE devices to be

present, programs which use the system may need to be specially written.

Interpod is an example of linking; however, some adapters are designed to allow

more than one 64 to share the same printer or disk drive. This can be useful in a

classroom environment. Some caution is required, though; the simplest interfacing

methods don't allow for simultaneous operation, so users must warn each other

when they're about to use the shared devices.

Expansion boards. To save wear on the 64's ports, you may want to purchase

an expansion board. A typical board has three to five slots, in which cartridges fit

upright, facing the user. Each slot has an on/off switch. To work properly this must

disconnect the power line and also GAME and EXROM. In this way, several car

tridges designed for the same area of memory can be in position simultaneously,

though only one can be in operation at any one time. Some boards have a fuse, and

a reset switch is a good idea. These boards are relatively simple, and if you have

experience with printed circuit board equipment, you could make one using ribbon

connectors, rather than rigid boards.

EPROM boards. These are printed circuit boards, with edge connectors to fit the

cartridge port, wired to sockets for Erasable Programmable Read Only Memory

chips. Some boards allow you to switch between EPROMS with a POKE to a spe

cially reserved location, as well as to select the address of the EPROM. Essentially,

they allow you to design and run your own cartridge software. There's considerable

scope, since the expansion port has access to all the bus signals.

An EPROM programmer is a hardware device that puts your software into semi

permanent form in an EPROM. You will also need a special ML monitor program

with a command to start the burn-in. Self-contained units are sold which fit the user

port, drawing the high voltage required from it, and in effect using RS-232 to control
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EPROM burning. An EPROM can be read back through the user port, but not run as

a program; to run the EPROM, it should be mounted on a board.

Communications devices. Modems fit the user port and require terminal soft

ware to control communications. Cartridge port modems include their own sign-on

message, request to connect, and menu of options. All types, of course, have a

connection to the phone line or to an acoustic coupler. Chapter 17 discusses terminal

software.

Controllers. Another type of adapter is a controller, or I/O board. This set of

relays, or digital/analog converters, connected to the user port, allows the 64 to con

trol external equipment—lighting, machinery, test equipment, alarms, whatever. A

set of BASIC subroutines often is adequate to read and drive the controller. Obvi

ously, hardware and software experience are both needed here.

Other devices. A tape interface can connect the 64 to an ordinary recorder, but

this is more difficult and not much less expensive than using the Commodore tape

units. An ordinary recorder isn't wired to sense keys, so it can't prompt with PRESS

PLAY or PRESS PLAY AND RECORD, and the recorder must be switched on just

before use. Some recorders play back an inverted signal, which sounds identical but

cannot be read properly. See Chapter 14 for more on this.

Cartridges are sometimes fitted with their own video chips (so the TV connec

tion comes from the cartridge, not the 64). This allows 80-column display, variable

line spacing, digital clock display, and so on, but at a price, of course. And cartridges

can take speech synthesis chips, again with output derived from the cartridge, either

bypassing or mixing with the sound from the SID chip.

Special hardware modifications are becoming available for the 64 as well. One

autostart cartridge causes a 1541 disk drive to work at several times the normal

speed, subject to some serial bus problems. (It switches itself out of ROM, leaving

BASIC modified with connectors to two lines within the 64.) Another reported

modification allows the 64 and Apple to share some software.
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Chapter 6

Advanced BASIC

This chapter explains advanced BASIC methods for programming the 64. It should

help you learn new techniques and avoid programming bugs. The following sections

introduce some special features of BASIC, like programming the function keys, for

example. There's a dictionary of enhancements to BASIC, some of them utilities to

assist programming, others subroutines which can be incorporated into programs.

How BASIC Is Stored in Memory
Major Memory Locations Controlling BASIC in the 64

The previous chapter explained how pointers controlling BASIC are set up when the

64 is turned on. These pointers are listed below (in decimal):

START OF BASIC PROGRAM = PEEK (43) + 256 * PEEK (44)

END OF PROGRAM + 1 = PEEK (45) + 256 * PEEK (46) = START OF SIMPLE

VARIABLES

END OF SIMPLE VARIABLES + 1 = PEEK (47) + 256 * PEEK (48) = START OF

ARRAYS

END OF ARRAYS + 1 = PEEK (49) + 256 * PEEK (50)

CURRENT BOTTOM OF STRINGS = PEEK (51) + 256 * PEEK (52)

PREVIOUS BOTTOM OF STRINGS = PEEK (53) + 256 * PEEK (54)

END OF MEMORY USABLE BY BASIC = PEEK (55) + 256 * PEEK (56)

START OF BASIC RAM = PEEK (641) + 256 * PEEK (642)

END OF BASIC RAM = PEEK (643) + 256 * PEEK (644)

START OF SCREEN MEMORY = 256 * PEEK (648), normally 1024

START OF COLOR RAM = 55296

START OF CURRENT TABLE OF CHARACTER GENERATOR BITS = 16384 * (3-

(PEEK (56576) AND 3)) + 1024 * (PEEK(53272) AND 14)

The main set of pointers occupies 14 consecutive bytes, from location 43 to 56,

an arrangement found in all Commodore BASICs. Most of these pointers mark a

boundary between one type of item and the others, which is why END OF PRO

GRAM + 1 = START OF VARIABLES, for example.

All this means is that the program ends one byte before the pointer and that the

variables start exactly at the pointer, so there's no overlap. Such a convention is ob

viously necessary, and this pattern is common among Commodore machines; this is

why the last byte can easily be lost if you are not careful when saving ML programs.

These pointers are most important when considering BASIC on its own, and

much of this chapter is devoted to them. For completeness the list also includes

other pointers set by the 64 when it is turned on or reset. The start and end of

BASIC RAM are stored in an extra set of these pointers when the position of the

screen is set, but these have little function and are less useful than the main pointers.

The screen and character generator pointer values are dependent on the VIC chip,

and setting their values is relatively complex; they aren't ordinary two-byte pointers.

Experimenting with BASIC Storage in Memory
As an introduction to BASIC pointers, turn on your 64 and PRINT some of these

two-byte PEEKs, starting with PRINT PEEK (641) + 256*PEEK (642). You should
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find that the BASIC RAM extends from 2048 ($0800) to 40960 ($A000), and the

screen starts at 1024 ($0400). The 64 allows 1024 bytes for the screen, because

40 X 25 = 1000, and 1024 (210, or IK) is a convenient amount of space to allocate

for it. The screen ends at 2023 ($07E7) and there are 24 bytes left over, 2024-2047.

The final 8 of these store sprite data, while the rest are free.

You will also find that the actual start of BASIC is one byte beyond the start of

BASIC RAM. In other words, locations 43 and 44 together point to 2049 ($0801).

This is because BASIC always starts with a zero byte. Usually, therefore, PRINT

PEEK (2048) will print a 0 on the screen. The BYTES FREE message in this case has

already calculated that bytes from 2048 to 40959 (a total of 38,911) are available to

BASIC. The pointers to the end of program text, simple variables, and arrays are all

set to 2051. BASIC programs have two consecutive zero (or null) bytes marking the

end, and since there are no variables yet, all these pointers are in their starting po

sitions, just after the program, which is where variables will be stored. Zero bytes

(with a PEEK value 0) are convenient for markers because they are easily tested for

in ML. So PEEK (2049) and PEEK (2050) both return 0 at present.

BASIC is stored as a set of numbered lines. As stated above, the first byte of a

program is a zero, or null. Each line begins with a two-byte forward link address, a

two-byte line number, the BASIC line itself, and a zero byte which marks the end.

The link address is simply a pointer to the next line—in fact, it points to the next

line's link address, forming a chain which can be scanned at high speed. Each link

needs two bytes, and line numbers also have two bytes, enabling line numbers

greater than 255. Figure 6-1 illustrates the concept of linked lines in BASIC and

shows that a line link of 0 0 (two consecutive nulls) is used to indicate the end of the
program.

Figure 6-1. Linked Lines of BASIC

Storage of BASIC as Linked Lines

Start End of Line End of Line End of Line Program End

0 Link Line#
i

BASIC Line 0 Link Line# BASIC Line 0 Link Line# BASIC 0 0 0

The built-in operating system automatically arranges BASIC as lines are typed in
and entered (by pressing the RETURN key) at the keyboard. When you understand

how lines are entered, you can modify BASIC to produce nonstandard effects. You
could insert lines longer than usually possible, add normally unavailable line num
bers, or arrange a line of BASIC to contain things it ordinarily couldn't.

Here's an easy way to look at BASIC line storage in practice. Type in this simple
program:
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Program 6-1. BASIC Line Peeker

1 PRINT "HELLO"

30 FOR J = 2048 TO 2062

40 PRINT J;PEEK (J);CHR$ (PEEK (J))

50 NEXT

When you run this, you will see the following numbers on the computer screen

(without the comments):

; Zero byte at the beginning

; Link address; points to start of next line

; at 2063 = 15 + 8 * 256

; Line number; this line number is 1

; = 1 + 0 * 256

; Tokenized form of PRINT

; Space

; Quote and following characters in PETASCII

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

0

15

8

1

0

153

32

34

72

69

76

76

79

34

0

H

E

L

L

O
"

; End of line null byte

Program 6-1 shows the contents of every byte of a single typical line of BASIC,

with notes to show their function. Incidentally, you will get slightly different results

if you make small changes to line 1. For example, if you remove the single space

character between PRINT and the first quotation mark, this will be missing from

location 2054, as you would expect. A link address pointer will point to 2062 instead

of 2063, because the next line starts a byte earlier. Similarly, try a different line num

ber in place of 1, and see it reproduced in locations 2051 and 2052 when the pro

gram is run.

As noted above, BASIC lines have five bytes of overhead, consisting of a two-

byte pointer, a two-byte line number, and a null byte. The end of BASIC is marked

by two zero bytes—that is, when a link address is found to be 0, RUN and LIST will

automatically treat this as an END, and return to direct mode with READY.

Before performing the following POKEs, save Program 6-1, if you want to be sure to

have a copy. Try POKE 2063,0: POKE 2064,0 with the program (in the exact form

shown above) in memory. It will now LIST only one line. Now POKE 2063,37:

POKE 2064,8 which will replace the original values, if the spacing was identical to

the version above. LIST now shows the entire program again.

Normally the end-of-BASIC pointer in 45 and 46 will point just beyond these

three consecutive zeros. If you think about it, you will realize that only the second of

the pair of terminating bytes is necessary to signal an end; it is, of course, possible

that the low byte of a link address could validly be zero, but any normal BASIC line

will be in $0800 at the absolute minimum, so its high byte will never be less than

eight.
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Watching BASIC Work

There are several other methods to watch BASIC and its variables as they do their

work. Chapter 5's ML program, "MicroScope," can display a dynamic picture of

BASIC'S storage, an excellent way to get the feel of BASIC lines, variables, and

strings. Another way is to move the screen to coincide with the start of BASIC. Type

in and run Program 6-2 below.

Program 6-2. BASIC Screen

10 FOR J=55296 TO 56296: POKE J,0: NEXT

20 POKE 648,8: POKE 53272,37: POKE 53281,1

30 PRINT "{HOME}{4 DOWN}";CHR$(14): REM YOUR NAME

{SPACE}HERE

40 FOR J=l TO 3000:NEXT

50 REM TYPE POKE 648,4 THEN PRESS RUN/STOP & RESTO

RE TO GET BASIC PROGRAM BACK

Line 20 moves the screen to $0800, where BASIC'S program storage area begins.

Line 30's REM and line 40's loop activity will both be visible onscreen. Try adding

new lines of BASIC and new variables. The result is rather unpredictable—clearing

or scrolling the screen will remove or alter BASIC.

Another way to display a BASIC program's contents is to POKE it, byte by byte,

into the screen, as Program 6-3 demonstrates:

Program 6-3. POKEing BASIC to the Screen

10 FOR J=2048 TO PEEK(45) + 256*PEEK(46)

20 POKE 1024+Q, PEEK(J): POKE 55296+Q,l: Q=Q+1: NE

XT

30 PRINT "{HOME}{4 DOWN}";CHR$(14): REM LOWERCASE

{SPACE}MODE

Table 6-1 shows the significance of each BASIC byte (apart from the links and

line numbers). Note that all BASIC keywords are stored as a single byte with bit 7

set (which means they have a value of 128 or more in decimal). This makes it easy

for the ML routine to detect a keyword. It also means that when BASIC is POKEd

into the screen, BASIC keywords appear as single reverse-video characters on the

screen. Generally, BASIC as stored in RAM looks strange, partly because of this

compression and partly because the pointers and line numbers become visible.

The LIST instruction has the function of presenting this stored collection of

bytes in the familiar form, by expanding each token into its correct keyword. Of

course, compressing BASIC like this is a very valuable space-saving feature. This

special coded form is different from the 64's ASCII and also different from the

screen display system—which may cause some confusion. Table 6-1 shows all valid

bytes as held in BASIC. Some of those not shown will list as apparently meaningful
BASIC, but will not run properly.
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Table 6-1.

0-31 32-

3220sp

3422"

3523#

3624$

3725%

4028(

4129)

46 2E.

48300

49311

50322

51333

52344

53355

54366

55377

56388

57399

58 3A:

59 3B;

Internal Storage of BASIC Bytes

64-

65 41A

6642B

6743C

6844D

6945E

7046F

7147G

7248H

73491

744AJ

754BK

764CL

774DM

784EN

794FO

8050P

8151Q

8252R

8353S

8454T

8555U

8656 V

8757W

8858X

8959Y

905AZ

96- 128-

128 80 END

129 81 FOR

130 82 NEXT

13183 DATA

132 84 INPUT #

133 85 INPUT

134 86 DIM

135 87READ

136 88 LET

137 89 GOTO

138 8ARUN

1398BIF

140 8C RESTORE

1418DGOSUB

142 8E RETURN

1438FREM

144 90 STOP

145 91 ON

146 92 WATT

147 93 LOAD

148 94 SAVE

149 95 VERIFY

15096DEF

15197POKE

15298PRINT#

153 99 PRINT

1549ACONT

155 9B LIST

1569CCLR

1579DCMD

1589ESYS

159 9F OPEN

160-

160 A0 CLOSE

161 Al GET

162 A2NEW

163A3TAB(

164A4TO

165A5FN

166A6SPQ

167 A7THEN

168 A8NOT

169 A9 STEP

170AA +

171AB -

172 AC*

173 AD /

174 AET

175 AF AND

176 B0 OR

177 Bl >

178 B2 =

179 B3 <

180 B4 SGN

181B5 INT

182B6ABS

183B7USR

184B8FRE

185B9POS

186BASQR

187BBRND

188 BC LOG

189BDEXP

190 BE COS

191BF SIN

192-

192 CO TAN

193C1ATN

194 C2 PEEK

195C3LEN

196C4STR$

197C5VAL

198C6ASC

199C7CHR$

200 C8 LEFTS

201C9 RIGHTS

202CAMID$

203CBGO

204 CC SYNTAX

ERROR

244-255

255FF7T

Note: This table shows all valid bytes as they are held within BASIC. Bytes not listed will list as appar

ently meaningful BASIC, but will not run. Within quotes, the full range of 64 ASCII characters can be ob

tained; see Appendix H for a table.

Use this when PEEKing BASIC or modifying BASIC with an ML monitor.

It's easy to show how a table like the one above can be compiled. Type NEW

and enter this one-line program:

OX

The 64 stores X at location 2049 + 4 = 2053. Therefore, POKEing 2053 with

some value, then listing, reveals how BASIC treats the value. POKE 2053,128 lists as

0 END, for example, as the table indicates. If you wish to investigate this methodi

cally, enter:

143



Advanced BASIC

or something similar, and POKE values from within a loop. The results may be un

expected; if you POKE a value of 5, this will change the color of the characters

printed on the screen after that to white.

If non-BASIC bytes are POKEd in, LIST will often list them as something appar

ently sensible, but the line will crash with a 7SYNTAX ERROR message when you try

to run the program. However, literals within quotes, or after REM or DATA state

ments, can generally take any value (except a null byte, which will be treated as an

end-of-line). This is why REM lines are a favorite place for simple anti-LIST meth

ods, as we 11 see.

Relatively few values out of the possible 256 comprise valid BASIC. Note that

numbers are stored without any attempt at compression, so the 10000 in GOTO

10000 takes five bytes and 123.456 in PRINT 123.456 takes seven; all the compo

nents are stored in ways which prevent ambiguity, and there is no way that numbers

could be compressed without making them resemble tokens or other BASIC features.

Note also that the operators +,—,*,/, and the up-arrow (T) don't appear in the

ASCII list; they are not stored in this form, but as tokens. Finally, note that BASIC

punctuation includes the comma, the colon, and the semicolon, but not the period,

which is treated as the decimal point.

How BASIC Stores Its Variables

Suppose you type A=123 on the 64's keyboard and press RETURN; PRINT A will

now print 123. Simple variables are allocated space after the program and before ar

rays. Even if there is no program, variables are stored in the same way, beginning

after the three zero bytes at the start of BASIC RAM. Because variables are stored

when they're first used, the sequence in memory is the order in which they were en

countered by the 64.

Four types of variables can be stored in this area: floating-point variables (X),

integer variables (X%), strings (X$), and function definitions (DEF FN X(Y)). The

name is always stored in two bytes (though the second may be a space character),

and as Figure 6-2 shows, the four types are distinguished by the high bit of each let

ter (of the variable name) being set or unset. This obviously gives four permutations

from each name and is the reason that only the first two characters of a name are

significant; NUMERAL and NUMBER are both treated as NU. The name carries an

implicit variable type identifier, which is converted from the BASIC type declarators

%, $, and FN (and parentheses for arrays).

Each variable type is allocated seven bytes. This means that when BASIC looks

for a simple variable, it always adds a constant offset of seven as it searches the

table, thus minimizing search time. However, with this scheme three bytes are

wasted with integer variables, two are wasted with strings, and one is wasted with

function definitions. Here are some of the different ways that the seven bytes rang
ing in value from 0 to 255 are interpreted:
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Figure 6-2. Storage of Simple Variables

Variable Type Name Details of Storage

Floating-point

Integer

String

Function Defn

ASCII
ASCII

orO
Exponent

Mantissa

| Ml M2 M3 M4

t
Sign bit

ASC+ 128
ASC+128

or 128
Hi Byte LoByte 0 0 0

t
Sign bit

ASCII
ASC+128

or 128
Length

Pointer

LoByte | Hi Byte
0 0

ASC+128
ASCII

orO

Pointer to Defn

LoByte Hi Byte

Pointer to Variable

LoByte Hi Byte

Initial

ofVar.

Floating-point, or real variables (X). The value is held in five bytes to an ac
curacy of one-part in 2T31 (about two billion).

These numbers are subject to rounding errors. Floating-point storage is dis

cussed in more detail later, for 64 owners interested in insuring accuracy in financial

or other calculations.

Integer variables (X%). Integer variables are held in signed, two-byte form,

within the range —32768 to +32767. The following formula, which allows for the

sign bit, gives the value of the integer variable:

(HI AND 127)*256 + LO + (HI>127)*32768

For example, HI=0 and LO=100 correspond to 100; HI=255 and LO=156 repre

sent — 100. The two expressions add to 0 with overflow.

Strings (X$). Strings cannot be fitted into seven bytes. To allow freedom in

assigning strings (without needing to specify their lengths, as some languages re

quire), they are stored dynamically in RAM. Three of the seven bytes allotted to a

string variable are relevant; two are wasted. One byte holds the length of the string;

LEN (X$) simply PEEKs this value. Another pair of bytes points to the starting ad

dress of the string. Between them, these provide a complete definition. This storage

system explains why any string has a maximum of 255 characters. It also explains

why CHR$(0) gives no SYNTAX ERROR in cases where a null string (" ") does; the

former character has length 1, but the latter has length 0.
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Most strings are stored in the area of free RAM high above the BASIC program

and variable storage. String storage begins fit the top of the BASIC program space,

and grows downward. As strings are redefined (or as new string variables are de

fined), they fill progressively lower memory locations until a so-called garbage
collection is forced. To save space, some strings aren't stored after BASIC but reside

within the program itself; X$'s pointer in the assignment:

10 X$="HELLO"

points back jyjthin the BASIC program, where HELLO is already stored.
Generally; any string involving calculation is stored after BASIC. For example,

10 X$="HELLO" + " " assigns exactly the same string to X$, but it is stored after
BASIC. Again, this has consequences which will be examined shortly. For the mo

ment, note that because of this internal storage feature:

10 DIM X$ (200): FOR J=0 TO 200: X$ (J) - "1234567890": NEXT

uses 2000 bytes less memory than the same program with:

X$g)="12345"+"67890"

In the first case, every string pointer points to the same string inside the BASIC pro

gram. In the second case, every pointer points to a separate ten-byte string stored
above the program. Any string with any element of calculation is stored after BASIC

(for example, one defined via INPUT or GET or even by A$=B$).
Function definitions. These appear in the variables table, too, and it's quicker

to store them here than to search the whole program for a definition.
Like strings, function definitions store the solid information elsewhere. A func

tion definition has two pointers, one pointing to the defining formula and one point

ing to its principal variable, which is set up in the table if it doesn't yet exist.

Running:

0 DEF FN Y(X) = XT2+5*X+3

creates two entries in the variable table (X and of the function definition Y). Actually,

the formula pointer holds the address of the equal sign (=) in the function defi

nition, and the variable pointer marks the address of the first byte of the floating

point value of its argument. The five bytes are also used as temporary storage for

calculations when running.

Storage of Arrays

Arrays (subscripted variables) are stored after the simple variables; since they can be

of any length, they don't lend themselves to the normal seven-byte memory

allocation.

All three array types—real, integer, and string—have a similar layout, except for

the data, which is stored in five-byte batches for real numbers, two-byte batches for

integers, and three-byte pointers plus characters for strings. Figure 6-3 summarizes

how arrays are stored.
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Figure 6-3. Storage of Arrays

Subscripted Variables (Arrays)

Array Name

Offset

Low High

No. of

DIMs

LastDIM+1

High Low

...

First DIM+1

High Low

... Data or String Lengths & Pointers...

Arrays are stored in the order they are first used. The array defined last is there

fore immediately below free memory. Because of this, it's possible to erase an array

which is no longer needed; this can be a useful memory-saving trick if an array is

used for some utility purpose (like sorting or merging). The general approach is:

AL=PEEK(49): AH=PEEK(50)

Then DIMension a new array and use it in the program. When finished with the ar

ray, delete it with:

POKE 49,AL: POKE 50,AH

This method simply stores the low and high bytes of the previous top-of-arrays

pointer, then restores them after using a new array in some way.

The DIM (DIMension) command defines the size of arrays. Obviously, this is

necessary unless you have unlimited RAM, since the computer can't know in ad

vance how much storage you'll need. DIM defaults to 10, so it is not necessary with

small arrays. Without DIM:

X(8)=l

is accepted, but:

gives a ?BAD SUBSCRIPT ERROR.

Housekeeping with arrays is more complex than that with simple variables, al

though the stored items are essentially identical. The bit 7 conventions for the name

are identical to those for simple variables.

The first two bytes are the array name, followed by the two-byte offset. The off

set is the length of the entire array, including numeric data or string pointers; how

ever, it excludes strings, which are stored elsewhere.

The number of dimensions is the number of subscripts: A(X) is one-dimensional,

A(X,Y) is two-dimensional, and so on. The number of elements in each dimension

must be stored as well, requiring two bytes, to allow for arrays like A(500) with

more than 256 items. DIM+1 in Figure 6-3 is the number of elements dimensioned,

since the first item is numbered 0. Finally, there is the data (or, with a string array,

the string lengths and pointers). Spare bytes are not wasted; for instance, each inte

ger takes only two bytes.

The data or string lengths and pointers are held in ascending order of argument,

with the lattermost arguments changing least often. For example, DIM A(l,2) stores

its variables in the order A(0,0) A(l,0) A(0,l) A(l,l) A(0,2) A(1,2).
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The position of any one item of an array can be calculated. For example, X(a,b,c)

is at a+b*(l+DIMl)+c*(l+DIMl)*(l+DIM2) elements along the array, where

DIM1 is the number of elements for which a was dimensioned and DIM2 is the

dimension of b.

Figure 6-4 shows a typical BASIC program during a run, followed by its vari

ables and arrays. This illustrates how memory sections are allocated for each dif

ferent kind of BASIC information.

Figure 6-4. A Typical BASIC Program During Its Run

Start End End of

of of BASIC

Program Program RAM

BASIC

Program

Simple Variables

(7 bytes each)

Arrays

(varying length)

Simple & Array Strings.

(Stored without spaces.

Varying length).

Maximum Space

Available for Strings

Consequences of BASIC'S Storage Methods

A number of consequences follow from these methods of storage. Because strings

and arrays are of particular significance with serious programs, it's worthwhile to ex

plain them thoroughly. If you understand them, you'll be able to write better

programs.

String storage. All strings are stored as ASCII characters in ascending order in

memory. For instance, the program lines below show how a pair of pointers (S and

E, for Start and End) delimit any current string in memory, and how a string is held

in conventional sequence in ASCII.

10 X$="HELLO"+""

20S=PEEK(51)+256*PEEK(52):E=PEEK(53)+256*PEEK(54)

30 FOR J=S TO E-1:PRINT CHR$(PEEK(P);:NEXT

Add lines 11, 12, 13, and 14, like line 10; the program as it stands prints the last

of them. But if E is altered to PEEK(55)+256*PEEK(56), which is the top of memory

available to BASIC, you'll see how each string is stored and the top-down way each

is positioned. Figure 6-5 illustrates this, and it is important to note that if a string is

redefined, the old string is still left behind in memory; redundant data like this is

called garbage.

Some loops are heavy users of memory space. For example, FOR J=l TO 40:

X$=X$+ " ": NEXT could be used to generate a string of 40 spaces. But the first

time the loop executes, X$ is defined as a string of one space character; the next

time, as two space characters, and so on; so the total memory used is 1 + 2 + 3 +

. . . + 40 bytes, or 820 bytes, of which 780 are garbage.
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Figure 6-5. String Storage

x$ Y$

BASIC

Program

String variables, simple

and array. Length of

string and pointer

stored here.

Strings in

high memory

X$ is stored only in a BASIC program line (for example, 10 X$="HELLO"). Strings which must be built
irom other strings are stored in high memory (for example, 20 Y$=H$+Z$).

Loops to input data in a controlled way, using GET, do something very similar.
They rely fundamentally on routines like this one:

10 GET X$: IF X$="" GOTO 10

20 Y$=Y$+X$

30 GOTO 10

and use a lot of memory. A short word like SIMON processed like this leaves
SIMONSIMOSIMSIS in memory.

Corruption of data in RAM. Provided the end of BASIC is correctly set, this
will not be a problem. For example, user-defined characters are popularly stored
from 12288 ($3000). Provided POKE 55,0: POKE 56,48: CLR is executed early in the
BASIC program, and it is shorter than 10K, the program will run perfectly because
all strings are separated from the graphics definitions.

Garbage Collection

Programs using many strings are subject to garbage collection delays. It is fairly easy
to see why. Figure 6-6 shows a simplified situation where RAM contains several
strings, some of which are now redundant.

Figure 6-6. Garbage Collection

Before garbage collection: A$ was ELEPHANT, B$ is DOG, A$ is now CAT.

c|a
^ 1

T D O | G E k E

i

P H A N T

free RAM A$ B$ garbage

t
Top of

BASICRAM

After garbage collection: \
C A TD OG EL C A T DO G

free RAM A$ B$
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Let's suppose BASIC tries to set up a new string but finds there's insufficient

room. It calls a routine, the same as FRE(O), to find out which of the strings after
BASIC are still being used. Strings stored within BASIC itself are outside the scope

of this algorithm and are ignored.
The routine has to check every string variable to determine which is nearest the

top end of memory. This string is moved up as far as possible. The process is

repeated with the remaining strings until the whole collection is cleaned up. The
number of strings is important, not their lengths; generally, with N strings this takes
time proportional to N plus N-l plus N-2, etc. Mathematically inclined people
will realize this adds up to an expression on the order of N squared. What this
means is that, like the well-known bubble sort, a process that is acceptably fast with
a small number of items can become painfully slow with a larger number. In fact,
the whole process is analogous to the bubble sort: intermediate results are thrown

away, which saves space but wastes time.

The 64 takes roughly 0.00075 seconds times the number of strings squared to

free memory. The actual relationship is a quadratic, while this is only an approxima

tion. For instance, 100 strings take 0.9 seconds, 200 take over three seconds, 300

take over seven seconds, and so on.

Note that, during garbage collection, the keyboard locks in an apparent hang

up. This is normal; if a long ML routine runs, the RUN/STOP key has no chance to
work. RUN/STOP-RESTORE will interrupt the collection if you find it necessary. In

practice, you'll be likely to encounter garbage collection only if you're using string

arrays; 100 ordinary strings will cause an occasional delay of less than a second. Try

the following example, which calculates the time required to perform an FRE(0); as

stated above, this uses the garbage collection routine.

10 INPUT D:DIM X$(D):FOR J=l TO D:X$(J)=STR$(RND(1)):NEXT

20 T=TI:J=FRE(0):PRINT(TI-T)/60 "SECONDS''

If garbage collection is a problem, you must rewrite the program to reduce the

number of strings. There is no other easy solution. For example, pairing strings to

gether roughly divides the delay by 4. Note that performing FRE(0) whenever there's

time available can help (by shifting the delay to an acceptable period). It's also pos

sible to do a limited FRE on part of the strings, altering the pointers at 55 and 56

down or 53 and 54 up.

Calculating Storage Space

Simple variables and function definitions all take seven bytes, plus allowance for

strings, so reusing variables saves memory. The RAM occupied by an array is easy to

calculate. The figure is identical to its own offset pointer, plus strings where ap

plicable. The number of bytes is:

5+2*NUMBER OF DIMENSIONS+(DIM1+1)*(DIM2+1) *...* 2, 3, or 5

where the value 2, 3, or 5 depends on the type of array (integer=2, string=3,

real=5). In addition, the strings of a string array must be counted.

Integer arrays are economical. If you have a large amount of numeric data, it

often pays to convert it into this form, provided the range —32768 to +32767 is suf

ficient. It may be worthwhile combining two smaller numbers to increase the

efficiency.
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Examples:

1. X°/o(500) has one dimension, and DIMl=500. Therefore, it occupies 5 + 2 +
501*2 = 1009 bytes.

2. AB(10,10) has two dimensions; DIMl = 10 and DIM2=10. This much data will oc
cupy 5 + 4 + 121*5 = 614 bytes.

3. X$(100) defined with strings on average 10 bytes long occupies about 5 + 2 +
101*3 + 101*10 = 1320 bytes.

Order of Definition of Variables

The order in which variables are defined may have a significant effect on the speed
of BASIC. This occurs for two reasons. First, whenever BASIC uses a variable, it has
to search the table for it. If much-used variables are encountered first, less time will
be necessary. Second, if BASIC finds a new simple variable and there are arrays in
memory, the array table has to be moved up in memory.

DIM is usually the most efficient way to define variables. It operates on simple
variables just as it does on arrays. A statement like DIM J, X, S%, M$, X$(23) has the
same effect on BASIC as searching for each variable, not finding it, and therefore

positioning it with its default value of zero or the null string after the program.

LOAD and SAVE

In the direct mode, SAVE stores a program to tape or disk. It assumes that the pointers

at locations 43 and 44 and locations 45 and 46 mark the start and end of the BASIC

program, and it saves the bytes between these pointers. As a consequence, it is pos

sible to save a program with its variables by moving the end-of-program pointer up

to include variables. This technique works very well with integer arrays, which are

an economical way to store numeric data. A similar technique can save character

definitions along with BASIC; see Chapter 12 for the method.

In the program mode, LOAD chains. The next tape (or another disk program) is

loaded, generally into normal BASIC memory, overlaying the program which per

formed the LOAD. Automatically, a GOTO is executed which points to the first line

of the LOADed program, so the new program runs while retaining variables from the

earlier program. In this way, extremely long BASIC programs can still be run; for ex

ample, a series of visual screens in hi-res mode could be chained to provide an in

teresting advertising display. Of course, there's a delay between programs while the

next one is loaded.

Figure 6-7. Program Chaining

BASIC Program Variables

LOAD

BASIC Program

Note: LQAD command on first program causes new BASIC program to load, then run. In the

diagram, the new program is shorter than the old, so variables' values are mostly retained.
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This technique, illustrated in Figure 6-7, can be extremely powerful. However,

there are two complications. First, the new program may be longer than the second;

in this case, the variables will be overwritten. More seriously, the end-of-BASIC

pointer still thinks the new program ends where the old program did; so whenever a
variable is defined or changed, the program material toward the end will be cor
rupted. For a complete solution to this problem, see OLD, later in this chapter.

A second problem, which is relevant to the storage of variables, is that some

strings and all function definitions are stored within BASIC. Thus, a chained pro
gram cannot generally make use of function definitions or strings within BASIC. If
this is ever a problem (and it could be if strings of user-defined characters are being

passed between chained programs), it is easily avoided with strings. Simply use
something like A$="ABCDE" + " " in the loader, which forces the string into

higher RAM. Function definitions, if used, must be redefined in each new program.

Accuracy of Number Storage
All number systems have limitations. Just as the decimal system cannot exactly ex

press thirds, the square root of 2, or pi, so computers with digital storage all have

problems with rounding errors. The difficulty is inherent in the machines. Some

computer chips designed to perform calculations have registers which indicate when

a result has been rounded, and also the lower and upper limits of the result. In prac

tice, great precision is usually unnecessary (or misleading), and for many purposes

this subsection will not be needed.

The only reason accuracy is a possible difficulty with the 64 is the fact that

numbers as they are printed don't always match the precision with which they are

stored. If they were printed in full, errors would be obvious.

Try these examples:

PRINT 8.13

PRINT 3/5*5: PRINT 3/5*5 =3

The first example yields 8.13000001. This is the smallest value where an evaluation

stores a number in a form which appears changed on PRINT. The second evaluates

the result of 3/5*5 and prints it as 3, but the subsequent test shows that it isn't

considered equal to 3. In fact, it is stored as 3.0000000009.

Obviously, PRINT is designed to work sensibly in most cases. However, since

precision is inevitably lost in some calculations, there must be rounding rules, and

exceptional cases are likely to turn up.

Special techniques can be used to avoid these problems. The first is to allow a

range of possibilities (for example, treating X and Y as identical if ABS(X—Y)<.0001).

Another technique is to use only integers wherever feasible. Yet another is to

use special routines; BASIC is generally too slow, but ML routines to multiply digits,

for example, aren't all that difficult to write. In fact, BASIC could be extended to in

clude commands like ADD, SUBTRACT, MULTIPLY, and DIVIDE with string argu

ments, as in COBOL's ADD S$ TO Y$ GIVING Z$. Chapter 4 has some BASIC

routines which perform their own rounding, and PRINT USING (see below) is a

handy ML routine.
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Storage and Errors with Floating-Point Numbers

Floating-point variable values are stored in five bytes (see Figure 6-8). Extra bits are

used during calculations, but these are lost when the final computed value is stored.

Figure 6-8. Storage of Floating-Point Variables

Bytel

Exponent

Byte 2

Sign Bit and

Mantissa 1

Byte 3

Mantissa 2

Byte 4

Mantissa 3

Byte 5

Mantissa 4

This is a standard arrangement in which every increase in the exponent doubles

the value, and where the mantissas are stored in decreasing order of significance. A

single high bit holds the sign, corresponding with the minus flag of the 6510 chip.

The 31 bits that hold the mantissa span a range of 1 to 1.9999. . . which, when

multiplied by the exponent (in the form 2 to the nth power), takes in the entire range

from about 10~38 to 1038 with an accuracy of one part in 231. Outside these limits,

either an overflow error will occur or a very small number will be rounded to zero.

There's no underflow error to indicate that a number is too small to be handled.

The following formula will convert any number stored in this form into a more

understandable form:

(-l)t(Ml AND 128)*2t(EX-129)*(l+((Ml AND 127)+(M2+(M3+M4/256)/256)/256)/128)

The examples in Table 6-2, PEEKed from 64 memory, will help to clarify this:

Table 6-2. Floating-Point Storage

-1.5

0

.1234

1.5

3

4

5

6

7

8

144.75

99999999

153

Bytel

129

0

125

129

130

131

131

131

131

132

136

155

Byte 2

192

any

124

64

64

0

32

64

96

0

16

62

Byte 3

0

any

185

0

0

0

0

0

0

0

192

188

Byte 4

0

any

35

0

0

0

0

0

0

0

0

31

Byte 5

0

any

163

0

0

0

0

0

0

0

0
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Note that numbers from 4 to 7.9999 . . . have the same exponent; their bit pat

terns run from 00000 ... to 11111 ... as the value increases. Adding 1 to the expo

nent doubles the value, subtracting 1 halves it, and so on. Note how negative

numbers have the sign bit set. Note also that an exponent of zero always indicates a

zero value with this number system.

To decode a number, the easiest method is to start at the lowest significant byte,

divide by 256, add the next, divide by 256, add the next, divide by 256, add Ml

(less 128 if necessary), divide by 128, and add 1. Scale up the result (which will be

from 1 to 1.999 . . .) by 2"129.
Conversely, if you wish to express a number in this format, either PEEK the val

ues from RAM or (if you can't access a computer) use the method outlined below.

Example. Expressing —13.2681. The minus sign means you must set the high

bit of Ml. The nearest power of 2 below 13 is 8 (23), so the exponent is

129+3=132. 13.2681/8 is equal to (1.6585125), and the fractional portion is the

number stored by the 31 bits in the mantissa:

.6585125 * 128 = 84.2896

.2896 * 256 = 74.1376

.1376 * 256 = 35.2256

.2256 * 256 = 57.75.

Thus, the nearest floating-point approximation of —13.2681 is 132 I 212 I 74 I 35 I 58.

Storage errors. Typically, a number giving aberrant results is stored with the fi

nal bit, or bits, incorrect. For instance, X=3/5*3 stores X as 130 I 64 I 0 I 0 11, and the

final bit makes X unequal to 3.

Integers and fractions. Any whole number between 1 — 232 and 232 — 1 is held

exactly by the 64, without any error. This is why loops like FOR J=l TO 100000:

PRINT J: NEXT can continue without error, while the same loop with STEP .9 soon

prints numbers with rounding errors.

Note that 232-l is stored as 160 1127 I 255 I 255 I 255 I 255 and is the highest ac

curately stored integer; 232 is stored as 161 I 0 I 0 I 0 I 0. Similar rules apply to frac

tions; provided they are combinations of 1/2, 1/4, 1/8, . . . 1/231, they can be held

exactly. Because of this, it may be best (particularly in financial calculations) to store

values as integers.

Special Locations and Features of BASIC
BASIC uses a lot of the low end of memory for temporary storage, and many of

these storage locations are programmable from BASIC. This section describes some

of the more useful methods. The keyboard and some aspects of screen handling are

also included here, as they are special points of interest in BASIC programming.

Buffers

The input buffer, keyboard buffer, and tape buffer occupy locations 512-600 ($0200-

$0258), 631-640 ($0277-$0280), and 828-1019 ($033C-$q3FB), respectively. During

normal operations, each of these areas has a specific function. The program "Micro-

Scope" (from the preceding chapter) allows you to watch the first two of these in

action.

Input buffer. Program 6-4 demonstrates the use of the input buffer.
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Program 6-4. Using the Input Buffer

10 N$=MFORX=1TO5:PRINT X:NEXT X" + CHR$(0)

20 FOR J=l TO LEN(N$)

30 POKE 511+J,ASC(MID$(N$,J)): NEXT

40 POKE 781,255: POKE 782,1

50 SYS 42118

An ASCII string, terminated by a null (zero) byte and POKEd into the buffer,

behaves exactly as the same line would if typed in from the keyboard. Lines 40 and

50 execute the command in the buffer, after first setting a pointer to $01FF (one less

than the start of the buffer). The buffer would also be executed if the end of the pro
gram were reached, or if an END statement were encountered, but using the SYS

shown in Program 6-4 is often more useful.

Keyboard buffer. It's easy to show that the 64 has a queuing system for key
strokes. The short routine:

1 GET X$: PRINT X$: FOR J=l TO 2000: NEXT: GOTO 1

prints characters which have been typed faster than the computer can process them.

Up to ten characters can be stored here. You can POKE 649 ($289) to change this,

but if the value exceeds 10, you could corrupt some pointers (it is usually possible to
use up to 15, however).

Location 198 ($C6) independently stores the number of characters in the buffer.

POKE 198,0 therefore causes all characters to be ignored; it has the same effect as

FOR J=l TO 10: GET X$: NEXT. The key combination, SHIFT-RUN/STOP, puts

LOAD, carriage return, RUN, carriage return into this buffer, using a routine at

$E5EE.

Many examples in this chapter (AUTO, DELETE, LIST) rely on this buffer. The

following short routine shows how POKEs into the buffer work. This is another im

portant programming technique.

10 DATA 72,69,76,76,79

15 FOR J=631 TO 635:READX:POKE J,X:NEXT

20 POKE 198,5

POKEing one or more RETURN characters, CHR$(13), into the queue is also a

popular trick, since it allows messages printed on the screen to be input later. In ef

fect, that extends the range of the command beyond ten characters.

The next example, Program 6-5, puts a quote in the line just before INPUT. This

is very useful when a string which is to be input may contain commas, colons, or

other separators. A quote allows the entire string to be input without error. Run this

program, typing in something like A, B, C, and contrast the result with that achieved

by an unadorned INPUT statement.

Program 6-5. Using a Quote Before INPUT

1000 P=PEEK(198): P=P+1: IF P>9 THEN P=9

1010 FOR J=631+P TO 631 STEP -1i POKE J, PEEK(J-l)

: NEXT

1020 POKE 198,P: POKE 631,34: INPUT X$

1030 PRINT X$: FORJ=1 TO 1000: NEXT: GOTO 1000

155



Advanced BASIC

Program 6-5 moves the characters along the buffer, just as the 64's operating

system does.

A more exotic use is to transfer BASIC programs to the 64 from another com

puter by inputting them in ASCII via a modem, printing individual lines on the

screen, and inputting each line, adding a RETURN at the end. It is quicker than typ

ing them in, although the work of conversion is likely to be a problem.

Tape buffer. The 64's operating system reserves this area for tape use, and it is

therefore a popular place to put ML routines once no more tape activity is expected

(after a program has been loaded and is running). It is not actively programmable

like the two previous buffers. In addition, it is overwritten whenever tape is written

to or read from; don't put ML here if you're using tape to load or save data, or if you

are chaining programs.

Spare RAM areas. These aren't buffers in the usual sense. The 64 has IK of

RAM at the low end of memory for its own use, but some isn't allocated and can be

used safely. Locations 251-254 ($FB-$FE), 679-767 ($02Al-$02FF), 784-787
($0310-$0313), 820-827 ($0334-$033B), and 1020-1023 ($03FC-$03FF) are avail

able. The second of these areas is 95 bytes long; the tape buffer has 192 bytes, but

820-1023 are free for noncassette users (204 bytes). BASIC does not use the 4K of

RAM from 49152-53247 ($C000-$CFFF), which is also free for ML programs or

other purposes.

Clock
The three-byte jiffy clock is stored at locations 160-162. Location 162 is the fastest-

changing byte. At each interrupt (about every 1/60 second, a unit of time called a

jiffy—hence the name, jiffy clock), that location is incremented, with overflow when

necessary into the higher bytes. Thus, location 161 is incremented every 256/60 sec

onds, or about every 4.2667 seconds; location 160 is incremented every 65536/60

seconds, or about every 18.204 minutes. The PAUSE routine, later in this chapter,

shows a possible use of the jiffy clock.

The TI and TI$ reserved variables discussed in Chapter 3 are derived from these

bytes by a straightforward conversion. TI equals PEEK(162) + 256*PEEK(161) +

256*256*PEEK(160); for TI$, the value of TI (in jiffies) is converted into hours, min

utes, and seconds. Although the speed of the clock is constant, it is not identical to

that of real clocks, since the interrupts aren't at precise 1/60-second intervals. The

error varies with power sources, and between VICs and 64s, but the maximum error

will not be more than one part in 33,000 (a couple of minutes a day).

Disabling RUN/STOP and RUN/STOP-RESTORE

Blocking out the RUN/STOP key is a useful way to provide some program security,

to guard against accidental use of SHIFT-RUN/STOP (which will cause the 64 to try

to load and run a program), and to keep the user from exiting a machine language

program inappropriately.

Four software methods are given below. Remember, however, that if your com

puter goes into an infinite loop with RUN/STOP disabled, you may have to turn

your 64 off to correct the problem. Be sure to include a subroutine to reenable
RUN/STOP.

156



Advanced BASIC

To disable both RUN/STOP and RUN/STOP-RESTORE (method 1): POKE

808,54: POKE 809,188. To reenable, POKE 808,237: POKE 809,246. This is one of

the best methods, since it leaves the clock working, disables both RUN/STOP and

RUN/STOP-RESTORE, doesn't affect tape operations, and leaves LIST working

normally.

To disable both RUN/STOP and RUN/STOP-RESTORE (method 2): POKE

808,234. To reenable, POKE 808,237. This simple POKE disables both RUN/STOP

and RUN/STOP-RESTORE. It leaves the clock working, but it may have an effect

on tape loading. If you're not using tape once the program is loaded, this method is

fine. Note, however, that LIST will be scrambled. Every time LIST checks for the

RUN/STOP key, the pointer telling it the length of the current line is changed. It is

strange to see a listing composed of apparent garbage run properly.

To disable RUN/STOP: POKE 788,52. To reenable, POKE 788,49. This POKE

modifies the interrupt vector so that it bypasses the Kernal routine to increment the

clock and check RUN/STOP. However, it doesn't disable RESTORE. Tape operations

defeat this procedure; during READing from tape the interrupt sequence is reset, and

RUN/STOP breaks into the program. The jiffy clock is turned off by this POKE.

RUN/STOP can also be disabled with POKE 808,239.

To disable RUN/STOP-RESTORE only: POKE 792,193. To reenable, POKE

792,71. This alters the NMI (Non-Maskable Interrupt) vector so that it returns with

out having any effect.

How RUN/STOP works: The RUN/STOP key is not an interrupt-like device, as

it may appear to be. In fact, every 1/60 second the Kernal routine which tests the

RUN/STOP key is called. That routine looks at location $91 (145), and if the highest

bit is low—that is, if the contents equal $7F (127)—RUN/STOP is currently being

pressed. ML programmers can therefore check RUN/STOP with JSR $FFE1:LDA

$91:BPL.

LIST and RUN also use the Kernal routine that tests the RUN/STOP key, which

is why a listing or a running program can be stopped. Tape LOAD and SAVE also

use it, as does RESTORE.

The Kernal routine at location 65505 ($FFE1) jumps to the address vectored in

locations 808 and 809. Method 1 changes this destination from $F6ED to $BC36.

The ML it finds there is simply LDA #$1/RTS. This value insures that RUN/STOP

will never occur.

Function Keys

The simplest programming method is to use a simple GET; the range of ASCII val

ues for fl-f8 are 133, 137, 134, 138, 135, 139, 136, and 140. Program 6-6 is a BASIC

loader which enables all eight function keys to be defined with individual strings up

to 32 characters long.

Program 6-6. Function Keys
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

0 DATA 32,253,174,32,158,173,32,141,173,32,247,183

,136,152,10,10,10 :rem 204
1 DATA 10,10,133,253,169,29,133,254,32,253,174,32,

158,173,32,143,173 :rem 12
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2 DATA 160,0,177,100,240,22,170,200,177,100,133,25

1,200,177,100,133 :rem 179

3 DATA 252,160,0,177,251,145,253,200,202,208,248,1

38,145,253,169,28 :rem 228

4 DATA 141,144,2,169,75,141,143,2,96,24,165,215,23

3,132,201,8,144,3 :rem 213

5 DATA 76,72,235,170,189,124,28,133,253,169,29,133

,254,160,0,177,253 :rem 40

6 DATA 240,237,201,95,240,6,32,210,255,200,208,242

,166,198,169,13,157 :rem 71

7 DATA 119,2,230,198,208,216,0,64,128,192,32,96,16

0,224 :rem 152

10 REM PROGRAMMABLE FUNCTION KEYS FOR THE 64

:rem 146

20 REM TYPICAL EXAMPLES OF SYNTAX: :rem 113

30 REM SYS 40448,1,"THIS IS FUNCTION KEY 1":CLR

:rem 134

40 REM SYS 40448,2,"[CTRL-RED]M:CLR :rem 41

50 REM SYS 40448,3,"LIST 50-100V:CLR * ADDS RETUR

N :rem 79

60 REM SYS 40448,5,"LOAD"+CHR$(34)+"$"+CHR$(34)+",

8":CLR:REM LOADS DIRECTORY :rem 205

90 REM Sl=49192 TO PUT ROUTINE AT $C000 : rem 101

100 POKE 56, PEEK(56)-2: CLR: REM LOWERS MEMORY BY

512 BYTES :rem 63

110 S=PEEK(56):S1=256*S :rem 24

120 FOR J=S1 TO S1+131:READ X:POKE J,X:NEXT

:rem 202

130 POKE S1+22,S+1:POKE S1+65,S;POKE S1+90,S:POKE

{SPACE}S1+94,S+1 :rem 19
140 FOR J=Sl+256 TO S1+511:POKE J,0:NEXT:REM SET A

LL FN KEYS NULL :rem 174

150 PRINT M{CLR}USE SYNTAX:- :rem 19
160 PRINT "SYS" SI ",N,STRING:CLR" :rem 199

170 LIST 20-60 :rem 201

The program reserves 512 bytes at the top of memory for the ML and the eight

32-character strings. Strictly speaking, only 31 characters are available for each key

definition, because each has a null byte as a terminator. When Program 6-6 is first

run, all function definitions are initially blank. To define a function key, use a state

ment of the form:

SYS address, n, "string":CLR

where address is the start of the ML routine (the program will tell you the proper

value to use), n is the number of the function key you wish to define, and string is

the string of up to 31 characters you wish to assign to that key. CLR sets the pointers

properly. The program has REM statements which include examples.

Typically, SYS 40448,5,"NAME": CLR calculates the starting point where the

string is to be stored and copies it there. CLR sets BASIC pointers correctly. (This ex

ample makes f5 print NAME on the screen.)
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The vector at $028F-90 is central to the method. Provided it isn't changed and
provided the strings and ML aren't overwritten, the function keys will operate as

programmed indefinitely.

The software is written so that the left-arrow key can be used to insert a carriage
return into the keyboard buffer:

SYS 40448,l,"LIST 100-30<K':CLR

This defines function key 1 to type LIST 100-300 and press RETURN so that those

lines will be listed. Typical applications of user-defined keys are POKEs into hard-to-

memorize locations, SYS calls to routines in memory, and printouts of current values
of variables.

Keyboard

Commodore keyboards are very reliable. The 64 keyboard has 66 keys, which can be

pried off and replaced. It is possible to rearrange the keys, perhaps into German

GWERTZ style or the Dvorak layout with economically arranged letters. The soft

ware which decodes the keyboard can allow for this. Single-key entry of BASIC

keywords is possible, and as illustrated above, the function keys can be programmed
to output strings.

The CTRL key delays screen scroll and acts with keys 0-9 to set the major colors

and reverse on and off. CTRL-A through CTRL-Z also output CHR$(1) through

CHR$(26); for example, CTRL-E sets white characters, CTRL-N lowercase, and

CTRL-S cursor home. Also, CTRL-H locks the keyboard mode and CTRL-I unlocks

it, something otherwise tiresome to achieve. A few other keys act with CTRL, too.

An especially useful combination is CTRL-[ (open bracket, or SHIFTed :), which is

CHR$(27). This is a special printer code, called ESCape, which triggers features like

underline, double strike, and emphasized.

Reading the keyboard. When the 64 is operating normally, its interrupt routine

performs several functions. The clock is updated and a RUN/STOP key location up

dated, the cursor may be flashed, the cassette motor is turned off unless a flag is set,

the keyboard is scanned, and the keyboard buffer is updated on a keypress. This can

be traced in a ROM disassembly. When an interrupt is generated, the 6510 finishes

its instruction, saves a few values, and jumps to the address in $FFFE at the very top

of memory. It is tested to see if it's an interrupt (not a BRK instruction), and jumps to

the address held in $0314-$0315 (788-789), which is normally $EA31. The first

instruction is JSR $FFEA (UDTIM: increment clock, save RUN/STOP status), fol

lowed by screen and tape handling, and a call to the Kernal's SCNKEY routine at

$FF9F which, as the label implies, scans the keyboard.

Only 64 keys of the 66 are detectable by the keyscan. RESTORE is unreadable; it

causes a non-maskable interrupt (NMI) by making a circuit when pressed and isn't

decoded with the other keys. SHIFT/LOCK is the other undetected key. The 64 keys

are wired into a matrix of eight rows and eight columns, which can be scanned using

only two bytes. The arrangement of keys within the matrix is different on the VIC-20

and the 64.
Briefly, two ports of CIA 1, at $DC00 (columns) and $DC01 (rows), are exam

ined for bits set to 0. These bits are almost all 1; only the grounding action of a key
sets a zero value. This is why Table 6-3 below has values of 127, 191, etc.—the bit

patterns are 01111111, 10111111, and so on.
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When the scan begins, $DCOO is set for output and $DC01 for input, by the de

fault configuration of their data direction registers $DC02 and $DC03 (which hold

$FF and $00, respectively). In turn, the row register is rotated to take one of 8 val

ues, and each bit of the column is tested each time. A bit will have a 0 value if its

corresponding key is pressed, or 1 if the key is not pressed. The value is $FF when

no keys are pressed. A counter increments with each loop; it is this counter value

(not the value read from the matrix) which is stored when a keypress is found. Since

there are eight rows and columns, 64 different values are theoretically possible, and

the 64 uses all of these.

Reading more than one key simultaneously is generally possible only with ML;

Chapter 13 has an example. Even with ML, it is difficult to detect more than 2 of the

64 keys at once; for example, with keys 9 and K pressed, neither the + nor the : key

can be distinguished.

Table 6-3. Decoding the Keyboard

Contents of $DC01 (Row)

o

U

$7F (127)

$BF (191)

$DF (223)

$EF (239)

$F7 (247)

$FB (251)

$FD (253)

$FE (254)

$7F

(127)

/

,

N

V

X

Left
SHIFT

3

$BF

(191)

Q

t

@

O

u

T

E

f5

$DF

(223)

=

K

H

F

S

£3

$EF

(239)

Space

Right

sh!ft

M

B

C

Z

fl

$F7

(247)

2

-

0

8

6

4

17

$FB

(251)

CTRL

;

L

J

G

D

A

<=>

$FD

(253)

-

*

P

I

Y

R

W

RETURN

$FE

(254)

1

£

+

9

7

5

3

w

The column is always set to 127 (at $EB42 in ROM, to be precise) apart from

during the actual reading; so RUN/STOP can be detected merely by testing whether

$DC01 has bit 7 clear. Left SHIFT, X, and several other keys can easily be checked

like this, too. Machine language is necessary to read the keyboard. The following

BASIC program and ML routine illustrate the way the rows and columns interact. At

this level, SHIFTed and unSHIFTed keys aren't distinguished.

10 POKE 808,234 :REM DISABLE STOP

20 INPUT "COLUMN",C :REM USE 127,191, ETC

30 POKE 829,C

40 SYS 828: GOTO 40

$033C LDA #$00

$033E STA $DC00 ;SET COLUMN
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$0341 LDX

$0344 LDA

$0346 JSR

$0349 LDA

$0346 JMP

$DC01 ;FETCH ROW

#$00

$BDCD;PRINT X

#$0D

$FFD2 ;NEWLINE

The keyboard cannot function correctly if you change the default values in the

data direction registers $DC02 (56322) or $DC03 (56323). POKE 56322,253 is an ex

ample; this turns off 3,4, left SHIFT and several letters, so something like P SHIFT-O

56222 + 100,252+2+1 is needed to reenter the normal value of 255. Joysticks and

paddles are wired together with the keyboard; games port 1 connects with the rows,

port 2 with the columns. This is the reason that a joystick in port 1 generates appar

ent keypresses, and pressing certain keys has the effect of closing switches in the

port 1 joystick.

Decoding the keyboard. When a key is pressed, an identifying number from 0

to 63 is stored in $CB (203). The value of the most recent keypress is in $C5 (197),

and comparing the two shows whether a new key is being pressed. This prevents a

long string of X's from being entered, for example, if you press X and hold it down

too long. PEEKing $CB or $C5 (see Figure 6-9) is a very useful way to test for key

depressions without using GET, and it has the advantage of working at all times.

The default value is 64, which is stored if no keys are pressed, so PEEK(203) = 64

means no key is pressed. In practice, $C5 and CB are indistinguishable. Note that

the values stored in these locations are not ASCII codes.

Figure 6-9. Keyboard Values Stored in $CB and $C5
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SHIFT, Commodore, and CTRL. Location $028D (653) stores information on

these keys, which are assigned the values 1, 2, and 4, respectively. The following

line of BASIC checks the value and prints it to the screen:

FOR J=l TO 9E9: PRINT PEEK(653): NEXT

The values add up, so this location will contain a number from 0 to 7, depending on
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which of the three keys is pressed. For example, if SHIFT and the Commodore key

are held down simultaneously, the value should be 3 (since 1 + 2 = 3).

RUN/STOP. Location $91 (145) stores a copy of the normal keyboard row and

is used to indicate that RUN/STOP is pressed. If you PRINT PEEK(145) in a loop

with STOP disabled, the result is 127.

Converting these values into ASCII is the final stage. The 64 has four character

tables built into ROM, for unSHIFTed, SHIFTed, Commodore key, and CTRL sets,

starting at $EB81, $EBC2, $EC03, and $EC78, respectively. Each is 65 bytes long and

converts $C5's contents into ASCII values, making allowance for the SHIFT or Com

modore keys. The last byte in each table contains $FF, the value used to show that

no key is pressed.

After copying the key value (0-64) into $CB, an indirect jump is executed via

$028F to $EB48. This routine's function is to set the address in ($F5) to point to one

of the four keyboard matrices, depending on the SHIFT keys in effect. It has a

subsidiary function, that if $0291 (657) is less than 128, SHIFT-Commodore key will

switch graphics sets from lowercase with uppercase to uppercase with graphics, or

vice versa.

Now, with $F5 pointing to one of the four keyboard tables, the routine at $EAE0

is entered, and the key's ASCII value is determined. The keyscan routine then deals

with keyboard repeats, cursor control, and other special keys. Finally, the ASCII

value of the key is put into the keyboard buffer (if room is available there), and con

trol returns to BASIC until the next IRQ interrupt.

The vector at $028F can be changed to point to your own RAM routine so that

keys can be intercepted and their effect changed. This is an ML technique only; an

earlier example shows how to program the function keys to print out strings of

characters.

Intercepting Keys

Generally, if you wish to intercept keys to trigger an activity, like printing a message,

the technique is to test either $CB or $D7 for your key, or keys. $D7 (215) stores the

ASCII value of the last key printed to the screen. Check $CB if you're only con

cerned with the physical key, and check $D7 if you need to distinguish between

unshifted and shifted keys. Left SHIFT can be tested with $91; SHIFT, CTRL, and

Commodore key can be separately detected at $028D. Jump to $EB48 if the looked-

for key isn't pressed; end your own routine typically with JMP $EB42, which reloads

$DC00 with the correct value for the next keyscan. In this way, keyboard processing

is exactly as normal, SHIFT keys and all, apart from your own specially inserted rou

tine. This very simple example changes the 64's background color whenever the left-

arrow key is pressed:

($028F should point to the starting address)

LDA $CB

CMP #$39 ;Left-arrow key

BEQ LABEL

JMP $EB48 ;Continue normal keyboard operation
LABEL INC $D020 increment border color register

JMP $EB42 ;This exit doesn't print <-. Allows repeat.
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As a more complex example, consider how we might print BASIC keywords

with single keystrokes (assisted by SHIFT keys, CTRL-Commodore key plus a key, or

some other combination). There are about 64 keywords, so just about every key can

be assigned a unique word. The example program below uses the Commodore key in

combination with other keys to print BASIC words. For example, the Commodore

key with A prints RUN. One of the points to watch for is the debouncing feature just

after LABEL—without this, the words would print repeatedly, instead of only once.

The following assembler listing shows the flow of the single key BASIC entry

system. The vector at $028F should point to the start of this routine:

; Is Commodore key pressed?

; Continue as usual if not.

; Now look at ordinary scanned keys;

; exit if no key pressed.

; Exit if same key pressed as last time;

; if new key, record it in $C5.

; Loop to choose Yth BASIC word.

; BASIC words are stored from $A09E.

; Look for high bit set,

; and, when found, decrement

; Y until it counts down to 0.

; Load and print consecutive characters.

; end signaled by high bit set.

; CHROUT

; Make the routine freely relocatable.

; Turn off high bit of last character

; then print it.

; Continue normal keyscan.

The routine described above is listed below in the form of a BASIC loader.

Program 6-7. Single-Key Keyword Entry

0 DATA 173,141,2,201,2,240,3,76,72,235,164,203,192

,64,240,247,196

1 DATA 197,240,243,132,197,200,162,0,232,189,156,1

60,16,250,136

2 DATA 208,247,232,189,156,160,48,7,32,210,255,48,

245,16,243,41

3 DATA 127,32,210,255,76,72,235

20 S=49152:REM S=828 WORKS ALSO

EXIT

LABEL

LOOP

PRINT

LAST

LDA

CMP

BEQ

JMP

LDY

CPY

BEQ

CPY

BEQ

STY

INY

LDX

INX

LDA

BPL

DEY

BNE

INX

LDA

BMI

JSR

BMI

BPL

AND

JSR

JMP

$028D

#$02

LABEL

$EB48

$CB

#$40

EXIT

$C5

EXIT

$C5

#$00

$A09C,X

LOOP

LOOP

$A09C,X

LAST

$FFD2

PRINT

PRINT

#$7F

$FFD2

$EB48
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30 FOR J=S TO S+54:READ X:POKE J,X:NEXT

40 POKE 656,S/256:POKE 655,S-INT(S/256)*256:REM PU
'TS S INTO ($028F)

Variable S in Program 6-7 controls the place in memory into which the routine

is POKEd; any free RAM area is acceptable since the routine is relocatable.

Redefinition of Keyboard

If you wish to redefine the keyboard, the most elegant way to do this with the 64 is

to transfer BASIC and the Kernal into RAM, as explained in Chapters 5 and 8. This

leaves the keyboard tables free to be redefined in any way you choose. The four

tables, at 60289 ($EB81, unSHIFTED), 60354 ($EBC2, SHIFTED), 60419 ($EC03,

Commodore key), and 60536 ($EC78, CTRL), each have 64 bytes and a terminating

byte that holds $FF. Unused keys, such as CTRL-function keys, also appear as $FF

and can be redefined. Special keyboards can be saved and reloaded later, and turned

on or off at will by switching ROM out or in.

As a simple example, these four POKEs with RAM under ROM activated cause fl

and f5 to output CTRL-Black and CTRL-White, and f2 and f6 to output CTRL-

RVS/ON and CTRL-RVS/OFF:

POKE 60293,144: POKE 60295,5: POKE 60358,18: POKE 60360,146

It is also possible to cause BASIC to process keys differently; for example, CTRL-

G could be used to set a graphics mode. This of course involves work beyond simple

key redefinition. Another possibility is to extend the character set for printing foreign

characters to the screen.

The keyboard as a device. The keyboard is treated as device number 0 by the

operating system. We can open a file to the keyboard and treat it as an input device:

10 OPEN 5,0: REM OPEN FILE 5 FOR USE WITH DEVICE 0 (KEYBOARD)

20 INPUT#5,X$

30 PRINT X$: GOTO 20: REM LOOK AT WHAT'S BEEN INPUT

Commas and other punctuation symbols which BASIC treats as separators won't

now give 7EXTRA IGNORED, because a file is considered open, but parts of a string

may be lost. The normal question mark prompt isn't printed.

Repeat Keys

Location 650 controls which keys, if any, repeat when the key is held down. For ex

ample, the following POKEs easily modify the way the keyboard functions:

POKE 650,0 :REM SPACE BAR AND CURSOR CONTROL KEYS REPEAT.

POKE 650,64 :REM NO KEYS REPEAT.

POKE 650,128 :REM ALL KEYS REPEAT.

With BASIC in RAM, the rate of repeat and delay before repeat takes place can be

controlled by POKEing 60189 and 60138, respectively. Otherwise, an easy way to al
ter the repeat rate is to change the rate at which interrupts occur.

Location 652, the repeating key delay register, can be used to step from one

value to another through a range of values which may be very large. Program 6-8 is
a simple example of the method.
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Table 6-4. Summary of Keyboard Data Locations

RUN/STOP key/record

Newest key pressed

Number of characters in keyboard buffer

Previous key pressed

ASCII value of key pressed *

Keyboard table pointer *

Keyboard buffer

Maximum number of characters in the keyboard buffer

Repeat key flag (0 space, cursor; 64 no keys; 128 all keys)

Repeat delay (4 to 0, so 12 repeats per second) *

Repeat countdown (16 to 0, so 1/4 second before repeat) *

SHIFT, Commodore key, CTRL register (1, 2, and 4 respectively)

Previous configuration of SHIFT, Commodore key, and CTRL

Vector enabling user-written keyboard intercepts *

Commodore key SHIFT mode switch enable/disable (128 disables)

Interrupt sequence comes here *

Kernal routine to read the keyboard (SCNKEY) also #EA87

1 Means ML is required to use this.

$91

$C5

$C6

$CB

$D7

($F5)

$0277-$0280

$0289

$028A

$028B

$028C

$028D

$028E

($028F)

$0291

$EA31

$FF9F

145

197

198

203

215

(245)

631-640

649

650

651

652

653

654

(655)

657

59953

65439

Program 6-8. Fast Step

10 REM USE + OR - KEY

100 GOSUB 1000: T=T+INC: PRINT T: GOTO 100

1000 POKE 650,128: REM ALL KEYS REPEAT

1010 GET X$: IF PEEK(652)>0 THEN INC=0

1020 IF X$="+ M THEN INC=INC+1:IF INO20 THEN INC=2

0

1030 IF X$="-M THEN INC=INC-1:IF INC<-20 THEN INC=

-20

1040 IF X$=IIM GOTO 1000

1050 RETURN

The above program can cause some strange results, so take the disk out of the disk

drive (if you are using one) before running the program. The plus key increases Jhe
value printed to the screen at an increasing rate if the key is held down, but shorter
keypresses step forward in smaller increments. The minus key steps down. Chapter

13's "SIDmon" has a similar method for controlling values put into sound locations;

the values there can range from almost 0 to 65535.

RAM Areas Free for BASIC Use
Sections of free RAM. Locations 49152-53247 ($C000-$CFFF) make up 4K of

RAM which is isolated from BASIC and therefore invaluable for storing ML routines

or data. A VIC-20, fitted with 8K expansion, can have a similar isolated RAM area,
but generally other CBM machines have to alter BASIC memory or use a tape buffer
to store ML. Note that, if BASIC is switched over to RAM, a software reset will treat
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the whole area up to $D000 as RAM (Chapter 8 explains in depth). The only other

problem with $C000-$CFFF is that everyone's ML tends to start at $C000. If several

routines are to coexist, some will have to be relocated; Chapter 9 shows how to do

this.

The 64 also has RAM beneath ROM from $A000 to $BFFF and from $E000 to

$FFFF. However, this RAM cannot be used by BASIC without ML, except in the

sense that BASIC has some redundancy, so parts of BASIC or the Kernal could be

used for storage. For example, if BASIC and the Kernal are both in RAM, locations

$E4B7-$E4D9 can be used freely; on a larger scale, $E264-$E377 can be used, pro

vided the trigonometric functions (COS, SIN, TAN, ATN) are avoided.

Use LDA #$35:STA $01 to flip out the BASIC and Kernal ROMs, and access

their underlying RAM. To switch the ROMs back in, use LDA #$37:STA $01.

Because of the way the VIC chip works, this hidden RAM can also store graph

ics information, provided the screen is moved to the same general area. For example,

the screen might start at $C000, and up to 352 sprite definitions or 11 sets of charac

ter definitions could be stored simultaneously, ready for access. Chapter 8 provides

more information about how to access the RAM under ROM.

Small areas of free RAM. The 64 has IK of RAM at the start of memory which

is largely allocated for BASIC. In zero page, the four bytes from 251 to 254

($FB-$FE) are left untouched by BASIC. Locations 2-6 are rarely used (predomi

nately by ML number conversion programs), and 247-250 ($F7-$FA) are used for

RS-232 pointers. The stack (256-511, $100-$lFF) can be used with caution at the

low end; 318 ($13E) is a safe starting point if tape is going to be used. However,

don't store ML in the stack if you don't understand it; for example an ?OUT OF

MEMORY ERROR may delete your ML.

679-767 ($2A7-$2FF) has 89 spare bytes; 784-787 ($310-$313) has 4; and

820-1023 ($334-$3FF) has 204, of which the tape buffer (828-1019, $033C-$03FB)

takes 192.

Screen

The screen is treated as device number 3, so files can be opened to the screen for in

put and output with a statement like OPEN 3,3. This provides INPUT without the

normal prompt and can occasionally be useful in lines like the following one, which

reads the top line from the screen, subject to the usual rules governing INPUT.

OPEN 3,3: PRINT {HOME};: INPUT #3,X$

Screen handling can be complicated; each ASCII value has to be converted into

a POKE value, and if it has some special purpose like clearing the screen or setting

reverse mode, a subroutine must carry this out. Color RAM and start-of-screen must
be allowed for.

ML programmers can trace this process at $FFD2, the Kernal routine CHROUT,

which prints a character (which jumps to $F1CA and $E716). From here, an entire

range of processes is traceable, including delete and insert, cursor movements, screen
scrolling, and placing the character and its color into the screen.

Sixteen bytes just after the screen (usually 2024-2039, $7E8-$7F7), and 16 color
RAM nybbles, can store ML or data. (Eight bytes of sprite shape pointers follow
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this.) Clearing the screen leaves the area intact; but obviously incorrect POKEs to the

screen area can easily overwrite this storage position.

Table 6-5 is a quick reference list for screen locations and ROM routines.

Table 6-5. Summary of Screen Locations and ROM Routines

Reverse flag (0 reverse off, character reverse on)

Cursor row and column for input from screen

Cursor flash (0 flashes cursor, e.g., with GET)

Cursor countdown (from 12 to 0)

Character under cursor

Cursor blink phase (0 or 1)

Input from screen/keyboard (flag is 3 or 0)

RAM address of start of current line

Position of cursor on line

Quotes flag (0 not in quotes, 1 in quotes)

Current length of screen line (39 or 79)

Cursor's row

Table of screen line links, 4-7: Line continues; $84-$87: It doesn't

Color RAM address

Color code (0, black, through 15, light gray) in use

High byte of start of screen (usually 4)

Clear screen

Set VIC chip to normal values

Input from screen (or keyboard) comes here

Converts CHR$(color) in A into 0-15

Scrolls screen up 1 row

Scrolls screen down 1 row (contents of 677 may affect this)

Clear entire row (e.g., POKE 781,X:SYS 59903, when X is 0-24)

Plots character and color in screen. A=Char, X=Color (0-15)

Finds color RAM relevant to current cursor position

Screen Locations

$C7

($C9)

$CC

$CD

$CE

$CF

$D0

($D1)

$D3

$D4

$D5

$D6

$D9-$F2

($F3)

$0286

$0288

199

(201)

204

205

206

207

208

(209)

211

212

213

214

217-242

(243)

646

648

ROM Routines:

$E544

$E5A8

$E632

$E8CB

$E8EA

$E981

$E9FF

$EA13

$EA24

58692

58792

58930

59595

59626

59777

59903

59923

59940

Dictionary of Extensions to BASIC
The 64's BASIC is limited, lacking many useful commands built into some other
BASICs. Many can be simulated easily, though. The examples that follow are
grouped under headings of typical keywords, which indicate their functions.

These are BASIC subroutines, which must be run as usual, or machine language
routines called by SYS. The actual words listed (such as APPEND) are not new keywords
in this case; they will not by themselves activate any of these routines. A wedge altering
a BASIC input vector is necessary to incorporate new keywords. The recently pub
lished book COMPUTED Machine Language Routines for the Commodore 64 includes
most of these aids, as well as character and sprite editing systems—all in ML. The
following examples, though, will make it easier to understand how the commands

work.
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APPEND

This BASIC system command can either add one file to the end of another, making a

composite file, or link two BASIC programs end to end in a single program. Machine

language can be linked like this, too. Disk files can be appended as well (see Chap

ter 15). And tape files can be appended, but since the 64 has only one tape port, the

process is more difficult.

BASIC programs are easy to append because the LOAD address is easily altered.

Standard subroutines with high line numbers can be put onto the end of programs

without the usual need to list the subroutines to the screen, load the program, enter

some subroutine lines, save, and repeat. If the line numbers of the programs overlap,

the normal editing won't work and you'll have unremovable lines of BASIC.

Figure 6-10 shows a program in memory, plus two of its pointers. Note how a

link address of two zero bytes (following the normal end-of-line zero byte) signifies

the end of the program. If the new program loads and overwrites the double zero

link address with its own link address, the programs append perfectly.

Figure 6-10. Appending Programs

Start-of-Program Pointer . End-of-Program Pointer

BASIC Program 1

4- Append this:

Start-of-Program

BASIC Program 1

0

H

0

Li

0

ik

h

BASIC Program

BASIC Program

New

2

2

End-of-Program

Gives:

The easiest approach is to first enter POKE 43, PEEK(45)-2:POKE 44, PEEK(46)

in direct mode; then load or type in the new lines of BASIC and POKE 43,1: POKE

44,8 to start BASIC at $800. Perfectly appended BASIC should be the result. Ac

tually, this method is a shortcut; if PEEK(45) happens to be 0 or 1, you'll get an IL

LEGAL QUANTITY ERROR and will need to edit your instructions to POKE 43,

PEEK(45)+256-2: POKE 44, PEEK(46)-1, then continue as before.

AUTO

AUTO is a system command, not available in BASIC, which automatically generates
line numbers. Many utility packages include this command. This example is a BASIC
subroutine, which uses the keyboard buffer to take in complete lines. The POKE in
line 60010 flashes the cursor; line 60040 prints the current values of S and I, and
line 60050 puts two carriage returns in the keyboard buffer. Obviously, this would
be better if implemented in ML, wedging (for example) into the main BASIC loop
IMAIN, at $A480. r
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Program 6-9. Auto

60000 INPUT "ENTER START, INCREMENT";S,I

60010 PRINT "{CLR}{2 DOWN}"; S;: POKE 204,0

60020 GET X$: IP X$="" GOTO 60020

60030 PRINT X$;: IF ASC(X$)<>13 GOTO 60020

60040 PRINT "S=" S+I ":I=" I ":GOTO60010": PRINT "

{HOME}";
60050 POKE 631,13: POKE 632,13: POKE 198,2: END

BLOCK LOAD and BLOCK SAVE
The 64's LOAD and SAVE commands are designed solely for the benefit of users of

BASIC. They automate BASIC program storage and recovery in a way which is

transparent. Programs load into the correct area of memory and are saved to tape or

disk without any need to know about pointers or other inside information.

However, there are situations when the special assumptions connected with

BASIC do not apply. When a block of machine language, a collection of graphics

characters, or a set of variables and arrays after BASIC is to be saved to tape or disk,

normal saving won't work since the machine can't know what area of memory you

want saved. In addition, loading such blocks back into memory may be tricky; the

machine language or data is liable to be treated as though made up of BASIC lines

and become corrupted by the BASIC line-linking routines.

Note that ML monitors (like Supermon) have commands like .S "NAME",01,

1000,2000 (save the contents of $1000-$lFFF to tape and call it NAME) and .S

"NAME/',08,1000,2000 (save the same data to disk) to perform block loads and

saves.

BLOCK SAVE. The obvious way to save data other than BASIC programs is to

POKE new start and end addresses. For example, you could use POKE 43,0: POKE

44,48: POKE 45,0: POKE 46,64: SAVE"NAME",1,1. This will save data from loca

tions $3000 to $3FFF, because the value in the start-of-BASIC pointer is changed to

$3000 and the value in the end-of-BASIC pointer is changed to $4000. As far as the

64 is concerned, this becomes the correct area to save. (Note that the last byte at

$4000 is not saved; SAVE stops when it reaches it.) The secondary address of 1, with

tape, forces the data to load back into the same area as that from which it was

saved.

However, there may be problems in using this technique from within a BASIC

program since it's necessary to restore the pointers after use.

This short routine illustrates one technique:

1000 SYS 57812 "NAME",1,1 : REM SET PARAMETERS FOR LOAD

1010 POKE 193,0: POKE 194,48 : REM $3000 IS START ADDRESS ...

1020 POKE 174,0: POKE 175,64 : REM $4000 (-1) IS END ADDRESS.

1030 SYS 62957 : REM PERFORMS SAVE

SYS 57812 takes in the parameters which saving or loading needs: the device num

ber, name length, pointer to name, and secondary address. You can watch its
effect—using the following BASIC line, alter the parameters to see the effect on

these locations:
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SYS57812"Hr,8/l:PRINTPEEK(186);PEEK(183);PEEK(187)+256*PEEK(188);PEEK(185).

BLOCK LOAD. To load a machine language routine into memory, the easiest

way is simply to use LOAD "NAME",!,! (or ,8,1). Within a program, a flagging

technique is needed to avoid the automatic chaining feature:

0 IF X=l GOTO 20

1 X=l: LOAD "NAME",1,1

2 REM CONTINUE FROM HERE...

Listed below is a simple, trouble-free method of loading, which works within pro

grams without interrupting their flow:

1000 POKE 147,0 : REM THE LOAD/VERIFY FLAG. 0 IS LOAD

1010 SYS 57812 "SCREEN",8,1 : REM SETLFS IN THE KERNAL SETS PARAMETERS

1020 SYS 62631 : REM NOW LOAD

Program 6-10 saves a screen of information and reloads it. The technique can be

useful for many applications, including games, notepads and word processors (which

allow viewing two files on alternate screens).

Program 6-10. Screen Save and Load
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

1 REM SAVES SCREEN,COLOR RAM AND VIC CHIP:RUN PERF

ORMS SAVE,RUN 500 RELOADS :rem 71

7 REM SCREEN ASSUMED TO START $400 :rem 214

8 REM WRITE 3 NEW FILES TO DISK :rem 5

9 REM FOR TAPE,USE 1 INSTEAD OF 8 :rem 77

10 SYS 57812 "@:SCREEN",8,1:POKE 193,0:POKE 194,4:

POKE 174,0:POKE 175,8 :rem 58

15 SYS 62957 srem 114

20 SYS 57812 "@:COLOR",8,1:POKE 194,216:POKE 175,2
20:SYS 62957 :rem 62

30 SYS 57812 "@:VIC REGISTERS",8,1:POKE 194,208:PO
KE 175,209:SYS 62957 :rem 98

50 END :rem 60

499 REM LOAD BACK 3 FILES :rem 97

500 POKE 147,0:SYS 57812 "SCREEN",8,1:SYS 62631

:rem 252

510 SYS 57812 "COLOR",8,1:SYS 62631 :rem 91

520 SYS 57812 "VIC REGISTERS",8,1:SYS 62631

:rem 119

600 GOTO 600:REM DISPLAY SCREEN TILL 'RUN/STOP1 KE

Y :rem 47

Lines 10-30 save $0400-$07FF to disk under the name "SCREEN". Line 20

saves the corresponding color RAM, from $D800 to $DBFF, and line 30 saves the

VIC registers. If user-defined characters were used, they must be saved, too. Between

them, they completely define any picture starting at $0400; for example, the border
color and background are controlled by the VIC chip.
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Lines 500-520 reconstruct the picture. Try typing this program into a 64 at

tached to a disk drive, then put a few random colored characters on the screen. RUN

will store the screen's information on disk, if connected. Clear the screen; type RUN

500. You'll see the screen reconstruct itself.

Tape is equally simple: Just change each device number from 8 to 1, and remove

the redundant @: from within the filename. The screen files are always stored and

reloaded in the correct sequence.

CHAIN

Chaining is the process by which one program loads and runs another. For example,

a set of programs may exist on disk, each separately accessible by a menu, so that

only one program is in memory at a time, and the menu is reentered on exit from

any called program. Commodore 64 BASIC (and PET/CBM and VIC BASICs) chains

whenever LOAD takes place inside a program. A LOAD is automatically followed by

RUN without CLR (to retain previous variables).

Although simple, this is not quite as straightforward as it seems. Earlier in this

chapter you saw how problems can occur when the chained program is longer than

the program which loaded it. You may also encounter occasional difficulties with

strings and function definitions.

Try the following tape illustration:

1. Save this on tape:

10 PRINT "FIRST PROGRAM"

20 A=10: B%=100: C$="HELLO" + " "

30 LOAD "SECOND PROGRAM": REM CHAINS SECOND PROGRAM

2. Now type this in, and save it as "SECOND PROGRAM":

10 PRINT "SECOND PROGRAM"

20 PRINT A,B%,C$

Rewind the tape, and load and run the first program. It will almost immediately

reach line 30, load the second program and run it, while retaining the variables. Line

20 of the second program prints 10, 100, and HELLO, the values assigned by the
first program. Note that when the LOAD is within a program, there are no LOADing

messages unless the cassette button isn't pressed. (To try this example with a disk

drive, use 30 LOAD"SECOND PROGRAM",8.)

Chaining machine language. The easiest way to load and run ML is to use the

Kernal LOAD routine followed by a jump to the newly loaded ML program. This is

explained in detail in Chapter 8.

COLOR Border, Screen and COLOR Character

BASIC graphics packages often have a command called COLOR. POKE

53281,SC:POKE 53280,BC has the same effect as COLOR SC,BC. POKE 646,LC sets

the color of the letters output to the screen with PRINT.

Compile
Compilation is a process by which a language like BASIC is converted into pure ma
chine language. A program which performs this conversion is called a compiler.
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BASIC, the source code, is translated into ML, the object code. Typically, it will LIST

as a single SYS command, which is followed by a large (but unlisted) ML program.

Compilation is on a higher plane of sophistication than the other utilities discussed

here, but a short discussion is justified.

Briefly, any compiler of an unstructured language like BASIC must first build up

a table of all the program's variables and arrange a position for each of them in

memory. Strings need pointers and will be subject to garbage collection problems

unless they are each assigned 256 bytes. When the variables are dealt with, every

BASIC statement must be converted into its ML equivalent; the result is typically a

set of segments which are linked to make up the compiled code.

Speed increases of 10 to 50 or more times are claimed, but in practice even a

tenfold increase is probably optimistic. Some of the improvement is directly due to

the replacement of BASIC statements, with all their overhead and housekeeping, by

relatively straightforward processing.

By itself, this is not a major factor. Well-written compilers have their own

arithmetic routines, using integers where possible to save time. There's considerable

room for ingenuity. For example, a line like 100 GET X$: IF X$="" GOTO 100,

which is often found in BASIC, could be replaced by just five bytes of machine lan

guage. The line 1000 FOR J=0 TO 1000: POKE SC+J,32: NEXT is a loop, and is the

sort of BASIC which a compiler has great difficulty turning into efficient ML. Tiny

compilers working with a restricted set of BASIC (to save the effort of implementing

every command) also exist and are interesting educational tools.

Compilers invariably need disk drives, for speed and because multiple files are

required. If you don't have a disk drive, someone else can compile your BASIC for

you, in which case, the result will need to be transferred to tape; some compilers

have a feature to permit this.

Typical commercial compilers are PETSPEED and the DTL compiler. Each has a

limit on the size of BASIC program that is compilable and the number of variables in

it. You may find it necessary to shorten a very long program to compile it. The ML

object code is often longer than the original BASIC because it has to include a long

library of standard subroutines.

Computed GOSUB and Computed GOTO

These functions use a formula or label, instead of a number, for their destination

line. Some computer languages allow the use of GOSUB VALIDATE to perform a

subroutine called VALIDATE. Obviously, statements like this are likely to be more

readable than BASIC'S GOSUB 10000, or wherever. (Don't confuse computed

destinations with ON-GOTO, which provides a choice of destinations according to

the value just after ON.) Any parts of BASIC using computed destinations can't
usually be renumbered by a utility.

Program 6-11 shows how computed GOTO and GOSUB can both be im
plemented on the 64.
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Program 6-11. Computed GOTO and GOSUB

90 FOR J=40960 TO 49191: POKE J,PEEK(J): NEXT

91 FOR J=57344 TO 65535: POKE J,PEEK(J): NEXT

92 POKE 1,53

100 DATA 32,138,173,76,247,183

110 FOR J=0 TO 5: READ X: POKE 58551+J,X: NEXT

120 POKE 43169,183: POKE 43170,228

With BASIC in RAM, all that's required is to intercept BASIC at $A8A0 and in

clude a routine to evaluate a formula, rather than simply take in an ASCII line num

ber. This version copies BASIC from ROM to RAM and stores the extra ML into a

part of the RAM which isn't used by the copied-down BASIC.

While ordinary BASIC runs a little slower in RAM, you can now have ex

pressions like GOTO DATE or GOSUB CHECK, where perhaps DATE=1000 was

previously defined, and line 1000 starts the routine called DATE.

CRUNCH (and UNCRUNCH)

The idea of crunching a program is to delete as much of it as is possible without

altering its function negatively, with the aim of increasing BASIC'S execution speed

and decreasing the memory required to store it. Conversely, uncrunching means

spacing a program out to make it more readable. For example, if you wish to de

cipher someone else's crunched program, a utility which lists each instruction on

separate lines and puts in spaces may well help legibility. (See LIST in this chapter,

and see also Chapter 8.)

The rationale of CRUNCH is that REM statements, spaces, and short lines slow

the BASIC translator by making it waste time jumping past spaces, switching to new

lines, and so on. CRUNCH doesn't usually speed up programs a great deal, but

many programmers like to pack their programs into the smallest space possible.

Combined with renumbering lines starting at 0 and incrementing by ones, and add

ing an extra line or two of DIM statements to order the main variables, you can re

duce the execution time of your BASIC programs noticeably.

Crunching should remove REMs, but if these are referenced by GOTO or

GOSUB, they should either be retained or the reference changed to point to the next

line. It should remove all spaces not within quotation marks, but avoid confusion be

tween keywords and variables (X = T AND U after crunching could be confused

with the function TAN).

As many lines as possible should be merged together. Lines spanning more than

255 bytes are unreliable, since many BASIC pointers are single bytes (those for

DATA, for example). So the longest line is generally limited to 250 BASIC characters.

A line in the program might be referenced by GOTO or GOSUB, and this should be

handled properly. Lines of such lengths cannot be simply keyed in; they must be

POKEd in, then the links must be readjusted.

To make the CRUNCH even more interesting, it could renumber from 0 upward

in steps of one, reduce all variable names to a single character (if possible), and re

move spare semicolons from PRINT statements. It might modify CHRGET to remove

its test for spaces (see Chapter 10), slow the rate of interrupts (or temporarily stop

them), and remove wedges which intercept BASIC and usually slow its operation.
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DEEK

This double-byte PEEK returns the value in two consecutive addresses, assuming

they follow the 6510 convention of low byte, then high byte. Use this formula:

DEF FN DEEK(X) = PEEK(X) + 256*PEEK(X+1)

DELETE (DEL)

This command allows deletion of unwanted BASIC lines. DEL a-b is the syntax,

which is similar to that of LIST (except that DEL alone should not delete every

thing). DEL seems to have been omitted from Commodore's original BASIC

specifications. This subroutine in BASIC, designed to sit at the end of a program,

works by searching for line numbers within a specified range, then deleting the line

by using a trick with the keyboard buffer, which simulates entry of the line number

at the keyboard.

Program 6-12. Delete
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

61000 INPUT "DELETE FROM, TO"; L,U:A=PEEK(43)+256*

PEEK(44) :rem 238

61010 DEF FN DEEK(A)=PEEK(A)+256*PEEK(A+1):rem 255

61020 IF FN DEEK(A+2)<L THEN A=FN DEEK(A):GOTO 610

10 :rem 3

61030 IF FN DEEK(A+2)>U OR FN DEEK(A)=0 THEN END

:rem 11

61040 N=FN DEEK(A+2):PRINT "{CLR}" N :rem 14

61050 PRINT "A=" A ":U=" U ":GOTO 61010" :rem 160

61060 POKE 631,19:POKE 632,13:POKE 633,13:POKE 198

,3:END :rem 0

Line 61020 skips through link addresses until a line number in range is found,

line 61030 stops either out of the range or at the end of a program. Lines 61040-50

print to the screen, and the rest of the subroutine simulates keypresses for HOME,

RETURN, and another RETURN.

DOKE

This double-byte POKE puts a value from 0 to 65535 into any two adjacent ad

dresses, assuming the standard 6510 convention of low byte/high byte. There's no

way to write this as a function without writing a SYS routine of the form SYS m,n or

using a wedge. Instead, DOKE ADDRESS, VALUE can be represented by POKE AD,

VA-INT(VA/256)*256: POKE AD+ 1, VA/256.

DUMP

Screen dump. This prints a duplicate of the screen onto paper. It is relatively

easy to print normal characters, when user-defined characters aren't used, since all

that's needed is a PEEK into RAM followed by printout of the corresponding charac
ters. Complications include high-resolution graphics, color (where conversion to
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black-and-white may lose detail), and the fact that Commodore printers have the

Commodore character set, while others may not.

Program 6-13A is a BASIC screen dump which asslimes the uppercase character

set and correctly prints all characters, including SHIFTed and Commodore key sym

bols; however, the quotation mark character is not processed properly by some

printers:

Program 6-13A. Screen Dump
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

40010 OPEN 4,4:CMD 4 :rem 253

40100 FOR J=0 TO 24:FOR K=0 TO 39:X=PEEK(1024+J*40

+K) :rem §
40110 IF X>128 THEN X=X-128:PRINT CHR$(18);:rem 87

40120 IF X<32 THEN PRINT CHR$(X+64); :rem 181

40130 IF X>31 AND X<64 THEN PRINT CHR$(X);:rem 243

40140 IF X>63 AND X<96 THEN PRINT CHR$(X+32);

:rem 142

40150 IF X>95 AND X<128 THEN PRINT CHR$(X+64);

:rem 197

40160 PRINT CHR$(146); :rem 176

40170 NEXT:PRINT:NEXT:PRINT#4iCLOSE 4:END :rem 142

Line 40010 opens a file to the printer. Line 40100 starts a loop, which PEEKs

every individual screen location, and line 40110 looks for reverse characters; use the

reverse character appropriate to your printer, if one is available. CHR$(18) is Com

modore's reverse character printing signal, with CHR$(146) also needed (in line

40160) to turn it off. Chapter 17 has more information on the use of printers.
Variable dump. This lists the current values of variables. Often array variables

are ignored by these routines, because they are more difficult to handle. Of course

values can simply be PRINTed by inserting a program line, so a dump of this kind is

not essential to debugging BASIC. There's no difficulty writing dumps in BASIC;

we've seen how variables and their types are stored, so variables' names and values

can be deciphered and printed out. They're printed in the same order that BASIC de

fined them, which is the sequence in which they are stored after BASIC.

An alternative procedure which gives a sorted list is to cycle through all the

variable names and types from A, A0-A9, AA-AZ, . . . B%, and so on; each variable

can be sought by the ROM routine (like VARPTR) and printed with its name. This

last method is the one used by Program 6-13B.

Program 6-13B. Variable Dump
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

0 DATA 165,22,72,160,32,162,11,189,185,3,157,32,2,

202,16,247,140,41,2 :rem 45

1 DATA 192,32,240,28,140,36,2,208,23,142,34,2,32,2

25,255,234,234,208 :rem 253
2 DATA 8,104,133,22,104,104,76,116,164,162,48,142,

35,2,169,32,133,122 :rem 49
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3 DATA 169,0,133,72,32,134,174,165,72,240,19,169,3

2,133,122,173,34,2 :rem 12

4 DATA 141,39,2,173,35,2,141,40,2,32,157,170,174,3

5,2,232,224,58,144 :rem 0

5 DATA 211,224,65,144,247,224,91,144,203,174,34,2,

232,224,65,144,251 :rem 12

6 DATA 224,91,144,171,160,36,204,41,2,240,174,144,

139,200,208,136,34 :rem 6

7 DATA 32,32,65,146,61,34,32,65,32,59 :rem 30

10 REM SYS 828 (DIRECT MODE) DUMPS NON-ARRAY VARIA

BLES1 VALUES :rem 199

20 REM RELOCATE BY POINTING 185,3 IN LINE 0 TO 34

{SPACE}AT END OF LINE 6 :rem 237

100 FOR J=828 TO 963:READ X:POKE J,X:NEXT :rem 68

FIND

See SEARCH.

LIST

One of the most used commands in BASIC is LIST. Luckily, it can be modified

easily. The two routines below are examples of modified listing. Program 6-14 cre

ates a window on 12 lines of BASIC at a time, which can be scrolled up or down.

This is helpful when examining BASIC without the benefit of a printer. Program 6-

15 is in machine language; it alters LIST to expand the reverse characters of 64 list

ings into a more readable text form. Printer owners may like to list their programs in

this format.

Window LIST. Append Program 6-14 to the end of your BASIC programs to

use it. If you RUN 63000 with this subroutine in memory, it will list several lines on

the screen—the number of lines listed can be adjusted in line 63010. Pressing the fl

key causes the listing to move upward past the stationary window, while pressing

the i7 key causes the listing to move downward. Obviously, since any single logical

line of BASIC can take two physical screen lines, 13 lines of BASIC may be too

much for the screen to hold.

Lines 63020 and 63030 are printed on the screen, and they list several lines in

white before returning to test for f1 or f7. The current starting line is the Mth line

number, and subroutine 63300 scans the program, finding which line numbers to

list. After LIST, the keyboard buffer is POKEd to simulate {CLR} RETURN {CLR}

{DOWN} RETURN.

Program 6-14. Window LIST
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 REM WINDOW LISTER :rem 240

63000 DEP PN DEEK(L)=PEEK(L)+256*PEEK(L+1) :rem 33
63010 N=M+1:GOSUB 63300:L1=L:N=M+12:GOSUB 63300

:rem 122

63020 PRINT " {CLR} {BLU}LIST11 LI "-" L:REM THIS LIS
TS 12 LINES :rem 183

176



Advanced BASIC

63030 PRINT M{BLU}M=M M M:GOTO 63200{WHT}":rem 122
63040 POKE631,19:POKE632,13:POKE633,19:POKE634,17:

POKE635,13:POKE198,5:END :rem 57

63200 GET X$:IF X$=MM GOTO 63200 :rem 81

63210 IF X$-"{F1}" THEN M=M+1:REM OR LARGER INCREM

ENT :rem 144
63220 IF X$=M{F7}M AND M>0 THEN M=M-1:REM OR LARGE

R :rem 127
63230 GOTO 63010 :rem 49

63299 REM FIND N'TH LINENUMBER OF BASIC :rem 11
63300 J=0:L=FN DEEK(43) :rem 219

63310 J=J+1:IF J<N THEN L=FN DEEK(L):IF L>0 GOTO 6

3310 :rem 130
63320 IF (L=0) OR (FN DEEK(L)=0) THEN L=63999:RETU

RN :rem 38
63330 IF J=N THEN L=FN DEEK(L+2) :rem 194
63340 RETURN .rem 224

BASIC can't be edited with Program 6-14 running—the entire process is under
program control, and listing is all that's allowed. However, it would be possible to
write a line-editing program with this method, plus parts of AUTO.

Legible LIST. Program 6-15 is a transparent ML program which locates itself in
memory.

Program 6-15. Legible LIST
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix G

3 REM POKE 49259,5 TO CANCEL [SPC] :rem 155

4 REM POKE 49260,5 TO CANCEL [SH-SPC] :rem 92

10 FOR J=49152TO 49493:READ X:POKE J,X:NEXT

:rem 226

20 SYS 49152 :rem 102

30 PRINT M{CLR}{WHT}SYS 49152 TOGGLES SPECIAL LIST
ON/OFF11 jrem 201

500 DATA 173,7,3,73,103,141,7,3,173,6,3,73,11,141,
6,3,96,8,133,254,152 :rem 98

501 DATA 72,36,15,48,8,104,168,165,254,40,76,26,16
7,162,0,232,189,80 :rem 36

502 DATA 192,240,240,197,254,208,246,160,0,200,185
,118,192,201,91,208 :rem 67

503 DATA 248,202,208,245,32,210,255,200,185,118,19

2,201,93,208,245,32 :rem 64

504 DATA 210,255,104,168,165,254,40,76,246,166,144

,5,28,159,156,30,31 :rem 81

505 DATA 158,18,146,129,149,150,151,152,153,154,15

5,147,19,148,20,145 :rem 86

506 DATA 17,157,29,32,160,255,133,137,134,138,135,

139,136,140,0,91,66 :rem 78

507 DATA 76,65,67,75,93,91,87,72,73,84,69,93,91,82

,69,68,93,91,67,89 :rem 111
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508 DATA 65,78,93,91,80

,69,69,78,93,91,66

509 DATA 76,85,69,93,91

,86,83,93,91,82,86

510 DATA 83,32,79,70,70

,91,66,82,79,87,78

511 DATA 93,91,76,32,82

,89,93,91,77,32,71

512 DATA 82,65,89,93,91

,76,32,66,76,85,69

513 DATA 93,91,76,32,71

,91,72,79,77,69,93

514 DATA 91,73,78,83,93

,91,68,79,87,78,93

515 DATA 91,76,69,70,84

,83,80,67,93,91,83

516 DATA 72,45,83,80,93

,70,50,93,91,70,51

517 DATA 93,91,70,52,93

,70,55,93,91,70,56,

, 85 ,82,80, 76,69,93,91,71,82

:rem 101

, 89,69, 76, 76,79,87,93,91,82

:rem 123

,93,91,79,82,65,78,71,69,93

:rem 93

, 69,68,93,91,68,32,71,82,65

:rem 76

,76,32,71,82,69,69,78,93,91

:rem 96

,82,65,89,93,91,67,76,82,93

:rem 95

, 91,68,69, 76,93,91,85 ,80,93

:rem 111

, 93,91,82, 73,71,72,84,93,91

:rem 80

,91,80,73,93,91,70,49,93,91

:rem 54

, 91,70,53,93,91,70,54,93,91

93 :rem 209

Most of Program 6-15 consists of two tables, one of ASCII character values and

the other of their translated form within brackets. Therefore, the program can easily

be modified to allow for graphics characters or to output your own alternative forms.

The ASCII values of the brackets [ and ] are 91 and 93. The ASCII values and special

characters of the program in its current form are listed below:

Table 6-6. Legible LIST ASCII Table

[BLACK]

[WHITE]

[RED]

[CYAN]

[PURPLE]

[GREEN]

[BLUE]

[YELLOW]

[RVS]

[RVS/OFF]

144

5

28

159

156

30

31

158

18

146

[ORANGE]

BROWN]

LRED]

DGRAY]

MGRAY]

L GREEN]

L BLUE]

L GRAY]

129

149

150

151

152

153

154

155

CLR]

HOME]

INS]

DEL]

UP]

DOWN]

LEFT]

RIGHT]

SPC]

SH-SP]

147

19

148

20

145

17

157

29

32

160

[PI]

Fl

F2:
F3:
F4:
F5:
F6

F7

F8:

255

133

137

134

138

135

139

136

140

Program 6-15, activated by SYS 49152, modifies a LIST vector to point within

the special ML routine, which checks all characters in quotation marks. This part of

the program is quite small. The program then outputs the special characters in brack

ets. Printers can use this program, but lines containing special characters will be

longer than usual. SYS 49152 also turns off the special listing function, acting as a

toggle.

Chapter 8 has a short ML routine which checks for colons and is able to LIST

separate statements on new lines. If you wish to modify LIST in your own way, but
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have little ML experience, Program 6-16, an outline BASIC program, will help; it
reads BASIC with PEEKs and is easy to understand. Append it to BASIC when you

want to use it. Add your own selection of special characters at the end of the

program.

Program 6-16. BASIC LIST
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

63499 REM SET UP VALUES :rem 84

63500 A=2049:INPUT "LOWER, UPPER LINE NUMBERS";F,T

:rem 223

63510 DIM T$(76):FOR K=l TO 76:READ T$(K):NEXT

:rem 220

63520 DEF FN DEEK(A)=PEEK(A)+256*PEEK(A+1):CM=39:R
EM SET MAX LINE LENGTH :rem 84

63599 REM START NEW BASIC LINE :rem 246

63600 L=FN DEEK(A+2):X=FN DEEK(A):Q=0:IF X=0 OR L>

T THEN END : rem 61

63610 IF L<F THEN A=X:GOTO 63600 :rem 212

63620 PRINT RIGHT$("{4 SPACES}"+STR$(L),5)" ";:CC=

6:REM ALIGN LINENUMBERS :rem 138

63699 REM PEEK AND PRINT BASIC :rem 220

63700 FOR K=A+4 TO A+93:P=PEEK(K):REM P IS CURRENT

CHARACTER :rem 204

63710 IF COCM-7 THEN PRINT:PRINT "{6 SPACES}"; :CC

=6 jrem 125
63720 IF P=0 THEN PRINT:A=X:GOTO 63600:REM NEXT LI

NE :rem 17

63730 IF P=34 THEN Q=NOT Q:REM TOGGLE QUOTE FLAG

:rem 13

63740 IF Q THEN GOSUB 63900:NEXT:REM LOOK FOR SPEC

IAL CHARACTERS :rem 41

63750 IF NOT Q AND P>127 THEN PRINT T$(P-127);:CC=

CC+LEN(T$(P-127)):NEXT :rem 223

63760 PRINTCHR$(P);:CC=CC+1:REM CC COUNTS CHARACTE

RS :rem 175

63770 NEXT K :rem 145

63799 REM KEYWORDS IN TOKEN ORDER :rem 2

63800 DATA " END "," FOR "," NEXT "," DATA "," INP

UT# "," INPUT "," DIM " :rem 51

63810 DATA " READ "," LET "," GOTO "," RUN "," IF

{SPACE}"," RESTORE ", " GOSUB " :rem 98
63820 DATA " RETURN ", " REM "," STOP "," ON "," WA

IT "," LOAD "," SAVE " :rem 44

63830 DATA " VERIFY "," DEF "," POKE "," PRINT# ",

11 PRINT "f" CONT "," LIST " : rem 130

63840 DATA " CLR "," CMD "," SYS "," OPEN ", " CLOS

E "," GET "," NEW "," TAB(" :rem 152

63850 DATA " TO "," FN "," SPC("," THEN "f" NOT ",

11 STEP ",+,-,*, /,T," AND " :rem 99
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63860 DATA " OR »,>,=,<," SGN "," INT","ABS'\ " USR

11," FRE"#" POSH," SQR" :rem 185

63870 DATA " RND"," LOG",11 EXPM," COS"," SIN",11 TA

N"," ATNM :rem 78

63880 DATA " PEEK"," LEN"," STR$"," VAL"," ASC",11

{SPACE}CHR$" :rem 115

63890 DATA " LEFT$M," RIGHT$M," MID$"," GO M
:rem 61

63899 REM USER-DEFINABLE SPECIAL CHRS :rem 14

63900 IF P=5 THEN PRINT "[WHT]";:CC=CC+5 :rem 28

63910 IF P=17 THEN PRINT "[UP]";:CC=CC+4 :rem 1

63920 IF P=18 THEN PRINT "[RVSON]"; :CC=CC-»-7
:rem 249

63930 PRINTCHR$(P);:CC=CC+1:RETURN :rem 104

MERGE
A program that combines two BASIC programs into a single program with the lines
sorted correctly is called a merge. Standard subroutines, for example, can be inserted

without the need for reentering them. Many BASIC extension packages have

MERGE. Because of the flexible way merging is done, this command can also per
form some extra functions, such as loading PET/CBM tapes more easily into a 64.

Tape merge. The following procedure involves storing the subroutines to be

merged as sequential files, not as tokenized programs, then reading them back using

the keyboard buffer to simulate entry of each line.

Use this line to save a subroutine on tape as a sequential file:

OPEN 1,1,1,"NAME OF SUBROUTINE": CMD 1: LIST [OPTIONAL LOW-HIGH LINES]

When the cursor returns, type the following line to close the file and write the last

portion of data to tape:

PRINT#1:CLOSE 1

Merging can be carried out whenever you have a program in memory. The re

sult will be a fully merged program, as if the lines had been separately typed at the

keyboard. Note that lines entered with any BASIC abbreviations which are ab

normally long when listed may need to be divided into shorter lines.

Use the following procedure to merge program lines. Start with a program in

memory and the tape in the cassette drive, then:

POKE 19,1: OPEN 1,1,0, "NAME OF SUBROUTINE"

to read the tape until it finds the correct header. This will be signaled by FOUND.

At that point, it will wait for the file to be read. Type {CLR} and

{DOWN}{DOWN}{DOWN}. Then POKE 153,1: POKE 198,1: POKE 631,13: PRINT

CHR$ (19) and press RETURN, and the tape file will be automatically read and

merged. Eventually, a 7SYNTAX ERROR message appears; this is not a mistake, but a

result of either the tape or the program having no more lines left. It means that the

merge is finished.

Disk merge. Program 6-17 alters BASIC, allowing it to merge new lines into a

BASIC program in memory. It has a driver routine starting at $033E (830) which

fetches single characters of BASIC, building them into the input buffer.
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Program 6-17. Disk Merge
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

59000 FOR J=40960 TO 49151:POKE J,PEEK(J):NEXT:REM

PUT ROM->RAM srem 126

59010 POKE 42231,56:POKE 42288,96:POKE 42585,96

:rem 217

59020 FOR J=830 TO 900:READ V:POKE J,V:NEXT

:rem 159

60000 DATA 162,8,32,198,255,32,207,255,32,207,255,

165 :rem 56

60010 DATA 1,41,254,133,1,160,0,32,207,255,32,207

:rem 77

60020 DATA 255,240,32,32,207,255,133,20,32,207,255
#133 :rem 81

60030 DATA 21,32,207,255,153,0,2,240,3,200,208,245

:rem 127

60040 DATA 152,24,105,5,168,32,162,164,76,79,3,165

:rem 165

60050 DATA 1,9,1,133,1,32,89,166,76,128,164:rem 70

Use this program by entering LOAD, RUN, and NEW. Load or type a program

into memory, and additional programs can be merged into it with OPEN

8,8,8/TROGRAM NAME": SYS 830. Turn off the disk light with OPEN 15,8,15/T':
CLOSE 15.

MOD

This is an arithmetic function, found in some BASICs, which calculates the remain

der when one integer is divided by another. MOD is an abbreviation of modulo, a

mathematical term used in number theory. The statement, "4=19 modulo 5," means

that 4 and 19 have the same remainders when divided by 5. The simplest BASIC

version is DEF FN MOD(N) = N-INT(N/D)*D, where D is the divisor. This

formulation may be of use when converting other BASICs to CBM BASIC.

Examples of the use of MOD are D=12:H=FN MOD(16), which converts 16

hours to 4:00, and D=256: PRINT FN MOD (50000), which prints the low byte

of 50000.

OLD

Originally, OLD was used to restore a program which had been inadvertently re

moved by NEW. However, the 64 offers two other important uses, which can be

considered under the heading BASIC recovery.

Program 6-18. Old

10 FOR J=53000 TO 53025:READ X:POKE J,X:NEXT

20 DATA 169,148,141,0,160,169,1,168,145,43,32,51,1

65

30 DATA 165,34,105,2,133,45,165,35,105,0,133,46,96
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OLD for program recovery. This restores BASIC because NEW leaves most of

the program intact. NEW simply arranges pointers as though no program were

present, and puts a zero link address at the very start of BASIC; it also sets GETCHR
and the RESTORE pointers, clears variables, and closes files. Once Program 6-18 is
in memory, to recover from an unwanted NEW, type SYS 53000: LIST. The program
is restored, and its variables are even retained. If BASIC has not been NEWed, or

even if it's running, the SYS call does no harm.
OLD after chaining. When used with LOAD in a program, this restores BASIC

when the new program is longer than the old one. As explained under CHAIN, in

order to pass variables from one chained program to the next, the end-of-program
pointers are not set. Thus, if the newly loaded program is too long, its top end will
be corrupted. However, if the ML routine has been POKEd in by the loader pro
gram, 0 SYS 53000:CLR at the start of the new program will prevent corruption.

(CLR is needed to remove garbage after the program, which may appear as

pseudodata; it is not possible to recover the overwritten variables.)
OLD restores BASIC after SYS 64738. Old can be used after a hardware reset

has occurred, returning the machine to its startup state. Both these routines leave
BASIC RAM unaltered and in effect perform NEW, so SYS 53000 is just as effective
as with NEW. Any BASIC program, including one which disables RUN/STOP and
RESTORE, can be reset and recovered by this method if you have a hardware reset

switch.
How OLD works. OLD makes use of the ROM routine which links BASIC lines.

A nonzero value is POKEd into the first link address, correcting for the zero bytes

NEW inserts, and JSR $A533 relinks the lines of BASIC. The end-of-program point

ers must also be reset. OLD also corrects location $A000, without which a hardware

reset can corrupt BASIC if it is stored in RAM.

BASIC version of OLD. A BASIC equivalent of the above is simple, but the

end-of-program pointers get lost and take some effort to retrieve. If the end-of-

program isn't moved up, variables will overwrite your program when it runs.

POKE PEEK(44)*256+2/l:SYS 42291:POKE 46, PEEK(56)-1:CLR

This assumes that BASIC starts in one of the normal places and that the end-of-

program pointer's position isn't critical (it becomes set to a location 256 bytes below

the end of BASIC memory). The program will LIST properly.

ONERR

The 64 has an indirect vector at $300-$301 (768-769) to process error messages.

Usually, this is set to $E38B and the actual error is dictated by the byte in the X reg

ister. POKE 781, number from 1 to 30: SYS 42042 will print a message to the screen.

ONERR usually works by specifying a line number to GOTO in the event of

error. The advantage is that the program cannot crash, while the drawback is that

processing ONERR properly is liable to take a lot of memory space and slow execu

tion time.

PAUSE

There are two versions of this command: one waits for a timed delay and the other

temporarily freezes BASIC or ML.

182



Advanced BASIC

Timed delays are useful with some types of music programs. BASIC delay loops

(FOR J = 1 TO 500: NEXT) work well, though the actual timing varies with the

stored position of the loop variable in memory. If J is set up as the first variable, this

solves the problem. The 64's internal clock is another obvious way to get accurate

timing. The clock is stored in 160, 161, and 162, with 162 changing fastest. One

short routine is POKE 162,X: WAIT 162,2tN, which has a maximum delay of

128/60, or about two seconds. To explain the formula, note that WAIT stops until

just one bit is set. So POKE 162,0: WAIT 162,64 delays until location 162 reaches

64, pausing for 64/60 seconds. The timing is reasonably constant, although the first

POKE could occur any time between interrupts, so there's 1/60 second maximum

difference in pauses. Unless the interrupt rate is changed, resolution below about

1/60 second isn't possible. Delays longer than about two seconds require the use of

location 161. POKE 161,0: POKE 162,0: WAIT 161,2 pauses for 2*256/60 seconds

(or about eight seconds).

The easiest implementation of a system pause (halting execution until some

event occurs) is to intercept the interrupt routine and check for a keypress. The

SHIFT key is useful, because SHIFT/LOCK can pause indefinitely. However, any

SHIFTed entry will then temporarily stop the program. The following ML routine

will do the trick with normal keys, for example, the left-arrow. You could modify the

program to check the keyboard twice, so the key could toggle the function on and

off, or to test for Commodore, SHIFT, or CTRL keys:

Send interrupt routine here: PAUSE JSR $FF9F ;SCAN KEYBOARD

;LOOK AT KEYPRESS

;CHECK FOR BACK-ARROW

;PAUSE WHILE PRESSED

;NORMAL IRQ ROUTINE

POP

This command discards a RETURN from the stack; this erases the effect of the pre

vious GOSUB so that if RETURN is encountered, the address returned to will be that

of the next-to-last GOSUB, or 7RETURN WITHOUT GOSUB will be signaled. This is

useful in providing a premature escape from BASIC subroutines, which otherwise

causes problems. To explain, GOSUB causes the computer to store a return address

on the stack. When the subroutine is finished, RETURN pulls this address off the

stack, using it to resume execution at the correct spot in your BASIC program. If you

repeatedly exit a subroutine without performing a RETURN (using GOTO, for ex

ample), the stack eventually fills up with unused return addresses, causing an ?OUT

OF MEMORY ERROR. You can cure this problem and others like it with Program 6-
19 below.

POP is relocatable, but this version starts at 830 and is called by SYS 830 from

within a program. RUN and test with SYS 830 in direct mode; you should get a
7RETURN WITHOUT GOSUB ERROR.

Program 6-19. Pop

10 DATA 104,104,169,255,133,74,32,138,163,201,141
20 DATA 240,3,76,224,168,232,232,232,232,232,154,9

6

30 FOR J=830 TO 852:READ X:POKE J,X:NEXT
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POP mimics RETURN in all respects apart from the actual change in program

control. With this routine in memory, use SYS 830 immediately before any pre

mature exit from a subroutine.

A more thorough POP, using a part of CLR, clears away all loops and sub

routines within a program by resetting the stack pointer, thus deleting all evidence

of FOR-NEXT and GOSUB. Variable values, DATA pointers, and so on are retained.

On an abort or escape, this routine cuts through any tangle of loops and subroutines.

With the 64, machine language is required to perform this POP:

PLA ; REMOVE SYS ADDRESS

PLA

JMP $A67E ; ENTER CLR TO RESET THE STACK

In decimal, this looks like:

10 DATA 104,104,76,126,166

20 FOR J=830 TO 834: READ X: POKE J,X: NEXT: REM SYS 830 FOR THIS POP

PRINT @

This moves the cursor rapidly to any place on the screen, as specified by horizontal

and vertical parameters (HTAB and VTAB are other forms of this command). Graph

ics in BASIC can often be much improved with one of these methods, in place of

printing {HOME} and many cursor moves. The fastest versions contain their own

ML routines and therefore require storage space. Slightly slower versions use ROM

routines and are more convenient.

To use the fast ML version below, type in the lines and run the program. SYS

828,H,y takes in horizontal and vertical parameters and puts them into the Kernal

PLOT routine vectored at $FFF0.

0 DATA 32,155,183,138,72,32,155,183,104,170,164,101,24,76,240,255

10 FOR J=828 TO 843: READ X: POKE J,X: NEXT

Although it is no simpler to do the same routine with BASIC, POKE 781,V:

POKE 782,H: POKE 783,0: SYS 65520: PRINT "HELLO!" will work.

PRINT USING
Some computer languages allow you to specify the format in which numbers are

printed. This 64 program allows easy and fast output in a variety of formats,

(rounded to two decimal places, or including a leading $ symbol, for example). The
overall length of the output (including leading spaces) is programmable, so lining up

columns of figures is made simpler. Also, output can be directed to a printer.

Program 6-20. Print Using
For mistake-proof program entry, be sure to

m 6-20. Print Using
■proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

1,10,2,32,162,0,221,0,1,240,6,232,224,12,20

>,24,96,169,69,32,-162 :rem 113
176,90,173,-166,240,94,173,2,1,208,11,172,-
l/TA AC% 1 CO O 1 1 OC • Y»ATT1 00\Q
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3 DATA 46,32,-162,172,-164,232,136,208,252,236,-16

5,176,33,172,-165,169,0 :rem 3

4 DATA 153,1,1,189,0,1,201,32,208,3,169,32,234,153
,0,1,202,16,6,173,-163,136 trem 114

5 DATA 16,244,136,16,231,169,0,133,97,160,1,132,98
,96,169,0,32,-162,144,240 :rem 106

6 DATA 138,168,173,2,1,240,9,169,46,32,-162,144,2,
138,168,152,170,202,16,181 :rem 156

7 DATA 0,32,158,173,32,221,189,32,-148,32,30,171,9
6 :rem 202

30 T=49318 srem 253

40 L=T-166 jrem 11

50 FORJ=L TO T-l ,rem 116

60 READ X%:IF X%<0 THEN Y=X%+T:X%=Y/256:Z=Y-X%*256
:POKE J,Z:J=J+1 :rem 198

70 POKE J,X%:NEXT : rem 2

80 GOTO 130 :rem 53

100 X%=L/256: Z=L-X%*256 :rem 241
110 POKE 55,Z:POKE 53,Z:POKE 51,Z :rem 93

120 POKE 56,X%:POKE 54,X%:POKE 52,X% :rem 202

130 PRINT "{DOWNjSYS " L+153 " FOLLOWED BY ANY NUM
ERIC :rem 153

131 PRINT "EXPRESSION IN PARENTHESES" :rem 79

132 PRINT "PRINTS FORMATTED VALUE. :rem 118

134 PRINT :rem 37

140 PRINT L{3 SPACES}"=DEC/INT FLAG" :rem 239
150 PRINT L+l "=OUTPUT LENGTH" :rem 255

160 PRINT L+2 "=DEC. PLACES" :rem 0

170 PRINT L+3 "=LEADING CHRS" :rem 116

180 PRINT L+98 "=+VE LEAD CHR" :rem 72

190 PRINT "{DOWNjEG SYS" L+153 "(-1234.567) PRINTS
-1234.56" :rem 227

200 PRINT "{DOWN}SET UP NOW WITH LENGTH 11, 2 DEC.

PLACES, & LEADING SPACES." :rem 156

210 PRINT "{DOWN}SAVE FROM" L "TO" T-l; :rem 248

220 PRINT "($"?:GOSUB 500:PRINT " TO $";:L=T-1:GOS

UB 500:PRINT ")" :rem 64

230 END :rem 108

500 L=L/4096:FORJ=1TO4:L%=L:L$=CHR$(48+L%-(L%>9)*7

):PRINTL$;:L=16*(L-L%):NEXT :rem 210

510 RETURN :rem 118

Once you enter, save, and run the program, the screen display should include this:

49152 = DEC/INT FLAG

49153 = OUTPUT LENGTH

49154 = DEC. PLACES

49155 = LEADING CHARACTERS

49250 = +VE LEAD CHR

SET UP NOW WITH LENGTH 11, 2 DEC. PLACES, & LEADING SPACES.
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Executing a SYS 49305(X) will print the current value of X, formatted (where

possible) in accordance with the values in the five locations listed.

Decimal/integer flag. A value of 0 in this location means the result will be

treated as an integer (no decimal point symbol will be printed), while 1 means it is

decimal.
Output length. This location specifies the total length of the output string -1.

It allows tables of numbers to be constructed easily.
Decimal places. This controls the number of figures after the decimal point. If

the number is an integer, this is ignored.

Leading characters. This location holds the ASCII character printed before the

number begins. This enables printing in formats like ****100 or 000123,23. The

usual leading character is the space character (32).

Positive symbol. Numerals are preceded by a space or minus sign with BASIC'S

unmodified PRINT statement; this routine permits a substitute for the space charac

ter to be printed (for example, $), so all positive numbers will appear preceded by

the substitute character.

Note that X is truncated; if you wish to round the output value to two decimal

places, use SYS (7667) X + .005.

Using PRINT USING. Program 6-21 prints formatted columns of figures. Lines

20, 30-31, and 40 print the first, second, and third columns, respectively. Meaningful

variable names should help to make the POKEs more understandable.

Program 6-21. Print Using Demo
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 PRNT=49305:SWITCH=49152:LNGTH=49153:DECPTS=4915

4:CHAR=49155:LDGCHR=49250

15 FORJ=-10 TO 100 STEP 10:PRINT

20 POKE SWITCH,0:POKE LNGTH,4:POKE CHAR,42:POKE LD

GCHAR,42:SYS (PR) J

30 POKE SWITCH,1:POKE LNGTH,7:POKE CHAR,32:POKE LD

GCHAR,32

31 POKE DECPTS,4: SYS (PR) l/(l+j)

40 POKE LDGCHAR,ASC(W$M):POKE DECPTS,2: SYS (PR) 1
00 + J

50 NEXT

100 REM SYS 49305 (400.00) ETC.

The central piece of machine language code in this routine follows:

JSR $AD9E ; INPUT AND EVALUATE A BASIC NUMERIC EXPRESSION
JSR $BDDD ; CONVERT BYTE IN ACCUMULATOR 1 INTO A STRING

JSR $C012 ; SPECIAL ROUTINE (ADDRESSING MAY VARY) TO PROCESS
; NUMBER OUTPUT AT $100-$10C

JSR $AB1E ; PRINT THE STRING USING A (LOW), Y (HIGH) POINTERS
RTS ; RETURN TO BASIC WITHOUT ANY OTHER ACTION

The idea is to print normally, except that the number, after being prepared for print

ing as a string, is edited. Most of this is identical to the 64 ROM routines, but the in
serted subroutine processes the number as it is held in memory just before being
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printed. The program is designed to allow relocation of ML by altering the parameter

T; it can, for example, be stored at the top of BASIC. Remember to protect it from

BASIC by lowering the top-of-BASIC pointer.

RECONFIGURE
Chapter 5 explains how BASIC configures itself on switch-on. However, there are

many ways memory can be allocated on the 64. The pointers at 43 and 44, and 55

and 56, show the entire BASIC area is normally $0800-$A000. To lower the top of
BASIC memory to $8000, POKE 55,0: POKE 56,128. Now, CLR will reset all the

string pointers correctly, but stored variable values will be lost. POKE 51,0: POKE

52,128: POKE 53,0: POKE 54,128: POKE 55,0: POKE 56,128 has the same effect, but

retains variables, and is therefore sometimes better.

Program 6-22 allows the start or end of BASIC (or both) to be changed, so that

PRINT FRE(0) returns different values from usual. The screen RAM can also be
moved, within IK boundaries; if it's moved to overlap BASIC, a program or its vari

ables may be displayed in the screen, generally with odd side effects.

Program protection methods sometimes make use of this feature. For example,

you can move the screen to $C000 and write ML starting at the normal screen area

of $0400. When the ML is loaded, the screen fills with what is apparently garbage,
but which is necessary to run the program. This makes a program relatively safe

from being copied.

Another use is to simulate other machines, mainly the VIC-20 and CBM/PET.

For example, the CBM/PET simulator in the Appendices moves BASIC and the

screen to the CBM/PET positions and adds some other CBM-like features. All these

examples keep BASIC in ROM; Chapter 8 explains how BASIC in RAM can be used

to reconfigure BASIC more fundamentally.

Note that BASIC must have a zero byte at the position immediately before that

indicated by the pointers 43 and 44. If it does not, NEW or RUN will cause a ?SYN-

TAX ERROR.

Program 6-22. Reconfigure
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

800 S=2049:INPUT " START OF BASIC" ;S :rem 24

802 E=40960:INPUT "{3 SPACES}END OF BASIC";E

:rem 123

804 SC=1024:INPUT "START OF SCREEN";SC :rem 248

999 VB=INT(SC/16384):VB=(NOT VB) AND 3 :rem 118

1000 POKE 648,SC/256:POKE 53272,(PEEK(53272) AND 1

5) OR ((SC/64) AND 240) :rem 150

1002 POKE 56576,(PEEK(56576) AND 252)OR VBtrem 164

1010 POKE 55,E-INT(E/256)*256 :rem 13

1015 POKE 56,E/256 :rem 158

1020 POKE 43,S-INT(S/256)*256 :rem 39

1030 POKE 44,S/256 :rem 166

1040 POKE S-1,0 :rem 1

1050 PRINT "{CLR}" :rem 42
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To make BASIC start at $1200 and end at $1400, with the screen at $2000, run
Program 6-22, enter 4609, 5120, and 8192 at the prompts, and then enter NEW.

Following this PRINT FRE(0) shows 509 free bytes, and POKE 8192,6: POKE

55296,5 prints a green F at the home position, showing that the POKEs have worked

correctly.

Boots. The ability of a computer to load and run a program automatically is

called booting. Some microsystems require the disk operating system (DOS) to be
loaded in when the computer is turned on. The term came about because the com

puter is said to be "pulling itself up by its own bootstraps." The Commodore 1541

disk drive, however, uses proprietary software (the DOS is contained in the disk

drive's ROM chips). And the 1541's built-in software does not autoboot. Neverthe

less, the keyboard buffer and input buffer can be used to solve this deficiency. For

example, the commands can be printed to the screen and the keyboard can be filled

with the characters needed to input them; this, however, assumes that the position
of screen memory doesn't change.

Tape boot. When using tape, autobooting is easy. Simply press SHIFT-RUN/

STOP. If you want to see how to do the same from within a program, add line 1045
to Program 6-22:

1045 POKE 631,131: POKE 198,1

These POKEs have the effect of typing SHIFT-RUN/STOP (the ASCII value is

131). Since 198 holds the number of characters in the keyboard queue, POKEing a 1

into that location simulates a single keypress. Now, the program reconfigures BASIC,

loads the next tape program, and runs it.

Disk boot. The keyboard queue can't easily hold much more than ten charac

ters, which is insufficient to load a disk program since, unlike tape, a name is usually

needed. LOAD"*",8:RUN in its short form just fits. One solution is to use the input

buffer as in the following lines:

61 CLR :REM NEW NOT NEEDED AT END (AS NEW PROGRAM IS TO BE LOADED)

62 N$="LOAD" + CHR$(34) + "NAME" + CHR$(34) + ",8" + CHR$(0)

63 FOR J = 1 TO LEN(N$): POKE 511+J, ASC (MID$(N$,J)): NEXT

64 POKE 198,3: POKE 631,82: POKE 632,213: POKE 633,13

65 POKE 781,255: POKE 782,1 :REM POINTER TO $01FF

66 SYS 42118 :REM INPUT LINE

Line 62 sets up a string ending with a null byte; this exactly mimics a line input

from the keyboard. Line 63 POKEs the characters into the input buffer at 512

($0200). Line 64 puts R SHIFT-U RETURN in the keyboard buffer, to cause the pro

gram to run after loading. Lines 65 and 66 process the line in the buffer, loading the

program called "NAME".

REM

REM is, of course, one of the 64's normal statements. It deserves a place here be

cause of the unique status of REM statements outside the normally strict rules of

BASIC syntax.

REM with SHIFT and quotes. SHIFTed characters have their high bit set and

are interpreted as tokens, so LIST converts these into reserved words, expanding the
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line. Cursor control characters, {CLR}, {HOME}, etc., can be inserted after an open

ing quotation mark. {DEL} (delete) characters can be used by opening up space in

side quotes with the {INST} (insert) key. A hidden line can be created by following

it with :REM" ", expanding the space in quotes, and filling the space with {DEL}

characters, though this maneuver won't hide the line when it's listed on a printer.

You can use REM statements to produce colorful listings, too. For example, you

could list the initialization section of the program in white, the main loop in yellow,

and subroutines in other colors. This way you could find the section you wanted to

view easily. To change the color of the listing, type REM " " and delete the second

quotation mark, then press {RVS} (CTRL-9) followed by SHIFT-M. Next, press

{INST} (SHIFT-DEL) once, and select the color by pressing CTRL or Commodore

key and the correct numbered key. After this, press the RETURN key to enter the

line. REM stores some characters differently inside quotes than outside. Thus, util

ities which search for strings may not find them in REM statements.

Inserting characters into REM statements. REM is tokenized as 143 in decimal.

The following short routine puts two RETURN characters immediately after REM in

a REM line, and also immediately before the end of the REM line, so 100 REM**

REMINDER COMMENTS * will list remarks neatly onto new lines.

63000 L=43

63010 L=PEEK(L) + 256*PEEK(L+1): IF L=0 THEN ENDrREM SKIP THROUGH LINKS

63020 IF PEEK(L+4)<>143 GOTO 63010:REM IF REM NOT FOUND TRY NEXT LINE

63030 POKE L+5,13: POKE L+6,13:REM POKE TWO RETURNS

63040 FOR J=L+5 TO 9E9: IF PEEK(P>0 THEN NEXT:REM FIND END-OF-LINE,

63050 POKE J-1,13: GOTO 63010 :REM AND POKE ONE RETURN

Inserting reverse SHIFT-M within quotes adds a SHIFT-RETURN character with

a similar effect. Other characters could include printer control characters to enhance

REM statements, or color characters to list REMs in a different screen color.

Using REMs to store ML. As Chapter 9 explains in detail, BASIC can hold ML

within REM statements. The data can simply be POKEd in. This can be very ef

ficient, but there are two potential problems with the technique.

Zeros should not be used, because they will be treated as end-of-line markers if

the program is edited, so the ML will be corrupted—a link address and line number

will be inserted. This could be used, with care, as a security device. Generally, in

stead of LDX #0, use LDX #1:DEX.

The actual position in memory of the ML data must be known. The easiest

method is to use a REM statement at the very start of the program, so the sixth byte

from the initial zero byte is the start position. The ML routine must be relocatable to

work with all BASIC configurations.

RENUMBER

Renumbering a BASIC program has some cosmetic advantages and is valuable

where BASIC line numbers are too close to allow more BASIC to be added, or when

a program is finished and you want to renumber by ones starting at line number 0

(which causes the program to run slightly faster). Program 6-23 is a short BASIC

subroutine that changes line numbers only, between a selected range, by POKEing in

new values.
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Program 6-23. Renumber
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

60000 INPUT "RENUMBER FROM,TO M;L,H :rem 40
60005 INPUT "START, INCREMENT ";S,I :rem 49
60010 DIM L(600,2):A=2049:B=256:J=-1 :rem 94
60100 J=J+l:L(J,0)=PEEK(A+2)+B*PEEK(A+3):L(J,2)=A+

4 :rem 250

60105 IF L(J,0)<L OR L(J,0)>H THEN L(J,1)=L(J,0):G
OTO 60120 :rem 31

60110 L(J,1)=S+R*I:R=R+1:NL=L(J,1) :rem 136
60115 POKE A+2,NL-INT(NL/B)*B:POKE A+3,NL/B

:rem 175

60120 A=PEEK(A)+B*PEEK(A+1):IF A>0 GOTO 60100

:rem 128

60200 FOR K=0 TO J-30:A=L(K,2) :rem 18
60205 P=PEEK(A):SP=0:IF P=0 THEN NEXT K :END

:rem 219

60210 IFPO137ANDP<>138ANDPO141ANDP<>155ANDP<>167

ANDP<>203THENA=A+1:GOTO 60205 :rem 184

60300 N=0:A=A+1:P=PEEK(A):IF P=32 THEN SP=SP+1:GOT

O 60300 :rem 188

60305 IF P=164 GOTO 60300 :rem 231

60310 IF P<ASC(M0") OR P>ASC("9") GOTO 60205
:rem 187

60315 IF P>47 AND P<58 THEN N=10*N + (P-48):A=A+1:

P=PEEK(A):GOTO 60315 :rem 144

60320 FOR Q=0 TO J-30:IF N=L(Q,0) GOTO 60330
:rem 240

60325 NEXT Q:PRINT "*** UNREFERENCED LINE IN" L(K,

1):GOTO 60500 :rem 1

60330 IF L(Q,0)=L(Q,1) GOTO 60500 :rem 145

60400 N$=STR$(L(Q,1)):O$=STR$(L(Q,0)) :rem 4

60405 D=LEN(N$):D2=LEN(O$):IF D<D2 THEN N$=CHR$(32

)+N$:GOTO 60405 :rem 21

60410 IF D>D2+SP THEN PRINT "{RVS}*** PUT" N$ " IN
TO LINE" L(K,1):GOTO 60500 :rem 164

60415 X=A-D-1:FOR Q=2 TO D:POKE X+Q,ASC(MID$(N$,Q)

):NEXT :rem 181

60500 IF P=32 THEN A=A+1:P=PEEK(A):GOTO 60500

:rem 178

60505 IF P=44 OR P=171 THEN SP=0:GOTO 60300

:rem 246

60510 GOTO 60205 :rem 50

This BASIC utility is a four-parameter renumber; it allows a part of a program to

be renumbered, leaving the rest alone, so that, for example, a subroutine between

2000 and 2500 can be tidied up, perhaps being renumbered from 2000 in steps of

ten.
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One difficulty with renumbering is that line numbers within programs are stored

as ASCII strings, so if a renumbered line is different in length, the program's length

may have to be changed. Another difficulty concerns syntax; Program 6-23 simply

assumes correct syntax, mainly to use less space.

To use "Renumber," RUN 60000. You may renumber lines 0-59999, but not

above. Lines 60000-60120 of the program build an array; L(J,O) holds original line

numbers, L(J,1) holds new numbers, and L(J,2) holds pointers to the start of each

line. The numbers at the start of each line are renumbered at this stage. J counts the

number of lines in the program; not all these are needed, of course, since RE

NUMBER itself should be left alone.

Lines 60200-60210 scan all the relevant program lines, searching for keyword

tokens, which are processed by the lines that follow. Line 60305 looks for TO; this

allows GO TO to be renumbered, not just GOTO. Spaces after a keyword are

counted, allowing variation in the renumbered line number lengths. Line 60320

searches for lines in the table and signals if they're not found. Lines 60400-60415

POKE in the new line number, where possible. And 60500 processes constructions

like ON X GOTO 100,200 and LIST 10-30.

RESET

SYS 64738 resets the 64, giving a result similar to switching on the machine. RAM

from $0 to $0400, except for the stack, is completely cleared out, and BASIC is in ef

fect NEWed, but the rest of memory is untouched and BASIC can be recovered with

OLD.

SYS 64738 is useful whenever the 64 has been reconfigured or pointers have

been set in unusual ways. For example, after loading ML high in memory, RESET

will leave it there by return to the normal condition of BASIC on startup. When

BASIC is in ROM, a hardware reset (see Chapter 5) has the same effect as this soft

ware reset; other CBM machines behave similarly.

However, if BASIC is in RAM, SYS 64738 acts differently from a hardware reset

and may show an unusually large number of bytes free, because the software SYS

call, unlike hardware, doesn't necessarily switch BASIC into ROM, if the Kernal has

been modified. Chapter 8 explains in depth.

Note that some CBM publications contain a wrong SYS call for this feature.

SEARCH

Searching BASIC is reasonably straightforward, given an understanding of the way it

is stored in memory. The following ML search hunts for a match with the contents

of the first BASIC line.

Program 6-24. Search
Tor mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

5 FOR J=830 TO 921:READ X:POKE J,X:NEXT :rem 219

10 DATA 166,43,165,44,134,251,133,252,160fl,134,25

3,133,254,177,253,240 :rem 158

11 DATA 73,72,136,177,253,72,160,4,132,142,132,143

,177,251,201,34,208 :rem 60
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12 DATA 2,230,143,164,143,177,251,240,28,72,164,14

2,177,253,240,15,104 :rem 107

13 DATA 209,253,240,6,230,142,160,4,208,222,230,14

2,208,226,104,104,170 :rem 136

14 DATA 104,208,193,160,2,177,253,170,200,177,253,

32,205,189,169,32,32 :rem 120

15 DATA 210,255,201,0,208,231,96 :rem 25

Run Program 6-24, then enter 0 DATA and type SYS 830. All the line numbers

of lines with DATA statements will list. You can search for lines containing the

number 240 with 0"240; 0"SYS will find SYS as a word, not as a BASIC keyword.
The ML relocates, and can be moved to any free RAM area.

SET

SET (and UNSET) are graphics commands in some BASICs which allow a point or

small square to be drawn at any specified positions on the screen. Chapter 12 has a

lot of information on this, including a high-resolution plotting routine.

SORT

Sorting means arranging a list in order, usually alphabetically or numerically. Many

sorting methods exist, but only three major ones are discussed here: two BASIC sorts

and one ML sort, which includes a demonstration to illustrate the syntax. The ma
chine language version is far faster than BASIC.

BASIC sorts. The Shell-Metzner Sort is a fast sort, which is also easy to pro

gram. The version given in Program 6-25 sorts items 1 to N of an array dimensioned
with A$(N). The sort is written as a subroutine to be added to your programs, and it
assumes that array A$ and number of elements N have both been established before
you GOSUB to the routine. Upon return from the routine, the contents of array A$
will be arranged in ascending order.

Program 6-25. Shell-Metzner Sort

59010 M=N

59020 M=INT(M/2):IF M=0 THEN END

59030 J=1:K=N-M

59040 I=J

59050 L=I+M

59060 IP A$(I)>A$(L) THEN T$=A$ (I):A$(I)=A$(L):A$(

L)=T$:I=I-M:IF I>0 THEN 59050

59070 J=J+1:IF J>K THEN 59020

59080 GOTO 59040

The Tournament Sort, so called because it pairs together items for comparison,

starts to give answers almost immediately, rather than waiting for the entire array to

be sorted. In addition, since numbers rather than strings are moved, garbage collec

tion (which can otherwise be a problem with BASIC) is not a factor.

Program 6-26 illustrates the Tournament Sort. Lines 10 and 20 allow you to set

up the array N$, which will be sorted. A numeric array, I, is also required, and it
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must be dimensioned for twice as many elements as N$. Lines 200-330 perform the

sort, printing each element as it is sorted into its proper position and ending when

the sort is complete.

Program 6-26. Tournament Sort
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 INPUT "SORT HOW MANY ITEMS";N:B=N-1:DIM N$(B),I

(2*B) :rem 141

20 FOR J=0 TO B:N$(J)=STR$(RND(1)*100):NEXT

:rem 113

30 PRINT "SORTING:-11 :rem 193

2000 X=0:FOR J=0 TO B:I(J)=J:NEXT :rem 98

2005 FOR J=0 TO 2*N-3 STEP 2:B=B+1 :rem 215

2010 I(B)=I(J):IF N$(I(J+1))<N$(I(J)) THEN I(B)=I(

J+l) :rem 247

2015 NEXT :rem 7

2020 X=X-1:C=I(B):IF C<0 THEN END :rem 35

2025 PRINT N$(C) :rem 92

2030 I(C)=X :rem 55

2035 J=2*INT(C/2):C=INT(C/2)+N:IF OB GOTO 2020

:rem 41

2040 IF I(J)<0 THEN I(C)=I(J+1):GOTO 2035 :rem 107

2045 IF I(J+1)<0 THEN I(C)=I(J):GOTO 2035 :rem 112

2050 I(C)=I(J):IF N$(I(J+1))<N$(I(J)) THEN I(C)=I(

J+l) :rem 253

2055 GOTO 2035 :rem 207

Machine language sort. This ML sort is far faster than either of the two BASIC

sorts above. Program 6-27 loads the program into free RAM at $C000, although it is

relocatable and can be put anywhere in free RAM. It sorts string arrays in ascending

order, using an ordering algorithm identical to the 64's, and it is initiated using a

simple SYS call. It lets you sort strings from the second, third, or any other charac

ter, and it works with any memory configuration.

Program 6-27. Machine Language Sort for String Arrays
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

0 DATA 32#115,0,133,97,169,128,133,98,32,115,0,240

,7,9,128,133,98,32,115 :rem 213

1 DATA 0,165,47,133,99,165,48,133,100,160,0,165,97

,209,99,208,7,200,165,98 :rem 79

2 DATA 209,99,240,20,24,160,2,177,99,101,99,72,200

,177,99,101,100,133 :rem 71

3 DATA 100,104,133,99,144,221,160,5,177,99,133,102

,200,177,99,133,101,208 :rem 3

4 DATA 2,198,102,198,101,24,165,99,105,7,133,99,16

5,100,105,0,133,100,165,101 :rem 192

5 DATA 208,2,198,102,198,101,208,4,165,102,240,18,

133,105,162,0,134,103,134 :rem 82
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6 DATA 104,165,99,133,106,165,100,133,107,240,224,

240,114,24,165,106,105 :rem 198

7 DATA 3,133,106,165,107,105,0,133,107,230,103,208

,2,230,104,160,2,177,106 :rem 17

8 DATA 153,109,0,136,16,248,160,5,177,106,153,109,

0,136,192,2,208,246,170 :rem 7

9 DATA 56,229,109,144,2,166,109,160,255,232,200,20

2,208,8,165,112,197,109 :rem 16

10 DATA 144,10,176,34,177,113,209,110,240,238,16,2

6,160,2,185,112,0,145 :rem 142

11 DATA 106,136,16,248,160,5,185,106,0,145,106,136

,192,2,208,246,169,0,133 :rem 49

12 DATA 105,165,101,197,103,208,152,165,102,197,10

4,208,146,165,105,240,138,96 zrem 1

100 FOR J=49152 TO 49394:READ X:POKE J,X:NEXT

:rem 18

110 PRINT "USE SYS 49152:X TO SORT ARRAY X$(), FOR

EXAMPLE:-" :rem 163

1000 INPUT "SIZE OF ARRAY";N :rem 109

1010 DIM XY$(N) :rem 16

1020 FOR J=l TO N: XY$(J)=STR$(RND(1)*100): NEXT

:rem 66

1030 PRINT "SORTING.••" :rem 69

1040 SYS 49152:XY :rem 180

1050 FOR J=0 TO N:PRINT XY$(J):NEXT :rem 5

Program 6-27 is a version of the Bubble Sort, which operates on the pointers of

string arrays and produces no garbage collection delays. It operates in direct or pro

gram modes, but to save space it doesn't include a validation routine, so don't try to

sort an array that does not exist.

Speed is maximized if new items are added at the beginning of an array before

sorting. Note that the zeroth element isn't sorted—it can hold a title if desired. If the

255 in line 9 is changed to 1, strings are sorted from the second position; if it is 2,

sorting begins from the third, and so on.

Provided spaces pad out the strings correctly, it's possible to resort an array in

different ways. For an example, see the disk directory sorting program in Chapter 15,

which sorts on the initial of each program or file.

Strings are sorted in ASCII order. This can produce apparent anomalies: 12.3

comes before 2.87, which comes before 29.67. HELLO! precedes HELLO; and strings

0-25 emerge as 0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 20, 21, 22, 23, 24, 25,

3, 4, 5, 6, 7, 8, 9. Computer sorting often produces effects like these, but they should

not pose too much of a problem in practice.

In fact, programming can often be simplified by careful choice of the way in

which items to be sorted are arranged. For instance, a date held as YYMMDD auto

matically sorts into the correct order. Similarly, the fact that the comma has a lower

ASCII value than any letter insures that names held with commas sort correctly. Wil

liams, P. will come before Williamson, A.

Lines 1000-1050 in Program 6-27 provide a demonstration of the sort. Lines
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1000 and 1010 establish array XY$, and line 1020 fills the array with random nu

meric characters. Line 1040 calls the ML sort routine, and 1050 prints the values to

the screen. Note that you specify XY to sort array XY$—the $ is not used. If you

wish to add this sorting routine to your own programs, lines 1000-1050 should not

be included.

TRACE with SINGLE STEP

This version of TRACE displays the whole current BASIC line at the top of the

screen. The f1 key toggles the trace on and off, f3 changes the speed of TRACE by

accepting a number from 0 to 9 (fast), f5 executes a true single-step, and f7 traces as

fast as possible through BASIC.

Program 6-28. Trace
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 DATA 169,76,133,132,169,19,133,133,169,192,133,

134,96,255,0,254,15 :rem 84

11 DATA 0,252,72,138,72,152,72,173,136,2,141,148,1

92,166,197,224,4,208 :rem 122

12 DATA 12,228,197,240,252,173,13,192,73,255,141,1

3,192,173,13,192,240 :rem 116

13 DATA 38,224,5,208,61,228,197,240,252,160,0,140,

14,192,132,198,32,66 :rem 117

14 DATA 241,240,251,24,105,198,141,15,192,165,57,1

64,58,205,16,192,208 :rem 126

15 DATA 5,204,17,192,240,92,173,15,192,141,18,192,

162,128,160,128,165 :rem 74

16 DATA 197,201,3,240,22,201,5,240,200,173,14,192,

208,162,208,74,202 :rem 250

17 DATA 208,236,136,208,233,238,18,192,208,228,120

,162,0,181,0,157,76 :rem 75

18 DATA 193,202,208,248,162,79,169,160,157,0,4,202

,208,250,32,102,229 :rem 71

19 DATA 165,57,164,58,141,16,192,140,17,192,133,20

,132,21,32,207,192 :rem 18

20 DATA 162,0,189,76,193,149,0,202,208,248,32,108,

229,88,104,168,104 :rem 31

21 DATA 170,104,76,179,227,224,6,208,137,142,14,19

2,228,197,240,252,208 :rem 180

22 DATA 180,32,19,166,160,1,132,15,177,95,240,67,3

2,44,168,234,234,234 :rem 122

23 DATA 200,177,95,170,200,177,95,197,21,208,4,228

,20,240,2,176,44,132 :rem 117

24 DATA 73,32,205,189,169,32,164,73,41,127,32,71,1

71,201,34,208,6,165 :rem 73

25 DATA 15,73,255,133,15,200,240,17,177,95,208,16,

168,177,95,170,200 :rem 30

26 DATA 177,95,134,95,133,96,208,181,96,234,234,23

4,234,234,16,215,201 :rem 141
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27 DATA 255,240,211,36,15,48,207,56,233,127,170,13

2,73,160,255,202,240 :rem 111

28 DATA 8,200,185,158,160,16,250,48,245,200,185,15

8,160,48,178,32,71 srem 36

29 DATA 171,208,245,96 :rem 70

100 FOR J=49152 TO 49483:READ X:POKE J,X:NEXT

:rem 17

110 SYS 49152 :rem 150

Program 6-28 puts the ML for TRACE into memory starting at $C000. Load or

type in a BASIC program and run it. As stated above, whenever you press fl, the

trace begins; f7 traces fast, f5 single-steps, and f3 waits for a keypress from 0 to 9

before continuing. At this stage f1 will turn TRACE off, leaving BASIC running nor

mally, but fl is still tested for, so tracing can be resumed at any time. SYS 58260

NEWs BASIC and turns off TRACE completely; SYS 49152 reinstates it if desired.

This combination of features offers maximum flexibility in examining BASIC

programs.

Programs with graphics may list illegibly, with some BASIC characters appear

ing as graphics; and programs using the function keys, of course, may present prob

lems. These are typical difficulties in designing TRACE routines.

TRACE works by wedging into BASIC. It performs various operations before

returning to BASIC, which as far as possible is untouched. First, the key fl is

checked, and if it's pressed, a flag is reversed. If this flag is off, the program control

is returned to BASIC. If the trace flag is on, f3 is checked, and, if pressed, a number

key from 0 to 9 is awaited. When the number is received, it is inserted into a delay

loop. Also, f5 is tested, and if the single-step flag is on, the program loops indefi

nitely waiting for f5. When this key is found, the program runs BASIC until it finds

a new line number. The new line is listed on the screen and the indefinite loop re-

entered. If i7 is pressed, the delay loop is bypassed, so BASIC lines are listed as rap

idly as possible. In this way, there is maximum keyboard control over the trace.

The program is not relocatable as it stands, but it isn't difficult for an experi

enced ML programmer to move it. If you disassemble the routine, note the routine at

$C083, which lists lines. This routine saves the entire zero page (so LIST can't cor

rupt any locations), homes the cursor and blanks the first two lines of the screen,

lists the line using a modification of LIST, and restores the zero page values and pre

vious cursor position.

UNLIST

This system command prevents LISTing of BASIC to reduce the risk of unauthorized

copying or modification. UNLISTing is successful in proportion to the difficulty of

acquiring detailed knowledge of a system. No widely sold microcomputer yet has

foolproof protection. Nevertheless, temporary and makeshift expedients may be bet
ter than nothing. A collection of suggestions follows. Note that disabling

RUN/STOP and RUN/STOP-RESTORE is dealt with earlier in this chapter.
Machine language routine to run BASIC. This method is given first because it

is usable by anyone, works with any memory configuration, saves normally, and is

very puzzling to the uninitiated. It also disables RUN/STOP and RUN/STOP- RE-
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STORE, so if the program has no errors, no explicit or implicit END, and no STOP

statement, it can't be stopped at all by a user with an unmodified 64. BASIC runs

normally but lists as 0 SYSPEEK(44)*256+23 without any further lines. To use this

routine, follow these steps:

1. Be sure that the program has no line numbered 0 or 1. Change the numbering if it

does.

2. Enter line 0, with no spaces, in exactly this way: 0SYSPEEK(44)*256+23

3. Enter line 1 with exactly 21 asterisks (or any other character) and no spaces, like
this* i*********************

4. List lines 0-1 and check them.

5. Type in X=PEEK(44)*256+23. This is the starting address of the ML you will

POKE in, usually 2071.

6. Enter the following 24 POKEs. They are written as a continuous string of POKEs,

but only to save space. You should enter them one by one. Check with PRINT

PEEK(X) before you run. All of them must be correct

POKE X, 169: POKE X+1,45: POKE X+2,133: POKE X+3,43: POKE X+4,169

POKE X+5,234: POKE X+6,141: POKE X+7,40: POKE X+8,3: POKE X+9,160

POKE X+10,0: POKE X+11,169: POKE X+12,PEEK(X+22): POKE X+13,145

POKE X+14,43: POKE X+15,32: POKE X+16,89: POKE X+17,166: POKE X+18,76

POKE X+19,174: POKE X+20,167:POKE X-4,0: POKE X-3,0: POKE X+22,0.

7. Save the program, list it, and run it to be sure that UNLIST is working correctly.

Now show the result to a friendly hacker and see if he or she can list it.

Simple ML run. Here's another method, with an explanation of how it works.

Enter a program with no line 0 or 1, and add 0SYS2063 and l********** (ten as

terisks). Next, perform the following ten POKEs:

POKE 2063,169: POKE 2064,26: POKE 2065,133: POKE 2066,43

POKE 2067,32: POKE 2068,89: POKE 2069,166: POKE 2070,76

POKE 2071,174: POKE 2072,167

In addition to the above POKEs, POKE 2059,0: POKE 2060,0 to put end-of-program

bytes after line 0. This lists as 0 SYS 2063. It should run as normal. The ten ML

bytes disassemble in this way:

$100F LDA #$1A
$1011 STA $2B ; MOVES START-OF-BASIC TO THE TRUE START AFTER ML

$1013 JSR $A659 ; CLR SETS POINTERS

$1016 JMP $A7AE ; RUNS PROGRAM FROM START

The effect is identical to POKE 43,31: RUN. All that's needed is to add some
UNLIST features and disable RUN/STOP and RUN/STOP-RESTORE to get an

effective UNLIST.

Special characters in REM statements. Since characters in the same line after
REM don't affect a program's performance, there is plenty of scope for POKEing in
or otherwise entering confusing characters. See the discussion of REM earlier in this

section for some simple ideas.
Five leading tokens method. This method, once considered for commercial use,

causes a program's line numbers to LIST, but nothing else. It is easy to use. Add five
colons (or any five characters or tokens) at the start of every line of BASIC. Then
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add these lines to the program, choosing your own line numbers if 50000 to 50002

are already taken:

50000:::::S=PEEK(43)+256*PEEK(44): FOR J=l TO 9999

50001:::::IF PEEK(S+4)>0 THEN POKE S+4,0:S=PEEK(S)+256*PEEK(S+l): NEXT

50002:::::END

RUN 50000 will put null bytes into the start of each line. Upon trying to LIST, you

should see a set of line numbers and nothing else—but the program should work

fine. Next, simply delete lines 50000-50002 and the process is complete.

The following lines can put the colons back, so the lines will LIST again:

S=PEEK(43)+256*PEEK(44)

FOR J=l TO 1E8: POKE S+4,58: S=PEEK(S)+256*PEEK(S+1): IF S THEN NEXT.

With this method, about the best you can hope for is that users of your pro

grams haven't read this book. You can also set traps, like using :::NEW: or ::::X

before a variable, rather than five colons, before UNLISTing the program. If the pro

gram is made listable again but these entries pass unnoticed, the program will be

NEWed on running, or variable A may be mysteriously converted into XA.

Overlong lines. All of a line that is longer than about 250 characters cannot be

LISTed. LIST expects each line to be pointed to by a single-byte pointer and will

loop indefinitely if the line is longer. However, some other commands, like READ,

also fail to work.

To combine lines, replace the null byte at the end of each line with a colon (ex

cept the last one in the group), then move the lines down in memory to overwrite

the link addresses and line numbers. The very first link of the series must be set to

span the completed giant line, and all the later link addresses (which are now
wrong) must be corrected.

If the idea interests you, put the following routine at the beginning of a program

and run it. Type in two line numbers; when the program has finished they'll be

joined together. Each line number is printed as its line joins onto the first line se
lected; this ends up as a composite line, so the lines listed on the screen disappear
from the program.

Program 6-29. Combine Lines
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C

0 INPUT "COMBINE LINES";L,U trem 132

1 DEP FN DEEK(C)=PEEK(C) + 256*PEEK(C+1):C=FN DEEK
(43):E=FN DEEK(45)-4 :rem 225

2 LT=FN DEEK(C+2) :rem 173

3 IF LT<L THEN C=FN DEEK(C):GOTO 2 jrem 127

4 IF LT>L THEN PRINT "LINE NOT FOUND":END : rem 147

5 S=C:C=C+4 :rem 100

6 IF PEEK(C)>0 THEN C=C+l:GOTO 6 :rem 227

7 IF PEEK(C+2)=0 GOTO 13 :rem 230

8 LT=FN DEEK(C+3):IF LT<=U THEN PRINT LT :rem 71
9 IF LT<=U THEN POKE C,58:FOR J=C+1 TO E:POKE J, P

EEK(J+4):NEXT:GOTO 6 :rem 191
10 C=C+1:POKE S#C-INT(C/256)*256:POKE S+1,C/256:S=

C:C=C+4 trem 166
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11 IF PEEK(C)>0 THEN C=C+l:GOTO 11 :rem 59

12 IP PEEK(C+2)>0 GOTO 10 :rerii 16

13 PRINTC+3:C=C+1:POKE S,C-INT(C/256)*256:POKE S+l

#C/256:CLR:END :rem 212

When this program is run, line numbers are printed, as is a value (see line 13)

which is the new, lower end-of-BASIC. It isn't necessary to POKE this in, but if you

wish to save memory, you can do so. If, for example, 4567 is printed, type in POKE

45, 4567 AND 255: POKE 46,4567/256:CLR. Be sure to type it correctly; otherwise,

there will be problems. Incorrectly linked BASIC benaves in odd ways and may

refuse to accept new lines or delete old ones. Remember not to include lines ref

erenced by GOTO or GOSUB, or lines with IF statements or REM statements, which

will cause later parts of the newly joined line to be bypassed.

Self-modifying BASIC. If a program has only a few GOTOs and GOSUBs, this

is an excellent way to get simple list protection. LIST needs a correct link address for

each line of the BASIC program. However, RUN doesn't, except to process GOSUB

or to GOTO a lower destination line than the current one (10000 GOTO 100).

You can make use of this to get another type of UNLIST. Type in some lines of

BASIC, PRINT PEEK(2049), and write down the value, then POKE 2049,255 or some

other random value. LIST will probably show garbage, but RUN should be satisfac

tory. Before a GOTO or GOSUB of the sort just described, you'll need to POKE 2049

with the correct value for the program, then afterward POKE in the wrong value

again.

VARPTR

VARPTR finds the location of any variable stored in RAM. Its main use is to investi

gate variables, exactly as in the first part of this chapter. Program 6-30 loads a ma

chine language routine which will find the starting location of a variable name,

whether simple or subscripted. To be conveniently usable with BASIC, it uses ROM

routines not only to find the variable, but (with LET) to assign the resulting address

to another variable.

Program 6-30. VARPTR
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

100 DATA 32,115,0,32,139,176,164,95,165,96,32
:rem 168

110 DATA 145,179,32,115,0,32,139,176,133,73,132

:rem 2

120 DATA 74,165,14,72,165,13,72,76,186,169 :rem 35

130 FOR J=830 TO 861:READ X:POKE J,X:NEXT :rem 61

After this is typed in and run, to put the ML into memory, the syntax SYS
828:AB$:L (for example) assigns to variable L the value of the address where AB$'s
seven-byte description starts in memory. Below is an example that finds and prints

the value of X.
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200 N=123

210 SYS 830:N:X

220 FOR J=X to X+6: PRINT PEEK(J);: NEXT

These lines print the seven bytes which store X. In the same way, pointers or

any string can be found, and so on. (Note that arrays move if new simple variables

are defined; if you're investigating arrays, be sure not to add variables after VARPTR

has found the current array position.)

This routine can't find TI, TI$, or ST, which are not stored as conventional vari

ables. The machine language for the VARPTR routine follows this flow:

; JSR CHRGET (IGNORES SEPARATING COLON)

; WITH JSR PTRGET FINDS THE VARIABLE

; CONVERTS POINTER BYTES TO FLOATING-POINT

: IGNORES COLON

; FINDS SECOND VARIABLE

TWO ENTRIES ON STACK NEEDED

TO ASSIGN VALUE TO VARIABLE

JMP $A9BA ; EXIT THROUGH LET

JSR

JSR

LDY

LDA

JSR

JSR

JSR

STA

STY

LDA

PHA

LDA

PHA

$0073

$B08B

$5F

$60

$B391

$0073

$B08B

$46

$47

$08

$07
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Chapter 7

6510 Machine Language

Machine language (ML) programming is often considered more difficult than

programming in BASIC, but by the end of this chapter you should have a good

grasp of ML techniques on the 64. This chapter assumes familiarity with hexadeci

mal notation (explained in Chapter 5) and that you have an ML monitor program

available. Readers without a monitor may type in Supermon from the Appendix.

Note that Chapter 10 is a complete reference guide to all 6510 commands and con

tains examples which can help you write your own ML programs.

This chapter contains actual examples to teach you the simple techniques, a

description of the 6510 microprocessor, a list of problem-solving techniques, and dis

cussions of monitors (notably Supermon) and assemblers.

Introduction to 6510 ML Programming
This section presents some short ML programs, using only the simplest instructions.

Each example should be entered with a monitor. Supermon uses a fairly standard for

mat, and the examples presented here use the Supermon syntax. At this stage, only

four monitor commands will be discussed: A (Assemble) for writing ML programs

using the mnemonic instruction set; D (Disassemble) to decode ML bytes so they ap
pear as they did during assembly; M (Memory display), which displays the contents

of consecutive bytes; and G(Go) which executes the program, much as RUN exe

cutes BASIC programs in memory. Additional monitor commands are discussed later

in this chapter.

Most of the demonstration ML routines end with BRK. This is fine with

Supermon and other ML monitors, because the JBRKJinstruction returns control to the

monitor program. SYS calls from BASIC usuallyena with KlTT because RTS returns
control to BASIC. Therefore, if you call any of these routines from BASIC, remember h

replace BRK with RTS.

These programs put characters into the screen memory, so the effect of each

program is instantly visible; direct feedback like this is helpful in learning. The 64

has a movable screen memory, but these programs assume that the normal $0400

starting place applies. Color RAM starts at $D800.

Example 1. POKEing a Single Character to the Screen

Load and run Supermon (or your favorite monitor). The microprocessor's registers

will be displayed (don't worry about them for now) on the line above a period fol

lowed by a cursor. The period is a prompt showing that the monitor is waiting for

you to proceed.

Type in the ML program below exactly as shown, using either method. The two

forms of the program are exact equivalents; they are just different ways of showing

the same information. For example, the byte $A9 is always treated as the LDA com

mand by the 6510, and the D, or disassemble, command simply expands $A9 into

LDA whenever it finds it in the right place, similar to the way that BASIC'S LIST ex

pands one-byte tokens into keywords.

The A command lets you enter the program using mnemonics. Simply type A

followed by a space, then the address where you want the program to start, and
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then the first instruction. After you press RETURN, the monitor will print the next
free memory location for you.

.A C000 LDA #$00 *S

.A C002 STA $0400 C~

.A COOS BRK —>

Press RETURN twice after typing BRK, to return to the period prompt. You can enter

the same program by typing a colon, followed by eight hexadecimal values.

.:C000 A9 00 8D 00 04 00 —any—

This puts the designated values into the eight memory locations from $C000 to

C007. Another way to do this is with the M command. Type M C000 C007 to dis

play the contents of those addresses, then cursor over and type in the new value for
each byte.

You'll find that .D C000 C005 disassembles the bytes, translating the contents of
memory back into mnemonics. At left is the address where each instruction starts; to
the right are the hexadecimal values which make up the instruction, and finally the

mnemonic. The Supermon D command always prints an entire screen of disassembly;
other monitors may display only the specified range of addresses.

Note that, looking at the six bytes of the program, the screen start $0400 is held

with the low byte first and the high byte second—with 00 preceding 04. This feature
is common to all three-byte commands of the 6510 and other 6500 series chips.

.G C000 executes this short program, then returns to Supermon. Its effect is to

print an @ symbol in the top left of the screen, unless the screen scrolls and loses it

or unless there was no character there already, so color RAM is the background

color, making the @ invisible.

This is an easy program to understand, since $0400 is the first screen position,

and POKEing 0 to the screen generates the @ symbol. In fact, we can read the ML

like this: Load the accumulator with 0 (the number zero), store the byte in the accu

mulator in $0400, then BRK (break) to return to Supermon. The accumulator is an

eight-bit location, and it can be loaded with any value $00-$FF; essentially, it is a

one-byte buffer. The above example, therefore, has the same effect as POKEing

$0400 with 0, using the BASIC command POKE 1024,0.

Here's another idea. If we cursor-up and alter the first line to LDA #$01, then G

C000 has the effect of POKEing a 1 into the screen top, so the letter A appears. To

make this change in the Supermon disassembly, type over the value 00 shown in the

middle of the screen, to the left of the mnemonic. Other monitors may let you

change the value in the mnemonic field. You can now put any character into any

screen location, after a certain amount of calculation to determine the address, and

with the screen POKE value from the Appendices.

From BASIC, FOR J=49152 TO 49157 PRINT PEEK(J): NEXT prints the six

bytes of ML in decimal form, much like Supermon's M command. ML programs can

be POKEd into memory as well, and Chapter 9 includes a program which converts

ML into BASIC DATA statements for that purpose.

To illustrate the fact that BASIC can POKE in and use ML programs, enter:

.A C005 RTS

(press RETURN twice)

.X
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The X command allows you to leave the monitor. Now that you are in BASIC, enter:

FOR J=l to 255: POKE 49153J: SYS 49152: NEXT

This prints all 256 characters in quick succession at the top left of the screen. Each

loop alters the ML program, then executes it in its new form. To disassemble the

program in its final form, enter:

SYS 8

.D C000

and you will see this:

C000 LDA #$FF

C002 STA $0400

C005 RTS

This illustrates how the second byte of the six in the sequence contains $FF, or 255,

the last value we POKEd in from BASIC. Note that your program is no longer the

same one that you first typed in. Beginners are ordinarily discouraged from writing

self-modifying programs (which change their own instructions as they run), because

they can be confusing and difficult to debug. Until you have gained more expe

rience, it is probably best to avoid self-modifying code.

Example 2. POKEing a Character with Its Color

We'll now POKE a character to the screen, and also POKE a byte into the

corresponding position in color RAM. With Supermon, enter the following code (omit

everything from the semicolon to the end of each line—these are comments to help

you understand the commands):

.A C000 LDA #$00 ;LOAD ACCUMULATOR WITH 0

.A C002 STA $0400 ;STORE ACCUMULATOR IN SCREEN

.A C005 STA $D800 ;STORE ACCUMULATOR IN COLOR RAM

.A C008 BRK ;BREAK, BACK TO SUPERMON

This nine-byte program will disassemble with .D C000 C009 into exactly the

same form; try this to confirm that it was entered correctly. Entering .M C000 C009

gives this (the hyphens represent bytes that don't matter):

.:C000 A9 00 8D 00 04 8D 00 D8

.:C008 00

.G C000 executes the program; @ appears, at the top left; it is black because 0

indicates black in the color RAM. Cursor up and replace LDA #$00 with LDA #$02.

Now a red B will appear when you enter .G C000.

Example 3. Using an Index

This section introduces the X register and shows how to use it as an index. X is an

eight-bit register like the accumulator (a one-byte buffer, of sorts), and the instruc

tion TAX (Transfer Accumulator to the X register) simply copies the byte in A into X.

The special notation:

$0400,X

refers not just to address $0400, but to address $0400 plus the value of the byte in the
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.A

.A

.A

.A

.A

.A

cooo

C002

C003

C006

C008

C008

LDA

TAX

STA

LDA

STA

BRK

#$00

$0400,X

#$00

$D800,X

;LOAD A WITH 0

;TRANSFER A TO X

;STORE ACCUMULATOR IN SCREEN

;LOAD A WITH 0

;STORE A IN COLOR RAM + X

;BREAK

X register. That is, the eight-bit value contained in X is added to the sixteen-bit ad

dress $0400, and the result is the address used in the command. Since X has eight

bits, the range of addresses must be within $0400 to $04FF in the example, with

similar figures applying to the color RAM area.

+ X

Now .G COOO prints @ in black, exactly like the previous program. The dif

ference only appears on cursoring up, and altering LDA #$00 to LDA #$05, for ex

ample. Executing this prints E in black in the fifth screen position past the @

symbol. And any value in place of $00 prints a character offset from the screen start.

Change BRK to RTS, type X to exit to BASIC, and enter:

FOR J=0 TO 255: POKE 49153J: SYS 49152: NEXT

This prints all 256 characters consecutively in black, filling the top part of the screen

and showing clearly how the index, X, operates. POKE 49159 with another color

value, say, 2 for red, to watch the effect of the ML at $C006.

Example 4. Loops with ML

We've just used BASIC to cause a FOR-NEXT loop and we can do the same in ML.

Exactly as in BASIC, we need a counter to check the number of loops, plus a test for

the end of the loop. The example shows a standard way of doing this with the 6510,

which has increment, decrement, and branching instructions. Type in the following

ML program using your monitor:

;LOAD X REGISTER WITH 0

;TRANSFER X TO A (HAPPENS 256 TIMES IN

;LOOP)

;STORE A IN SCREEN START + OFFSET X

;SET COLOR RED

;STORE COLOR IN COLOR RAM + OFFSET X

INCREMENT X REGISTER

;BRANCH IF X NOT EQUAL TO 0

;BREAK WHEN X CYCLES THROUGH TO 0

With this ML in memory, .G COOO prints 256 characters in red in the top half of

the screen; it does this far faster than the equivalent BASIC version in Example 3,

taking about 1/200 second.

First, X is loaded with 0 and this is copied into A. (The TXA transfer uses one

fewer bytes than LDA #$00.) Using TXA insures that the offset X corresponds to the

character in A so that after the branch at $C00C, which is taken 255 times, the value

in the accumulator depends on the value in the X register. This shortcut depends on

the use of INX (INcrement X) to increase the value of the byte in the X register by

one. Note that the accumulator (A) value stored in screen memory cycles through

$00-$FF, but the A value stored in color RAM is always $02, so the color of each
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character stays constant. To understand this program fully, note the values in A and

X at each stage of the program; X increases until it is as large as eight bits can con

tain, at which point it increments from $FF to $00, while A alternates between the

identical, increasing, value of X and $02. (Incrementing an eight-bit register or mem

ory location past $FF flips the value back to $00; similarly, decrementing below $00

gives you $FF.)

At the point that the X register holds a value of 0, the program stops looping

back and executes the BRK instruction. This is because of the BNE (Branch if Not

Equal to zero) instruction. As long as X contained a nonzero byte, the program

branched back to the code at $C002. As soon as the value flips over to 0, no branch

occurs and the next instruction is executed.

Note that the branch command starting at $C00C occupies only two bytes, in

spite of looking as though it would take three bytes. It uses relative addressing,

meaning that if the branch is taken, execution resumes at the address of the follow

ing command plus the byte just after the branch command. The example adds the

offset value of $F4 to the address $C00E (it treats $F4 as negative, or -$0C, since

$F4 + $0C = $00 in a single-byte register). Since $C00E-$0C is $C002, it all

works fine. Don't worry if this arithmetic looks confusing; the monitor will calculate

the right offset value for you, as soon as you enter the destination address for the

branch. Note, however, that such branch commands can reach only 127 bytes for

ward or 128 back.

Example 5. Comparisons and Subroutines in ML
Just as SYS calls can run an ML program as a subroutine, provided the RTS com

mand ends the ML, you can call ML subroutines from your own ML using the JSR

(Jump to SubRoutine) instruction. RTS is therefore analogous to RETURN in BASIC,

and JSR is similar to GOSUB. Add the following program steps to Example 4:

;CHANGE BRK TO RTS

;CALL LOOP IN EXAMPLE 4 AS A SUBROUTINE

INCREMENT THE COLOR IN EXAMPLE 4

;LOAD A WITH THE NEW COLOR

;COMPARE THE NEW COLOR WITH 16

;BRANCH IF NOT EQUAL TO 16

;BREAK WHEN COLOR = 16

Now, .G C00F runs Example 4, cycling through the colors until the last color

(light gray) is reached. Because the subroutine is changed by this program, ,G C00F

behaves differently the second time. However, the point is that, like BASIC, sub

routines provide a powerful means of dividing programs into manageable chunks.

CMP (CoMPare) tests the byte in the accumulator with $10 (decimal 16), and if the

two are equal, a special flag called the zero flag is set. The BNE that follows checks

that flag, so if the value in the accumulator is not $10, the branch takes effect.

Comparisons can be followed by other branches than BNE or BEQ (Branch if EQual

to zero—if the zero flag is clear); the illustrations here are used for simplicity.

Because of the speed of ML, the colors on the screen are changed too fast to be

visible. As an exercise, you could add a delay loop after C00F JSR $C000, using up

time without performing significant processing work. Use the X and Y registers; Y is
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another eight-bit register in the 6510. Construct a loop within a loop, and use DEX

(DEcrement X) and DEY (DEcrement Y), each followed by BNE, so that X decrements

256 times for each decrement of Y. Remember that RUN/STOP-RESTORE generally

returns you to BASIC if your program doesn't work.

Description of the 6510 Chip
This section describes the 6510 microprocessor by looking at addressing modes; the

statusjrgfflStelJU!^ the program counter, zero page, and

tfd Th d (hi l
jgfflrStelJU!^ pg , pg, ad

stack; NMI, RESEX and IRQ vectors;ancfopcodes. The opcodes (machine language
instructions) are introduced last because their use depends on prior knowledge of the

other 6510 features. Chapter 10 has an annotated guide to all the opcodes; and the

Appendices have comprehensive tables, giving concise information on the 6510 for

experienced ML programmers.

The 6510 has 13 addressing modes. Most are easy to understand, but a few are more

difficult. Disassembly treats a given byte in the same way every time, once it has
determined the byte is an instruction; 8D rrt/y is always treated as STA yyxx. In

other words, this is implicit in the chip? Whenever 8D is encountered as an instruc
tion, the following pair of bytes is considered to be an address in low/high byte or

der. A disassembler therefore prints STA in place of 8D and follows it with a 16-bit

address.

Most addressing modes process the contents of memory locations, rather than

using explicit numeric values. This is invaluable in dealing with RAM and ROM

where the processor often is mainly concerned with arranging blocks of RAM. For

instance, in the short programs above, we changed the contents of memory locations

beginning at $0400.

All 6510 instr^tions are^ejther oner two, qy thre^ bytes long. The following dis

cussion examines each type.

Single-byte instructions. Single-byte instructions cannot reference either ad

dress or data, and operate only on features within the 6510 chip itself. The phrase

addressing mode doesn't really apply since there is no address, but for consistency

these instructions are described as possessing implied addressing (the address can be

thought of as an eight-bit location in the processor itself). Instructions which shift or

rotate bits in the accumulator, like ASL (Arithmetic Shift Left), are sometimes said to

use accumulator addressing. Nevertheless, you may encounter monitors which re

quire ASL A rather than just ASL.

Two-byte instructions. These instructions consist of an instruction followed by

a single byte. If this byte is treated as data, the instruction uses immediate mode.

This is usually indicated by a number sign (#) before the data (see the examples

above). Apart from loading the accumulator or X and Y registers with a value, this

addressing mode is used in arithmetic operations, logical operations, and

comparisons.

All other two-byte instructions refer to addresses, not data. There are six dif

ferent types. You have already used one of them, branches, in the previous section.

That addressing mode is usually called relative, because the offset indicates a

destination address relative to the current address.
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Zero page instructions. Five of the two-byte modes use zero page addressing. The

zero page is not a feature of the chip itself; it is the section of RAM in the 64 which

is wired to addresses $0000-^00FR However, the chip has the facility of enabling

the most significant byte"tobelgnored (since it is a zero anyway), so that LDA $34
can be written in place of LDA $0034, for example. This saves a byte, which short

ens programs and increases execution speed. For this reason, the first 256 bytes are

usually in great demand in 6510 programs, and machine language routines which

coexist with BASIC must be careful to take into account BASIC'S use of these

locations.

In the simplest type, the second byte specifies the address in zero page. For ex

ample, LDAJf^i^Q^^ Sf ^ddressi ,$O,QSfj^r l°cat|on
$55may .hold anyvahieiftom^ $06l^"$F^Noj^ne ditterence"'betwe'^''mi{S and the
^h^LBA^S^^^ih loads Jbhe valuej^j^^*

monsburceToi programMffi^ Bugs tor beginners!

- J.LPJ*8e indexed by X. LDA $A0,X loads into the accumulator the value in the

address' calculal:ed"by"an^ing $A0 to the contents of the X register. Note that the to

tal of $A0+X is itself treated as a zero page address; if there is overflow, it is ig

nored. For example, if X holds $60, $A0+$60 is treated as $00, not $0100, and the

contents of address 0 are loaded into the accumulator.

Zero ffflffg indexed fey y This is exactly analogous to the previous mode, but the

chip is designed so that only two instructions can use this mode (LDX and STX).

LDX,Y is an example.

Indexed indirect^An example of this type of instruction is LDA ($00,X). The

parentheses indicate^that the accumulator is loaded from an indirect' address. That is,

the quantity in parentheses specifies the address of the first of two consecutive zero

page bytes which form the address from which the data is taken. Let's assume for

the moment that X contains 0, to simplify matters. In effect, LDA ($00,X) would then

be equivalent to LDA ($00), since zero plus zero equals zero.

Suppose the first four bytes in zero page are 01 80 84 02. The instruction LDA

($00) would be expected to load the accumulator from the address it finds in the

bytes in locations $00 and $01, in this case $8001. So the instruction, in this in

stance, would have the same effect as LDA $8001.

However, such pure zero page indirect addressing is not available on the 6510;

you must use an index as well. Indexed indirect addressing, as the name implies, al

lows indexing of the indirect address. Thus, if X has the value $02, then LDA ($00,X)
has the effect of loading the accumulator from the indirect address of $00 + $02, or
($02). If the bytes in locations $02 and $03 are 84 02, the equivalent of LDA $0284
is executed. The instruction is useful when X is set to $00, as pure indirect address
ing of the zero page, or when you want to access a table of pointers in the zero
page. The pointers to the start and end of BASIC program and variable space pro
vide an example. This instruction is not uniform with respect to the X and Y reg
isters; see STY in Chapter 10 for additional information.

h^E^LB^^- An example of this type of addressing is LDA ($00),Y. As with
the pre^ousmode, the address in parentheses specifies the location of the first of
two consecutive bytes which together form an address. However, this mode is post-
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indexed by Y; that is, first the indirect address is calculated, then the value in the Y

register is added, and the resulting address is the object of the processing.

To show how this works, suppose again that the four bytes at the very start of

RAM contain 01 80 08 24. Now, LDA ($00),Y loads from $8001 + Y, so the 256

bytes from $8001 to $8100 can all be accessed, depending on Y's value.

Indirect indexing can be done only with the Y register. It's used for pure indirect

addressing when Y is $00, for such purposes as following the link pointers from one

BASIC line to the next; it is also used for processing blocks of data which aren't in

the zero page.

»The difference between indexed indirect and indirect indexed can be confusing

affirst. Put simply, indexed, jndirect—LDA ($00,X)—is often used to access a vector
table (a series of indirect addresses which point to special locations). By changing the

value of X, you can pick different two-byte addresses from the table, and use them

in processing.

In^aggygdoced—LDA ($00),Y—is a far more useful addressing mode; it lets

you access any memory location from $0000 to $FFFF. Typically, you will place the

desired base address in two free zero page locations, and index from there. To use a

common example, suppose that you have loaded locations $FB and $FC with 00 04.

Your base address is $0400, the first byte of screen memory. When the Y register

contains zero, LDA ($FB),Y loads the accumulator with the contents of $0400. If Y is

$01, STA ($FB),Y stores tfie accumulator contents at $0401, and so on.

Three-byte instructions. Three-byte instructions in the 6510 always consist of

an instruction iolll6w5ci'By"a two-byte address. There ar^mi^njgtjiyreta^nnsinf the
address: absolute,)absolute indexed by X| absolute indexed by Yf ancTabsolute

This mode is a simple reference to a two-byte address, as in LDA

$8000 or LDA $0012.

V^^SimAm^^' ^e contents of X are added to the base address to give
the" actual re^rencecfaddress. Thus, if X holds $50, LDA $8000,X loads the accu
mulator with the contents of $8050. As with zero page indexing, the maximum value

cannot exceed the legitimate address range of $0000-$FFFF, so LDA $FFF0,X—when

X holds $11—loads the accumulator from $0001, not from the nonexistent $10001.

lexed by Y. This is exactly analogous to the previous mode, except

that iffTinH^eff^SrLDA $8000,Y is an example.
Absolute iji^iect. The 6510 has only one instruction with this mode, namely,

JMP (fuMP). An indirect jump transfers the program's flow of control to a new ad
dress; this address is found from the contents of the address indicated by the indirect

instruction. Suppose once more that the first four bytes in zero page contain the val

ues 01 80 84 02. In that case, JMP ($0000) has the same effect as JMP $8001; JMP
($0001) jumps to $8480; and so on. This instruction is useful when a table of ad
dresses (like the three vectors at the top of memory) exists in a block. For example,
the RESET vector at $FFFC-$FFFD can be called by JMP ($FFFC). This addressing

mode is not often used, partly because of a bug in the 6502 series chips. If the in
direct jump address is located on a page boundary—for example, JMP ($80FF)—pro
gram flow will be transferred to an erroneous address.
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The Status Register

The status register (or processor status register), denotedjs^SR in Supermon, is an-

other eight-bit register. It contains seven individuaTswtusDitsTorTT^Tanof which

are automatically controlled by the 6510 chip as ML programs run. Bit 5 of the reg

ister isn't used and is permanently set at 1. Table 7-1 lists all possible bit-patterns for

the status register. Note that values of 0, 1, 4, 5, 8, 9, C, or D are not possible in the

high nybble, since bit 5 is always set to 1. This means that the value in the status

register will always be at least $20 (32), even when all flags are clear. For example, if

the register contains $32, then B (the break flag) is set and Z (the zero result flag) is

set. These flags don't change unless altered by an instruction. For example, D (the

decimal mode flag) typically remains off through all BASIC programs.

Table 7-1. 64 Status Register
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Chapter 10 shows which flags are affected by each instruction. LDA, for in

stance, affects the N (negative) and Z flags, but no others. This process is automatic;

it's part of LDA and happens even if you don't need it to. However, a few instruc

tions are specifically for setting or clearing flags: CLC (CLear Carry) clears the C

(carry) flag to 0, and SEC (SEt Carry) sets C to 1.

The logic behind the use of flags can be difficult to follow at first. The V (over

flow) and N flags are tricky, while Z and I (the interrupt disable flag) are much

simpler. With practice, the programmer should find them easy enough or at least be

able to avoid the awkward ones. For instance, V is seldom used.

The N, or negative, flag (bit 7 of SR) is a direct copy of bit 7 of the result of

some other operation. Thus, LDA #$D3 loads $D3 into the accumulator, and since

$D3 is hexadecimal shorthand for binary 1101 0011 (which has bit 7 high), N is
turned on by this instruction. Some hardware ports are wired up to bit 7, so LDA

from the location sets or clears N to reflect the status of bit 7. N is used along with

BMI (Branch on Minus) or BPL (Branch on PLus), the branches being taken if N is 1

or 0, respectively. This special concept of negative is part of twos complement

arithmetic, which is discussed below.

The V, or internal overflow, flag (bit 6 of SR) is seldom used. Like N, it's re

lated to twos complement arithmetic and indicates typically that two numbers added

together give a result outside the acceptable range. See below.

The 1 flag (bit 5 of SR) is unused. Since it is always set to 1, it is referred to in

this book as the 1 flag.

The B, or break, flag (bit 4 of SR) is usually set only when a BRK instruction is

encountered. Its purpose is to enable a BRK instruction to be distinguished from an

interrupt, since both jump to the same address. The address is fixed in ROM. This is

a hardware feature of the 6510, discussed in greater detail later.

The D, or decimal calculation mode, flag (bit 3 of SR) changes the way the

processor handles bytes in general and selects the 6510's binary coded decimal

(BCD) mode of addition and subtraction, instead of the usual binary. The results re

semble ordinary decimal arithmetic. This concept is not a simple one. As an illustra

tion, consider adding 35 to 97. In hex, the result is $CC; in decimal mode, it is 32

with the carry flag set, identical to the normal decimal outcome. The 6510 automati

cally adds 6 to either nybble if a result exceeds 9. For more on BCD representation

of numbers, see Mapping the Commodore 64 and The Second Book of Machine Language

from COMPUTE! Publications.
The I, or interrupt disable, flag (bit 2 of SR), when set with SEI (SEt Interrupt

flag), prevents any IRQ interrupts from taking place—remember, this is the interrupt

disable flag. Chapter 8 explains these interrupts, with examples, but due to their im
portance in handling the keyboard, they are mentioned in other places as well. The
main reason for disabling interrupts is to prevent them from disturbing ML routines

which won't work properly if interrupted; for example, you would not want an inter
rupt to occur while you were changing the interrupt vector to point to your own ML

routine. CLI clears this flag.
The Z, or zero result, flag (bit 1 of SR) is set by most of the instructions which

set N. To derive Z, all eight bits of a result are ORed together; if this process gives a
value of zero, the Z bit is set to show a zero result. Otherwise, when the result is non
zero, Z is zero. The notes to BEQ and BNE in Chapter 10 expand on this.
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The C, or carry, flag (bit 0 of SR) is primarily of use in addition or subtraction,

where its function is similar to the carry in addition, which denotes overflow from a

column of figures to a more significant column (it is used as a borrow flag in subtrac

tion). BCC, BCS, CLC, and SEC are other instructions involving this flag; they often

follow a comparison (CMP) instruction.

The Program Counter, Zero Page, and Stack

The program counter (PC) is a 16-bit register within the chip that records the ad

dress of the current instruction being executed. The register can't be accessed di

rectly. A BRK or interrupt causes the PC value to be saved on the stack, as does a

JSR. Thus, the value of the PC can be determined after BRK, which is how Supermon

records the PC. Machine branch and jump instructions operate by loading new val

ues into the PC, thereby transferring control to some new program location.

The zero page, as you have seen, is the section of memory from $00 to $FF. Be

cause many 6510 instructions can use zero page addressing modes, which are faster

and shorter than absolute addressing, this region is the most important area of RAM.

A page is a section of 256 (28) bytes—the area that can be indexed by a single-byte

reference—and the 6510 can address 256 pages.

The stack is a part-RAM, part-hardware feature of the 6510. It uses page 1 of

RAM, from $100 to $1FF, and it can be difficult to understand for several reasons.

First, although page 1 is used by the processor as the stack, it also doubles as normal

RAM. Second, instructions like PHA (PusH Accumulator onto stack) and its opposite

PLA (PuLl a byte from the stack into the Accumulator), which are used for tem

porary storage purposes, work in a fairly complex way, adding new bytes to the

lower end of the stack and recovering old bytes from the lower end, under the control

of another 8-bit register, the stack pointer. The process is explained in Chapter 10.

Note that another complementary pair of instructions, PHP and PLP, operates

on the processor status register, allowing it to be stored and examined at will. Four

other instructions use the stack: JSR flump to SubRoutine), its converse RTS (ReTurn

from Subroutine), RTI (ReTurn from Interrupt), and BRK. The stack pointer can be

read or reset by copying values to or from the X register, using the TSX (Transfer

Stack pointer to X register) or TXS (Transfer X register to Stack pointer) instructions,
respectively (see Chapter 10).

NMI, RESET, and IRQ Vectors

The 6510 has a group of reserved addresses, defined in hardware, at the top of its

addressing area. The top of memory is therefore invariably ROM. Whenever the

NMI, RESET, or IRQ pin of the 6510 is grounded, the processor sets the program
counter to the address in location $FFFA-$FFFB, $FFFC-$FFFD, or $FFFE-$FFFF,
respectively. For example, when the"1531s turned on, after a short delay, the RESET
line of its 6510 is held low, causing the processor to look at locations $FFFC and
$FFFD for the address for the standard power-up sequence. If you check these ad
dresses with PRINT PEEK(65532)+256*PEEK(65533), you'll see that the the 64's
ROM reset routine begins at location 64738 ($FCE2), as discussed in Chapter 5.

The RESTORE key uses a Non-Maskable Interrupt vector, so NMI can be pro
grammed. RESET is valuable in program recovery, to restore programs which have
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crashed in otherwise infinite loops. IRQ is used by the 64 to read the keyboard,

among other things. Chapters 5, 6, and 8 discuss the software side of these hardware

features.

6510 Instructions and Opcodes

An opcode (operation code) is a single-byte value that instructs the microprocessor to

perform a particular action. Since humans find it easier to deal with letters rather

than binary digits, the opcodes are usually represented by mnemonics, character

representations intended to make machine language relatively easy to read. All 6510

opcodes are three letters long, which makes for neat assembly and disassembly

listings.

Although the mnemonics are standard, there is nothing to stop you from coming

up with your own. This may in fact be helpful as a learning aid, although it would

be unorthodox.

There are 56 distinct instruction types (and hence 56 standard mnemonics),

some with one addressing mode, some with as many as eight, for a total of 151 valid

opcodes. They can be grouped by function, as shown below.

Add/subtract. ADC^(ADd withn Carry) and SBC (SuBtr^ are

the 6510's arithmetic hincfions. "iiotn""aaaition ancl subtrac&on are'cam^a'ouron all
eight bits, using the carry flag (C) for overflow. Twos complement arithmetic is not

used, but flags are present which enable it to be implemented. A binary coded deci-

maHBCD) arithmetic mode is also available.

^jpf The 6510 has eight branch instructions, all conditional on the status
ofa flag and all having a single-byte, twos-complement offset. The instructions are
JJCCdJ£§ !&E and BEC^/BPL and BML BVC and BVS, and the branch is taken

espectively. a"SBBH—if the C, Z7N, orv flag is clear or set, respectively.

**#* Break. The BRK instruction causes an unconditional jump to the address in

locations SFFFE-IH^FFF? having first saved both the program counter and the status
register on the stack.

^ Comparisons. CP)(fmfP\fi^^ £fyfff make it possible to compare the contents of

X, Y, and A (the accuifltilator) with data or with bytes in memory. The byte is sub

tracted from X, Y, or A, and flags are set, without changing the value in the register.

N, Z, and C are set, so a comparison may be followed by any branch (except BVC or

BVS) to test the comparison.

Data transfers. Data can be loaded into the 6510 from RAM or ROM by LDA,

LDX, or LDY; it can be stored in RAM by STA, STX, or STY. These few instructions

are extended in power by being equipped with a large number of addressing modes.
Decrements/increments. These alter X, Y, or memory locations by subtracting

or adding one bit, setting N and Z according to the result. The instructions are DEX,
DEY, DEC, and INX, INY, INC. There is no instruction that directly increments or

decrements the accumulator; however, you can use ADC or SBC to add or subtract a

value from A.
Flag clear/set. These enable some status register flags to be altered at will.

CLC, CLD, CLI, and CLV clear flags C, D, I, and V; SEC, SED, and SEI set flags C,

D, and I.
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Jumps. JMP acts like GOTO in BASIC. JSR acts like GOSUB, with RTS the
equivalent of RETURN. JSR pushes the current address plus two onto the stack, for
use when the subroutine is finished.

Logical operations. AND, EOR (Exclusive-OR the byte in the accumulator), and
ORA (OR the byte in the accumulator) perform binary logical operations on the
accumulator using immediate data or a byte in a specified memory location, retain
ing the result in the accumulator, and setting the N and Z flags. The BIT instruction
sets the Z flag just as AND would, but does not affect the contents of the accu
mulator; it also copies the sixth and seventh bits of the tested value into the V and N
flags.

No operation. NOP does nothing but take space. It is useful for testing, because,
for example, JSR instructions can be masked by inserting NOPs over the JSR and the
two subsequent address bytes.

Return. RTS returns to the instruction following JSR by pulling the stored return
address off the stack, and transferring program control to the next byte after the ad
dress. This has the effect of jumping to the instruction which follows the two-byte
address after JSR. RTI jumps to the address on the stack and also loads the status
register from the stack.

Rotate/shift. ROL (ROtate Left) and ROR (ROtate Right) act on the accumulator
and the C (carry) flag (a nine-bit rotation). For example, an ROL causes all bits in the
accumulator to move one position to the left; the leftmost bit (bit 7) is pushed into
the carry flag, and the old contents of the carry flag wrap around into the rightmost
bit of the accumulator (bit 0). ASL (Arithmetic Shift Left) and LSR (Logical Shift
Right) also involve the accumulator and C (but do not rotate C) so that bit 0 with
ASL and bit 7 with LSR ^re always set to 0. Flags N, Z, and C are set.

Stack operations. These are PHA, PHP, PLA, and PLP and are explicit opera
tions on the stack, but BRK, JSR, RTS, and RTI also use the stack. TSX and TXS
allow the stack pointer to be found and set, respectively.

Transfers between registers. Six instructions allow transfers between any two
registers Y, A, X, and S. The opcodes are TYA. and TAY, TAX and TXA, and TXS and
TSX.

Note: Not all of a 6510 machine language program consists of instructions;

tables of data are a common, and necessary, feature, and these can usually be identi
fied by the fact that they don't disassemble sensibly. Chapter 5 explains about such
tables. BASIC ROM starts with tables, including address tables (that is, tables of 16-
bit numbers), BASIC keywords, and BASIC messages.

Timing

All opcodes take a precise number of 6510 clock cycles; the faster the clock, the

faster the ML executes. The 64's chip runs at about one million cycles per second.

Table 7-2 summarizes timing in the 6510; most instructions are included in the first

column, but a few exceptional instructions are listed in the other columns.
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Table 7-2. 6510 Timing Reference Chart

Stack PH=3, PL

RTS=6 RTI=6

BRK=7

2 (if no branch)

3 (if branch taken

+ lover page)

In practice, it is difficult to time long programs by timing individual instructions,

since there are too many instructions to count. But it's helpful in speeding up slow

ML routines, when you're trying to optimize functions like updating a screen full of

information.

6510 ML Techniques
This section uses assembler-style listings in the examples. See the section on assem

blers for information. The following topics are discussed:

• Two-Byte Operations

• Testing the Range of a Byte

• Loops

• Shift and Rotate Instructions

• Logical Instructions

• Twos Complement Arithmetic

• Decimal Arithmetic

• Debugging ML Programs
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Two-Byte Operations
Incrementing two bytes. The best method to increment two bytes is illustrated

by the following routine:

INC LOBYTE

BNE CONT ;BRANCH UNLESS $FF JUST BECAME $00

INC HIBYTE ;ONLY NEEDED WHEN LOBYTE NOW IS $00

CONT ...

Decrementing two bytes. This is not as simple as incrementing, since there's no

test for decrement from #$00 to #$FF. However, the following routine will do it:

LDA LOBYTE

BNE DECL ;BRANCH UNLESS LOBYTE IS 00

DEC HIBYTE ;ONLY NEEDED WHEN LOBYTE WAS 00

DECL DEC LOBYTE

Adding two-byte pairs. The carry flag carries overflow from low to high bytes.

CLC ;START BY CLEARING CARRY

LDA LO1 ;GET FIRST LOW BYTE ...

ADC LO2 ;...ADD IT TO OTHER LOW BYTE

STA LO2 ;AND STORE RESULT

LDA HI1 ;GET FIRST HIGH BYTE ...

ADC HI2 ;...ADD IT AND CARRY TO OTHER HIGH BYTE,

STA HI2 ;AND STORE RESULT

In this example, LO2 and HI2 end up with the contents of LO1 and HI1 added

to them. Chapter 10 has another example.

Subtracting two-byte pairs. The carry flag (C) is set before subtraction (if it is

left clear, the result will be off by 1). If C is clear on exit, the result is negative—that

is, the amount subtracted was larger than the original two-byte amount.

SEC ;SET CARRY FLAG

LDA LO1 ;GET FIRST LOW BYTE...

SBC LO2 SUBTRACT OTHER LOW BYTE

STA LO2 ;STORE RESULTS LOW BYTE

LDA HI1 ;GET FIRST HIGH BYTE...

SBC HI2 SUBTRACT OTHER HIGH BYTE AND CARRY FLAG COMPLEMENT

STA HI2 ;STORE HIGH BYTE OF RESULT.

Multiplying two single bytes to give a two-byte result. Amazingly enough,

the 6510 has no instructions specifically for multiplying and dividing. The example

below, however, multiplies the contents of two zero page locations ($FC and $FD),

leaving the result in the same two bytes. On average, about 6000 multiplications per

second can be performed by this routine, which uses ROR (ROtate Right) to detect

bits and to store the result in $FC (low byte) and $FD (high byte).

C000 CLC

C001 LDA #$00

C003 LDX #$08

C005 ROR

C006 ROR $FC

C008 BCC $C00D

C00A CLC
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C00B ADC $FD

C00D DEX

COOE BPL $C005

C010 STA $FD

C012 RTS

After exiting Supermon, the following BASIC line can be used to test the ML multiply

routine.

10 INPUT X,Y: POKE 252,X: POKE 253,Y: SYS 49152: PRINT PEEK(252)+256* PEEK(253)

Division of a two-byte number by a single byte. The next routine is roughly

the opposite of the previous one. A 16-bit (two-byte) number in locations $FC (low

byte) and $FD (high byte) is divided by the contents of $FE, and the result (assumed

to be in the range $00-$FF) is left in $FC, with the remainder in $FD. The identical

addresses and locations need not be retained in actual programs, of course.

C000 CLC

C001

C003

C005

C007

C008

C00A

COOC

COOE

C010

con

C012

C014

C016

C018

LDX

LDA

ROL

ROL

BCS

CMP

BCC

SBC

SEC

DEX

BNE

ROL

STA

RTS

#$08

$FD

$FC

$C00E

$FE

$C011

$FE

$C005

$FC

$FD

This can be tested from BASIC by POKEing locations 252 and 253 with low and

high bytes of the numerator, POKEing 254 with the denominator, SYSing to 49152,

and printing PEEK(252) and PEEK(253) for the solution and remainder.

Comparing two-byte pairs. The trick is to avoid comparison instructions and

use SBC instead, which retains results as well as setting flags. Use the following

routine:

SEC

LDA LO1

SBC LO2

STA TEMP TEMPORARY STORE

LDA HI1

SBC HI2
ORA TEMP ;RESULT 0 ONLY IF A AND TEMP BOTH 0

Z is set if the contents of the first address equal those of the second; C is clear if
the contents of the first are less than the second. Therefore, BEQ, BCC, and BCS test

for =, <, and > respectively.
Other two-byte operations. It's often possible to write compact ML using the X

and Y registers to store two bytes. Suppose locations $FD and $FE contain an ad-
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dress to be decremented, then stored in locations $0350 and $0351. You can use the

following routine:

LDY $FE

LDX $FD

BNE NO

DEY

NO DEX

STY $0351

STX $0350

Testing the Range of a Byte
The following example tests whether the byte in the accumulator is within the range

5-9. A whole sequence of CMP instructions, with their immediate mode bytes in

increasing order, can be tested with a succession of BCC instructions. It's not nec

essary that the second branch be BCS, as it is here.

LDA TESTBYTE

CMP #$05

BCC SMALL ;BRANCH TAKEN IF A = 0,1,2,3, OR 4

CMP #$0A

BCS LARGE ;BRANCH TAKEN IF A = 0A,0B,0C,...,FF

OK ... ;CONTINUE WITH A IN DESIRED RANGE

Loops

Loops generally use X or Y as a counter and often as an offset, too. There's some

room for timesaving in the design of loops. Also, it's worth checking over their logic.

It's easy to write loops which aren't quite correct, perhaps missing one of the values

at one end of the loop.

The short loop below puts the five bytes for the letters of the word HELLO on

the screen. There are two versions:

LDX #5

LOOP LDA TABLE-1,X

STA $lE00,X

DEX

BNE LOOP

RTS

TABLE .BYTE "HELLO"

In the first version, X successively takes values 0, 1, 2, 3, and 4; in the second,

the values taken are 5, 4, 3, 2, and 1. The second version is shorter; DEX counts

down to 0, and CPX #$00 is redundant, since in effect the processor does this when
it sets the Z flag of the status register. Decrements are often more efficient than in
crements, because you can eliminate the two-byte comparison instruction. However,

you should take note that the decrementing version prints OLLEH instead of
HELLO. That is, the bytes are read from right to left with this version, since the loop
starts with the highest value of X and indexes backward to zero. You'll need to take
that into account when you set up your tables of data. Using decrements also adds
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STA

INX

CPX

BNE

RTS
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#0

TABLE,X

$lE00,X
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"HELLO"
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an extra difficulty; the LDA instruction cannot be executed with an X value of 0. This

explains why the decrementing version uses LDA TABLE—1,X instead of LDA

TABLE,X; if this were not done, the program would print a garbage character fol

lowed by OLLE.

Note that LDX #$04 : ... : BPL LOOP counts X down from 4 to 0, and the accu

mulator loads from the expected starting point. However, X values larger than $7F

won't cause a branch on BPL (because bit 7 is used to indicate a negative number

with the BPL and BMI instructions), so it's best to avoid BPL at first.

Looking at longer loops, there are again several possible methods. Suppose 512

bytes are to be moved into color RAM from $C000. Different approaches are shown

below:

(A)

LDA

STA

STA

LDA

STA

LDA

STA

LDY

LOOP LDA

STA

INY

BNE

INC

INC

LDA

CMP

BNE

#$00

$FB

$FD

#$C0

$FC

#$D8

$FE

$00

<$FB),Y

<$FD),Y

LOOP

$FC

$FE

$FE

#$DA

LOOP

(B)

LDY

LOOP LDA

STA

LDA

STA

INY

BNE

#$00

$C000,Y

$D800,Y

$C100,Y

$D900,Y

LOOP

(C)

LDY

LOOP LDA

STA

INY

BNE

INC

INC

LDA

CMP

BNE

#$00

$C000,Y

$D800,Y

LOOP

LOOP+2

LOOP+5

LOOP+5

#$DA

LOOP

Loop B is the shortest and fastest. It moves bytes in pairs. The loop will obvi

ously get longer if several thousand bytes are to be moved, perhaps when ML has

been loaded into RAM from tape and needs to be put into its correct RAM area to

run.

Loop C is basically similar but uses self-modifying ML. In the example, the loop

becomes LDA $C100,Y : STA $D900,Y the second time around, then LDA $C200,Y :

STA $DA00,Y, after which the CMP test terminates the loop. Although this is fairly

straightforward, it has the drawback that the ML is different on exit from what it

was at the start. Thus, a second call to the ML gives different results (crashing the

computer in this case), one reason why beginners are often warned against using

self-modifying code.

Loop A is a general-purpose version, suitable in most cases; it's longer than the

others, because of the need to set up $FB-$FC and $FD-$FE with $C000 and $9600.

In each case, these examples assume that the loop ends at a page start address like

$DA00. Obviously, both bytes in the address can be compared if this doesn't apply.

Saving the zero page is sometimes a useful trick, perhaps to optimize ML run

ning with BASIC. TRACE (Chapter 6) does this to allow LIST and BASIC to work

together. The routines are simple enough but require 256 bytes of RAM protected
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from BASIC (usually, the top of BASIC is lowered). Use the following routine to

save the area, where STORE is the first byte of your protected area:

LDX #$00

LOOP LDA $00,X ; LOAD CONTENTS OF ZERO PAGE LOCATION

STA STORE,X ; STORE IN SAFE LOCATION

INX

BNE LOOP ; FINISH ALL 256 BYTES

Use this routine to restore the area later:

LDX #$00

LOOP LDA STORE,X ; LOAD VALUE FROM STORAGE

STA $00,X ; STORE BACK IN ZERO PAGE

INX

BNE LOOP ; FINISH

Shift and Rotate Instructions

Shifting instructions (ASL, LSR) and rotating instructions (ROL, ROR) are useful

whenever individual bits are important. For example, an easy way to print a byte as

eight 0's or l's is to shift the byte eight times, using BCC or BCS to determine

whether 0 or 1 is correct. Parallel-to-serial interconversion, where a byte is either

sent as separate bits or put together from bits, uses the same idea.

Because rotations use nine bits, including C, they can be used to hold intermedi

ate results during processing. The multiply and divide routines presented earlier use

rotations like this; division, for example, repeatedly doubles the denominator and

compares it with the numerator (to see which is bigger) while collecting the result.

Both types of commands are valuable in calculations, because they multiply by 2.

This example shows how to multiply by 40; at the start, location $FC holds a Y-

coordinate from 0 to 24, and $FD holds 1.

The ML points to the Xth column of the Yth row of the screen. This can be done

with a lookup table (which would be faster), but this is shorter: it calculates

$400+40*Y (pointing to the beginning of the line), putting the result in ($FC), so an

instruction like LDY $FB followed by LDA ($FC),Y references the correct position on

the screen.

LDA $FC ;A HOLDS Y-COORDINATE

ASL ;A HOLDS 2*Y-COORD (0-48)

ASL ;A HOLDS 4*Y-COORD (0-96) C=0

ADC $FC ;A HOLDS 5*Y-COORD (0-120)

ASL ;A HOLDS 10*Y-COORD (0-240)

ASL ;A = 20*Y-COORD (0-480); ANY OVERFLOW IN C

ROL $FD ;$FC, $FD HOLDS $0200 + OVERFLOW

ASL ;A = 40*Y-COORD (0-960); ANY OVERFLOW IN C

ROL $FD ;$FD, $FD HOLDS $0400 + OVERFLOW

STA $FC ;($FC) HOLDS $0400 + 40*Y-COORDINATE

Logical Instructions
AND and ORA act like BASIC'S AND and OR, except that only eight bits are in

volved. EOR (Exclusive-OR) doesn't exist in BASIC; the nearest thing is (A OR B)
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AND NOT (A AND B). As Chapter 11 shows, AND is used to mask out bits, ORA is

used to force bits high, and EOR is used to reverse bits. In each case, any combina

tion of bits can be chosen.

For example, assume you have a byte ($72) which you want to print as the digits

7 then 2. Store the byte, then shift it right four times. Then, AND #$0F to mask off

(erase) the leftmost bytes. ORA #$30 forces $30 into the byte to create the ASCII

value of a numeral ready for printing. Recover the original byte and repeat. This

way, both digits are correctly output.

An example of EOR may be helpful, too. EOR combines bits in repeatable pat

terns, and you can use this to generate a checksum for BASIC or ML programs,

which is helpful in verifying if a program is correct. The following version prints a

number 0-255 and will print the same number whenever the identical program

loads into the identical memory area.

LDA

STA

LDA

STA

LDY

LOOP EOR

INC

BNE

INC

NOINC LDX

CPX

BNE

LDX

CPX

BNE

TAX

LDA

JMP

;COPY START-OF-PROGRAM POINTER

; INTO FD AND FE

$2B

$FD

$2C

$FE

#$00 ;SET Y TO 0

<$FD),Y

$FD INCREMENT ADDRESS IN FD/FE

NOINC

$FE

$FE ;TEST WHETHER FE/FF YET EQUALS 2E/2F

$2E ; 2E/2F, THE END-OF-PROGRAM POSITION

LOOP

$FD

$2D

LOOP

;END OF PROGRAM. NOW PRINT OUT A'S VALUE

#$00

$BDCD ;USING THIS ROM ROUTINE

All logical instructions (like the arithmetic instructions ADC and SBC) use the

accumulator. EOR #$FF is the equivalent of NOT A, since all the bits in the accu

mulator are flipped; every 1 bit is changed to 0, and vice versa.

The BIT instruction is different from the above three instructions; it sets flags

but doesn't alter the accumulator or any address. It may be of use when some loca

tion is to be tested logically while the accumulator must remain unchanged. The Z

flag is set if the accumulator and the operand of BIT together AND to 0, and bits 6

and 7 of the result are copied into the V and N flags, respectively.

Twos Complement Arithmetic

It is possible to arrange arithmetic in eight-bit bytes to indicate negative values. Al
though $00-$FF ordinarily represent the positive numbers 0-255, with a change in

interpretation, negatives can be used too. This is not a convention, in the strictest

sense, but a consequence of the rules of binary arithmetic. Thus, it must work on
any microprocessor.
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Bit 7, the leftmost (highest) bit, can be regarded as a sign bit. It takes one of two

values, with 0 designating a positive number and 1 representing a negative sign; the

seven lower bits in the byte indicate the actual value of the number. The N flag in

the status register is wired to be consistent with this scheme; when N=l, the num

ber is considered negative and BMI's branch is taken. If N=0, BPL is taken. These

branches operate whether or not you're using signed arithmetic.

A number and its negative must add to 0. It follows that a pair of numbers (say,

+ 7 and —7) can be represented by $07 and $F9, because these add to $00, and be

cause the second has its high bit set. The use of numbers like $F9 to represent neg

atives is called twos complement arithmetic, and $F9 is the twos complement of $07.

You'll find with experiment that the largest possible one-byte twos complement

number (%0111 1111) is 127, and the smallest (%1000 0000) is -128. These figures

are identical to the range available to branch instructions and show how a branch's

offset can be stored in just one byte.

Subtraction from 256 gives the twos complement. Another rule, which may be

easier to use, is to flip all the bits in the byte, and add 1. So, the twos complement

of %0101 0101 ($55) is %1010 1010 plus 1, or %1010 1011 ($AB). Again, $55 plus

$AB adds to $00, ignoring the carry flag. Note that $00 is its own negative

complement.

You can generate twos complement numbers with the following routine:

LDA NUMBER

EOR #$FF

CLC

ADC #$01

Since the sign can be stored elsewhere, this type of arithmetic isn't particularly

popular; however, the 64's BASIC integer variables (for example, X%) use a 16-bit

version of twos complement arithmetic in which the highest bit stores the sign, so

integers may range from -32768 to +32767.

The V flag is also associated with this type of arithmetic, showing that an over

flow took place into the sign bit. Consider addition, for example, where V is affected

by ADC. Numbers of opposite signs cannot overflow; even extreme values must fall

in the correct range. But if the signs are the same, overflow is possible. For example,

$44 + $33 gives %77, and V is clear, but $63 + $32 gives $95, which in twos com

plement arithmetic is considered negative; this addition results in V being set. Simi

larly, two negative numbers can appear to add to a positive result, and if this is the

case, V will also be set.

The condition of the V flag is in fact determined internally, by the chip, by

reversing the EOR of the sign bits (giving 0 if they match, 1 otherwise). V is set, in

other words, when the signs are the same; the result (incorrectly) shows a different

sign.

To reiterate, twos complement is an interpretation. Many programmers may

never use it, preferring to work in positive numbers. But you can't fully understand

the N and V flags without grasping the idea of negative bytes.
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Decimal Arithmetic

Decimal mode arithmetic, with the D flag set, packs two digits into each byte and

adds or subtracts in decimal. This example adds a four-digit number in locations $8B

(high byte), $8C (low byte) to a six-digit number in locations $8D (high byte), $8E

(middle byte), $8F (low byte), leaving the result in the three-byte number. Scoring in

games often uses such subroutines; a score is stored in the smaller location, the sub

routine called to total, and the result printed.

SED

CLC

LDA

ADC

STA

LDA

ADC

STA

BCC

INC

NOINC CLD

;TURN ON BCD MODE

;CLEAR CARRY

$8C ;ADD LOW BYTES,

$8F

$8F ;STORE RESULT

$8B ;ADD MID BYTES

$8E

$8E ;AND STORE

NOINC

$8D ;HIGH BYTE

;RETURN TO NORMAL MODE

The six-digit number can be printed by looping three times to select a byte, then

shifting it right, using AND #$0F followed by ORA #$30 to convert to ASCII,

outputting with JSR $FFD2, and repeating with the same byte unshifted.

It is often simpler to use individual bytes for totals of this sort. This example

uses the first five locations of the 64's screen to print the score of a game. Start by

putting the screen code for zero—$30(48)—into the first five screen locations. Then

put the score into $8B through $8F as, for example, 00 00 01 00 00 (to represent

100). The result appears directly on the screen.

LDX #$04

CLC

LOOP LDA $0400,X

ADC $8B,X

CMP #$3A

BCC CLEAR

SBC #$0A

CLEAR STA $0400/X

DEX

BPL LOOP

;SET COUNTER FOR 4,3,2,1,0

;CLEAR CARRY

;LOAD BYTE FROM SCREEN

;ADD CORRESPONDING BYTE

;IS RESULT 10 OR MORE?

;IF NOT, BRANCH,

;IF SO, SUBTRACT 10, LEAVING CARRY SET

;UPDATE SCREEN BYTE

;COUNT DOWN TO NEXT BYTE

;BRANCH UNTIL X IS FF

This is fast and efficient. Change the value of X for more than or fewer than six

digits. This method does not use BCD mode.

Debugging ML Programs

Listed here are many errors common in 6510 ML programming. Program design

should be approached methodically, preferably from the top down, starting with the

writing or reusing of standard subroutines. Careful analysis of the code, perhaps

with flow charting, and testing with typical and abnormal data should insure a

sound program. Your program will be simpler to debug if you build it out of distinct

modules or subroutines that each perform a clearly defined task. Thus, when bugs

appear, you can locate the source of trouble by testing one routine at a time.
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Careless errors. Errors of oversight may remain undetected for a long time.

Examples include transcription errors (entering 7038 for 703B) and immediate mode

# errors (using LDA 00 instead of LDA #00). You might also use a wrong ROM ad

dress, perhaps one for a different computer, or make branch errors, especially with

simple assemblers where forward addresses must be reentered. Yet another possibil

ity is the use of a Kernal or other subroutine which alters A, X, or Y.

Addressing mode errors. These stem from confusing the order of low and high

address bytes, failure to understand indirect addressing modes, or attempted use of

indexed zero page addressing to extend above location $FF (LDA $AB,X always

loads from zero page, for any value of X). Indirect jumps may also cause problems;

JMP ($03FF) takes its address from $03FF and $0300, due to a bug in the

microprocessor.

Calculation errors. With addition, subtraction, and so on, do not forget to use

the proper flag instruction (CLC before adding, SEC before subtracting, and SED and

CLD with BCD math). Remember, too, that LDA #$02 followed by ADC $FD adds

the contents of location $FD to the 2 in the accumulator, but leaves $FD unchanged.

It's easy to forget that only the accumulator holds the result, and STA $FD may be

needed to return the answer to the desired location. Also, be careful to keep track of

the carry bit with shifts and rotates. That can be tricky, since C is easy to overwrite.

Status flag errors. The logic behind flags may cause difficulties for beginners,

who may not realize (for example) that AND #$00 is identical to LDA #$00. In

crementing from a value of #$7F to #$80 sets the negative flag. The following rou

tine stores the contents of KEY in LOCN, but STA sets no flags:

LDA KEY

CMP #$3A

BNE ERROR

STA LOCN

You might expect it to clear Z, but this is not the case. Z will remain set until cleared

by the execution of some instruction which affects that flag.

Stack errors. Generally, the number of stack pushes should equal the number of

pulls, and the order should match. For example, PHA:TXA:PHA usually requires

PLA:TAX:PLA to retrieve A and X. Stack errors frequently crash the computer by

transferring program flow to an address that contains garbage. Advanced pro

grammers often use the stack for temporary storage, but it is usually safer (and about

as efficient) to use other RAM locations for that purpose. You may find that you can

program for a long time without ever having to use the stack.

Errors in which RAM is overwritten. Programs or their data can be overwrit

ten by BASIC strings or variables, by tape activity, or by subroutines which happen

to access the BASIC pointers (including utilities like Supermon), to name but a few.

The program itself may be at fault: A loop may move some data it shouldn't, a

pointer may be updated while still in use so that it points temporarily to a wrong ad

dress, or a part of the stack may be used for storage but get filled by normal stack

activity.
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Monitors for the 64
Monitors are programs that allow individual bytes to be inspected and programmed.

The simplest and least useful allow little more than a hexadecimal display of bytes;

the best allow assembly and disassembly as well as facilities to examine and alter

memory freely, to run ML programs in a controlled way, and to convert types of

data.

BASIC Monitors

BASIC programs which use PEEK and POKE to program in ML are slow, but they

do have advantages, particularly for beginners. They use familiar INPUT commands,

and can be loaded, run, stopped, and listed without difficulty. As they are BASIC,

they occupy the normal BASIC space in RAM, whereas ML monitors occupy un

familiar areas. They're easily modified; if you'd like decimal addresses with a dis

assembly, or nonstandard opcodes, these are easy to put in.

Machine Language Monitors

These are fast and generally better than BASIC. We'll concentrate on Supermon, a

public domain program which is the work of several people, including Jim

Butterfield. Supermon is listed in an Appendix with instructions on saving it to tape

or disk. If you don't have a monitor, but do have some free time, type it in and use it.

CBM MON, supplied with Commodore's assembler package, and "Micromon-

64" (published in Computers First Book of Commodore 64) are both better than

Supermon, but are about twice as long. They are typical good-quality monitors. Each

is used in a fairly standard way; the alphabetic list of commands which follows de

scribes typical commands, although there are minor variations. For example, a Save

command like .S "ML PROGRAM",08,C000,C100, which saves $C000-$C0FF to

disk and names it ML PROGRAM on one monitor, must be entered .S "ML

PROGRAM",C000,C100,08 with some monitors.

Before discussing specific monitors, some potential difficulties are worth noting.

First, new versions appear from time to time, and you may find that documentation

lags behind. Second, there are potential memory problems, because BASIC strings or

POKEs may overwrite the monitor, or the monitor may use part of the memory

needed for ML. The notes following therefore explain the monitor's memory po

sitions. Finally, it can be quite important that a monitor is compatible with BASIC.

One reason is that a SYS call often runs ML in a different way from a monitor's G

command. For example, POKEing location 1 to switch out ROMs may not work

properly using G, despite being correct in ML.

Supermon is usually supplied with a BASIC loader, which loads like BASIC,

and, when run, relocates Supermon into memory. Chapter 9 explains how this works.

Supermon is put into the current top of BASIC, and the pointer ($37) is adjusted

down so BASIC will not corrupt it. Its starting address is usually 38893. After exiting

to BASIC with X, Supermon can be reentered by SYS 38893 or SYS 13, because 13
normally holds a zero byte which acts as a BRK command.

Supermon coexists well with BASIC. Also, it leaves the tape buffer from $033C
unused, using page 2 locations for its own work. Supermon can be saved as an ML

program, needing a forced load back into its correct area. There's no timesaving in
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doing this, and if you wish to use BASIC including string processing, you must

remember to lower the top of BASIC—POKE 56,150: NEW is fine. So the BASIC

loader is often the most convenient. Obviously, since loading it will overwrite BASIC

in memory, it's better to load Supermon at the start of a session. Like most BASIC

loaders of its type, repeated running of the BASIC loader will put a series of working

versions of the program next to each other in the top of memory, lowering the

pointer each time, and reducing memory available to BASIC.

Supermon won't normally load into the area starting at $C000, so it's suitable

when you wish to write ML into $C000, which is probably most of the time. It also

locates itself below cartridges at $8000, and is therefore easy to use when examining

ROM programs.

Supermon has these commands:

A, D,F, G, H, L, M, Rf S, T,

(Note: All the monitors discussed here have an ASCII table near the end that lists the

commands.)

It does not have an intelligent relocater, and its memory display command

doesn't print ASCII equivalents of memory, so you cannot scroll through a program

looking for keywords, for example. Disassembly clears the screen, then fills the page;

the result is tidy, but tiresome to move through, particularly backward. But it's still a

useful monitor.

CBM MON is supplied with Commodore's editor/assembler package in two

versions; both use forced loads, one at $8000 and the other at $C000. A call to the

start address enters the monitor—SYS 8*4096 or SYS 12*4096, respectively. Two

versions are supplied so ML can be written into either of the major RAM areas; for

example, the version starting at $8000 must be used when programming in $C000.
POKE 56,128: POKE 55,0: NEW protects the $8000 version against corruption by

BASIC strings.

It's easy to relocate CBM MON. For example, you may use these commands to

move the $8000 version to $1000:

STRAIGHT TRANSFER OF 4K

:ADJUST ADDRESSES BY ADDING 9000

:ADJUST ADDRESS TABLE BY ADDING 9000

CBM MON is based on VICMON, with a number of changes—references to loca

tions 0 and 1 removed, screen altered from $lE00 to $0400, JMP (C002) replaced by
JMP (A002). It fits 4K of memory, but the conversion to the 64 is not very satisfac
tory, and CBM MON versions vary. In particular, the commands B, Q, and W (to set
Breakpoints, Quick Trace, and Walk) have been written out, perhaps because these
didn't work properly on the 64. As a result, because CBM MON freely uses zero page

locations (the tape buffer isn't touched), BASIC won't work properly with CBM
MON; the easiest way to recover BASIC in full seems to be to follow the exit com

mand, X, with:

POKE 43,1: POKE 44,8: POKE 45,A: POKE 46,B: CLR

POKE 2,25: POKE 23,24: POKE 24,0

where A and B are previous PEEK values of 45 and 46. These POKEs reset BASIC

and string handling.
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CBM MON has these commands:

A, C, D, F, G, H, I, L, M, N, R, S, T, and X

It has backward and forward scrolling with D, I, and M, which is very handy.

(Spacing is sometimes erratic; the current line-links are used. The RUN/STOP key

isn't implemented during scrolls, which can be irritating.) Backward disassembly is

inherently unreliable; CBM MON gives priority to longer opcodes, so results can be

different from forward disassembly, but this is unavoidable. Unlike Supermon, a dis

assembled portion of ML can be edited and immediately reassembled by typing over

the mnemonic field of the disassembly. There's a possible bug here, because ASCII

tables which happen not to be opcodes disassemble as ???. Typing RETURN on such

a line converts ??? into #2, the smallest non-opcode, irrespective of its original value.

"Micromon" is very similar to CBM MON. It occupies 4K, typically

$7000-$7FFF, and is force-loaded, typically by LOAD "MICROMON",8,1. POKE

56,122: NEW (or POKE 56,122: CLR) protects a version at $7000, for example, from

BASIC; SYS 7*4096 would enter it. Like CBM MON, this monitor is quite easy to re

locate: See the example later in this chapter.

Its major commands are identical to CBM MON's, except that it has a command

to calculate branch offsets (O), and its memory display, in effect, includes I. Like

CBM MON, commands to set Breakpoints, Quick Trace, and so on aren't im

plemented. (It hangs on Q, for example.) However, Micromon has some valuable

additional commands tagged on the end: $, #, and % convert hex, decimal, and bi

nary numbers, " converts ASCII characters, + and — allow hex arithmetic, and the

ampersand (&) totals bytes between two addresses into a two-byte checksum.

BASIC coexists successfully with Micromon, though it has a tendency to return

to the monitor when the screen scrolls. Micromon uses the tape buffer, so don't try

to assemble into the area around $033C.

How to Use a Monitor

Syntax. Supermon starts each line by printing a period, and commands are typed

after this, appearing as .X, for example. Other prompts are used internally by the

monitor—a colon when altering memory with .M, a comma when disassembling,

and so on. These are generally handled automatically by the monitor, but sometimes

it's useful to alter them manually.

Commands generally consist of a single letter followed by some pattern of bytes

relevant to the command. When RETURN is pressed, the table storing valid com

mands is searched for the letter, and if it's found, a specific address is jumped to. At

that point the parameters following the command are evaluated. In fact, experienced

ML programmers can add extra commands by modifying the search loop.

As an example, .T 1800 1850 033C transfers the bytes in 1800 through 1850

into the area starting at 033C, therefore filling 033C through 038C. The pattern of

addresses must be entered correctly; there is no error indication if it isn't, but the

command is ignored. Some errors, like attempting to use an invalid command, do in

dicate there's been a mistake, usually by printing a question mark. Since the param
eters to be input are accepted by absolute position, punctuation is irrelevant. Thus,

.T 1800,1850,033C and .T 1800 1850 033C have the same effect. Most command in
puts are accepted up to, but not beyond, a colon, so .A 033C CLC: GARBAGE is

treated as .A 033C CLC and assembled correctly; this is often useful.
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Screen scrolling may be erratic. Monitors with this feature generally use what

ever linked lines already exist, so spacing may be unpredictable, with occasional

skips of a line.

Interaction with BASIC. As we've seen, routines ending with BRK return to the

monitor after .G C000 or a similar command runs them. A routine ending with RTS

typically returns to BASIC. To run such a routine requires that you exit to BASIC

with .X and then enter SYS 12*4096 or something similar. You may find, in fact, that

some ML routines run correctly when called with SYS calls, but don't work from

within a monitor; JSR $BDCD (a ROM routine which outputs a number) has this ef

fect, because the monitor uses zero page routines used by the ROM routine.

After exit to BASIC, you may like to reset with SYS 64738. This leaves your

monitor in RAM, but completely resets pointers and the low part of memory, leaving

everything in order. If you use the above SYS, POKEs to lower the top of memory

will have to be reentered.

What to do if ML crashes. When the computer is caught in a loop or will not

respond for some unknown reason, try the following:

• Try RUN/STOP-RESTORE. If this works, enter a SYS call back to the monitor.

• If RUN/STOP-RESTORE fails (as it will with an X2 crash), the only recovery

procedure is a hardware reset switch, not standard to the 64, as explained in Chap

ter 5. This erases ML from $0 to $102 and from $200 to $400, but leaves ML

higher in RAM unaffected. If you have no reset switch, you'll have to turn the com

puter off and start over.

You may be able to avoid this problem more often if you fill RAM with zero

bytes using the .F command, thus increasing the chance that a wrong command will

end on BRK and return you safely to the monitor.

Getting started. If you're an absolute beginner, load your monitor and enter it;

for example, load, then run Supermon. Try assembling the short demonstration pro

grams at the start of this chapter, using the .A command, then run them with .G,

and disassemble again with .D—the full syntax is explained in the following list of

commands. You'll soon get the feel of it. Note that many monitors output their re

sults using $ to indicate hex, but won't accept a $ as part of the command format.

Don't be discouraged if your first ML programs crash the computer with

distressing regularity. ML instructions are very powerful, and work without the auto

matic error-checking that BASIC provides. Nearly every ML program contains a few
bugs at first, and correcting them is a normal part of the programming process, for

experts as well as beginners.

Monitor Command Dictionary
Following is a list of commands commonly available when using a machine language
monitor. Not all of them are supported by Supermon. For more information, see the

article and program "Micromon-64" in COMPUTE'S First Book of Commodore 64.

/^Assemble)
nfhe Assemble command converts 6510 mnemonics and data into the correct form,
inferring the addressing mode from the command's format and storing ML bytes into
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memory. Labels and other features of true assemblers aren't accepted. There's often

a read-back check in case RAM isn't there; try assembling at $A000 to see this.

Typing RETURN with no ML instructions following the address allows you to exit

the A mode. An example of the use of the A command follows:

.A C000 LDA #$00

.A C002 STA $0400

.A C004 BRK

.A C005

After you enter a line, many monitors will expand it to show the actual hex bytes

which make up the instruction. For instance, after entering the second line above,

you would see:

.A C002 8D 00 04 STA $0400

Screen editing can be used to alter addresses, opcodes, and operands already on

the screen. Cursor to the appropriate place, make the changes, and press RETURN.

C (Compare Memory)
Compare Memory reports any differences between two areas of memory. Syntax is

identical to T.

.C C000 C100 C800, for example, checks whether the bytes in $C000-$C100

match bytes from $C800 to $C900, and prints the addresses of nonmatching bytes.

^^Disassemble)
xfie Disassemble command translates the contents of memory into standard 6510

mnemonics, using $ and # to denote hex addresses and data. The format is compat

ible with that of the assembler. It cannot produce labeled disassemblies and lacks

some other features of true assemblers.

Supermon always prints as much disassembly as will fit on the screen, whether

you specify a single address or a range of addresses. The disassembly begins with

the first specified address.

On other monitors, .D A500 then RETURN disassembles a single address; if

your monitor allows scrolling, you'll be able to continue disassembly by moving the

cursor to the top or bottom of the screen.

.D A46E A471 disassembles between the two limits, producing an output as

follows:

A46E C8 INY

A46F F0 03 BEQ $A474

A471 20 C2 BD JSR $BDC2

Some monitors let you edit a disassembly by typing changes in the mnemonic

field. Supermon disassemblies can only be edited by typing over the hex bytes be

tween the address and the mnemonic.

FjfFill Memory)

Memory fills a region of RAM with identical bytes. For example, .F 033C 03FF

00 fills the tape buffer with zero bytes. This has no syntax or read-back checking, so
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if you enter it wrongly, nothing will happen and you'll have no warning of this. $EA

(NOP) is a useful space filler.

runs ML from Supermon. The command .G C000, for example, transfers control

to a program starting at location $C000. The G execution continues until a BRK

occurs (which returns to the monitor) or some other irregular event takes place. For

example, RTS may return execution to BASIC or the program may contain a mistake

and crash. The G command can also be entered without an address, to transfer con

trol to the current program counter address (see R command below).

HflHunt Memory)

This command reports all instances of a byte combination or string of characters be

tween two addresses. For example:

.H E000 FFFF 00 90

prints all Kernal uses of $9000, and

.H E000 FFFF "BASIC

prints all Kernal uses of the word BASIC. H requires some care in interpretation. A

Hunt for 20 E4 FF will certainly find all instances of JSR $FFE4, but a Hunt for 21

DO, for example, may yield nothing, even though the address $D021 had been used,

because D000,X may have been used to address it. And while JMP $C100 can be

found with .H 4C 00 Cl, a branch command like BEQ $C100 cannot be located like

this.

I (Interpret Memory)

Interpret Memory prints addresses followed by eight ASCII characters per row (or

dots, where ASCII doesn't apply) and their hex equivalents. Some monitors include

this as part of the M command.

Tj(Load ML)
Load ML uses this syntax for tape and disk loads, respectively:

.L "NAME",01

X "NAME",08

Abbreviations are accepted, so .L " ",01 loads the next tape program, L "N*",08

loads the first disk program beginning with N. The program or data is loaded as a

block—after loading, it is not altered in any way.

(M/(Memory Display)
Memory Display prints addresses followed by eight hex bytes, including, with some
monitors, ASCII characters in reverse. Monitors which scroll allow examination of
large areas of ROM or RAM. For example, .M A09E A0EE displays 11 lines of BASIC
keywords, as they are stored in ROM. Readability is improved in lowercase mode.
Nonprinting characters are displayed as reversed periods. The addresses and bytes
can be altered, followed by RETURN to enter the new values.

231



6510 Machine Language

N (Number Adjuster)

Number Adjuster is a command which adjusts absolute addresses, such as sub

routine calls, within ML. It is usually used after moving ML as a block with T.

"Micromon-64" supports the N command. For a detailed description, including

instructions for relocating Micromon-64, see COMPUTERS First Book of Commodore 64.

P (Printer Disassembly)

Disassembly to a printer is supported by some monitors. When using a monitor that

does not support this command, enter OPEN 4,4: CMD 4 from BASIC, then enter

the monitor and type commands blind. The output from the monitor will be directed

to the printer instead of the screen. This will also work if you wish to dump the

bytes in memory with M. To recover the screen display after printing, use X to exit

the monitor, then enter PRINT#4: CLOSE 4. If your printer omits the last instruc

tion, specify an ending address a few bytes past the last byte you want to print.

/ Display)

displays the contents of the program counter (PC), IRQ vector, status register,

bytes in the A, X, and Y registers, and the stack pointer as they were on entry to the

monitor. Typically, any of these can be changed. When .G runs the program, the

modified contents are loaded into PC, IRQ, and so on, before actual running. In this

way, you can change IRQ to point to your own interrupt routine; try different values

of A, X or Y; or experiment with different flag settings in the status register.

(pSaveML)
Save uses the following syntax for tape and disk, respectively:

.S "ML",01,C000,C200

.S "ML",08,C000,C200

Unlike BASIC SAVEs, it's essential to specify the limits of memory to be saved.

These examples save memory from $C000 to $C1FF. The final byte is not saved, due

to the way the pointers in the machine execute the SAVE command; saving from

$E000 to $FFFF is therefore impossible. In some monitors, the device number de
faults to 8 if not explicitly included. Note that there may be no error message if a
disk drive is off.

<Vn<Transfer Memory)

Transfer moves a block of memory. The syntax is identical to C. For example, .T
0400 07E6 0401 moves a screen of bytes along one position. The end point of the

new block is implicit in the three parameters. See N for relocation of programs.

V (Verify)

Most monitors have no Verify command, but BASIC'S VERIFY can be used like this
by exiting the monitor and using BASIC'S VERIFY. Before using VERIFY from
BASIC, you'll need to change the start-of-BASIC and end-of-program pointers to
match the beginning and end of your ML program.
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<fi)<Exit to BASIC)

X is the command that allows for a safe return to BASIC.

Assemblers for the 64
Opcodes and operands generally improve the readability of ML over the hex bytes

they represent. Assemblers carry this improvement much further, by allowing a fully

algebraic or symbolic notation, with comments, to represent ML. Many of the exam

ples earlier in this chapter are listed using an assembler format. Important instruc

tions can be labeled so that at the end of a loop, you can write BNE INLOOP, and

the assembler will calculate the offset using the label, INLOOP. Figure 7-1 is a typi

cal assembly listing:

Figure 7-1. Printed Output from an Assembler

Une

Number Address Object Code

[Label/ Opcode or Directive/ Operand/ Comment]

Source Code

2

4

6
Q

0

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

53

54

56

2000

2000

2000

2000

2003

2005

2007

200A

200C

200D

200F

2011

2014

2015

2016

2017

201A

201B

201E

201F

2020

2021

2024

202A

20

F0

A2

DD

F0

CA

10

30

8D

8A

0A

AA

BD

48

BD

48

60

41

29

A0

E4

FB

02

21

05

F8

EF

20

25

24

42

20

00

FF

20

20

20

20

43

6F

; ROUTINE TO AWAIT A KEY, TI

;PONDING CODI

GETIN=$FFE4

•=$2000

.PAGE

•

START

LOOP

FOUND

STORCH

CHRLIS

ADRTAB

A

JSR

BEQ

LDX

CMP

BEQ

DEX

BPL

BMI

STA

TXA

ASL

TAX

LDA

PHA

LDA

PHA

RTS

i, USING TABLl

GETIN

START

#2

CHRLIS,X

FOUND

LOOP

START

STORCH

A

ADRTAB+1,X

ADRTAB,X

*=*+l

.BYTE 'ABC

.WORD A-l, B-l, C-l

LDY #0

;TYPICAL 'EQUATES' DIRECTIVE

;TYPICAL STARTING-POINT DIRECTIVE

;TYPICAL TOP-OF-FORM DIRECTIVE

STANDARD KERNEL 'GET' INTO ACC'R

; WAIT UNTIL KEY PRESSED

;TABLE HAS THREE VALUES ONLY

;COMPARE VALUES IN TURN,

; UNTIL FOUND OR NOT FOUND

;LOOP FROM X=2 TO X=0 INCLUSIVE

;KEY NOT IN TABLE; GOTO START

;STORE THE ASCII CHARACTER

STANDARD JUMP ROUTINE FOLLOWS,

;IN WHICH THE STACK HOLDS BOTH

;BYTES OF THE DESTINATION, AND

;RTS CAUSES THE JUMP.

HIGH BYTE ON STACK ...

AND LOW BYTE.

;JUMP TO ADDRESS NOW ON STACK

;USES ASSEMBLER LOCATION POINTER

;SETS UP TABLE OF ASCII BYTES

;SETS UP TABLE OF ADDRESSES - 1

;START OF PROCESSING FOR ROUTINE A

These instructions and labels together make up the source code. Around the core
of familiar 6510 opcodes is a collection of symbols, some of which are punctuated to
resemble addressing modes. This code is stored with line numbers, in RAM or on
disk or tape as the source file. Source code may include equates, like SCREEN=
$0400, and may have a comment after each instruction to document the program.
Therefore, source code is usually much longer than object code, often 20 times as

long.
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The job of the assembler is to convert the source code intd object code—the ac

tual numbers which make up machine language instructions. Note that the object

code is a sequence of bytes identical to that produced by a simple disassembler. This

is necessary, of course, since the 6510 has precise requirements which any utility

program must respect. Object code is often stored on disk as an object file; this is a

machine language program and can be loaded into a specific place in memory and

run with a SYS call.

The versatility of assemblers is illustrated by the pseudo-opcode (a special assem

bler function) which assigns the starting address of the ML program. The starting ad

dress pseudo-op is always used at the beginning of the source code. The command

*=$2000 at the start of the source code causes the assembler to create the ML pro

gram starting at $2000. Simply changing the command to *=$3000, followed by

assembly, generates ML identical in its effect, but positioned to start at $3000. Object

code, on the other hand, isn't usually relocatable without some effort.

But the great advantage of source code is the fact that it can be edited. Inserting

extra instructions in the middle of a program is easy, because assembly simply re

calculates all the addresses and branches. In contrast, monitor users have to shift

parts of the program, alter addresses, and generally rewrite and recheck.

Assemblers also have the advantage of potentially giving ML a very readable

format, provided the reader has a good grasp of ML. Symbols like GETCHR and la

bels like FOUND make ML easier to follow than the object code; and comments

allow the programmer room for thorough explanation of the program.

Figure 7-1 is part of a routine which waits for A, B, or C to be pressed, then

jumps to a corresponding address, using the trick of pushing the destination address

less 1 onto the stack, then using RTS to jump. The column of comments helps in de

ciphering the program. Object code is obviously harder to follow than source code,

but there are reverse assemblers available, which take ML and insert labels. Of course,

it is impossible to reconstruct comments or the original labels.

Overview of the Assembly Process

A number of assembler packages are available for the 64, many of which have been

converted from PET/CBM programs. Converting source into object code is complex,

and full-featured assemblers are naturally longer than those which are more re

stricted. But they all have some common characteristics. All use two passes or more

(an assembler must look through the code at least twice), and all build up a symbol

table, which is used on the second pass to fill in the forward addresses. To see why
this is necessary, imagine you are assembling the code in Figure 7-1, and have ar
rived at line 24 for the first time. CHRLIS hasn't yet been reached, so its value can

be put into the object code and the symbol table only on the second pass. If the la
bel CHRLIS is never found—it may have been misspelled, for example—the assem
bler will print an error message.

All assemblers have to build symbol tables, which means part of RAM must be
allocated. The assembler itself and the file on which it's working have to coexist in
memory. Since the source code is usually much longer than the output object code,
programs amounting to only a few K when assembled can be difficult to fit in the

64's memory. For this reason, many assemblers allow one source file to chain or link
to another, so a program is assembled in sections. However, the symbol table is
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usually kept intact. Symbols are often limited in length to conserve space in the

symbol table.

If the assembler is directed to send the assembled ML to disk, clearly no RAM is

used. Many assembler packages include a monitor to allow disassembly, running un

der ML control, and other convenient functions. An assembler may also include a

text editor to facilitate the task of writing source code. Special loader and relocater

programs are helpful, too. One key to successful use of assembler packages, there

fore, is learning to manage the 64's memory efficiently.

Assembler Features

An assembler either reads a source file into RAM or operates on source text already

in RAM, converting it into object code on a command such as A, ASSEMBLE, or

OPT OO. Assemblers vary in the way they scan source code; some require precise

alignment in columns and signal errors if they don't find them, while others are

more tolerant. Line 18, containing START, may be rejected, because it seems to con

tain the opcode STA. Since standardization is limited, it makes sense to learn to use

just one assembler.

First-time assemblies without errors are rare. Unlike BASIC, which can run with

SYNTAX ERRORS remaining in the unused portions of the code, assembling is not

tolerant of errors. Often, removing errors becomes a goal in itself. The triumph of

achieving a no-errors message may cause the programmer to fail to notice that the

program doesn't do what it should. Because repeated assemblies are the norm, it's

desirable that assemblers and their source files should coexist in RAM; it saves disk

access time. Likewise, you can speed up the process of testing and revision by

assembling directly to RAM when possible, using the disk only to back up your

work and save the final product.

Assemblers for the 6510 typically allow for these features:

Labels. These mark addresses to which branches, jumps, or subroutine calls are

made. Often there is a specified maximum length.

Symbols. These are values like GETIN in the example which are explicitly set.

The assembler must be able to distinguish zero page symbols from others. In prac

tice, the terms label and symbol are often used synonymously.

Opcodes. Standard 6510 opcodes, like LDA.

Operands. These are symbols or arithmetic values punctuated in a standard

way. Line 22's LDX #2 could be written LDX #$2 (hex) or LDX #%00000010 (bi

nary). Line 42 has a symbol used in indirect addressing, but also shows the use of
simple arithmetic; many assemblers allow evaluations like this. Line 53 shows the
use of the quote to generate ASCII. LDA "A is equivalent to LDA #$41 on some
assemblers and is often more convenient. The constructions LDA #<ADDRESS and
LDA #>ADDRESS, loading the low and high bytes of ADDRESS, respectively, are

often used.
Comments. Generally these are signaled by a semicolon, which causes the

assembler to ignore the rest of the line.
Pseudo-opcodes (directives). These are important and, like symbols, essential to

assemblers. Formats vary, so what follows may not apply to your assembler.
Pseudo-ops are commands to the assembler, some of which have housekeeping

functions, like diverting output to a printer rather than to the screen. Others ease
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programming, allowing, for example, easy entry of ASCII bytes. They are called

pseudo-opcodes because they appear in the source code in the same place as

opcodes; often they begin with a period or some other special symbol, so the assem

bler's parser looks either for an opcode or a period or some other character on each

line. These are typical pseudo-ops:

*= (sometimes .ORG, meaning origin) sets the current address at which object

code should start. Line 12 in the example starts the assembly at $2000. Line 52 re

serves one byte, by adding 1 to the current address. Similarly * = *+500 reserves 500

bytes, and LDA #*—LABEL loads A with the difference between the then-current

address and an earlier label. The term star is often used to denote this symbol.

= (sometimes .EQU, meaning equates) assigns values to symbols. Equates are

usually collected at the start of source code, where they can be easily checked.

Usually, zero page equates must be at the start of the source code.

.BYTE allows bytes to be assembled; this is necessary for any kind of data table.

So .BYT 31,$EA,%00010001,"HELLO puts eight bytes, IF EA 11 48 45 4C 4C 4F,

into the object code.

.DISK NAME outputs object code to a disk file called NAME.

.END marks the end of the source code. Anything later is treated as comment.

.FILE NEXT instructs the assembler to load, then assemble the source file called

NEXT. This pseudo-op is essential for chaining the components of large ML

programs.

.LABELS causes a symbol table (a sorted table of all symbols with their values)

to be printed after the assembly.

.MACRO INC causes a macro to be inserted; see below.

.OUTPUT instructs the assembler to put the object code into RAM as it is

assembled so that it will be ready to run.

.PRINTER diverts whatever output is requested to a printer.

.SCREEN turns on output to screen. With .NS (for example) a part of the assem

bly can be selected.

.WORD puts two bytes into the object code, least significant byte first, to con

form with 6510 convention. Line 54 has an example.

Conditional assembly, library files, macros, and relocatable object files.

These are typical extras of good assemblers. Conditional assembly allows several ver

sions of the object code to be prepared. A simple example follows:

.IF TYPE-1 <

*=$8000

SCREEN=$0400 >

.IF TYPE-2 <

*=$C000

SCREEN=$8000 >

Depending on how the expression after IF evaluates, the source code is assembled at
different locations.

.LIB NAME loads and assembles a file, inserting it into the current assembly.

This is not the same as chaining, but permits a source file to be built from a group of
separate library source files.
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Macros allow space to be saved and readability improved by defining pseudo-

ops which correspond to ML. For example:

.MAC DBINC

INC?1

BNE XXX

INC71+1

XXX .MND

defines a macro called DBINC, which performs a double-byte increment, on Com

modore's assembler. So DBINC POINTR in the source code will cause the assembler

to expand DBINC into three operations.

As mentioned earlier, object files need not exist in immediately loadable form.

They can be stored in an intermediate state, without symbols or comments of any

kind, but with sufficient extra information on the file to allow relocation in RAM by

a loader. The process is analogous to the N command available on monitors. Ad

dresses requiring relocation must be marked in the object file, then the loader simply

has to calculate the actual addresses depending on where in RAM it's asked to put

the final ML.

Assembler Packages

Here's a brief look at the different types of assemblers that are available for the 64.

Assemblers written in BASIC. Everything described so far can be carried out

by BASIC. For example, symbols can be stored in a string array, object files can be

written straight to disk, one byte at a time, and pseudo-ops like * can be im

plemented. The problem with using BASIC is that such assemblers are painfully

slow, and take up more RAM than those written in ML.

Assemblers with BASIC editing. Some cartridge-based assemblers use the

BASIC editor. When you turn the computer on with the cartridge in place, routines

to intercept BASIC are set up, and commands like &A, &S, and &L are used to as

semble, save, and load source files. It may not be possible to write the resulting ob

ject code to disk, but a monitor with the S (Save) command may be included to save

the RAM image as a normal ML program. The instant availability of the assembler is

nice, and some edit features may be present, in fact, like AUTO line numbering. A

programmer's aid utility may be compatible with the assembler, and this can help

edit, though clearly it couldn't be expected to automatically format its output the

way the assembler would like.

Another example of an assembler that uses the BASIC editor is Richard Mans

field's LADS assembler (published in The Second Book of Machine Language, from

COMPUTE! Books). LADS loads into memory beginning at $2AF8 (11000). Its sym

bol table is stored down from the start of its own code, and the BASIC source code is

stored, loaded, and saved in the usual BASIC area from $0800. The area after $C000

is free, and this could hold a monitor or RAM object code. The assembler recognizes

and expands tokenized BASIC keywords if these occur in the source file. The syntax

requirements of the assembler are relatively strict—LOOP LDA #0 needs exactly one

space between each item. LADS produces ML in nonrelocatable form which can

either remain in RAM or be saved to disk or tape as loadable ML. Of course, the

source code allows for locating the program at different places in memory, and the

text describes how to modify LADS, customizing it to your needs.
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Editor/Assemblers. Commodore's ASM6440 program package has eight sepa

rate programs on disk, but some are simply relocated versions—CBM MON can load

at $8000 or $C000, for example. The assembler loads into the same area of RAM

that the editor stores source code, and the package entails a lot of disk activity be

cause of this. Source code must be saved to disk, then the assembler loaded and run,

and errors in the source code can be corrected only by reloading the source file,

editing it, saving to disk, reloading and running the assembler, and so on.

The editor is force-loaded into $C000-$C64A. SYS 49152 activates it. Token-

ization is disabled. PUT and CPUT (which writes to disk omitting spare spaces) write

the source to disk as a sequential file, and GET reads it back. AUTO and NUMBER

handle line numbers, and FORMAT is similar to LIST, but formats the source into

columns. KILL disables the editor, returning to normal BASIC, while DELETE allows

block deletion. FIND and CHANGE allow symbols or other source code features to

be altered and allow any delimiter to be used. For example, FIND /GETIN/ searches

for GETIN, and CHANGE /LOOP/EXIT/ replaces the characters LOOP with the

characters EXIT. CHANGE ALOOPAEXITA has the same effect.

The assembler loads like BASIC and includes a SYS call, so RUN is all that's

needed to initiate assembly. Its output is an object file on disk, written in a relocat

able format. This must be loaded into RAM with one of the loaders supplied, then

saved with the monitor; this process is more cumbersome than using an assembler

that puts pure object code directly into RAM.

Two loaders are supplied; LOLOADER fits the BASIC space and can be run.

HILOADER is force-loaded into $C800 and run with SYS 51200. These loaders in

clude a checksum test and read-back check to insure that the ML goes to RAM.

Yet another program included is a DOS wedge, located at $CC00 (52224), which

simplifies program LOADs from disk.

Part of the reason for this patchwork of programs is its origin as a PET assem

bler; several programs have been left so they overwrite each other.

Another assembler is the MAE Editor/Assembler by Carl Moser of Eastern House

Software. Also based on PET, the default memory management is well designed. The

editor, assembler, monitor, assembled ML at $C000, and BASIC all coexist in RAM,

allowing writing and testing of ML programs to be very efficient. Other programs in

clude a screen scroller, a disk wedge, and relocaters, which operate on relocatable

object files if these are chosen. This assembler supports all the previously explained

features.
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Chapter 8

ML Methods Specific to the 64

This chapter is a reference to the ROM of the 64, and a guide to using the vectors

that point to that ROM effectively. You can include your own ML routines that

wedge into the normal operations of the computer if you like, and this chapter will

show you how. Other chapters that include specific ML material are Chapter 6 (key

board, screen, etc.), Chapter 12 (graphics), and Chapters 13-17 (sound, tape, disks,

peripherals).

Kernal Routines
The Kernal is the essential core of ML routines that the 64 uses during normal op

eration, and it has a jump table pointing to the routines. While the specific addresses

of the routines may differ from one computer to the next—like in the VIC and 64—

the addresses of the jump table are supposed to remain constant between machines.

In theory, this will allow programs to work on several ROM versions of the same

machine and even on different Commodore computer models. In practice, consis

tency among different models is achievable only to a small extent, because so many

hardware and software differences exist between machines. Still, it does serve a use

ful purpose.

Commodore has upgraded the 64's Kernal ROM in the past, and more changes

are possible (see "Upgrading ROMs" below). ML programs that access Kernal

routines only through the jump table are likely to work correctly on machines with

updated ROMs; programs that jump into ROM routines at other entry points might

work differently (or not at all) after a ROM upgrade.

The jump table listed below is arranged in ascending order by memory location.

The Kernal appears less formidable if you note that more than half is concerned with

opening and closing files and input/output of characters. Table 8-1 lists input/out

put errors that may be returned by Kernal routines.

Note that values shown in parentheses in "The Kernal Jump Table" (below) are

two-byte vectors which contain addresses in standard 6510 low/high byte form. The

value ($0281) can be read as "the vector at $0281/'

Table 8-1. Kernal Routine I/O Errors

Example

OPEN when ten files open already

OPEN 1,3: OPEN 1,4

PRINT#5 without OPEN 5

LOAD "NONEXISTENF',8

OPEN 11,11: PRINT#11

OPEN ^M/'SEQ^W": GET#8,X$

OPEN 1,0: PRINT#1

LOAD "",8

LOAD "PROGRAM",3

Kernal routines with error-trapping return 0-9 in the accumulator. To see the Kernal
error messages at work, run this program:

10 POKE 157,64:PRINT#55,X$
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JMPto

F77E

F780

F783

F786

F789

F78C

F78F

F792

F795

ERROR#

1

2

3

4

5

6

7

8

9

Description

TOO MANY FILES

FILE OPEN

FILE NOT OPEN

RLE NOT FOUND

DEVICE NOT PRESENT

NOT INPUT FILE

NOT OUTPUT FILE

MISSING FILENAME

ILLEGAL DEVICE NO.
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The Kernal message I/O ERROR #3 will be printed, as will the BASIC message ?FILE

NOT OPEN ERROR IN 10. Location 157 controls the printing of error messages; in

normal BASIC operation it contains 0, which suppresses Kernal messages.

The Kernal Jump Table

Kernal Routine

Address Location Name Description

FF8A FD15

FF8D FD1A

FF81 FF5B PCINT Initialize Screen and Keyboard

Sets VIC chip; sets keyboard buffer to 10; sets light blue

foreground; clears screen; homes cursor. CIA timer 1 (reg

isters $D804-$D805) set to generate 60 Hz interrupts both

with PAL and NTSC TVs.

FF84 FDA3 IOINIT Initialize I/O Devices

Sets CIA 1 for keyboard scan, CIA 2 for serial device

input/output, and the port at address 1 for standard BASIC

memory map and for tape handling. Turns off SID chip

volume but does not clear other SID registers.

FF87 FD50 RAMTAS Set and Check RAM

Clears RAM up to $03FF, excluding the stack. Sets tape

buffer to start at $033C, sets ($0281) to start of BASIC

RAM, $0800, and ($0283) to end of BASIC RAM (varies if

plug-in cartridge is present). Sets screen to start at $0400.

RESTOR Set Default Vectors

Sets 16 vectors in ($0314-$0333) from a ROM table; used

on power-up and reset. Alters A, X, Y, and SR. No error

returns.

VECTOR Save/Set User Vectors

If C flag is set: Moves table from $0314-$0334 to X (low),

Y (high) address, saving current vectors. If C is clear:

Moves table from X (low), Y (high) back to $0314-$0334.

Alters A, Y, and SR. No error returns.

FF90 FE18 SETMSG Control Screen Messages

Puts A into $9D to control messages. A has bit 7 set for di

rect mode, off for program mode. Bit 6 (not used by 64)

causes I/O errors to appear, as the table above shows. Al

ters A and SP. No error returns.

FF93 EDB9 SECOND Send Secondary Address After LISTEN
Can be used to send a secondary address to the serial bus

after LISTEN; A holds the address, which is used un

changed, and therefore needs to be ORAd with $60. After

this subroutine, ATN is brought low so that data output

from the 64 can begin (see Chapter 17). Alters A, SR, and

probably X,Y. Errors returned in ST byte at $90.

FF96 EDC7 TKSA Send Secondary Address After TALK
Can be used to send a secondary address after TALK on

the serial bus; A needs to be ORAd with $60. The routine

checks for a return clock pulse. Alters A, and probably X

and Y, and sets C flag. Errors returned in ST byte at $90.
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FF99 FE25 MEMTOP BASIC RAM Top

If C flag set: Loads X (low), Y (high) from ($0283). If C

clear: Stores X (low), Y (high) into ($0283). Note that

($0283) is not the normal top of memory, which is ($37),

but that it holds the top of memory as detected by the 64

when power is applied. Alters X, Y, and SR. No error

returns.

FF9C FE34 MEMBOT BASIC RAM Bottom

Identical to MEMTOP, except that ($0281) is the relevant

address.

FF9F EA87 SCNKEY Read Keyboard

Reads the keyboard and puts key, if any, into the keyboard

buffer, where GETIN can recover it. The normal keyboard

locations are used, too, so $028D holds the SHIFT key in

dicator (see Chapter 6). Normally executed at each inter

rupt, this subroutine is useful for interrupt-driven routines

where IRQ is moved or when the interrupt is disabled. Al

ters A, X, Y, and SR. C set on return means the buffer was

full and the character wasn't accepted.

FFA2 FE21 SETTMO Set Time-out

Not used by the 64. Stores A into $0285, but this location

is never used. Intention is to set a time-out value, after

which a serial device is assumed not present.

FFA5 EE13 ACPTR Input a Character from Serial Bus

Gets a byte from device number 4 or higher, typically disk.

A file must be opened or the device made to talk. This rou

tine is virtually identical to CHRIN, FFE4; the reason it has

a Kernal address at all is because it allows GET from a de

vice without a file necessarily being open. The character re

turns in A. Errors are returned in the status byte $90. Alters

A, X, and SR.

Output a Character to Serial Bus

Exactly analogous to ACPTR, this routine transmits the

contents of A to device number 4 or higher, provided a file

is open and ready or the device is a listener. CHROUT,

FFD2, calls this routine. Errors return in the status byte

$90. Alters A and SR.

UNTALK Untalk Serial Devices

Untalks devices on the serial bus, sending IEEE standard

UNTALK command. Alters A, X, SR, and probably Y. Er

rors return in status byte $90.

UNLSN Unlisten Serial Devices

Exactly analogous to UNTALK, this command unlistens de

vices numbered 4 or higher. Alters A, X, SR, and probably

Y. Errors return in status byte $90.

FFB1 ED0C LISTEN Make Device Listen

Converts a device on the serial bus to a listener. Register A

holds the device number (4-30). ATN is held low to send

the command byte, which is the device number ORA #$20.

Alters A, X, SR, and probably Y. Errors return in status

byte $90.

FFA8 EDDD CIOUT

FFAB EDEF

FFAE EDFE

243



ML Methods Specific to the 64

FFB4 ED09 TALK Make Device Talk

Exactly analogous to LISTEN, this converts a device into a

talker. The device number in A is ORAd with $40. Alters

A, X, R, and probably Y. Errors return in status byte $90.

FFB7 FE07 READST Read a Status Byte

Reads the status byte into A. Serial bus devices have $90,

and RS-232 devices have $0297 for their respective status

bytes. Note that this routine clears $0297 to zero after read

ing it.

FFBA FE00 SETLFS Set Logical (File Number), First (Device), Secondary

Address

This and the following routine are preliminaries to opening

a file. They are, in effect, used by all OPEN statements.

There are three routines because the 6510 has only A, X,

and Y registers.

SETLFS puts the contents of A into file number stor

age in RAM, X into device number, and Y into secondary

address. To mimic OPEN 1,4 in ML, load A, X, and Y with

1, 4, and 0, respectively, then JSR $FFBA. No error returns.

FFBD FDF9 SETNAM Set Filename

A is the length of the filename; X (low), Y (high) points to

the start of the name. If A is 0 (acceptable for tape), X and

Y become irrelevant. No error returns.

FFC0 (031A) OPEN Open a File

Opens a file, assuming that the filename and other param

eters have been set by using SETNAM and SETLFS. Entry

values of A, X, and Y are thus irrelevant. On exit, carry set

indicates an error; the error number 1, 2, 4, 5, or 8 (see

Table 8-1) returns in A. Alters A, X, Y, and SR.

FFC3 (031C) CLOSE Close a File

A holds the file number on entry to this routine, which

closes that file only, deleting its parameters from the file

tables and decrementing the number-of-files-open location.

On exit, C is clear. No errors are reported. Alters A, X, Y,

and SR.

FFC6 (031E) CHKIN Prepare Open File for Input

Prepares an open channel to receive input, in the way

GET# is used. Load X with the file number, call CHKIN

with JSR $FFC6. Then you can use GETIN, FFE4, to get

characters. After the characters are read, CLRCHN returns

files and devices to normal, untalking them. On return

from CHKIN, C set indicates an error; A holds the error

number (3, 5, or 6). Alters A, X, Y, and SR.

FFC9 (0320) CHKOUT Prepare Open File for Output

Usually Exactly analogous to CHKIN, this prepares output to be di-

F250 rected to a file specified by CHKOUT, in the same way

PRINT# commands operate. Load X with the file number,

call CHKOUT with JSR $FFC9, output characters with

CHROUT, then close files with CLOSE, for example. An

error is indicated if C is set on return from CHKOUT; A

holds the error number (3, 5, or 7). Alters A, X, Y, and SR.

FDF9

(031A)

Usually

F34A

(031C)

Usually

F291

(031E)

Usually

F20E

SETNAM

OPEN

CLOSE

CHKIN
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FFCC (0322)

Usually

F333

FFCF (0324)

Usually

F157

FFD2 (0326)

Usually

F1CA

FFD5 F49E

(0330)

Usually

F4A5

CLRCHN Set I/O Devices to Normal

Sets output device to screen and input device to keyboard,

and unlistens or untalks active devices. Leaves open files

open, so CHKIN and CHKOUT still operate when wanted

without further OPENs being needed. Compare CLALL,

which is virtually identical but also closes all files. JSR

$FFCC is all that's needed. Alters A, X, and SR. No error

returns. Note that $9A holds current output device number;

$99 holds input device number.

CHRIN Input a Character

Gets a single byte from the current input device (indicated

in $99). This routine is identical to GETIN, $FFE4, except

for two factors. For keyboard characters, CHRIN is de

signed for use with INPUT statements and gets characters

from the screen even when the keyboard is the nominal in

put device. Second, CHRIN with RS-232 loops until a non-

null character is found. In all other cases (tape, disk),

CHRIN and GETIN are identical. See the examples for use

of CHRIN. JSR CHRIN returns the byte in A. Alters A, X,

Y, and SR. Errors returned in ST byte $90.

CHROUT Output a Character

Outputs a single character to the current output devices. A

character may be sent to tape, RS-232, screen, or the serial

bus, where any listener will receive the character. Gen

erally, there is only one listener. To use CHROUT, load A

with the character, then JSR $FFD2 to output it. Register A

retains its entry value, X and Y are unaltered. Errors return

in status byte $90.

LOAD Load to RAM

Kernal LOAD is used by BASIC LOAD to load from tape or

disk into RAM. The result is not relinked as it is with

BASIC LOAD. Thus, this routine loads RAM from the de

vice without any changes. Keyboard, RS-232, and screen

return ILLEGAL DEVICE.

Since commands like LOAD "filename"',1,1 use a de

vice number and name, SETLFS and SETNAM or the

equivalent POKEs have to be used before LOAD.

Before entering LOAD, A holds 0 for LOAD, 1 (or

some nonzero value) for VERIFY. LOAD and BASIC'S VER

IFY use almost identical routines, except that VERIFY com

pares bytes rather than storing them in memory. Provided

that the secondary address is 0, X (low) and Y (high) point

to the address at which LOAD will start. If it is nonzero,

the program will be loaded at the start address stored with

the file to be loaded.

LOAD uses a vector after X and Y are stored. The

routine branches to $F4B8 (disk LOAD) or $F533 (tape

LOAD).

On exit, C set denotes an error. Register A holds the

error number (4, 5, 8, or 9); A, X, Y, and SR are all altered

by LOAD. X (low) and Y (high) point to the end address

plus one following LOAD.
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FFD8 F5DD SAVE

(0332)

Usually

F5ED

FFDB F6E4 SETTIM

FFDE F6DD RDTIM

FFE1 (0328) STOP

Usually

F6ED

FFE4 (032A) GETIN

Usually

F13E

Save to Device

Kernal SAVE is similar to LOAD. It dumps memory un

changed to tape or disk, has the same illegal devices, and

requires SETLFS and SETNAM or their equivalents to be

called first. There is no equivalent to a LOAD/VERIFY flag.

But SAVE has to specify two addresses, the start and end

addresses; it uses A, X, and Y for this. X (low) and Y (high)

define the end address (one byte past the end of the block

to be saved). Register A is used as a pointer to a zero page

vector that contains the start address. If A holds $2A, for

instance, the contents of $2A (low) and $2B (high) define

the start address.

SAVE uses a vector after the addresses are stored in

($C1) and ($AE). After this, the routine branches to $F5FA

(disk) or $F659 (tape).

On exit, C set denotes an error. In this case, A holds

5, 8, or 9. However, with disks there may be a disk error

which has to be read from the disk drive error channel. Al

ters A, X, Y, and SR.

Set Jiffy Clock

Stores Y (highest), X (high), A (low) into three RAM loca

tions which store the jiffy clock. If TI$ is greater than

240000, the next interrupt resets to a normal time range.

This is not the most useful routine since the CIA clocks are

generally more reliable.

Read Jiffy Clock

The converse of the previous routine, RDTIM loads Y

(highest), X (high), and A (low) from the TI clock's bytes.

The result usually needs some conversion to be useful.

Test RUN/STOP Key

This is an easy way to check if RUN/STOP is pressed, so

RUN/STOP can be used to break into ML programs as an

exit mechanism. JSR $FFE1:BEQ will branch if the

RUN/STOP key is pressed. Note that seven other keys—Q,

Commodore key, space, 2, CTRL, left-arrow, and 1 return

unique values in A (for example, $EF is space). If none of

these eight keys is pressed, A returns with $FF.

If RUN/STOP is pressed, CLRCHN is called. If you

don't want this, use LDA $91:CMP #$7F, which will test

for the RUN/STOP key.

Alters A and SR and, if CLRCHN is called, Y. No er

rors returned.

Get a Character

Almost identical to CHRIN, except that keyboard input is

taken directly from the keyboard buffer, like BASIC GET.

Character is returned in A. Zero byte means no character

found in keyboard, RETURN means no more disk charac

ters, and space means no more tape characters. The other

alternatives apply only when the input device number in

$99 is changed from 0. Alters A, X, Y, and SR. No errors

returned if keyboard GETIN; otherwise, errors returned in

status byte $90.

246



ML Methods Specific to the 64

FFE7 (032C)

Usually

F32F

CLALL

FFEA F69B UDTIM

FFED E505 SCREEN

FFFO E50A PLOT

Abort AH I/O

Sets number of open files to 0 and unlistens and untalks all

devices, but does not close files. Compare to CLRCHN,

which is almost identical. Alters A, X, and SR. No error re

turns. Note: Because files aren't closed, this command may

give problems with write files. In simple terms, CLALL

makes all files appear closed to the computer, but the disk

drive may still treat a file as open and create an unclosed

file on the disk (see Chapter 15). It is always best to close

each file individually with CLOSE (FFC3).

Update Timer, Read RUN/STOP Key

Increments TI clock; if the result is 24 hours, returns to 0.

(To keep correct time, increments must be made regularly

by interrupt.) Location $91 is updated to hold the

RUN/STOP key register, so the Kernal STOP routine can

be used after this. Alters A, X, and SR. No error returns.

Check Screen Format

SCREEN returns 22 in X and 23 in Y for VIC, and 40 in X

and 25 in Y for the 64, regardless of the true screen dimen

sions (which can change). It can be used in programs that

work on the VIC and 64 to determine which computer is in

use. For an example, see "SpeedScript Customizer" in COM-

PUTEI's Commodore Collection, Volume 2. Alters X, Y, and

SR. No errors.

Cursor Position

If C flag set: Reads $D6 into X and $D3 into Y, cursor po

sitions down (0-24) and across (0-39), respectively. If C

flag clear: Sets X (down), Y (across). An example of its use

is given below. PLOT adjusts the screen links. Alters A, X,

and SR. No errors.

Return $DC00

Loads X (low), Y (high) with $DC00, the start of CIA 1.

Non-Maskable Interrupt

Reset

Interrupt Request and Break

Using the Kernal

Using CHROUT to print to screen. CHROUT ($FFD2) prints to screen some
what like PRINT does, using the same characters. This makes it an easy command to
use, and it produces a notable increase over BASIC'S speed. Typically, a table of
characters beginning with 147 ($93, which is {CLR}) and ending with 0 (to mark the
end) is set up, including color and cursor characters; an ML loop prints these far
faster than BASIC. Chapter 12 includes several graphics routines using CHROUT.

Try the following:

LDX #$00

LDA TABLE,X ;TABLE COULD START AT $034A
BEQ EXIT

JSR $FFD2

INX

BNE LOOP

FFF3 E500 BASE

(FFFA)

(FFFC)

(FFFE)

FE43

FCE2

FF48

NMI

RESET

IRQ

033C

LOOP 033E

0341

0343

0346

0347

EXIT 0349

;CHROUT DOESN'T AFFECT X

RTS (or BRK)
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: SET CURSOR. EXAMPLE VALUES:

: TENTH LINE DOWN

: FOURTH COLUMN ACROSS

PLOT SETS PARAMETERS

ASCn LETTER A

CHROUT PRINTS THE CHARACTER

Using PLOT to position cursor. The following example is typical. It positions

the cursor with PLOT, and then prints the letter A with CHROUT.

CLC

LDX #$09

LDY #$03

JSR $FFF0

LDA #$41

JSR $FFD2

RTS or BRK

Using GETIN to fetch keyboard characters. The short example below shows a

method for echoing keypresses to the screen. In practice, more constructive uses are

likely. Note the loop branching back to JSR $FFE4; this is similar to the GET loop

waiting for a character. Note also the test for the * key, which allows an exit from

the loop.

$FFE4

LOOP ;AWAITKEY

#$2A ;A HOLDS BYTE. COMPARE WITH ♦

;EXIT ON *

;CHROUT PRINTS TO SCREEN

;BRANCHES ALWAYS

LOOP JSR

BEQ

CMP

BEQ EXIT

JSR $FFD2

BNE LOOP

EXIT RTS or BRK

GETIN alters X and Y registers, unlike CHROUT. Thus, while you can use X or Y in

a loop with CHROUT alone, you must use a temporary storage location as the

counter when using GETIN and CHROUT together.

Using CHRIN to fetch characters. The routine below shows how a loop inputs

successive characters using CHRIN. If you precede this short program by the cursor

position routine, you can simulate INPUT. The cursor will flash at the selected po

sition onscreen. The program prints the characters at the top of the screen to show

how CHRIN works. Note how ANDing the accumulator contents with $3F converts

the ASCII value into the correct screen display code. $FE is used as a temporary

store for the current offset, since X or Y can be altered by CHRIN. As with BASIC

INPUT, if you wish to validate a string being typed, GETIN is best, but CHRIN is

easier to use.

;POSITION CURSOR BEFOREHAND

LDA

STA

LOOP JSR

CMP

BEQ

LDX

STA

LDA

STA

BEQ

#$00

$FE

$FFCF

#$0D

EXIT

$FE

$FE

#$3F

$0400,X

#$00

$D800,X

LOOP

;COUNTER

;CHRIN

;RETURN IS LAST CHARACTER

;BUMP COUNTER UP

;CONVERT ASCII TO POKE VALUE

;STORE CHARACTER TO SCREEN

;SET COLOR RAM

EXIT RTS or BRK
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Using LOAD and SAVE. Examples are in Chapter 6 (BLOCK LOAD and

SAVE) and in the chapters on disk and tape. If the precise mechanism of these com

mands interests you, disassemble the routines, following the branches to tape or

disk. Tape LOAD at $F533 prints SEARCHING, loads a header, computes the start

and end addresses, prints LOADING, and continues with the data load. Disk LOAD

reads the first two bytes for its LOAD address.

Using OPEN and CLOSE. Chapter 15 contains disk examples.

Using READST. JSR $FFB7 loads A with the status byte, either RS-232 or

otherwise, depending on which device is used. This simple routine saves you the

trouble of remembering ST's RAM address.

Using SCNKEY. Chapter 6's PAUSE is an example of how this can be used.

The IRQ vector is redirected by altering ($0314) to point to some routine other than

$EA31, its usual destination. The new routine sets the interrupt disable flag (SEI), so

no further interrupts are allowed, and repeatedly reads the keyboard until some

predetermined keypress occurs. At that time, interrupts are enabled (CLI), then JMP

$EA31 carries on as though nothing had happened.

Using STOP. JSR $FFE1 then BEQ EXIT is an easy way to stop ML from the

keyboard. Without it, the RUN/STOP key is generally inactive. STOP is called after

each BASIC statement is executed in a normal RUN, which is why STOP works with

BASIC.

Using SETTIM and RDTIM. Both these commands are very simple. What's

usually more important is converting the result into a readable form. This ML rou

tine (non-Kernal) converts the clock's contents into a form exactly like TI$ (a string

of exactly six numerals, with leading zeros where needed) so that a quarter after

seven is 071500. The string is left in locations $00FF-$0104, as the demo shows by

storing it to the screen top. The six bytes can, of course, be edited and printed (for

example) as 07:15:00.

JSR

STY

DEY

STY

LDY

STY

LDY

JSR

LDX

LOOP LDA

STA

LDA

STA

DEX

BPL

RTS

$AF84

$5E

$71

#$06

$5D

#$24

$BE68

#$05

$00FF,X

$0400,X

#$00

$D800,X

LOOP

orBRK

;READ/SET CLOCK

; NOW TI$ IS SET UP IN 00FF-0104

; POKE SIX BYTES INTO SCREEN

; NOT $FF,X

; STORE TO SCREEN

; COLOR RAM
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BASIC ROM Routines
BASIC obviously has an enormous number of built-in routines, many of them hav

ing a recognizably BASIC feel about them. This section will show you how RUN can

be performed from ML and will give you an easy way to input data from the screen.

You'll see how numbers and strings can be input by ML. Finally, you'll look at cal

culation in ML, which is not as difficult as it might seem. Examples include the USR

function, a hex-to-decimal converter, and a random number generator.

Executing RUN from ML

When a BASIC program is in memory, JMP $A871 (or SYS 43121) will run the pro

gram, provided it has a line 0, or generate an 7UNDEFV STATEMENT ERROR if line

0 does not exist. Any line of BASIC can be run from ML with this equivalent of

RUN:

JSR $A660 ;CLR

LDA #$LO ;LOW BYTE OF LINE NUMBER

STA $14

LDA #$HI ;HIGH BYTE OF LINE NUMBER

STA $15

JSR $A8A3 ;FIND LINE

JMP $A7AE ;GOTOLINE

This can be useful when ML calls BASIC; see UNLIST in Chapter 6 for an ex

ample. Remember that it's sometimes easier to include some BASIC along with ML,

particularly with tricky programming involving arrays or file handling, which can be

more trouble to convert to ML than they're worth.

Receiving Lines from the Keyboard

JSR $A560 prints a flashing cursor, then transfers the screen line into the 88-byte in

put buffer starting at $200. This is easier to use than the Kernal CHRIN routine. The

end of line is marked by a zero byte (replacing the carriage return character actually

entered). Once input, the line can be processed in any way you want; normally, the

64 tokenizes the buffer and treats it as BASIC. To get the feel of this, load and out

put characters from $200 onward with CHROUT.

Processing BASIC Variables

VARPTR (Chapter 6) uses JSR $B08B to input a variable name and search for it in

BASIC RAM. The address returns in Y and A.

Printing strings and numerals. A cluster of routines around $AB1E outputs

strings without the need to repeatedly call $FFD2 to print individual characters. For

example, JSR $BDDD, then JSR $AB1E prints the contents of FAC1. JSR $BDDD

converts the accumulator to an ASCII string, setting pointers ready for JSR $AB1E to

print.

$AB1E is generally useful and will print any ASCII string up to a zero byte (or

double quotation mark), providqfj A (low) and Y (high) were set correctly on entry.

Inputting parameters for SYS calls from BASIC. PRINT@ and Computed

GOTO in Chapter 6 are examples which take in numbers, in the first case in the

range 0-255, and in the second in the two-byte range 0-65535. The entire range
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isn't used in either example, of course. JSR $B79B and JSR $AD8A fetch the num

bers. There's generally a choice of registers and memory locations for use in transfer

ring data between ROM routines. $B79B returns the value in both $65 and X;

$AD8A evaluates numeric expressions (for instance, VAL(X$)+6*X) and leaves the

result in FAC1, so there's less choice with this. Computed GOTO shows one

continuation with FAC1, namely conversion to integer format using only two bytes.

Calculations

This section explains how to carry out calculations in ML. With the help of Chapter

11, it will be clear that useful results are relatively easy to achieve, so you should

not be held back by problems requiring arithmetic.

Floating-Point Accumulator 1 (FAC1 for short) is a major location for number

work. Occupying six bytes from $61 to $66, the format is slightly different from the

five-byte variable storage of BASIC. Conversion from FAC1 to the memory format

(MFLPT, for short) rounds off the extra bit.

FAC storage can be si^jnarize^J^EMMMMS, having an exponent byte, four

bytes of data (mantissa), andjLsign. If E is set to 0, the number is treated as 0

regardless_pf M's contents. "

Some math routines (like negation) operate only on FAC1. However, many use

EAC2^ including all the binary operations. For example, when adding, FAC1 and

FAC2 are each loaded with a value; when the addition subroutine is called, the

numbers are totaled and the result left in FAC1.

FAC1 can be stored in RAM either by copying the six bytes for later use or by

using one of the routines around $BBC7. You'll see an example in the ML hex-to-

decimal converter later on.

Storing FAC1 in MFLPT format is, of course, part of BASIC, and many of Chap

ter 11 's routines are relevant to BASIC. As an example, $BD7E adds the contents of

A to FAC1, and $BAE2 multiplies FAC1 by 10. Between them, these routines allow

ordinary decimal numbers to be input and stored in FAC1 as each digit is entered.

The ROM routine at $B391 is an easy way to put integers from —32768 to

+32767 into FAC1 as floating-point numbers. The following routine loads 1 into

FAC1; A holds the high byte and Y holds the low byte of the number, in 16-bit

signed integer format.

LDY #1

/LDA #0
/JSR $B391

The USR Function

USR is helpful with ML calculation programming. It is less often used with BASIC,

because function definitions are much easier to write than USR. However, USR is a

function which is always followed by a value in parentheses, like PEEK. USR lets

you pass a value from BASIC to ML by enclosing the value in parentheses after the

keyword. You can pass a value from ML back to BASIC by assigning a variable to

the function.

For example, consider the statement A = USR(6). When BASIC finds this, the

value in parentheses is computed, and the value is put into FAC1. Then BASIC
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executes JMP $0310. Locations $0310-0312 (784-786) act as a user-defined jump

vector, just like the Kernal jump tables at the top of memory. $0310 contains a JMP

instruction, and you are responsible for loading the next two bytes with a destination

address. If this vector contains 0310 JMP $C000, for example, program flow is trans

ferred to the routine at $C000, where you may process the value in FAC1. When the

ML routine ends with RTS, the value then contained in FAC1 is assigned to the

BASIC variable A.

Thus, POKE 784,96 puts RTS at $0310, so USR returns without any alteration to

FAC1. PRINT USR(6) is 6.

Program 8-1 is a more elaborate example. Load and run the program; then enter

any number in the legal range and five bytes will be output in MFLPT format.

Program 8-1. USR Demonstration
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 FOR J=828 TO 841:READ X:POKE J,X:NEXT :rem 15

20 POKE 784,76:POKE 785,60:POKE 786,3 :rem 217

30 INPUT X :rem 75

40 X=USR(X) :rem 156

50 FOR J=842 TO 846:PRINT PEEK(J);:NEXT :rem 241

100 DATA 32,199,187,162,4,181,92 :rem 45

110 DATA 157,74,3,202,16,248,96 :rem 247

120 PRINT:GOTO 30 :rem 246

033C

033F

0341

0343

0346

0347

0349

JSR

LDX

LDA

STA

DEX

BPL

RTS

$BBC7

#$04

$5C,X

$034A,X

$0341

The first byte controls the magnitude of the number. The others determine its

value, except for the high bit of the first data byte, which handles the sign. This is

handy if you wish to store floating-point numbers in memory. The program works

by directing USR to the following:

;FAC1 INTO MFLPT FORMAT AT $5C

;MOVE TO MORE PERMANENT RAM AREA

;WHERE PEEKS CAN RECOVER

;BACK TO BASIC AFTER USR

Line 20's POKEs direct USR to $033C. Line 40 executes a USR command. First,

whatever number was input is converted to FAC1 format. Then BASIC jumps to

$0310, where it finds JMP $033C. Here, FAC1 is rearranged in RAM, and its five

bytes are moved from their temporary storage (which would soon be overwritten)

into the tape buffer. After RTS, BASIC resumes and MFLPT can be PEEKed.

For example, suppose you want to evaluate — 10*X*X. Enter the following at

$033C:

;COPY FAC1 INTO FAC2

;MULTIPLY FAC1 BY FAC2; RESULT IN FAC1

;NEGATE FAC1

;MULTIPLY FAC1 BY 10; RESULT IN FAC1

033C

033F

0342

0345

0348

JSR

JSR

JSR

JSR

RTS

$BC0C

$BA30

$BFB4

$BAE2
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Return to BASIC, then POKE 784,76:POKE 785,60:POKE 786,3 and PRINT USR(8).

You'll get —640, and so on. If you have no ML monitor, POKE the following num

bers using BASIC to locations 828-839: 32, 12, 220, 32, 48, 218, 32, 180, 223, 76,

226, and 218.

Routines can be strung together like this in many ways, though it's helpful to

know ML well enough to appreciate potential problems. For instance, add JSR

$BFED to calculate EXP of FAC1. Alternatively, use temporary storage areas. For in

stance, the following routine puts FAC1 into MFLPT form beginning at $57, then

multiplies FAC1 by the MFLPT number it finds starting at $57. In effect, it is simply

another way of multiplying a number by itself.

JSR $BBCA

LDA #$57

LDY #$00

JSR $BA28

USR is not a very important function, but as these examples show, it can be

useful in testing ML calculation routines.

Hex-to-Decimal Conversion

The program below is a longer program example using ML arithmetic that illustrates

several points. INIT sets FAC1 to 0 and stores 16 in MFLPT form in spare RAM (in

fact, in the random number storage area). GET not only fetches an individual charac

ter, but also flashes the cursor and tests for the RUN/STOP key. PROC is the

processing part; each digit is converted from ASCII ($30 to the character 0, for ex

ample), added to FAC1, and, if a further digit is wanted, multiplied by 16. PRINT

outputs the result.

INIT

GET

EXIT

PROC

033C

033E

0340

0342

0334

0346

0348

0349

034B

034D

034F

0351

0353

0355

0358

035A

035C

035E

035F

0362

0364

0365

0368

LDA

STA

LDA

STA

LDX

STA

DEX

BNE

LDA

STA

LDA

STA

STA

JSR

BNE

LDA

STA

RTS

JSR

BEQ

PHA

JSR

PLA

#$04

$FE

#$00

$61

#$04

$8B,X

$0346

#$85

$8B

#$00

$cc

$CF

$FFE1

$035F

#$01

$cc

$FFE4

$0355

$FFD2

;COUNT FOUR DIGITS

;FAC1 NOW ZERO

;LOOP PUTS 16 IN

;MFLPT FORM INTO

;8B-8F (RND AREA)

;FOR REPEATED USE

;CONTROL CURSOR

;TEST RUN/STOP KEY

;IF RUN/STOP PRESSED,

;FLASH CURSOR &

;RETURN

;GET CHARACTER FROM KEYBD

;WAIT FOR NON-NULL CHR

;SAVE CHARACTER ...

;ECHO TO SCREEN...

;RECOVER
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036B

036D

036F

0371

0374

0376

0378

037A

037C

037F

0381

PRINT 0383

0386

0389

038B

038E

0390

BCC

SBC

SBC

JSR

DEC

BEQ

LDA

LDY

JSR

BEQ

BNE

JSR

JSR

LDA

JSR

BEQ

BNE

$036F

#$08

#$2F

$BD7E

$FE

$0383

#$8B

#$00

$BA28

$0355

$0355

$BDDD

$AB1E

#$0D

$FFD2

$033C

$033C

0369 CMP #$41 ;COMPARE WITH "A"

;BRANCH IF LESS THAN "A"

;CONVERT ASC 0-F TO 0-15

;ADD A TO FAC1

;REDUCE COUNTER

;EXIT AFTER FOUR DIGITS

;SET POINTERS TO $8B

;MULTIPLY FAC1 BY MFLPT AT $8B (IE BY 16)

;BRANCH BACK (RELOCATABLE) FOR

;NEXT DIGITS

;CONVERT FAC1 INTO STRING AT $100

;PRINT STRING

;PRINT RETURN TO GO TO

;NEXT LINE

;BRANCH BACK (RELOCATABLE) FOR

;NEXT HEX NUMBER

SYS828 accepts four-digit hex numbers and continues until the RUN/STOP key

is pressed. The routine is relocatable. For binary-to-decimal conversion, POKE 829,8:

POKE 844,130 after running.

Random Numbers

Random numbers are used in simulations and in games. From ML, the easiest

method is to call ROM routines, which have the advantage of being repeatable if

you want them to be. JSR $E0D3 is equivalent to RND(—X) and seeds the random

number storage area with a value dependent on FAC1. The reason RND of negative

integers is always very small is that the FLPT bytes are simply switched around.

$E0D3 can be used to seed a constant value. However, with ML it's quicker to
store your own seed value directly in $8B-$8F. JSR $E0BE uses a formula to cal

culate a new random number from the previous one, leaving the result in both FAC1

and $8B-$8F. The sequence is completely predictable.

JSR $E09E uses CIA timers to generate a true random number, except in the
sense that very short ML loops may start to show regularities.

Typically, during testing, a seed is chosen. Then $E0BE is used to give a repeat-

able sequence (this eases debugging). The seed is replaced by $E09E for use.

One- or Two-Byte Random Numbers

These are often more useful in ML. You could use the following routine, which uses

all four bytes, excluding the exponent, presumably increasing the result's
randomness.

JSR $E0BE ;NEW RND NUMBER FROM OLD

LDA $8C

EOR $8D ;COMBINE DATA BYTES

EOR $8E ;INTO COMPOSITE BYTE

EOR $8F

Suppose you want something to happen 10 times in every 256. All you need is

CMP #$0A, then BCC to branch when the accumulator holds 0-9.
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If you need a random number in ML within a fixed range, say, 0-20, the easiest

method is to use repeated subtraction (rather than to get a decimal, multiply by 20,

take an integer, and add 1):

RANGE CMP #$15 ;COMPARE WITH DECIMAL 21

BCC FOUND ;NUMBER IN RANGE 0-20

SBC #$15 SUBTRACT DECIMAL 21

JMP RANGE ;COMPARE AGAIN

FOUND CONTINUE ;A HOLDS 0-20 DECIMAL

Note that a random number from 48 to 57 is simply 48 plus a random number

from 0 to 9. Another easy, but slow method is to check a resultnancTgo back if it's

not in range.

If you need random numbers in quantity, it's faster to generate your own. All

you need is one RAM location (or two for a 16-bit number). The following routine

uses a single byte, LO (for example, $FB):

LDA LO

ASL

ASL

CLC

ADC #$odd number

ADC LO

STA LO

Any odd number can be selected ($81, for example). The contents of LO now

cycle through 256 different values in sequence. The method uses 5 times the pre

vious value plus an odd number, ignoring overflow above 255; in other words, x be

comes 5x+c (mod 256). Five is easy to program, but 9, 11, 21, or other numbers can

also be used.

Each call to this routine loads A with the next number; this is not necessarily

suitable as a random number, since the series repeats, but EOR with a timer (for ex

ample, EOR $DC04) will scramble LO into an unpredictable form.

For a two-byte random number, use the following:

CLC

LDA

ADC

STA

CLC

LDA

ADC

STA

LDA

ADC

STA

LO

HI

HI

#$odd number

LO

LO

#$any number

HI

HI

In this case, x becomes 257*X+c (mod 65536) where c is odd. Any series gen

erated from this repeats at 65,536 cycles. Sequences generated by this method al

ways produce alternate odd and even values, and internal subseries are common, so

the guarantee of a very long repeat interval doesn't insure success in any actual

application.
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Series Calculations

All of the 64's mathematical functions are evaluated by series summation. Briefly,

the value to be converted is first put into a smaller range. Trigonometric functions,

for instance, repeat regularly, so their input values can be reduced (if large) by

subtracting multiples of pi. Then a series evaluation works out the function's value,

and finally an allowance is made for the initial scaling-down process.

In the 64, the ROM routine at $E059 sums the series. The following short ex
ample shows how:

LDY #$03

LDA #$40

JSR $E059

RTS

Location $0340 must contain 2, and locations $0341-$0345, $0346-$034A, and

$034B-$034F each must contain a number in MFLPT format. If we designate these
Nl, N2, and N3, calling the routine replaces FACl's value with N3 + N2*X +

N1*X*X. Working out the actual series parameters is beyond this book's scope.

Integer to Floating-Point Conversion and Powers of Two

Although conversion of two-byte integers into floating-point form is often useful, the

standard ROM routine at $B391 converts A (high) and Y (low) into the range from

—32768 to 32767, the range of integer variables.

The following routine puts A (high) and Y (low) into FAC1 in the range 0-

32767. Note that the 64 has vectors near the start of RAM which can be changed to

allow for just such modifications.

LDX #$00

STX $0D

STA $62 ;HIGH

STY $63 ;LOW (NOTE REVERSE ORDER)

LDX #$90 ;EXPONENT (#$91 DOUBLES; #$94 MULTIPLIES BY 16)

SEC

JSR $BC49 ;CONVERT TO FAC1

Using RAM Under ROM
As we saw in Chapter 5, the normal operating system is stored in two ROMs, one at

$A000-$BFFF (BASIC ROM), the other at $E000-$FFFF (Kernal ROM), which work
together as the familiar BASIC language. These ROMs can be switched out either by

hardware—when an external cartridge is sensed by the 64—or by software. With

cartridges, the software controlled lines HIRAM and LORAM have higher priority

than the EXROM and GAME lines which control the 64's sensing of plug-in ROMs,

so the methods in this section will actually apply to 64s with or without a cartridge.

For example, a language like Forth or Logo could exist on a cartridge from $8000 to

$BFFF, but RAM BASIC could still be switched in to replace it, though there might

be complications. For example, the new language might have no equivalent to

POKE, or it could use RAM from $A000 to $BFFF itself. For simplicity, most of this

section assumes that your 64 has no plug-in cartridges present.
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Moving BASIC into RAM

The 64's software control allows both BASIC and Kernal ROMs to be switched out

in favor of RAM. This means the entire BASIC language can be stored in RAM,

where it can be modified. This feature alone gives the 64 possibilities that many

computers don't have. Of course, there is a potential problem: Programs which write

into these RAM areas will corrupt them, something impossible with a ROM-based

language.

The process is simple enough. First, note that writing to the ROM area, whether

or not RAM is selected, always writes to RAM. Second, HIRAM and LORAM are bits

1 and 0, respectively, in the control port. Thus, POKE 1,55 selects ROM BASIC,

while POKE 1,54 switches out the BASIC ROM, and POKE 1,53 switches out both

BASIC and Kernal ROMs. Note that bits 0 and 1 of location 0 must both be set for

this process to work. Normally, this is automatic, but location 0 can sometimes be

corrupted—see POKE in Chapter 3. From now on assume POKE 1,53 will allow us

to modify either of the two ROMs.

If POKE 1,53 is done without preparation, BASIC will disappear as far as the 64

is concerned, and any BASIC will immediately crash.This program copies BASIC and

the Kernal into RAM:

3 FOR J=40960 TO 49151: POKE J,PEEK(P: NEXT :REM MOVE BASIC TO RAM

4 FOR J=57344 TO 65535: POKE J,PEEK(J): NEXT :REM MOVE KERNAL TO RAM

5 POKE 1,53 :REM SWITCH TO RAM

A single long loop can't be used, because it sets the VIC chip wrongly. The pro

gram exploits the fact that POKE puts a byte into the RAM underlying ROM, even

when ROM is selected. It's quite slow because of the slowness of BASIC, taking

more than a minute to perform 16384 PEEK and POKE combinations. Program 8-2

uses ML to speed things up:

Program 8-2. ROM RAM
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

2 DATA 120,165,1,72,169,55,133,1,169,160 :rem 170

3 DATA 133,3,160,0,132,2,177,2,145,2,136 :rem 149

4 DATA 208,249,230,3,165,3,240,8,201,192,208

:rem 109

5 DATA 239,169,224,208,229,104,133,1,88,96 :rem 36

10 FOR J=49152 TO 49193:READ X:POKE J,X:NEXT

:rem 223

20 SYS 49152:POKE 1,53 :rem 148

At this stage, POKE 1,55 and POKE 1,53 can be alternated with absolutely no

visible effect, since the two versions of BASIC are identical.

Making Modifications to RAM BASIC
Small modifications. It makes sense to signal that modified BASIC is present.

Type in POKE 41853,33. This replaces READY, with READY! so whenever you see

READY! you'll be sure RAM BASIC is in use. Enter POKE 1,55 and POKE 1,53 alter

nately, to flip from one version of BASIC to the other. Generally, tables are the
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easiest features of BASIC to alter. For example, BASIC keywords are stored from

41118, starting with END, and these can be changed. It's easiest to keep keywords

the same length as their original form, although it's possible (say) to redefine BASIC

with single-letter and other short keywords, allowing very long (but hard to read!)

lines of BASIC to be entered. Another example is the power-up message; a later pro-

grain shows how this can be altered as far as is possible.

Larger modifications. Significant adjustments to BASIC require some ML

knowledge and the information on BASIC'S structure given in Chapter 11. At the

simplest level, we can alter locations like $EAEA (delay between repeats) and $EB1D

(cursor countdown) to alter cursor control. At a more advanced level, Chapter 6

shows how Computed GOTO and MERGE can be introduced into BASIC, and how

the keyboard's tables can be redefined. These small adjustments are known as

patches; $E4E0 (Filename) and $E4EC (Color) are two patches added to more recent

64 Kernal ROMs, correcting a tape name bug and a screen color effect. As another

example, we can modify RUN to eliminate the test for RUN/STOP, the CONT line

updates, and the end-of-program test (so END becomes necessary) quite easily, with

a small speed increase of 3-1/2 percent. With BASIC in RAM, use these POKEs:

POKE 42960,160: POKE 42961,0: POKE 42962,177: POKE 42963,122: POKE 42964,208

POKE 42965,49: POKE 42966,24: POKE 42967,169: POKE 42968,4: POKE 42987,208

Upgrading ROMs

Earlier CBM computers had to have ROMs changed, at some expense, when

improvements were made to BASIC. With the 64 this is no longer necessary. New

versions of BASIC can be used as they become available. If the changes aren't too
great, a program with ML to move BASIC to RAM, and a series of values to POKE

into RAM to upgrade BASIC will be faster than loading the entire 16K from disk
or tape.

Many 64s have a version number 0; PRINT PEEK(65408) in the Kernal to see
this. Newer ROMs return 3. These have a few improvements: INPUT with a long

prompt string works correctly with wraparound to the next line, and the screen edit

bug is removed (where BASIC lines overrunning the bottom screen line, then back
spaced, crash). Also, like very early 64s, POKEs to the screen are visible after {CLR}
without needing color RAM POKEs.

If you'd like a different version of 64 ROM, an easy way to compare ROMs is
with Program 8-3 or a similar comparison routine:

Program 8-3. Compare ROM

10 OPEN 1,8,4,"KERNAL 02"

20 OPEN 2#8,5#"KERNAL 03"

30 FOR J=14*4096 TO 65535

40 GET#1,X$:GET#2,Y$

50 IF X$OY$ THEN PRINT J; "NEW=" ASC(Y$+CHR$ (0) )
60 NEXT:CLOSE 1:CLOSE 2
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Program 8-3 compares Kernals, assuming these to have been saved with a mon

itor, and commands like .S "KERNAL",08,E000,FFFF, but BASIC ROMs can be com

pared, too. Program 8-4 can be used at the start of a session; it converts version 0 to

version 3 (there are no BASIC ROM differences):

Program 8-4. ROM Upgrade
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

20 FOR 1=40960 TO 49151:POKE I,PEEK(I):NEXT

:rem 143

30 FOR 1=57334 TO 65535:POKE I,PEEK(I):NEXT
:rem 151

40 POKE 1,53 :rem 88

50 READ X:IF X>255 THEN A=X:GOTO 50

60 IF X<0 THEN END

70 POKE A,X:A=A+1:GOTO 50 :rem 136

100 DATA 58540,129

110 DATA 58579,133,169,169,1,133,171,96

120 DATA 58587,134,2

140 DATA 58748,32,240,233,169,39,232,180,217,48,6,

24,105,40,232,16,246

rem 177

rem 191

rem 121

rem 153

rem 224

rem 132

142 DATA 133,213,76,36,234,228,201,240,3,76,237,23

0,96,234 :rem 39

150 DATA 58914,145,229 :rem 74

160 DATA 59911,32,218,228,169 :rem 166

170 DATA 59916,145,209,136,16,246,96,234 :rem 206

180 DATA 61332,76,211,228 :rem 211

190 DATA 65408,3 :rem 26

1000 DATA -1 :rem 57

New Languages

Languages radically different from BASIC which are supplied on disk rather than

cartridge require a forced LOAD into the BASIC area, then POKE 1,54, assuming the

Kernal doesn't need to be altered. This takes more time, of course, and is less

convenient than a cartridge. As an example, CBM BASIC 4 includes disk commands

(CATALOG, DOPEN, etc.). To put BASIC 4 into the 64 as nearly as possible re

quires that its 20K (BASIC 4 fills $B000-$FFFF) be relocated to fit the 64's space as

best it can ($A000-$CFFF, $E000-$FFFF, probably) and that the hardware references

be converted from VIAs to CIAs, and to apply to the VIC and SID chips. In this

way, some compatibility of software is possible, even down to matching zero page

and other locations, but complete compatibility is impossible. ML programs which

use some CBM entry points cannot work on the 64, for instance.

It's conceivable that a language like Apple BASIC might be transferable to the

64, but even if this were done, there'd be difficulties over disk drive and other hard

ware incompatibility.

It's worth noting a potential problem when loading new versions of programs

into the Kernal area. The command .S "ML",08,E000,FFFF doesn't save the very last
byte, so LOAD "ML",8,1 works perfectly except for the final byte. Since this byte

helps determine the IRQ vector, it's important that it should be set correctly.
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RUN/STOP-RESTORE and RAM BASIC

RUN/STOP-RESTORE calls the IOINIT routine, which unless changed sets location

1 to 55. This would automatically convert RAM BASIC back to ROM. The easiest

way to prevent this is to POKE 64982,53 which changes IOINIT in RAM. To see

how this might work, POKE these values as well:

POKE 60634,1: POKE 60633,1: REM BACKGROUND AND BORDER WHITE

POKE 58677,0 : REM CHARACTERS TO BLACK

The first pair alters the 64's default screen color values; the last changes the color in

CINT. Now press RUN/STOP-RESTORE; RAM BASIC is retained and the new col

ors appear. RAM BASIC is made completely secure against RESTORE in this way.

RESET and RAM BASIC

Reset with SYS 64738 uses IOINIT like RUN/STOP-RESTORE. But with RAM

BASIC as we've developed it so far, it prints 51,216 bytes free! This happens because

another routine, RAMTAS, which checks 64's RAM, detects the first ROM location at

$D000, since RAM does in fact now exist up to there. To avoid this (the top-of-

BASIC is set too high) RAMTAS must be modified; the easiest method is just to put

in the desired top-of-BASIC. Thus, RAM BASIC can be made secure against a soft

ware reset.

Hardware resets are different. A reset switch sets the 64 for ROM BASIC, then

goes through the usual ROM reset routines, including putting 55 into location 1. You

may expect POKE 1,53 to revert to RAM BASIC without any problems, since reset

ting leaves the area alone, but there's one subtle effect of reset: It tests RAM by

POKEing in a value, then reading it back, so it will detect BASIC ROM at $A000.

However, it will also corrupt location $A000, POKEing in $55. POKE 40960,

PEEK(40960) after any hardware reset so $A000 is correct.

Protection against either type of reset can also be arranged by putting bytes 195,

194, 205, 56, and 48 sequentially from $8004 on, with ($8000) holding the address

to be jumped to on reset ($E37B to warm start BASIC, for example). The indirect

vector ($8002) should point to RUN/STOP-RESTORE's destination (perhaps $FEBC,

which returns from the interrupt generated by RUN/STOP-RESTORE).

Full Example of Modified BASIC in RAM

Program 8-5 shows a variety of features demonstrating everything we've seen so far.

It sets RAM top to $8000 without checking RAM (as a result there's no delay before
the sign-on message); it moves the start-of-screen to $8000, which means several
adjustments to the VIC chip; BASIC starts at $0400; RUN/STOP-RESTORE and

both resets are nullified as far as possible. Green characters on black are selected. Be

cause this configuration simulates the PET/CBM, many programs for PET/CBM will
run, provided they don't use ML routines which are too machine-specific.

Program 8-5. PET Your 64
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

1 PRINTM{CLR}{2 DOWN}SET 64 TO SIMULATE PET/CBM BA

SIC" :rem 96

3 PRINT"LINES 400-600 CONTROL COLOR SCHEME":rem 43
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5 PRINT"LINE 1200 SETS BASIC TOP; YOU CANM:rem 143

6 PRINT"SELECT OTHER VALUES, E.G. $7000." :rem 70

8 PRINT"LINES 1300-1400 SET BASIC & SCREEN11
:rem 110

9 PRINT"STARTS; YOU CAN USE OTHER VALUES" :rem 52

11 PRINT"LINES 1500-1600 SELECT VIC BANK; ":rem 97

12 PRINT"OFTEN THIS WON'T BE NEEDED." :rem 177

14 PRINT"LINE 1700 PERSONALIZES THE SIGNON"

:rem 116

16 PRINT"NEWER 64S DON'T NEED LINE 1800" :rem 223
18 PRINT"NOTE: IF YOU USE A HARDWARE RESET":rem 53

19 PRINT"SWITCH, RESETTING LEAVES MODIFIED"
:rem 239

20 PRINT"BASIC INTACT IN RAM, EXCEPT FOR" :rem 171

21 PRINT"LOCATION $A0001 POKE 40960,148" :rem 158

22 PRINT"CORRECTS THIS." :rem 0
25 PRINT "{3 DOWN}{RVS}PRESS RETURN TO CONTINUE

{OFF}" :rem 132

26 GET R$:IF R$="" THEN 26 :rem 21

27 IF R$<>CHR$(13) THEN 26 :rem 53
100 FOR J=49152 TO 49193:READ X:POKE J,X:NEXT:SYS

{SPACE}49152 :rem 77

200 POKE 1,53 :rem 134

300 POKE 41853,33 :rem 89

400 POKE 64982,53 :rem 100

500 POKE 60634,0 :rem 35

600 POKE 60633,0 :rem 35

700 POKE 58677,5 :rem 56

1000 POKE 64887,240 :rem 195

1100 POKE 64904,162:POKE 64905,0 :rem 138
1200 POKE 64906,160:POKE 64907,128 :rem 248

1300 POKE 64913,4 :rem 90

1400 POKE 64918,128 :rem 199

1500 POKE 64972,5 :rem 98

1600 POKE 60625,4 :rem 89

1700 FOR J=58494 TO 58505:POKE J,ASC(MID$("REVISED

{2 SPACES}CBM",J-58493)):NEXT :rem 149

1800 POKE 58587,134:POKE 58588,2 :rem 166

1900 SYS 64738 :rem 213
5000 DATA 120,165,1,72,169,55,133,1,169 :rem 122

5010 DATA 160,133,3,160,0,132,2,177,2 :rem 1

5020 DATA 145,2,136,208,249,230,3,165,3 :rem 119
5030 DATA 240,8,201,192,208,239,169,224 :rem 131

5040 DATA 208,229,104,133,1,88,96 :rem 94

In the Appendices is a short PET reconfiguration program, which keeps BASIC
in ROM. RUN/STOP-RESTORE and reset therefore destroy the configuration. This
is partly cured by disabling RESTORE. These two programs show the greater

versatility of RAM over ROM BASIC.
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Programming RAM Under BASIC ROM

RAM under BASIC can store programs unrelated to BASIC, as well as graphics infor

mation which the VIC chip can access. Graphics can be POKEd in, and the VIC chip

reset appropriately. But programs under ROM require the use of ML in some form to

be usable. However, this needn't be particularly complex. For example, suppose

some ML programs are stored from $A000 on. All that's needed to access them is

this set of POKEs in RAM, perhaps located at 830 onward:

169, 54, 133,1, 32, 0,160,169, 55,133,1, 96

Perhaps the easiest method would be to use READ and DATA statements to

POKE the bytes in. After this, SYS 830 will carry out the ML routine at $A000

(assuming it ends with an RTS) by putting 54 into 1, jumping to $A000, and putting

55 into 1 on return. In this version, the ML mustn't call BASIC routines, of course.

The digits 0 and 160 correspond to $A000 in low/high byte form. A routine at

$B055, for example, would need 85, 176 instead of 0, 160. All this, including POKEs

or LOADs of ML under BASIC, can be done from BASIC.

The following lines of ML allow access to RAM under BASIC ROM while keep

ing the Kernal in ROM:

LDA #$36

STA $01

; PERFORM PROCESSING HERE

LDA #$37

STA $01

6RK

You'll find that some ML monitors will allow you to assemble in the BASIC area

after $A000 if you use M 0001 0001 and enter 36, to turn off BASIC ROM. Don't try

to exit to BASIC without BASIC present—it'll crash!—and don't turn off the Kernal

ROM by putting $35 into $0001, or the keyboard and screen handling will crash.

Modifying BASIC
64 BASIC has a large number of vectors in RAM; these are addresses which BASIC
uses as it runs. If these vectors are altered, BASIC can be intercepted and new com

mands tested for and executed. Alternatively, old commands can be modified slightly
(or completely) as required.

The techniques are simple, but plenty of small problems await the programmer.
In particular, when you alter BASIC, any errors in the added ML are likely to pre
vent BASIC from working normally. Thus, in order to avoid tedious retyping, it's im
portant to save programs as they are written or to use a reset switch for emergency

recovery. All the methods use ML, but this need not stop you, since the 64 can do
most of the work.

Vectors and Wedge Methods

RAM contains blocks of vectors as indirect addresses. LIST, for example, has a com
mand JMP ($0308) within it, so the contents of ($0308-$0309) determine where LIST
executes.
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There are over 20 such vectors. In addition, the CHRGET routine at $0073
(which fetches BASIC characters) is accessible for programming. As you'll see, this

allows access to BASIC as it runs, so new commands can be added.
Alterations to CHRGET or to vectors called from BASIC are semipermanent.

Once in place, SYS 64738 or switching off and on will remove them, tilt otherwise
even RUN/STOP-RESTORE leaves them untouched. This is intentioiial. On the
other hand, RUN/STOP-RESTORE sets vectors used by the Kernal routines to the

default values.
First, consider examples involving vector alterations and use of wedges. Gen

erally, wedges are probably easier to program; there's only one subroutine to worry

about, and commands can be added almost indefinitely. However, because
tokenization isn't possible, short commands like @X or @Y are generally used.

BASIC vectors allow some effects to be achieved which aren't possible with
wedges—for example, modified LIST. Such large-scale modifications take prior plan
ning and are not for inexperienced programmers. Kernal vectors are easier to deal
with, in the sense that they give convenient access to commands but are not often
used. There are not that many occasions when you would want to reprogram OPEN,
LOAD, or SAVE. Again, Kernal vectors, like the three interrupt vectors, are all set to

normal by RUN/STOP-RESTORE.

The Wedge
To understand the wedge, first look at CHRGET, the RAM routine starting at $0073,
which fetches every BASIC character while BASIC runs:

CHRGET 0073 INC $7A ;ADDS 1 TO CURRENT ADDRESS
0075 BNE $0079 ;ADDS 1 TO CURRENT ADDRESS

0077 INC $7B INCREMENT

CHRGOT 0079 LDA CURRENT
007C CMP #$3A ;COLON (OR GREATER) EXITS

007E BCS $008A
0080 CMP #$20 ;SKIPS SPACE CHARACTERS

0082 BEQ $0073
0084 SEC ;ANYTHING FROM $30 to $39

0085 SBC #$30 ;CLEARS C FLAG;

0087 SEC ;ELSE C IS SET

0088 SBC #$D0

008A RTS

CHRGET is stored in ROM at $E3A2; SYS 58303 from BAStC moves it back to
RAM. This may be useful if you've altered CHRGET, but note that it NEWs BASIC.
A call to CHRGET returns with A holding the next BASIC character, C clear if an
ASCII numeral was found, and the zero flag set if either a colon or null byte was
found. JSR $0073 followed by BCC or BEQ is common in ROM, and BCC applies
when a line number (made of ASCII numerals) is read from a GOTO or GOSUB

statement.

ROM also uses JMP $0073. In this case, RTS uses the address it finds on the
stack, and in fact BASIC keywords are executed in this way. The 6510 requires that
the return address -1 be pushed on the stack. .
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CHRGET can be changed. Try the following POKE129,234:POKE128,234-
POKE131,234:POKE130,234 (without spaces between POKEs). This deletes the test
for space characters, replacing the ML by NOP commands, and BASIC runs exactly
as normal except that spaces outside quotes cause 7SYNTAX ERROR. The first SEC
becomes redundant, and SBC #$2F corrects for it. CHRGET shortened like this runs
BASIC faster than normal, as expected; but only by 0.5 percent.

Before seeing how to insert a wedge, note the difference between CHRGET and
CHRGOT. CHRGET always increases the current address; it's normally called only
once per character. CHRGOT rereads the current BASIC character and sets the rele
vant flags; therefore, whenever processing loses track of the current BASIC character
in some way, CHRGOT is always available to recover it.

Wedge Demonstration

If you replace $0073 INC $7A with $0073 JMP $C000, or some other jump address,
all ROM calls to BASIC characters can be intercepted before they are executed. This
allows us to test for and use new commands in BASIC. A wedge, once inserted, is
quite durable. As mentioned above, RUN/STOP-RESTORE, for example, leaves it
unaltered. That can be important. If your routine has an error, it may be impossible
to POKE in the correct values or enter a SYS call to replace the wedge, since BASIC
itself is behaving differently from usual.

Many utility programs use wedges. This example puts a JMP at $0073; note that
$0073 or subsequent addresses can be used and are sometimes better, since they
may allow another wedge to be used simultaneously. Some wedges test for JMP at
$0073 and allow for them. They also allow zero page RAM (typically $007F-$008A)
to be used in programs.

Program 8-6 adds the single command ! to BASIC. When it executes, the screen
colors are changed. When naming new commands, it's easiest to use a character that
doesn't appear in ordinary BASIC (like !, @, or &) as an identifier. If desired, it is
easy to add further commands, such as !R or !P (with specific functions of their
own), by getting the following BASIC character with JSR $0073 whenever ! is found.
However, to keep the example shorter, it adds only a single command.

Program 8-6. BASIC Wedge Demonstration
For mistake-proof program entry, be sure to use the "Automatic Proofreader/'Appendix G

4 FOR J=49152 TO 49203:READ X:POKE J,X:NEXT:SYS 49

152 :rem 232
5 I:GOTO 5 :rem 254

10 DATA 169,76,133,115,169,13,133,116,169,192,133
:rem 116

11 DATA 117,96,230,122,208,2,230,123,32,121,0,201

:rem 69

12 DATA 33,240,3,76,121,0,165,123,201,2,240,247,15
2 :rem 175

13 DATA 72,138,72,238,32,208,238,33,208,104,170,10
4 :rem 203

14 DATA 168,76,115,0 srem 214
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Note that! is accepted only in program mode. A line like 100! works perfectly,
but! on its own is an error. This is deliberate. It avoids commands being executed
while a program is being written, when they may not be wanted, although you
could obviously create a wedge (like the DOS 5.1 wedge) that only works in direct
mode. There are several tests for direct mode. TSX then LDA $0102,X to recover the
return address is one. Another is location $9D, which usually holds $80 in direct
mode. The test in the example simply checks the current address used by CHRGOT;

if it's around $0200, it must be a direct mode line.
The only peculiarity of BASIC syntax with wedges is the IF statement. IF X=l

THEN: PRINT "ONE" is correct as far as BASIC is concerned, but the colon can be
omitted. With wedges, the colon can't be left out.

How the wedge works. Program 8-6 loads the following ML into the 64:

SETUP LDA #$4C ;PUTS JMP $C00D INTO CHRGET

STA $73

LDA #$0D

STA $74

LDA #$C0

STA $75

RTS

WEDGE INC $7A

BNE INC

INC $7B

INC JSR $0079

CMP #$21

BEQ YES

NO JMP $0079

YES LDA $7B

CMP #$02

BEQ NO

TYA

PHA

TXA

PHA

INC $D020

INC $D021

PLA

TAX

PLA

TAY

JMP $0073 ;CONTINUE BASIC

SYS 49152 activates the wedge. Note that the entire routine is relocatable, apart

from the address in SETUP. Long routines that won't fit the tape buffer can also be

put at the top of BASIC memory.

$C021 jumps to CHRGOT, not CHRGET. This means that! in direct mode is

treated as normal, generating 7SYNTAX ERROR if entered as a command, but in
cluded in BASIC otherwise. If $C021 jumps to CHRGET, there are no SYNTAX ER-
RORs, but the command becomes difficult to include in BASIC. Note as well that
$C031 jumps to $0073. Of course, it immediately jumps back to $C00D, but $0073

always relocates.
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;MIMIC CHRGET

;A NOW HOLDS BASIC CHARACTER

;IS IT '!' ?

;NO—JMP BACK TO CHRGOT. WEDGE UNUSED

;YES—CHECK FOR DIRECT MODE

;DIRECT MODE—DON'T USE WEDGE

;PROGRAM MODE. USE WEDGE—

;SAVE X AND Y

;EXECUTE '!' COMMAND; HERE WE

INCREMENT BORDER AND GROUND COLORS.

PROCESSING OVER. RECOVER A AND X.
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Vectors
The main block of vectors starts at $300. ($0300) through ($030A) are vectors to
BASIC. ($0314), ($0316), and ($0318) are vectors to IRQ, BRK, and NMI. ($031A)
through ($0332) are vectors to Kernal routines, except ($032E) is unused.

Earlier RAM has a sprinkling of vectors, including ($028F), used by SCNKEY,
the keyboard-reading routine, which allows keys to be intercepted—see the "Func
tion Keys" definition and other keyboard redefinition programs in Chapter 6. Vectors
($0003) and ($0005) point to floating-to-fixed (and vice versa) number conversion
routines, but neither is called by ROM—either through oversight or perhaps because
the intention was to allow JMP ($0003) and JMP ($0005) to work on both the VIC
and 64 and possibly future machines.

BASIC Vectors

There are six BASIC vectors, each called from the address three bytes before the vec
tor's normal destination. For example, $A437 JMPs to ($0300), which is set normally
to $A43A. Although this seems like useless extra execution time, it is the basis for
the wedging technique. The vectors are listed here in order:

($300) IERROR: Vector to Error Message Routine
X holds the number of the error; for instance, decimal 10 means NEXT WITHOUT
FOR. Unless altered, this prints an error message, then READY. See Chapter 6 for

ONERR-GOTO, allowing an error routine to be specified at some line number.

($302) IMAIN: Vector to Main BASIC Loop
This usually points to $A483, and is called just after READY prints, before input
from the keyboard. Try POKEing these values into 828 and the following addresses:

169, 42, 32, 210, 255, 76,131,164

Now POKE 770,60: POKE 771,3. The effect is to move the vector to point to these
instructions:

LDA #$2A ;LOADWITH*

JSR $FFD2 ;OUTPUTIT

JMP $A483 ;CONTINUE AS USUAL

Now the cursor expecting input is preceded by *. In fact, you can tell when the rou

tine is called by the presence of the asterisk. IMAIN allows several possibilities:

automatic BASIC line numbering, output of some message or prompt, and automatic
LOAD and RUN, as Chapter 14 shows.

($304) ICRNCH: Vector to Tokenize Keywords Routine
This tokenizes BASIC, which is scanned while in the BASIC line input buffer at
$200, converting keywords to tokens. This vector could be diverted, so new
keywords could be recognized and converted into tokens. If this is done, ($308) and
($306) have to be altered, too.

($306) IQPLOP: Vector to Untokenize Keywords Routine
POKE these values from 828 and subsequent addresses:
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72, 201, 58, 208, 10,169,13, 32, 210, 255, 169, 32, 32, 210, 104, 76, 26, 167

Now POKE 774,60: POKE 775,3. This simple routine compares the character to be

listed with the colon; if it finds one, it starts a new line and prints a space, so LIST

now puts every statement on a new line. (It doesn't test for colons within strings.)

This sort of thing is useful with printers and could include a test for output device

number 4.

($308) IGONE: Vector to Execute Next BASIC Program Token
Routine

This is somewhat like CHRGET, but points only at tokens—it's used just before a

statement is executed. (If there's no token, LET is assumed.) Bytes outside the range

of valid tokens trigger a 7SYNTAX ERROR. We can intercept the routine and process

our own tokens or, as in the next example, redefine a standard token.

Program 8-7. LET Vector Demo
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 DATA 32,115,0,201,136,240,6,32,121,0 :rem 85

11 DATA 76,231,167,32,155,183,142,33,208 ;rem 176

12 DATA 76,234,167 2rem 121

20 DATA 169,3,141,9,3,169,60,141,8,3,96 :rem 127

100 FOR J=828 TO 860:READ X:POKE J,X:NEXT :rem 64

110 SYS 850 :rem 46

Note that a SYS call is needed to alter the vector, because POKE is processed

using this and gets confused if one byte of the vector changes.

After RUN, LET is redefined so that LET 13, for example, sets the background

light green. LET 13 now, in effect, POKEs $D021 of the 64 with 13, but does this
much faster than POKE. FOR J=0 TO 15 :LET J :NEXT cycles the colors at great

speed. The extra ML is this:

;FETCH NEXT BASIC CHR

;LOOK FOR LET TOKEN

;BRANCH IF FOUND

;GOTCHR SETS FLAGS

;CONTINUE NORMALLY

;CALCULATE 1-BYTE BASIC PARAMETER

;PUT IT IN VIC REGISTER (BACKGROUND COLOR)

;CONTINUE, AFTER EXECUTION POINT

LET (and GO) and many rarely used mathematical functions lend themselves to

this treatment, and may be helpful in dealing with some of the more tiresome com

mands needing POKEs and PEEKs, such as when controlling the SID sound chip.

<$30A) IEVAL: Vector to Evaluate Single-Term Arithmetic
Expression Routine
Normally set to point to $AE86, this directs execution to the subexpression evaluator
routine, which fetches and evaluates single terms of expressions at runtime (for ex
ample, the values of X and 123 in the statement PRINT X+123). The reason for its
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inclusion in the vector table is to allow nonstandard terms, either string or numeric,

to be defined. Thus, hex numbers beginning with $ can be introduced into BASIC, or

binary numbers beginning with %. Examine the following assembly-style listing:

HERE

YES

JSR

CMP

BEQ

LDA

STA

JSR

JMP

JSR

$0073

#$24

YES

#$00

$0D

$0079

$AE8D

$0073

JMP $0073

;GET FIRST CHR OF TERM

;IS IT $?

;IF YES, BRANCH

;IF NO, SIMULATE

;NORMAL BEHAVIOR

;GET FIRST CHR AFTER AND

;PROCESS. PUT IN FAC1

Set ($30A), 778 and 779, to point to the address of HERE.

Program 8-8, is a BASIC program that uses the principles just explained to add

hex numbers to BASIC. For example, POKE $D020,l works correctly.

Program 8-8. Add $ Commands
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 DATA 169,71,141,10,3,169, 3,141,11,3 :rem 55

11 DATA 96,169,0,133,13,32,115,0,201,36 : rem 106

12 DATA 240,6,32,121,0,76,141,174,162,2 :rem 104

13 DATA 32,115,0,201,64,144,2,105,8,10 :rem 45

14 DATA 10,10,10,133,254,32,115,0,201,64 :rem 137

15 DATA 144,2,105,8,41,15,5,254,72,202 :rem 61

16 DATA 208,224,104,168,104,133,98,132 :rem 78

17 DATA 99,162,144,56,32,73,188,76,115,0 :rem 193

100 FOR J=828 TO 905:READ X:POKE J,X:NEXT :rem 64

110 SYS 828 :rem 51

To compute results in the range 0-65535, a modified FXFLPT routine has to be used,
as explained earlier.

Kernal Vectors

Twelve Kernal routines are vectored through RAM addressed from ($31A) through

($332); all, except ILOAD and ISAVE, are called immediately after entering the
Kernal jump table. Open and close routines, routines to fetch and output characters,
and the RUN/STOP key test all have indirection and allow modifications to be
made to the Kernal even in ROM. LOAD and SAVE store address parameters before
entering their vectors. A short list of the vectors is given below:

($31A)

($31C)

($31E)

($320)

($322)

($324)

($326)

IOPEN:

ICLOSE:

ICHKIN:

ICKOUT:

ICLRCH:

IBASIN:

IBSOUT:

Vector to Kernal OPEN Routine

Vector to Kernal CLOSE Routine

Vector to Kernal CHKIN Routine

Vector to Kernal CKOUT Routine

Vector to Kernal CLRCHN Routine

Vector to Kernal CHRIN Routine

Vector to Kernal CHROUT Routine
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($328)

($32A)

($32C)

($32E)

($330)

($332)

ISTOP:

IGETIN:

ICLALL:

IUSRCMD:

ILOAD:

ISAVE:

Vector to Kernal STOP Routine

Vector to Kernal GETIN Routine

Vector to Kernal CLALL Routine

Vector to Kernal User-Defined Routine

Vector to Kernal LOAD Routine

Vector to Kernal SAVE Routine

As a fairly simple example, using an asterisk as before, the routine below inter

cepts CHROUT and causes it to output an extra asterisk. POKE these values into 828

and the following:

72,169, 42, 32, 202, 241,104, 76, 202, 241

Now POKE 806,60: POKE 807,3 to alter the vector to $033C. The ML is listed

below:

PHA ; SAVE OUTPUT CHARACTER

LDA #$2A ; LOAD ASTERISK

JSR $F1CA ; OUTPUT ASTERISK, NOT WITH FFD2, OF COURSE

PLA ; RECOVER CHARACTER

JMP $F1CA ; OUTPUT IT, CONTINUE

Following SYS 828, any use of CHROUT prints an asterisk—including all BASIC

messages like READY, which appears as R*E*A*D*Y*.

Interrupts
Defaults for NMI, BRK, and IRQ vectors (Non-Maskable Interrupt, BReaK, and Inter

rupt ReQuest vectors) are permanently stored in the top six bytes of the 6510's

memory. With the 64, NMI jumps to $FE43, BRK to $FE66, and IRQ to $FF43. Hard

ware reset (see Chapter 5) has no indirect vectors apart from the optional cartridge's

start address.

($318) NMINV: Vector to NMI Routine
NMI processing is complex. One reason is that both RS-232 and the RESTORE key

are handled by it. From $FE43, NMI goes through this sequence:

$FE43 Vectors through ($318), normally to $FE47

$FE47 Saves A, X, Y with PHA:TAX:PHA:TAY:PHA

$FE4C Disables NMIs

$FE51 Checks for RESTORE key or for RS-232 or other CIA interrupts

$FE56 RESTORE key; checks for cartridge; if found JMP ($8002)

$FE5E Tests for RUN/STOP key; if found, restore BASIC

$FE72 RS-232 or CIA interrupts; processes RS-232

$FEBC Restores Y, X, A with PLA:TAY:PLA:TAX:PLA

$FEC1 Exits with RTI

To use NMI interrupts successfully requires that ($0318) be redirected with a correct

exit, and that the CIA timers be set properly.
A simple example is to redirect ($0318) to $FEC1; RESTORE always now im

mediately goes to RTI, so RUN/STOP-RESTORE cannot work. Chapter 5 has an ex
ample showing how RESTORE generates an interrupt.
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($314) CINV: Vector to IRQ Routine
($316) CBINV: Vector to BRK Routine
The IRQ and BRK instruction interrupts are conceptually tricky, though their

processing is fairly straightforward. Both an IRQ interrupt from CIA 1 (see Chapter

5) and a BRK instruction jump to $FF43, provided interrupts aren't masked by SEI,

and assuming ($FFFE) hasn't been changed in RAM. After $FF43, A, X, and Y are
saved on the stack; then the two types of interrupt are separated by checking for the

BRK flag in the status register.

BRK. This type of interrupt vectors through ($316), normally set to the restore

sequence in NMI, so SYS to a location holding a zero byte typically has the same ef

fect as RUN/STOP-RESTORE. Monitors often change ($316) to point to their own

start address, so BRK at the end of the ML returns control to the monitor.

IRQ. Interrupts of this type are vectored through ($314), normally to $EA31.

From $EA31, IRQ interrupts go through this process:

$EA31 Update clock

$EA34 Process cursor, tape motor; scan keyboard

$EA7E Clear interrupt flags

$EA81 Restore A, X, Y with PLA:TAY:PLA:TAX:PLA

$EA86 Exit with RTI.

IRQ interrupts usually occur 60 times every second, unless turned off, or during

tape and disk access; CIA 1 controls the frequency. Adding extra ML, to be pro

cessed immediately before the usual interrupt ML, must allow for this. Successful

use of the vector requires preexisting ML, exiting typically with JMP $EA31, so the

TI clock and keyboard and so on work normally. Also, a routine to alter the vector

in ($0314) to point to the new ML is needed. Since interrupts are already taking

place, they must either be stopped or an ML routine must be used to be sure that the

address is changed before another interrupt occurs.

Interrupt-Driven Background Programs

A background program runs with the main program. Interrupts allow programming

feats which are otherwise impossible; their common feature is periodicity. Playing

music, updating graphics, and printing the current time are examples of background

programs which interrupts allow on the 64. Features can be added at will, giving

long, complex background programs, if this is required.

NMI-driven background programs. NMI interrupts aren't maskable; they offer

interrupts with near-perfect regularity. CIA 2 generates NMIs. The CIA's timers can

be used together, allowing repeats to occur over a time range from a few micro

seconds to an hour or so without special counters for the purpose. Also, the NMI

vector is simple to move, and it is easy to turn off NMIs. Disk and tape cannot work

with these routines, however. These devices go through the motions, but the NMIs

throw their timing off; IRQ interrupts, on the other hand, pause while these opera
tions take place, but are automatically reinstated afterward.

Program 8-9 uses NMIs to drive a short program, which simply changes the
background color. The interrupt frequency is chosen to produce narrow bands of
color on the screen; BASIC runs completely normally over this. Alter the timer
parameters to see the effect of changing the rate at which NMIs are generated:
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Program 8-9. NMI Demo

1 REM USING NON-MASKABLE INTERRUPTS WITH BASIC

:rem 177

2 REM TO PROVIDE COMPLETELY.REGULAR TIMING:rem 170

3 REM E.G. TO PLAY MUSIC NOTES# DISPLAY THE :rem 5

4 REM TIMtU DISPLAY GAME SCORES ETC. :rem 124

6 REM THIS VERSION USES BOTH TIMERS OF CIA#2,

:rem 156

7 REM SO DELAYS CAN VARY FROM A FEW MILLIONTHS

:rem 237

8 REM OF A SECOND UP TO AN HOUR OR MORE. :rem 197

10 REM THIS DEMO INCREMENTS SCREEN COLOR FAST,

:rem 51

11 REM PRODUCING NORMALLY IMPOSSIBLE STRIPES

:rem 128

100 FOR J=49152 TO 49162: READ X: POKE J,X: NEXT

:rem 11

110 POKE 792,0: POKE 793,192: REM NMI VECTOR TO C0

00 :rem 222

120 POKE 56589,127:{2 SPACES}REM ALL NMIS OFF

, , :rem 162

130 POKE 56589,130:{2 SPACESjREM TIMER B NMI ENABL
ED :rem 68

140 POKE 56580,99: POKE 56581,1: REM SET TIMER A

:rem 5

149 REM 16+1 IN TIMER A (1) SETS LATCH, (2) STARTS

TIMER A:- :rem 132

150 POKE 56590,17:{3 SPACES}REM START TIMER A

:rem 208

160 POKE 56582,2: POKE 56583,0:{5 SPACES}REM SET T

IMER B :rem 203

168 REM 64+16+1 IN TIMER B (1) COUNTS TIMER A,

:rem 129

169 REM (2) SETS LATCH, (3) STARTS TIMER B:-

:rem 109

170 POKE 56591,81:{3 SPACES}REM START TIMER B
:rem 213

180 DATA 72,138,72,152,72,238,33,208,76,81,254

:rem 232

181 REM PHA/TXA/PHA/TYA/PHA/INC D021/JMP FE51
:rem 135

182 REM OR TRY EG. 0,4 IN PLACE OF 33,208 :*rem 38

183 REM TO INCREMENT TOP LEFT SCREEN CHARACTER

:rem 51

RUN/STOP-RESTORE will return the system to normal.
IRQ-driven background programs. IRQ programs are quite popular because

early CBM machines couldn't use NMIs. They are a little more complex than NMI
programs, but need no special CIA knowledge. Chapter 13's music-playing program
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is an example; it plays a three-part composition while BASIC runs normally.

To create an IRQ-driven program, you should first choose an area of RAM to

store the ML—$C000 onward is the obvious choice on the 64, but there are other

locations. Next, you must write the initialization routine, typically something similar

to the following, which sets the vector to $C00D:

$C000 SEI

$C001 LDA #$C0

$C003 STA $0315

$C006 LDA #$0D

$C008 STA $0314

$C00B CLI

$C00C RTS

$C00D (background program starts here)

Note that you must disable all interrupts with SEI before changing the vector,

and then reenable them with CLI. It's also possible to change ($0314) from BASIC.

For example, this line sets the IRQ vector to $C000:

POKE 56334,0: POKE 788,0: POKE 789,192: POKE 56334,1

The next step is to write the background ML, which in our example will start at

$C00D and typically exit with JMP $EA31, the normal interrupt routine. Here are a

few things to keep in mind when programming with interrupts.

• A, X, and Y can be used independently of BASIC. Because the BASIC values at the

time the interrupt happens are saved automatically and restored on return from

interrupt, your ML is self-contained.

• The simplest termination of an IRQ routine is JMP $EA31. This is the usual address

in ($0314), and exit to it means that BASIC behaves exactly as normal apart from

the introduced ML. All exits must return properly, or BASIC will crash. It's not

essential to exit via $EA31, though. Note that RTI restores the status register to its

pre-interrupt value, so CLI isn't necessary.

• Keep in mind the effects of repeats. Time dependency is a little hard to get used to.

A command like DEC $FE in normal programs decrements the contents of $FE just

once, from (for example) 9 to 8. But in an interrupt-driven program, this command

decrements whenever interrupts occur, typically 60 times per second. This is how

the TI clock works (except that it increments). Clearly, this is a valuable feature.

• Polling means that, during each interrupt, locations are PEEKed to see if action is

required. Chapter 16 has an interrupt-driven program to read joysticks; at regular

intervals, the joystick hardware addresses are read in ML and transferred to a

convenient location. Processing is far faster than the BASIC equivalent. Another ex

ample is reading location $C5 (197) to see if a key is held down; unlike GET's once

only action, this allows keys to act as long as they are held down.

• POKEs into the background program can be a useful control if a program has sev
eral functions. To illustrate, here is a simple example:

LDA#0

BNE INTML

JMP $EA31
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If this is the first ML of an IRQ program, the branch will never be taken and
the effect is negligible. But POKEing a value other than 0 into the location follow
ing the LDA instruction will activate whatever ML has been put in at the location
labeled INTML by the assembler. So completely invisible ML interrupt programs
can be activated from BASIC.

• The speed of background programs can, of course, vary. Suppose we have a rel
atively slow routine, perhaps to fill a screen with graphics. Is there a chance that
the interrupt might itself be interrupted and the program crash? Since an IRQ inter
rupt, in effect, performs SEI whenever it occurs, background programs driven by
IRQ can be slower than 1/60 second. If every repetition is as slow as this, the nor
mal program will hardly get a chance to run.

NMIs have no disable flag; if interrupts occur faster than the background pro
gram takes to execute, the 64 will lock up.
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Chapter 9

Mixing BASIC with Machine
Language

While most programmers are happy to use BASIC, machine language (ML) offers in
creased speed and power. This short chapter explains how ML programs and data

can be incorporated into BASIC, and how BASIC can be used to load in and relocate
your ML routines.

RAM Available for ML Routines
The 64 has plenty of RAM; the only problem likely to arise is making all of your
routines compatible with each other. The best way to achieve this is with the relocat
ing loader technique, discussed later in this chapter. However, with proper planning,
there is plenty of room in the 64 for your ML routines and BASIC programs, too.

The 64 has several areas of RAM that are particularly suited for storing ML, the
largest of which is $C000-$CFFF (49152-53247), which allows 4K to be stored, and
is isolated from BASIC. This is generally the best choice, except in the sense that it is
the favorite of most ML programmers using the 64, so careful partitioning will be re
quired to fit in more than one routine. You can calculate the length of your ML, sub
tract that from the top of this block, and use the result as the LOAD address of your

routine. Sometimes this will help you stay out of the way of other programs that use
this area.

The RAM under the BASIC ROM ($A000-$BFFF) is an 8K block, which requires

the methods explained in Chapter 8 to be usable. This area is relatively unpopular,
but access isn't really difficult. ML in this area cannot generally use BASIC sub

routines, though. Note that the 8K under the Kernal is also usable, but liable to more

difficulties than BASIC, since the machine's input and output operations are con
trolled by the Kernal.

The RAM normally used for BASIC program storage can usually be reduced

without affecting BASIC programs. Either the start of BASIC can be moved up, or

the top moved down, or both. The top is often used, since any CBM machine can

use this area, while not all of them can raise the bottom of BASIC as easily.

Supermon is stored at the top of BASIC, and resets end-of-BASIC pointers below it

self so BASIC strings won't corrupt it. Autostart plug-in cartridges occupy

$8000-$9FFF of this area.

Smaller blocks of RAM are sometimes useful when writing autorun programs

(see Chapter 15) or converting VIC-20 subroutines for the 64. The main areas are

$2A7-$2FF (679-767) and $334-$3FF (820-1023); part of the latter is used by tape

and is secure if tape isn't used after BASIC is loaded. Even if you use tape,

$334-$33B (820-827) is free to be used for vectors or flags. The stack, $100-$lFF

(256-511), is partly usable—the low end, and only the low end, is safe as long as

there aren't many GOSUB or FOR-NEXT calls. Free zero page RAM includes loca

tions 2-6 and $FB-$FE (251-254). Assuming certain ML math calls and RS-232

communications aren't used, $F7-$FE (247-254) is free.
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Combining BASIC and ML
DATA statements/The easiest way to combine ML with BASIC is to store the ML

as BASIC DATA. When the BASIC loader is run, the numbers are read and POKEd
into memory, for use by SYS or USR. Chapter 6 has examples of this technique. This
type of program is self-contained and can be loaded and saved like any other BASIC

program, and there are generally no problems. The drawback is that each ML byte is
stored on average in about four BASIC bytes. For instance, $EA is held as 234 with a
comma. Therefore, it is better to store long ML programs another way, usually as ob

ject code.
If you've written some ML that works correctly, it's convenient to have a pro

gram to read it from memory and write it as DATA statements. Program 9-1 will do

this for you, so you will not have to do it by hand.

Program 9-1. DATA Maker

100 INPUT "START";A

110 INPUT "{2 SPACES}END";E

120 INPUT "FIRST LINE#";L

130 INPUT "LINE LENGTH";LL

140 PRINT "{CLR}
150 PRINT "{HOME}" L "DATA "7

160 PRINT MID$(STR$(PEEK(A)),2) ","7

170 A=A+1:IF A>E THEN END

180 IF POS(0)<LL THEN GOTO 160

190 PRINT "{LEFT} {HOME}{4 DOWN}L="L"+1:A="A"

{LEFT}:E="E"{LEFT}:LL="LL":GOTO140"

200 POKE 198,5:POKE 631,19:POKE 632,13:POKE 633,13

:POKE 634,13:POKE 635,13

Suppose you've written ML starting at 49152. To use Program 9-1, load and run

it, entering the start (49152) and end addresses of the ML you want DATA state

ments made for, the line number of the first DATA statements (perhaps 0 or the

location of your routine), and a maximum line length, say, 60. If you aren't sure of

the end address, put in a figure that is too large, then edit the last few DATA lines.

When the program has finished creating the DATA, delete the lines of the

"DATA Maker" program; the DATA lines to store your ML in BASIC will be left.

You will need to add some BASIC to POKE in the data:

FOR J=SA TO EA: READ X: POKE J,X: NEXT

The above line (where SA is the starting address and EA is the ending address) or

something similar should work fine.

REM statements. ML can be stored in REM statements. To do this, enter a line

like OREMXXXXXXXXXXXXX. Now POKE 2054,238: POKE 2055,1: POKE 2056,4:

POKE 2057,96. Assuming that BASIC starts at $0801, SYS 2054 calls the following

ML, which these POKEs represent:

INC $0401

RTS
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This increments the character in the second column of the first row of the
screen. A complication is that the ML must not contain any null bytes, or on editing
these will be treated as ends of lines and spoil the ML. (You could use LDX #1:DEX
in place of LDX #0.) Another complication is that BASIC lines normally have a
maximum length of 80 characters. By adjusting the link addresses the limitation is
easy to overcome. A line treated in this way LISTs oddly, and mustn't be edited.

Using quotes after REM and starting at 2055 will cause the program to LIST without
keywords.

Strings. ML can also be stored as a string. The line ML$="4C48D2AAD191D3"
illustrates an alternative tq DATA that's sometimes encountered. It requires
modifications to the DATA writing program to find and print separate hex bytes.
This method saves space compared with ML stored as numbers, but is slower to de
cipher and POKE back in. Since the 64 has a lot of RAM, the earlier method is used
more often.

Block LOADs. Chapter 6 explains how to load a block of ML. For an example,
see Chapter 12's character editor which allows user-defined characters to be saved to
disk for use later. To bypass the 64's attempt to GOTO the first line after a program-
mode LOAD, you'll need something like the following line, which loads the ML file
only once:

0 IF X=0 THEN X=l: LOAD "ML",8,1

As we've seen, block LOADs save time compared with DATA READs and
POKEs, so this technique (or one of those following) is desirable with ML of any
substantial size.

Consolidated BASIC and ML. These programs, sometimes called hybrids, con
tain ML immediately after BASIC. BASIC LISTs normally, but since the three null

bytes marking its end are earlier than the end-of-BASIC pointer, there's space for ex
tra ML which doesn't show on listing. Programs like this can't be edited, or the ML
will be moved in memory and probably will not function properly.

An example of this method is 64 Term. The ML needed to run the 64 modem is
loaded as BASIC, but the BASIC is reduced to a single SYS command. In this ex
treme case, the only use of the BASIC is to run the ML, saving the user from having

to force-load and then use a SYS call. Some games include their graphics definitions
after BASIC and are hybrids in another sense.

Here is an explanation of how to alter an ML program so that it can be loaded

and run. Suppose the ML starts at $0810, just after the start of BASIC. If you have

the source code, you can reassemble the program at $0810, and some monitors have

an .N relocation feature. We want BASIC to LIST as 0 SYS 2064, our ML to start at

$0810 (2064), and both to be loadable simultaneously. The process is shown below
(a simple ML routine which changes the screen color serves as an illustration).

Step 1. With a monitor, like Supermon, load the ML which is located at $0810.

The sample program is shown after being loaded and examined with the M

command:

.M 0810 0810

.: 0810 EE 21 DO 60 00 00 00 00

This is equivalent to INC $D021 / RTS.
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Step 2. Add the SYS call. Here well put 0 SYS2064:

.M 0800 0808

.: 0800 00 0A 08 00 00 9E 32 30

.: 0808 36 34 00 00 00 00 00 00

Reading from $0800, this holds a null byte; the link address in low/high form,
$080A; the line number 0; SYS2064 (9E is the tokenized form of SYS and it's fol
lowed by ASCII numbers); and three end-of-program zero bytes and a few more

filler bytes before $0810.
Step 3. Save to disk or tape. The trick is not to save the starting null byte. If you

do, you'll need to force-load the program to make it work. So use something like
this (using your monitor), with the ending address plus one for the final parameter:

.S "ML AS BASIC',08,0801,0830

Step 4. Test the result. It should load normally, LIST as 0 SYS2064, and run

correctly.
In practice, it's common to find other characters after SYS. For example, a colon,

then backspaces, and a copyright message will make the SYS command invisible

when listed to screen.

Relocating ML
Moving relocatable ML. Where several utilities might be required in RAM, it makes
sense to write them in such a way that they detect and fill the next highest available

space. Supermon and some of the utilities in Chapter 6 are written like this; they're

not dependent on being put into a fixed place in RAM. The techniques that follow

put ML into the top of BASIC, after first lowering the end-of-BASIC pointer by the

correct amount. These techniques work with any CBM machine. Since the 64 has

RAM available at other places than top of BASIC, it's possible to modify the method,

for example, to allocate $C000-$CFFF to ML routines, but some pointer other than

top of BASIC has to be chosen to locate the individual ML routines correctly. Load

ers to put utility ML into the top of BASIC can start with this:

100 T=PEEK(55) + 256*PEEK(56): REM T=ORIGINAL TOP OF BASIC

110 S=T-N: : REM EG S=T-50 LOWERS BY 50 BYTES

120 POKE 56,S/256: POKE 55,S-INT(S/256)*256: CLR: REM SET NEW TOP

130 S=PEEK(55) + 256* PEEK(56): REM RECOVER VALUE OF S=START OF ML

which lowers BASIC'S top by an amount specified in line 110 and sets S equal to the

start of the new area, ready for a loop of the type:

FOR J=S TO S+49: READ X: POKE J,X: NEXT

which reads 50 bytes of ML and puts it into protected RAM.

This is fine for ML which is relocatable, using only branches and calls to Kernal

or BASIC routines. But ML like this for the 6510 is difficult to write; for example, a

block of ML with internal subroutine calls, like C000 JSR C100, cannot work if the

ML is simply shifted in RAM. Just as some assemblers (see Chapter 7) use special

loader programs to put ML anywhere in RAM, we can write loaders which POKE

ML anywhere, modifying it where necessary.
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Relocating ML with BASIC. The following technique involves a lot of work,

but the versatility of the resulting utility makes it well worthwhile. If you wish to

write ML subroutines to be as versatile as possible, bear in mind that it's always

simpler for the user if ML is freely relocatable. We'll use the following loader:

100 T=PEEK(55)+256*PEEK(56) :REM TOP OF MEMORY

110 L=T-N :REM N=NUMBER OF BYTES OF CODE; L=LOWERED MEM.TOP

120 FOR J=L TO T-l: READ X% :REM ML HELD IN DATA STATEMENTS

130 IF X%<0 THEN Y=X%+T: X%=Y/256: Z=Y-X%*256: POKE J,Z: J=J+1

:REM Y IS RELOCATED VALUE CALCULATED FROM NEG.X%

140 POKE J,X%: NEXT :REM COMPLETE PROCESS FOR ALL VALUES

150 POKE 55,L-INT(L/256)*256: POKE 56,L/256: CLR:REM RESET TOP-OF-MEMORY

To convert code into data which this program can use, enter the code into RAM,

then print or write out the disassembled version. (A disassembler giving decimal val

ues of locations is helpful.) Next, mark all the absolute addresses which need chang

ing during relocation, replacing each by its offset from the end of the program; that

is, count backward from the end of program plus one, the result being a negative

number. See the example; this is easier than it might seem.

Convert the bytes into DATA statements and enter them. Note that each new

negative value replaces two bytes as a rule. Enter the value of N in line 110, then

test the loader. Run it several times, and check that each routine is independent and

correctly set up.

The example shown in Figure 9-1 is a short routine which fills the first 256

screen positions with the character stored as the last byte of the routine. It has a sub

routine call, a load from an absolute address, a store to an indexed absolute address,

and two branches. The branches, because of their relative addressing mode, relocate

without modification; so do the implied mode instructions, and the immediate mode

instruction. The store to the indexed absolute address does not have to be relocated

because the target address is not within the code to be relocated. The only addresses

to be relocated are those circled.

Figure 9-1. Relocating ML Example

32

96

160

173

153

200

208

96

32

171

0

183

0

250

2

2

4

02A7

02AA

02AB

02AD

02B0

02B3

02B4

02B6

02B7

JSR C

RTS

LDY

LDAC
STA

INY

BNE

RTS

.BYTE

J02AB:

#$00

302B7T:
$0400,Y

$02B0

$20

Counting back from the end, we find that $02AB is the thirteenth byte and

$02B7 is the first; so —13 and —1 respectively replace all occurrences of these two

addresses. The DATA statement is therefore:

10 DATA 32,-13,96,160,0,173,-1,153,0,4,200,208,250,96,32

281



Mixing BASIC with Machine Language

The number of bytes in the program is 17, so line 110 becomes:

110 L=T-17

After relocation, the new starting address of the ML can be found with:

PRINT PEEK(55)+PEEK(56)*256

and the ML can be started with:

SYS PEEK(55)+PEEK(56)*256

Relocating ML with ML. This technique is similar and much faster. Supermon

uses this method. ML of course has no out-of-range values in the way BASIC has

negatives; instead use null bytes as markers.

First, mark the absolute addresses needing relocation. Then add a zero byte im

mediately after each such address, and also after every genuine zero byte. This is

much easier to do with an assembler.

Third, replace the addresses by their displacement from the end of the program.

That is, replace the absolute addresses with the twos complement of the number of

bytes from the end of the program. (See Chapter 7 for information on calculating the

twos complement.) In the example above, we found that $02AB was 13 ($000D)

bytes from the end of the program. Using the twos complement of $000D, you

would replace the address with JSR $FFF3. Address $02B7 has a displacement of 1

byte, so we replace LDA $02B7 with LDA $FFFF.

Finally, put in a BASIC call (as shown earlier in this chapter) to the relocator

program, the relocator (from Program 9-2, below), and the ML you wish to relocate

(preceded by a unique marker byte not found anywhere in the ML to be relocated)

together in RAM, and save.

The relocator program works by starting at the end of the ML to be relocated

and working backward, moving the bytes one by one to the top of available memory

(as indicated by the pointer in locations 55 and 56). If a zero byte is found, the

relocator examines the next byte. If it is also a zero, then a zero byte is moved. But if

it is not a zero, then an additional byte is retrieved and these two bytes (the

displacement you calculated) are added to the top-of-memory address to compute

the proper absolute address for the relocated ML.

This continues until the marker byte—which separates the relocator from the

ML being relocated—is encountered. As presented in Program 9-2, 222 is used as

the marker. If the ML you wish to relocate contains the byte $DE (222), you'll need

to change this marker to some other value not found in your code. You can do this

by changing the 222 in line 16 to the desired value.

Finally, the relocator program lowers the value in the pointers to the top of

BASIC program storage (locations 55 and 56) and string storage (locations 51 and

52) to protect the relocated ML from BASIC. It then executes the ML by jumping to

the first byte of the relocated code. As with the BASIC relocator, the starting address

of the relocated code can be found with:

PRINT PEEK(55)+PEEK(56)*256

and the ML can be restarted with:

SYS PEEK(55)+PEEK(56)*256
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Program 9-2. ML Relocator
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

I REM 222 IN LINE 16 IS MARKER VALUE FOR START OF

{SPACE}ML :rem 79

10 DATA 165,45,133,34,165,46,133,35,165,55,133,36,

165,56,133 :rem 143

II DATA 37,160,0,165,34,208,2,198,35,198,34,177,34

,208,60 :rem 253

12 DATA 165,34,208,2,198,35,198,34,177,34,240,33,1

33,38,165 :rem 103

13 DATA 34,208,2,198,35,198,34,177,34,24,101,36,17

0,165,38 :rem 50

14 DATA 101,37,72,165,55,208,2,198,56,198,55,104,1

45,55,138 :rem 108

15 DATA 72,165,55,208,2,198,56,198,55,104,145,55,5

6,176,184 :rem 123

16 DATA 201,222,208,237,165,55,133,51,165,56,133,5

2,108,55,0 :rem 131

For an example of how to use this relocator program, add the lines shown in

Program 9-3 to Program 9-2. This will create a machine-language relocated version

of the example routine from Figure 9-1. Line 30 creates a program file called RE

LOCATE TEST directly on the disk. Line 40 writes out the data for a BASIC SYS call

from line 5, line 50 writes out the ML relocator program from lines 10-16, and line

60 writes the byte that separates the relocator from the code to be relocated. Line 70

reads the ML to be relocated from the DATA statement in line 20. Notice how this

data differs from that created for the BASIC relocator in the previous section. When

you run the program, it creates a program on disk called RELOCATE TEST, which

you can load and run like a BASIC program. The RELOCATE TEST program will

move the routine to the top of available memory—adjusting addresses in the pro

cess—then lower the top-of-memory pointer and execute the routine.

To use this program for your own ML, replace line 20 with DATA statements

containing your ML (modified for relocation as described above), and change the

value of L (line 25) to reflect the number of items in your DATA statements.

Program 9-3. Relocating Program Generator

For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

5 DATA 11,8,0,0,158,50,48,54,49,0,0,0 :rem 2

20 DATA 32,243,255,0,96,160,0,0,173,255,255,0,153,

0,0,4,200,208,250,96,32 :rem 227

25 L=21 :rem 83

30 OPEN 1,8,8,"0:RELOCATE TEST,P,W":PRINT*1,CHR$(1

);CHR$(8)? :rem 192

40 FOR 1=1 TO 12:READ X:PRINT#1,CHR$(X);:NEXT : RE

M BASIC SYS CALL (5) :rem 124
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50 FOR 1=1 TO 105:READ X:PRINT#1,CHR$(X)7:NEXT : R

EM ML FOR RELOCATOR (10-16) :rem 30

60 PRINT#1,CHR$(222);: REM SEPARATOR CHARACTER

:rem 242

70 FOR 1=1 TO L:READ X:PRINT#1,CHR$(X)7:NEXT : REM

ML TO BE RELOCATED (20) :rem 110

80 CLOSE 1 :rem 15
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Chapter 10

Vocabulary of the 6510 Chip

This chapter lists each opcode with full details and helpful examples. The following

conventions have been used:

Read as "becomes." For example, A:= X means that the value in A becomes that

currently in X.

x, 0, and 1

Show the effect of an opcode on the status flags. An x means that the flag depends

on the operation's result; 0 and 1 represent flags which an opcode always sets to 0

or 1, respectively. All other flags are left unchanged.

$ and %

Prefix hexadecimal and binary numbers; where these are omitted, a number is

decimal.

A, X, and Y

The accumulator and the two index registers, X and Y.

M

Memory. This may be ROM in the case of 6510 load instructions (like LDA). Note

that immediate addressing mode (#) loads from the byte immediately following the

opcode in memory. All other addressing modes load from elsewhere in memory.

PSR (or SR)

The processor status register. Each bit of the register serves as an indicator (flag) for

a different condition:

bit 7: Negative (N) flag. Matches bit 7 of the result of the operation just com

pleted, which indicates negative numbers in twos complement arithmetic.

bit 6: Overflow (V) flag. Indicates an overflow (result too large for one byte) in

twos complement operations.

bit 5: Unused; always set.

bit 4: Break (B) flag. A BRK instruction was encountered.

bit 3: Decimal (D) flag. When set, all math is performed in decimal (BCD) mode.

bit 2: Interrupt disable (I) flag. When set, interrupts are ignored.

bit 1: Zero (Z) flag. Indicates that all bits are zero in the result of the operation

just completed.

bit 0: Carry (C) flag. Holds the carry bit for addition, or borrow for subtraction.

S

The location within the processor stack (locations $0100-$01FF) currently referenced

by the stack pointer.

SP

The stack pointer.

PC
The program counter; this is composed of two eight-bit registers, PCL (program

counter.low byte) and PCH (program counter high byte).
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The 6510 Instruction Set

ADC
Add memory plus carry to the accumulator. A:= A+M+C

Instruction

$61

$65

$69

$6D

$71

$75

$79

$7D

( 97 %0110

(101 %0110

(105 %0110

(109 %0110

(113 %0111

(117 %0111

(121 %0111

(125 %0111

0001)

0101)

1001)

1101)

0001)

0101)

1001)

1101)

Addressing

ADC (zero page, X)

ADC zero page

ADC # immediate

ADC absolute

ADC (zero page),Y

ADC zero page,X

ADC absolute,Y

ADC absolute,X

Bytes

2

2

2

3

2

2

3

3

Cycles

6

3

2

4

5*

4

4*

4*

*Add 1 if page boundary crossed.

Flags:

N

X

V —

X

B D I Z

X

C

X

Operation: Adds together the current contents of the accumulator, the byte ref

erenced by the opcode, and the carry bit. If the result is too large for a single byte, C

is set to 1. If A holds 0 (each bit equals zero), the Z flag is set to 1; otherwise, it is 0.

If bit 7 in A is 1, the N flag is also set 1, to denote a negative value in A.

Uses:

1. Single-, double-, and multiple-byte additions. The carry bit automatically provides

for overflow from one byte to the next. For example:

CLC

LDA $4A

ADC #$0A

STA $4A

LDA $4B

ADC #$00

STA $4B

INSURES CARRY BIT IS 0

WE WISH TO ADD #$0A (10 DECIMAL) TO THE CONTENTS

OF ($4A), I.E., THE DO0BLE-BYTE ADDRESS WHERE $4A
IS THE LOW BYTE AND $4B THE HIGH BYTE

ADDS THE CARRY BIT WHERE APPLICABLE

RESULT MUST BE STORED, ELSE IT WILL REMAIN ONLY IN A

2. Increasing or decreasing the accumulator. There is no INC A opcode.

CLC

ADC #$01 ; INCREMENTS A; FF BECOMES 0.

3. In binary-coded decimal mode, obtained by setting D to 1, each nybble represents

0-9 and addition is corrected on this basis. This example adds 123 (decimal) to the

contents of locations 2 and 3, which are assumed to contain, in ascending order,
four binary-coded digits.
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SED

CLC

LDA $03

ADC #$23

$03

$02

STA

LDA

ADC #$01

STA $02

CLD

; SET THE DECIMAL FLAG

; CLEAR CARRY FLAG

; WE'VE ASSUMED THE BCD DATA IS STORED IN NORMAL ORDER

; WITH LOW BYTES FOLLOWING HIGHER ONES, NOT 6510 ORDER

; ADD 23 DECIMAL

; ADD 01 DECIMAL PLUS POSSIBLY CARRY BIT EQUIVALENT TO 100

; CLEAR THE DECIMAL BIT, UNLESS MORE DECIMAL MATH

NEEDED

Notes: In decimal mode, the zero flag doesn't operate normally with ADC because

of the automatic correction (adding 6) which the 6510 carries out. Testing for a zero

result requires (for example) CMP #$00/ BEQ—which is an extra step not required

in hexadecimal arithmetic.

The V flag is important if the twos complement convention is in use, and is set

if the apparent sign of the result (bit 7) is not the true sign. In decimal mode, V is

not used.

AND
Logical AND of memory with the accumulator. A:= A AND M

Instruction

$21 (33 %0010 0001)

$25 (37 %0010 0101)

$29 (41 %0010 1001)

$2D (45 %0010 1101)

$31 (49 %0011 0001)

$35 (53 %0011 0101)

$39 (57 %0011 1001)

$3D (61 %0011 1101)

Addressing

AND (zero page, X)

AND zero page

AND # immediate

AND absolute

AND (zero page),Y

AND zero page,X

AND absolute,Y

AND absolute,X

Bytes

2

2

2

3

2

2

3

3

Cycles

6

3

2

4

5

4

4*

4*

*Add 1 if page boundary crossed.

Flags:

N

X

V — B D I Z

X

C

Operation: Performs logical AND of the eight bits currently in the accumulator and
the eight bits referenced by the opcode. When both bits are 1, the result is 1, but if
either or both bits are 0, the result is 0. The resulting byte is stored in A. If A now
holds 0—that is, all its bits are 0—the Z flag is set to 1; and if the high bit is set (bit
7 is 1), the negative flag N is set to 1. Otherwise, the flag is 0.
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Uses:

1. Masking off unwanted bits, typically to test for the existence of a few high bits, or

to test that some bits are 0:

LDA $E081,X ; LOADS ACCUMULATOR FROM A TABLE OF CODED VALUES

AND #$3F ; TURNS OFF BITS 6 AND 7, LEAVING ALPHABETIC ASCII.

2. AND #$FF resets flags as though LDA had just occurred.

AND #$00 has the same effect as LDA #$00.

ASL
Shift memory or accumulator left one bit.

—| 76543210 [

Instruction

$06 ( 6 %0000 0110)

$0A (10 %0000 1010)

$0E (14 %0000 1110)

$16 (22 %0001 0110)

$1E (30 %0001 1110)

Addressing

ASL zero page

ASL accumulator

ASL absolute

ASL zero page,X

ASL absolute,X

Bytes

2

1

3

2

3

Cycles

5

2

6.

6

7

Flags:

N V -

X

- B D I Z

X

C

X

Operation: Moves the contents of memory or the accumulator left by one bit po

sition, moving 0 into the low bit, and the high bit into the carry flag. The carry bit

therefore is set to 0 or 1 depending on bit 7 previously being 0 or 1. Z and N are set

according to the result; thus, Z can be true (that is, 1) only if the location or A held

$00 or $80 before ASL. The N bit can be set true if bit 6 was previously 1.

Uses:

1. Doubles a byte (though not in decimal mode). If signed arithmetic is not being

used, the result can safely reach values not exceeding 254, after which the carry

must be taken into account, often with ROL. This example uses A from 0 to 127

to load two bytes from a table of address pointers and store them on the stack:

ASL A

TAY

LDA ADDHI,Y

PHA

LDA ADDLO,Y

PHA
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The following example multiplies the contents of location $20 by 3, provided

that the value it originally held was no greater than 85 decimal. In this case, the

carry bit is automatically cleared by the shift:

LDA $20

ASL A

ADC $20

2. Tests a bit by moving it into C or N, to be followed by an appropriate branch.

Note that four ASLs move the low nybble into the high nybble.

BCC
Branch if the carry bit is 0. PC:= PC + offset if C=0 *

Instruction

$90 (144 %1001 0000)

Addressing

BCC relative

Bytes

2

Cycles

2*

*Add 1 if branch occurs; add 1 more if the branch crosses a page.

Flags:

N V — B D I Z C

Operation: If C holds 0, the byte following the opcode is added to PC to calculate

the address of the next opcode. If C holds 1, the program counter is unaffected. The

effect is to cause a jump to the offset address when C is clear.

Uses:

1. As "branch always." If the carry bit is known to be clear, this command becomes

effectively a "branch always" instruction. The flag may be set in a purely signal

ing sense, with no significance other than to show that one of two conditions ap

plies. Many Kernal routines return with C clear if there were no errors, allowing

JSR KERNAL/BCC OK followed by error-handling routines.

2. After previous operations. Usually the test is concerned with the result of a pre

vious operation which may or may not set the carry flag. This compare routine is

an example:

LOAD THE ACCUMULATOR WITH SOME VALUE, THEN

COMPARE IT WITH DECIMAL 10.

BRANCH TO PROCESS VALUES 0-9,

CONTINUE HERE WITH VALUES, 10-225

JSR GETCHAR

CMP #$0A

BCC LOW

After any comparison, C is clear if the value compared was smaller, but is set with

an equal or greater value. Bit 7 is irrelevant.
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BCS
Branch if the carry bit is 1. PC:= PC + offset if C=l

Instruction

$B0 (176 %1011 0000)

Addressing

BCS relative

Bytes

2

Cycles

2*

*Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

|n V — B D I Z C

Operation: Identical to BCC, except that the branch is taken if C=l and not C=0.

Uses: Identical to BCC. The choice between BCC and BCS at a branch point depends

on convenience. For example, suppose a hardware port is to be read until bit 0 is set

to 0. This routine:

LOOP LDA PORT ; READ LOCATION UNTIL XXXXXXX0

LSR A

BCS LOOP

is obviously tidier than:

LOOP LDA PORT

LSR A

BCC NEXT

BCS LOOP

Similarly, JSR KERNAL/BCS ERROR followed by the normal processing path is

probably preferable to the BCC version.

BEQ
Branch if zero flag is 1. PC:= PC + offset if Z=l

Instruction

$F0 (240 %1111 0000)

Addressing

BEQ relative

Bytes

2

Cycles

2*

*Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

NV-BD I Z c|

Operation: If Z=l, the byte following the opcode is added, in twos complement
arithmetic, to the program counter, which currently points to the next opcode. The
effect is to cause a jump, forward or backward, up to a maximum of +127 or -128
locations if the zero flag is set. If Z=0, the branch is ignored.
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: NONZERO VALUE

; THESE TWO BRANCHES

RELY ON Z=l

Uses:

1. Common as an unconditional branch. It may be used to make routines relocatable,

where the branch command isn't wide-ranging enough to span the program with

out an intermediate hop. The example inserts a couple of branches at a point

where they will never be taken by the ML immediately before, and so are avail

able as long branches.

LDA #$F5

BEQ BACK

BEQ FWRD

2. To end a loop, either when a counter is decremented to zero, or because a zero

byte is deliberately used as a terminator:

LOOP LDA TABLE,X ; LOAD A WITH THE NEXT CHARACTER

BEQ EXIT ; EXIT LOOP WHEN ZERO BYTE FOUND

... CONTINUE, E.G., STA OUTPUT,X/ INX/ BNE LOOP

3. After comparisons. BEQ is popular after comparisons because it's easy to use. For

example, JSR GETCHR/ CMP #$2C/ BEQ COMMA looks for a comma in BASIC.

Notes: When a result is 0, the zero flag Z is made true (1). This point can be confus

ing. BEQ is usually read "branch if equal to zero," but when comparisons are being

made it could read "branch if equal." The zero flag cannot be set directly (there is

no SEZ instruction), but can be set only as the result of a location, register, or dif

ference becoming zero.

BIT
Test memory bits. Z flag set according to A AND M; N flag:= M7; V flag:= M6

Instruction

$24 (36 %0010 0100)

$2C (44 %0010 1100)

Addressing

BIT zero page

BIT absolute

Bytes

2

3

Cycles

3

4

Flags

N

M7

V

M6

— B D I Z

X

C

Operation: BIT affects only three flags, leaving registers and data unchanged. Z is
set as if A AND M had been performed. If no bit position is 1 in both the memory
location and A, then A AND M is 0 and Z=l. Also, bits 6 and 7 are copied from

memory to the V and N flags.

Uses:
1 Multiple entry points for subroutines. The three-byte absolute address BIT is the

only instruction regularly used to provide alternative entry points for a routine.
The example loads A with RETURN, space, or a cursor-right depending on the en

try point into the routine.
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033C LDA #$0D A9 0D

033E BIT $20A9 2C A9 20

0341 BIT $1DA9 2C A9 ID

LDA #$0D

LDA #$20

LDA #$1D

If the routine is entered with JSR $033C, the accumulator is loaded with $0D and

the two BIT operations are then performed. These will change the settings of the

status register flags, but will not affect the contents of the accumulator. If the rou

tine is entered with JSR $033F, the routine begins with the A9 20 (LDA #$20) op

eration, and the contents of the accumulator will not be affected by the following

BIT operation. A JSR $0342 will leave $1D in the accumulator.

This is a compact way to load values into A (or X or Y). BIT $18, in the same

way, alters three flags, but if entered at the $18 byte clears the carry flag. Both

constructions are common in Commodore ROM, which explains why you may fre

quently see BIT instructions when you disassemble ROM.

2. Testing bits 7 and 6. BIT followed by BMI/BPL or BVC/BVS tests bits 7 and 6.

BIT $0D

BMI ERR

This example tests location $0D, with a branch taken if it holds a negative twos

complement value. Location $0D is in fact used to check for type mismatches. A

value of $FF there denotes a string, $00 a numeric variable, so BMI occurs with
strings.

3. Used as AND without affecting the accumulator. The following example shows

the AND feature in use. CHRFLG holds 0 if no character is to be output, and $FF

otherwise. Assuming the accumulator holds a nonzero value, BIT tests whether to
branch past the output routine, while retaining A's value.

LDA VALUE

BIT CHRFLG

BEQ NOTOUT

BMI
Branch if the N flag is 1. PC:= PC + offset if N=l

Instruction

$30 (48 %0011 0000)

Addressing

BMI relative

Bytes

2

Cycles

2*

*Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

N V — B D I Z c|

Operation: If the N flag is set, the byte following the opcode is added to the pro
gram counter in twos complement form. The effect is to force a jump to the new ad
dress. The maximum range of a branch is -128 to +127 locations. When N is clear
the branch command is ignored.
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Uses:

1. Testing bit 7 of a location. For example:

LOOP BIT PORT ;TEST BITS OF A HARDWARE PORT (PRESERVING VALUE

; IN A)

BMI LOOP ;WAIT UNTIL BIT 7 OF THE PORT IS 0

2. Conventional use. Like the other flags, N may be used in a purely conventional
sense. As an example, consider BASIC'S keyword tokens. All have values, in deci

mal, of 128 or more, which keeps keywords logically separate from other BASIC

and also permits instructions like this:

LDA NEXT ; LOAD NEXT CHARACTER INTO ACCUMULATOR

BMI TOKEN; BRANCH TO PROCESS A KEYWORD

; OTHERWISE, PROCESS DATA AND EXPRESSIONS

Notes:

1. It's important to realize that the minus in BMI (Branch if Minus) refers only to the

use of bit 7 to denote a negative number in twos complement arithmetic.

Comparisons (for example, with CMP) followed by BMI implicitly use bit 7.

Mostly, it is easier to think of this operation as "branch if the highest bit is set."

2. BPL is exactly the opposite of BMI. Where one branches, the other does not.

Branch if Z

Instruction

$D0 (208

is 0. PC:= PC + offset if Z=

%1101 0000)

Addressing

BNE relative

0

Bytes

2

Cycles

2*

*Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

NV — BDIZC

Operation: BNE operates exactly like BEQ, except that the condition is opposite. If
Z=0, the offset contained in the byte after BNE is added to the program counter, so

the branch takes place. If Z=l, the branch is ignored.

Uses:
1. In unconditional branches. BNE may be used in unconditional branches in circum

stances like those which apply to BEQ.
2. In a loop, where a counter is being decremented. BNE is very often used in a loop

in which a counter is being decremented. This is probably the easiest type of loop
to write. Watch the data's starting address, as offset 0 isn't executed by a loop like
this. The example prints ten characters from a table, their offsets being 10, 9, 8, ...

2,1.
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LDX #$0A

LOOP LDA TABLED

JSR OUTPUT

DEX

BNE LOOP

3. After comparisons. BNE, like BEQ, is popular after comparisons:

B4C0 LDA $C1 ;CHECK CONTENTS OF $C1

B4C2 CMP #$42 ;IS IT B?

B4C4 BNE $B4C9 ;BRANCH IF NOT

Notes: When a result is nonzero, the zero flag, Z, is made false (set to 0). This can

be confusing. BNE is usually read "branch if not equal to zero." The result of a

comparison is zero if both bytes are identical, because one is subtracted from the

other, so "branch if not equal" is an optional alternative.

BPL
Branch if the N flag is 0. PC:= PC + offset if N=0

Instruction

$10 (16 %0001 0000)

Addressing

BPL relative

Bytes

2

Cycles

2*

*Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

|N V — B D I Z C

Operation: BPL operates exactly like BMI, except that the condition is opposite. The
branch is taken to the new address given by program counter plus offset if N=0.
This means that if the result is positive or zero, the branch is taken.

Uses:

1. In testing bit 7 of a memory location. This code, for example waits until the accu
mulator holds a byte with bit 7 on. Such a location must be interrupt- or
hardware-controlled, not just RAM.

LOOP LDA TESTLOCN

BPL LOOP

2. Testing for the end of a loop. Where a counter is being decremented, and the
counter's value 0 is needed, this command can be useful. This simple loop prints
ten bytes to screen:

LDX #$09

LOOP LDA BASE,X

STA $0400,X

DEX

BPL LOOP

;X REGISTER WILL COUNT 9,8,7,... 1,0

;//BASE// IS THE STARTING ADDRESS OF THE 10 BYTES
;START OF SCREEN (64)

; DECREMENT X

; BRANCH WHEN POSITIVE OR ZERO
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Force break. S:= PCH, SP:= SP-1, S:= PCL, SP:= SP-1, S:= PSR, SP:= SP-1,

PCL:= $FE, PCH:= $FF

Instruction

$00 (0 %0000 0000)

Addressing

BRK implied

Bytes

1

Cycles

7

Flags:

N V — B

1

D I

1

Z C

Operation: BRK is a forced interrupt, which saves the current program counter and

status register values and jumps to a standard address. Note that the value saved for
the program counter points to the BRK byte plus two (like a branch) and that the

processor status register on the stack has flag B set to 1.
The IRQ service routine behaves like BRK. The break flag is a sort of designer's

patch so that BRK can be recognized as different from IRQ interrupts.

Uses:

1. BRK is mainly used with ML monitors. The ML stops when BRK is encountered,
and the vector points back to the monitor, typically printing the current values of
the program counter, flags' status register, A, X, Y, stack pointer, and possibly

other ML variables.
Whenever the 6510 encounters a BRK, it looks to locations $FFFE and $FFFF

for the address of the next instruction. In the 64's ROM, locations $FFFE and
$FFFF point to a routine beginning at $FF48. If the B flag is set, a jump is made
through a vector at location $0316, so the BRK handling routine can be modified
by changing the values in $0316 and $0317. Altering these locations to point to

the monitor is a function of initialization of the monitor; it isn't inherent in the

system that BRK behaves like that. BRK is valuable when developing ML

programs. ^T^

2. Monitors can be entered from BASIC if $0316-$0317 points to their start. POKE
790,0: POKE 791,96, for example, points this vector .to $6000, and SYS 13 (or a
SYS to any location containing a zero byte) enters a monitor there. Usually,
$0316-$0317 points to a ROM routine used by RUN/STOP-RESTORE which re
sets I/O and Kernal pointers. BRK is not widely used in ML that must interact di

rectly with BASIC.
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BVC
Branch if the internal overflow flag (V) is 0. PC:= PC + offset if V=0

Instruction

$50 (80 %0101 0000)

Addressing

BVC relative

Bytes

2

Cycles

2*

*Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

|N V - B D I Z c]

Operation: If V is clear, the byte following the opcode is added, as a twos com

plement number, to the program counter, set to point at the following instruction.

The effect is to jump to a new address. If V=l, the next instruction is processed and
the branch ignored.

Uses:

1. As a "branch always" instruction. For instance:

CLV

BVC LOAD

2. With signed arithmetic, to detect overflow from bit 6 into bit 7, giving a spurious

negative bit. This is rarely used since the sign of a number can be held elsewhere

so that ordinary arithmetic can be used without the complication of the V bit.

The following routine adds two numbers in twos complement form; the

numbers must therefore be in the range -128 to +127. CLC is necessary; other
wise, it may add 1 to the result. Overflow will occur if the total exceeds 127 or is
less than —128.

LDA ADD1

CLC

ADC ADD2

BVC OK

JMP OVERFL

3. Testing bit 6. BIT copies bit 6 of the specified location into the V flag of the
processor status register, so BVC or BVS can be used to test bit 6. For example,

the following routine waits until the hardware sets bit 6 of hardware location
PORT to 1.

F103

F106

BIT PORT

BVC $F103
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BVS
Branch if the internal overflow flag (V) is 1. PC:= PC + offset if V=l

Instruction

$70 (112 %0111 0000)

Addressing

BVS relative

Bytes

2

Cycles

2*

*Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

|N V - B D I Z C

Operation: This branch is identical to BVC except that the test logic to decide

whether the branch is taken is opposite.

CLC
Clear the carry flag. C:= 0

Instruction

$18 (24 %0001 1000)

Addressing

CLC implied

Bytes

. 1

Cycles

2

Flags:

N V — B D I Z c

0

Operation: The carry flag is set to 0. All other flags are unchanged.

Uses: The carry bit is automatically included in add and subtract commands (ADC

and SBC) so that accurate calculations require the flag to be in a known state. CLC is

the usual preliminary to additions:

CLC

LDA #$02

ADC #$02

JSR PRINT

After CLC, this routine adds 2 and 2 and prints the resulting byte 4. In multiple-

byte additions, C is cleared at the start, but is subsequently used to carry through the

overflows if they exist.
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CLD
Clear the decimal flag. D:= 0

Instruction

$D8 (216 %1101 1000)

Addressing

CLD implied

Bytes

1

Cycles

2

Flags:

N V — 6 D

0

I Z c

Operation: The decimal flag is set to 0; all other flags are unchanged.

Uses: Resets the mode for ADC and SBC so that hexadecimal arithmetic is per

formed, not binary coded decimal. Typically, SED precedes some decimal calculation,

with CLD following when this is finished.

Notes: BASIC uses no decimal mode calculations; when the machine is switched on,

CLD is executed and the flag is left off. ML monitors clear the flag on entry, too.

CLI
Clear the interrupt disable flag. I:= 0

Instruction

$58 (88 %0101 1000)

Addressing

CLI implied

Bytes

1

Cycles

2

Flags:

N y B D I

0

z c

Operation: The interrupt disable flag is set to 0. From now on, IRQ interrupts will

take place and be processed by the system.

Notes:

1. Interrupts through the NMI line (non-maskable interrupts) take place irrespective
of the I flag.

2. Typically, CLI is used after SEI plus changes to interrupt vectors. Often, CLI isn't

needed when used with BASIC, as a number of BASIC routines themselves use
CLI.
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CLV
Clear the internal overflow flag. V: = 0

Instruction

$B8 (184 %1011 1000)

Addressing

CLV implied

Bytes

1

Cycles

2

Flags:

N V —

0

B D I Z C

Operation: Sets V to 0.

Notes: CLV is used in "branch always" instructions, for example, CLV/BVC. Unlike

C, V isn't added to results, so clearing is not necessary before calculations.

CMP
Compare memory with the contents of the accumulator. PSR set by A—M

Instruction

$C1 (193 %1100 0001)

$C5 (197 %1100 0101)

$C9 (201 %1100 1001)

$CD (205 %1100 1101)

$D1 (209 %1101 0001)

$D5 (213 %1101 0101)

$D9 (217 %1101 1001)

$DD (221 %1101 1101)

Addressing

CMP (zero page,X)

CMP zero page

CMP # immediate

CMP absolute

CMP (zero page),Y

CMP zero page,X

CMP absolute,Y

CMP absolute,X

Bytes

2

2

2

3

2

2

3

3

Cycles

6

3

2

4

5*

4

4*

4*

*Add 1 if page boundary crossed.

Flags:

N

X

V — B D I Z

X

C

X

Operation: CMP affects three flags only, leaving registers and data intact. The accu
mulator is not changed. The byte at the address specified by the opcode is subtracted

from A, and the three flags N, Z, and C are set depending on the result. Thus, if the
accumulator holds the same value as the memory location, the result is zero and the

zero flag is set.

Within the chip, what happens is that the value in the accumulator is added to

the twos complement of the data. The result of this determines how the flags are set.
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FF22

FF25

FF27

FF29

FF2B

FF2D

JSR

CMP

BEQ

CMP

BEQ

CMP

$FFCF

#$20

$FF22

#$OD

$FF47

#$22

Uses:

1. With the zero flag, Z. This is the easiest flag to use with CMP. Z=0 after a CMP

means the two values were equal.

;INPUT A CHARACTER

;IS IT A SPACE?

;YES. INPUT AGAIN

;IS IT RETURN?

;YES. BRANCH ...

;..NO. IS IT QUOTES? ETC.

This is part of a ROM routine to search through BASIC lines from the keyboard

buffer for particular characters, such as spaces, RETURNS, and quotes, which re

quire special handling.

2. With the carry flag, C. If the value of the byte is less than A or equal to A, the

carry flag is set; that is, C=0 (tested with BCC) after a CMP means that A<M,

while C=l (tested with BCS) indicates that A^M. Here, "less than" is in the ab

solute sense, not the twos complement sense. Thus, 100 is less than 190, although

in twos complement notation, 190 (being negative) would count as the smaller

number of the two.

The following example shows how a range of values may be tested for and

processed. Starting with the lowest ranges, comparisons are carried out until the

correct range is found. Each comparison is followed by a branch to Bl, B2, etc.,

where processing is carried out for 0-$lF, $20-$3F, and so on.

LDY #$00

LDA (PTR),Y

CMP #$20

BCC Bl

CMP #$40

BCC B2

3. With the negative flag, N. This is the trickiest flag to use with CMP. The reason is

that twos complement numbers are assumed, and if you are working with these,

CMP operates as expected, subtracting the memory from the accumulator. If both

numbers are positive or both negative, the N flag is set as though absolute

subtraction were being used, and in these circumstances BMI/BPL can be used.

But if the two data items have different signs, the comparison process is com

plicated by the fact that the V bit may register internal overflow. Generally, use

the carry flag.
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CPX
Compare memory with the contents of the X register. PSR set by X—M

Instruction

$E0 (224 %1110 0000)

$E4 (228 %1110 0100)

$EC (236 %1110 1100)

Addressing

CPX # immediate

CPX zero page

CPX absolute

Bytes

2

2

3

Cycles

2

3

4

Flag*

N V -

X

B D I Z

X

C

X

Operation: CPX affects three flags only, leaving the registers and data intact. The

byte referenced by the opcode is subtracted from the contents of the X register, and

the flags N, Z, and C are set depending on the result. The value in X is not affected.

Within the chip, X is added to the twos complement of the data, and the result

determines how the flags are set.

Uses:

1. With the zero flag, Z. This flag tests equality.

LDX #$00

LOOP LDA $0278,X

STA $0277,X

INX

CPX $C6

BNE LOOP

The loop in this example is part of the keyboard buffer processing, showing

how the contents of the buffer are shifted one character at a time. Thus, $C6 is a

zero page location, updated whenever a new character is keyed in, which holds

the current number of characters in the buffer. The comparison provides a test to

end the loop.

2. With the carry flag, C. This flag tests for Xs>M and X<M.

LDX $FE

CPX #$27

BCS EXIT; IF X>39 (#$27)

The test routine is part of a graphics plot program; location $FE holds the

horizontal coordinate, which is to be in the range 0-39 to fit the screen. The

comparison causes exit, without plotting, when X holds 40-255.

3. With the negative flag, N. When X and the data have the same sign (both are 0-

127 or 128-255), then BMI has the same effect as BCC, and vibe versa. When the
signs are opposite, the process is complicated by the possibility of overflow into

bit 7. For example, 78 compared with 225 sets N=0, but 127 compared with 255

sets N=l. (Note that 225= —31 as a twos complement number; thus,

78+31 = 109 with N=0, but 127+31 = 158 with N=l.)
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CPY
Compare memory with the contents of the Y register. PSR set by Y—M.

Instruction

$C0 (192 %1100 0000)

$C4 (196 %1100 0100)

$CC (204 %1100 1100)

Flags:

N V — B D I Z C

X XX

Addressing

CPY # immediate

CPY zero page

CPY absolute

Bytes

2

2

3

Cycles

2

3

4

Operation: CPY affects three flags only, leaving the registers and data intact. The

byte referenced by the opcode is subtracted from Y, and the flags N, Z, and C are set

depending on the result. Apart from the use of Y in place of X, this opcode is identi

cal in its effects to CPX.

Notes: The major difference in addressing between X and Y is the fact that post-

indexing of indirect addresses is available only with Y. This type of construction, in

which a set of consecutive bytes (perhaps a string in RAM or an error message) is

processed up to some known length, tends to use the Y register.

LDY #$00

LOOP LDA (PTR),Y

JSR OUTPUT

INY

CPY LENGTH

BNE LOOP

DEC
Decrement contents of memory location. M:= M—1

Instruction

$C6

$CE

$D6

$DE

Flags:

N V

X

(198 %1100

(206 %1100

(214 %1101

(222 %1101

— B D I

0110)

1110)

0110)

1110)

z c

X

Addressing

DEC zero page

DEC absolute

DEC zero page,X

DEC absolute,X

Bytes

2

3

2

3

Cycles

5

6

6

7
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Operation: The byte referenced by the addressing mode is decremented by 1,

conditioning the N flag and the Z flag. If the byte contains a value from $81 to $00

after DEC, the N flag will be set. The Z flag will be 0 except for the one case where

the location held $01 before the decrement. DEC is performed within the chip itself

by adding $FF to the contents of the specified location, setting N and Z according to
the result.

The carry bit is unchanged regardless of the outcome of DEC.

Uses:

1. To decrement a double-byte value.

LDA $93

BNE +2

DEC $94

DEC $93

This short routine shows an efficient method to decrement a zero page

pointer or any other double-byte value. It uses the fact that the high byte must be

decremented only if the low byte is exactly zero.

2. Implementing other counters. Counters other than the X register and Y register

can easily be implemented with this command (or INC). Such counters must be in

RAM. DEC cannot be used to decrement the contents of the accumulator. This

simple delay loop which decrements locations $FB and $FC shows an example:

LOOP

A zero page decrement takes five clock cycles to carry out; a successful

branch takes three (assuming a page boundary isn't crossed). The inside loop

therefore takes 8*255 cycles to complete, and the whole loop requires a little more

than 8*255*255 cycles. Divide this by a million to get the actual time in seconds,

which is about half a second.

DEX
Decrement the contents of the X register. X:= X—1

AND

STA

STA

DEC

BNE

DEC

BNE

#$00

$FB

$FC

$FB

LOOP

$FC

LOOP

;FOR A CHANGE

;SET THESE BOTH

;TO0

;255 LOOPS...

;... BY 255

Instruction

$CA (202 %1100 1010)

Addressing

DEX implied

Bytes

1

Cycles

2

Flags:

N V —

X

B D I Z

X

C
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Operation: The value in the X register is decremented by 1, setting the N flag if the

result has bit 7 set, and setting the Z flag if the result is 0. As with DEC, the carry

bit is unaltered.

Uses: To count X in a loop. DEX is almost exclusively used to count X in a loop.

Since its maximum range, 255 bytes, is often insufficient, several loops may be nec

essary. This routine moves 28 bytes from ROM to RAM, including the CHRGET

routine.

LDX #$1C

NEXT LDA $E3A2,X

STA $73,X

DEX

BNE NEXT

DEY
Decrement the contents of the Y register. Y:= Y—1

Instruction

$88 (136 %1000 1000)

Addressing

DEY implied

Bytes

1

Cycles

2

Flags:

N V —

X

B D I Z

X

C

Operation: The value in the Y register is decremented by 1, setting the N flag if the

result has bit 7 set (that is, is greater than 127), and setting the Z flag if the result is

0. As with DEC, the carry bit is unaltered.

Uses: Counting within loops. DEY, like DEX, is almost exclusively used to count

within loops. There are more opcodes which have indexing by X than by Y, so X is

more popular for this purpose. The example uses Y to count from 2 to 0.

LDY #$02

LDA (PTR),Y ;LOAD SECOND BYTE

DEY

ORA (PTR),Y ;ORA WITH FIRST BYTE

DEY

ORA (PTR),Y ;ORA WITH ZEROTH BYTE

BNE CONT ;ENDIFZERO

This inclusively ORs together three adjacent bytes; if the result is 0, each of the

three must have been a zero.

306



Vocabulary of the 6510 Chip

EOR
The byte in the accumulator is Exclusive ORed bitwise with the contents of memory.

A:= AEORM

Instruction

$41 (65 %0100 0001)

$45 (69 %0100 0101)

$49 (73 %0100 1001)

$4D (77 %0100 1101)

$51 (81 %0101 0001)

$55 (85 %0101 0101)

$59 (89 %0101 1001)

$5D (93 %0101 1101)

Addressing

EOR (zero page,X)

EOR zero page

EOR # immediate

EOR absolute

EOR (zero page),Y

EOR zero page,X

EOR absolute,Y

EOR absolute,X

Bytes

2

2

2

3

2

2

3

3

Cycles

6

3

2

4

5*

4

4*

4*

*Add 1 if page boundary crossed.

Flags:

N

X

V — B D I Z

X

C

Operation: An Exclusive OR (see ORA for a description of an inclusive OR) is a logi

cal operation in which bits are compared, and EOR is considered to be true if A or

B—but not both or neither—is true. For example, consider $AB EOR $5R The byte

$AB is %1010 1011, and $5F is %0101 1111. So the EOR of these two is %1111

0100, or $F4. You get this result by a process of bit comparisons, where bit 7 is 0

EOR 1 = 1, and so on.

Uses:

1. Reversing a bit. EORing a bit with 0 leaves the bit unaffected; EORing a bit with 1

flips the bit.

LDA LOCN

EOR #$02 ;FLIPSBIT1

STA LOCN

The example shows how a single bit can be reversed. To reverse an entire

byte, use EOR #$FF; to reverse bit 7, use EOR #$80.

2. In hash totals and encryption algorithms. Hash totals and encryption algorithms

often use EOR. For example, if you have a message you wish to conceal, you can

EOR each byte with a section of ROM or with bytes generated by some repeatable

process. The message is recoverable with the same EOR sequence.
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INC
Increment contents of memory location. M:= M+l

Instruction

$E6

$EE

$F6

$FE

Flags:

N V

X

(230 %1110

(238 %1110

(246 %1111

(254 %1111

— B D I

0110)

1110)

0110)

1110)

z c

X

Addressing

INC zero page

INC absolute

INC zero page,X

INC absolute,X

Bytes

2

3

2

3

Cycles

5

6

6

7

Operation: The byte referenced by the addressing mode is incremented by 1, pos

sibly affecting the N flag and the Z flag. The N flag will be 1 if the high bit of the
byte is 1 after the INC, and otherwise 0. The Z flag will be 1 only if the location

held $FF before the INC. The carry bit is unchanged.

Uses:

1. Incrementing a double-byte value. This short routine shows an efficient method to

increment a zero page pointer or any other double-byte value. The high byte is in

cremented only when the low byte changes from $FF to $00.

INC $FB

BNE CONT

INC $FC

CONT ...

2. Implementing counters in RAM. INC may be used to implement counters in RAM

where the X and Y registers are insufficient. Suppose we use the IRQ interrupt

servicing to change a tune regularly.

IRQ INC $FE

BEQ +3

JMP IRQCONT

LDA #20

STA $FE

Where IRQCONT is the interrupts usual routine, this allows some periodic rou

tine to be performed. Here, the zero page location $FE is used to count from $20

up to $FF and $00, so the processing occurs every 255—32=223 jiffies—about

every 3.7 seconds.

Notes:

1. The accumulator can't be incremented with INC. Either CLC/ADC #$01 or SEC/

ADC #$00 must be used; TAX/ INX/ TXA or some other variation may also be

used.

2. Remember that INC doesn't load the contents of the location to be incremented

into any of the registers. If the incremented value is wanted in A, X, or Y, then

INC $C6 must be followed by LDA $C6, LDX $C6, or LDY $C6.
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INX
Increment the contents of the X register. X:= X+l

Instruction

$E8 (232 %1110 1000)

Addressing

INX implied

Bytes

1

Cycles

2

Flags:

N V —

X

B D I Z

X

C

Operation: The byte in the X register is incremented by 1, setting the N flag if the

result has bit 7 set, and the Z flag if the result is 0. These flags may both be 0, or

one of them may be 1; it is impossible for both to be set to 1 by this command. The

carry bit is unchanged.

Uses: As a loop variable. INX is common as a loop variable. It is also often used to

set miscellaneous values which happen to be near each other, for example:

LDX #$00

STX $033A

STX $033C

INX

STX $10

Stack-pointer processing tends to be connected with the use of the X register,

because TXS and TSX are the only ways of accessing SP.

INY
Increment the contents of the Y register. Y: = Y+l

Instruction

$C8 (200 %1100 1000)

Addressing

INY implied

Bytes

1

Cycles

2

Flags:

N V —

X

B D I Z

X

C

Operation: The byte in the Y register is incremented by 1, setting N=l if the result

has bit 7=1 and setting Z=l if the result is 0. A zero result is obtained by in

crementing $FF. Note that the carry bit is unchanged in all cases.

Uses: To control loops. Like DEX, DEY, and INX, this command is often used to con

trol loops. It is often followed by a comparison, CPY, to check whether its exit value

has been reached.
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JMP
Jump to a new location anywhere in memory. PC:= M

Instruction

$4C ( 76 %0100 1100)

$6C (108 %0110 1100)

Flags:

N V — B D I Z C

Addressing

JMP absolute

JMP (absolute)

Bytes

COCO
Cycles

3

5

Operation: JMP is the 6510 equivalent of a GOTO, transferring control to some

other part of the program. An absolute JMP, opcode $4C, transfers the next byte to

the low byte of PC, and the one after to highest byte of PC, causing an uncondi

tional jump.

The indirect absolute jump, opcode $6C, is more elaborate and takes longer.

PCL and PCH are loaded from the contents of two consecutive locations beginning

at the address specified by the two bytes following the JMP opcode. This is the only

absolute indirect command available on the 6510.

Uses: JMP, unlike JSR, keeps no record of its present position; control is just shifted

to another part of a program. Branch instructions are preferable to jumps if ML is re

quired to work even when moved around in memory, except for JMPs to fixed loca

tions like ROM.

CMP #$2C ; IS IT COMMA?

BEQ +3

JMP ERROR

The example is part of a subroutine which checks for a comma in a BASIC line; if

the comma has been omitted, an error message is printed.

Notes:

1. Indirect addressing. This is a three-byte command that takes the form JMP ($0072)

or JMP ($7FF0). A concrete example is the IRQ vector. When a hardware interrupt

occurs, an indirect jump to ($0314) takes place. A look at this region of RAM with

a monitor reveals something like this:

0314 31 EA 97 FF 47 FE

So JMP ($0314) is equivalent to JMP $EA31 in this instance. Pairs of bytes can be

collected together to form an indirect jump table. Note that this instruction has a

bug; JMP ($02FF) takes its new address from $02FF and $0200, not $0300.

2. A subroutine call followed by a return is exactly identical to a jump, except that

the stack use is less and the timing is shorter. Replacing JSR CHECK/ RTS by

JMP CHECK is a common trick.
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JSR
Jump to a new memory location, saving the return address. S:= PC+2 H, SP:

SP-1, S:= PC+2 L, SP:= SP-1, PC:= M

Instruction

$20 (32 %0010 0000)

Addressing

JSR absolute

Bytes

3

Cycles

6

Flags:

N V — B D I Z C

Operation: JSR is the 6510 equivalent of a GOSUB, transferring control to another

part of the program until an RTS is found, which has an effect like RETURN. Like

BRK, this instruction saves PC+2 on the stack, which points to the last byte of the

JSR command. RTS therefore has to increment the stored value in order to execute a

correct return. Note that no flags are changed by JSR. RTS also leaves flags un

altered, making JSR $FFC0/ BCC, for example, feasible.

Uses:

1. Breaking programs into subroutines. JSR allows programs to be separated into

subroutines, which is a very valuable feature. The Kernal commands, all of which

are called as subroutines by JSR, illustrate the convenience which subroutines

bring to programming. Neither JSR nor RTS sets flags, so LDA #$0D/ JSR $FFD2

(Kernal output routine) successfully transfers the accumulator contents—in this

case, a RETURN character—since the carry flag status is transferred back after

RTS.

LOOP JSR $FFE4 ;GET RETURNS A=0

BEQ LOOP ;IF NO KEY IS PRESSED

STA BUFFER ;WE HAVE A KEY: PROCESS IT

The example uses a Kernal subroutine which gets a character, usually from

the keyboard. The subroutine is a self-contained unit. Chapter 8 has examples in

which several JSR calls follow each other, performing a series of operations be

tween them.

2. Other applications. See RTS for the PLA/ PLA construction which pops one sub

routine return address from the stack. RTS also explains the special construction in

which an address (minus 1) is pushed onto the stack, generating a jump when

RTS occurs. Finally, see JMP for a note on the way in which JSR/RTS may be re

placed by JMP.
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LDA
Load the accumulator with a byte from memory. A:= M

Instruction

$A1 (161 %1010 0001)

$A5 (165 %1010 0101)

$A9 (169 %1010 1001)

$AD (173 %1010 1101)

$B1 (177 %1011 0001)

$B5 (181 %1011 0101)

$B9 (185 %1011 1001)

$BD (189 %1011 1101)

Addressing

LDA (zero page,X)

LDA zero page

LDA # immediate

LDA absolute

LDA (zero page),Y

LDA zero page,X

LDA absolute,Y

LDA absolute,X

Bytes

2

2

2

3

2

3

3

Cycles

6

3

2

4

5*

4

4*

4*

*Add 1 if page boundary crossed.

Flags:

N

X

V — B D I Z

X

C

Operation: Loads the accumulator with the contents of the specified memory loca

tion. The zero flag, Z, is set to 1 if the accumulator now holds 0 (all bits loaded are

0's). Bit 7 is copied into the N (negative) flag. No other flags are altered.

Uses:

1. General transfer of data from one part of memory to another. Such transfer needs

a temporary intermediate-storage location, which A (or X or Y) can be. As an ex

ample, this program transfers 256 consecutive bytes of data beginning at $7000 to
an area beginning at $8000. The accumulator is alternately loaded with data and

written to memory.

LDX #$00

LDA $7000,X

STA $8000,X

DEX

BNE -9

2. Binary operations. Some binary operations use the accumulator. ADC, SBC, and

CMP all require A to be loaded before adding, subtracting, or comparing. The

addition (or whatever) can't be made directly between two RAM locations, so

LDA is essential.

LDA $C5

CMP #$40

BNE KEY

; WHICH KEY?

; PERHAPS NONE?

: BRANCH IF KEY

3. Setting chip registers. Sometimes a chip register is set by reading from it; this ex
plains some LDA commands in initialization routines with no apparent purpose.

312



Vocabulary of the 6510 Chip

LDX
Load the X register with a byte from memory. X: = M

Instruction

$A2 (162 %1010 0001)

$A6 (166 %1010 0101)

$AE (174 %1010 1110)

$B6 (182 %1011 0101)

$BE (190 %1011 1110)

Addressing

LDX # immediate

LDX zero page

LDX absolute

LDX zero page,Y

LDX absolute,Y

Bytes

2

2

3

2

3

Cycles

2

3

4

4

4*

*Add 1 if page boundary crossed.

Flags:

N

X

V — B D I Z

X

C

Operation: Loads X from memory and sets Z=l if X holds 0. Bit 7 from the memory

is also copied into N. No other flags are altered.

Uses:

1. Transfer of data and holding temporary values. These applications closely re

semble LDA.

2. Offset with indexed addressing. Register X has two characteristics which distin

guish it from A: It is in direct communication with the stack pointer, and it can be

used as an offset with indexed addressing. There are other differences, too.

Constructions like LDX #$FF/ TXS and LDX #$00/.../ DEX/ BNE are common.

LDY
Load the Y register with a byte from memory. Y:= M

Instruction

$A0 (160 %1010 0000)

$A4 (164 %1010 0100)

$AC (172 %1010 1100)

$B4 (180 %1011 0100)

$BC (188 %1011 1100)

Addressing

LDY # immediate

LDY zero page

LDY absolute

LDY zero page,X

LDY absolute,X

Bytes

2

2

3

2

3

Cycles

2

3

4

4

4*

*Add 1 if page boundary crossed.

Flags:

N

X

V — B D I Z

X

C

Operation: Loads Y from memory and sets Z=l if Y now holds 0. Bit 7 from mem

ory is copied into N. No other flags are altered.
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Uses:

1. Transfer of data and storage of temporary values.

2. Loops. Since Y can be used as an index and can be incremented or decremented

easily, it is often used in loops. However, X generally has more combinations of

addressing modes in which it is used as an index. Therefore, X is usually reserved

for indexing, while A and Y between them process other parameters. When in

direct addressing is used, this preference is reversed, since LDA (addr,X) is gen

erally less useful than LDA (addr),Y.

LOOP

LDY

DEX

BEQ

LDA

JSR

CMP

BEQ

BNE

#$00 ;X HOLDS LENGTH

DECREMENT IT

;EXIT WHEN 0

;LOAD ACCUMULATOR

;PRINT SINGLE CHR

;EXIT IF

; RETURN

;CONTINUE LOOP

EXIT

(PTR),Y

PRINT

#$0D

EXIT

Loqp

This admittedly unexciting example shows how A, X, and Y have distinct

roles. The ROM routine to print the character is assumed to return the original X

and Y values, as in fact it does.

LSR
Shift memory or accumulator right one bit.

6 5 4 3210

Instruction

$46 (70 %0100 0110)

$4A (74 %0100 1010)

$4E (78 %0100 1110)

$56 (86 %0101 0110)

$5E (94 %0101 1110)

Addressing

LSR zero page

LSR accumulator

LSR absolute

LSR zero page,X

LSR absolute,X

Bytes

2

1

3

2

3

Cycles

5

2

6

6
7

Flags:

N V -

0

B D I Z

X

C

X

Operation: Moves the contents of a memory location or the accumulator right by

one bit position, putting 0 into bit 7 and the N (negative) flag and moving the

rightmost bit, bit 0, into the carry flag. The Z flag is set to 1 if the result is 0, and

cleared if not. Therefore, Z can become 1 only if the location held either $00 or $01

before LSR.
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Uses:

1. Similar to ASL. This might well have been called arithmetic shift right. A byte is

halved by this instruction (unless D is set), and its remainder is moved into the

carry flag. With ASL, ROL, ROR, ADC, and SBC, this command is often used in

ML calculations.

2. Other applications. LSR/ LSR/ LSR/ LSR moves a high nybble into a low nybble;

LSR/ BCC tests bit 0 and branches if it was not set to 1. In addition, LSR turns off

bit 7, giving an easy way to convert a negative number into its positive equivalent,

when the sign byte is stored apart from the number's absolute value.

NOP
No operation.

Instruction

$EA (234 %1110 1010)

Addressing

NOP implied

Bytes

1

Cycles

2

Flags:

N V — B D I Z C

Operation: Does nothing, except to increment the program counter and continue

with the next opcode.

Uses:

1. Filling unused portions of program. This is useful with hand assembly and other

methods where calculation of branch addresses cannot be done easily.

2. When writing machine code. A large block of NOPs (or an occasional sprinkling

of them) can simplify the task of editing the code and inserting corrections. NOP

can also be used as part of a timing loop.

ORA
Logical inclusive OR of memory with the accumulator A:= A OR M

Instruction

$01

$05

$09

$0D

$11

$15

$19

$1D

( 1 %0000

( 5 %0000

( 9 %0000

(13 %0000

(17 %0001

(21 %0001

(25 %0001

(29 %0001

0001)

0101)

1001)

1101)

0001)

0101)

1001)

1101)

Addressing

ORA (zero page,X)

ORA zero page

ORA # immediate

ORA absolute

ORA (zero page),Y

ORA zero page,X

ORA absolute,Y

ORA absolute,X

Bytes

2

2

2

3

2

2

3

3

Cycles

6

3

2

4

5

4

4*

4*

*Add 1 if page boundary crossed.

315



Vocabulary of the 6510 Chip

Flags:

N V —

X

B D I Z

X

C

Operation: Performs the inclusive OR of the eight bits currently in the accumulator

with the eight bits referenced by the opcode. The result is stored in A. If either bit is

1, the resulting bit is set to 1, so that, for example, %0011 0101 ORA %0000 1111 is

%0011 1111. The negative flag, N, is set or cleared depending on bit 7 of the result.

The Z (zero) flag is set if the result is zero, and clear otherwise.

Uses:

1. Setting a bit or bits. This is the opposite of masking out bits, as described under

AND.

LDA #ERROR

ORA $90

STA $90

The example shows the method by which an error code of 1, 2, 4, or whatever,

held in A, is flagged into the 64's BASIC I/O status byte, ST, stored in location

$90, without losing the value currently in that location. For example, if ERROR is

4 and the current contents of ST is 64, then ORA $90 is equivalent to $04 OR

$40, which gives $44. If ERROR is 0, then ORA $90 leaves the current value from

location $90 unchanged. Note the necessity for STA $90; without it, only A holds

the correct value of ST.

2. Other uses. These include the testing of several bytes for conditions which are in

tended to be true for each of them—for instance, that three consecutive bytes are

all zero or that several bytes all have bit 7 equal to zero. LDY #00/ LDA (PTR),Y/

INY/ ORA (PTR),Y/ INY/ ORA (PTR),Y/ BNE ... branches if one or more bytes

contains a nonzero value.

PHA
Push the accumulator's contents onto the stack. S:= A, SP:= SP—1

Instruction

$48 (72 %0100 1000)

Addressing

PHA implied

Bytes

1

Cycles

3

Flags:

|N V — B PI Z C|

Operation: The value in the accumulator is placed into the stack at the position cur

rently pointed to by the stack pointer; the stack pointer is then decremented. Figure

10-1 illustrates the position before and after the push:

316



Vocabulary of the 6510 Chip

Figure 10-1. Effect of PHA

$0100 $01FF

h
SP

1 |t|A

STACK IN USE

(STACK POINTER)

STACK IN USE

1

1
SP (STACK POINTER)

Uses: This instruction is used for temporary storage of bytes. It may be used to hold

intermediate values of calculations produced during the parsing of numeric ex

pressions, to temporarily store values for later recovery while A is used for other

processing, for storage when swapping bytes, and for storage of A, X, and Y registers

at the start of a subroutine.

The example shows a printout routine which is designed to end when the high

bit of a letter in the table is 1. The output requires the high bit to be set to 0; but the

original value is recoverable from the stack and may be used in a test for the

terminator at the end of message.

LOOP JSR GETC ;GET NEXT CHARACTER

PHA ;STORE ON STACK

AND #$7F ;REMOVE BIT 7

JSR PRINT ;OUTPUT A CHARACTER

PLA ;RECOVER WITH BIT 7 INTACT

BPL LOOP ;CONTINUE IF BIT 7=0

PHP
Push the processor status register's contents onto the the stack. S:= PSR, SP:

SP-1

Instruction

$08 (8 %0000 1000)

Addressing

PHP implied

Bytes

1

Cycles

3

Flags:

V — B D I Z c

Operation: The operation is similar to PHA, except that the processor status register

is put in the stack. The PSR is unchanged by the push.

Uses: Stores the entire set of flags, usually either to be recovered later and displayed

by a monitor program or for recovery followed by a branch. PHP/ PLA leaves the

stack in the condition it was found; it also loads A with the flag register, SR, so the

flags' states can be stored for use later.
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PLA
Pull the stack into the accumulator. SP:= SP+1, A:= S

Instruction

$68 (104 %0110 1000)

Addressing

PLA implied

Bytes

1

Cycles

4

Flags:

N V -

X

B D I Z

X

C

Operation: The stack pointer is incremented, then the RAM address to which it

points is read and loaded into A, setting the N and Z flags accordingly. The effect is

similar to LDA. Figure 10-2 illustrates the position before and after the pull:

Figure 10-2. Effect of PLA

$0100 $01FF

t | A I STACK IN USE [

SP (STACK POINTER)

1 t | STACK IN USE

SP (STACK POINTER)

Uses:

1. PLA is the converse of PHA. It retrieves values put on the stack by PHA, in the

reverse order. PLA/ PHA leaves the stack unchanged, but leaves A holding the

contents of the current top of the stack. Flags N and Z are set as though by LDA.

2. To remove the top two bytes of the stack. This is a frequent use of PLA; it is

equivalent to adding 2 to the stack pointer. This is done to "pop" a return address

from the stack; in this way, the next RTS which is encountered will not return to

the previous JSR, but to the one before it (assuming that the stack has not been

added to since the JSR).

PLA ;DISCARD ADDRESS STORED

PLA ;BYJSR

RTS ;RETURN TO EARLIER SUBROUTINE CALL

PLP
Pull the stack into the processor status register. SP:= SP+1, PSR:= S

Instruction

$28 (40 %0010 1000)

Addressing

PLP implied

Bytes

1

Cycles

4
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Flags:

N V -

X X

B

X

D

X

I

X

Z

X

C

X

Operation: The operation of PLP is similar to that of PLA, except that the processor

status register, not the accumulator, is loaded from the stack.

Uses: Recovers previously stored flags with which to test or branch. See the notes on

PHP. This can also be used to experiment with the flags—to set V, for example.

ROL
Rotate memory or accumulator and the carry flag left one bit.

76543210

Instruction

$26 (38 %0010 0110)

$2A (42 %0010 1010)

$2E (46 %0010 1110)

$36 (54 %0011 0110)

$3E (62 %0011 1110)

Addressing

ROL zero page

ROL accumulator

ROL absolute

ROL zero page,X

ROL absolute,X

Bytes

2

1

3

2

3

Cycles

5

2

6

6

7

Flags:

N V —

X

B D I Z

X

C

X

Operation: Nine bits, consisting of the contents of the memory location referenced

by the instruction (or of the accumulator) and the carry bit, are rotated as the di

agram shows. In the process, C is changed to what was bit 7, bit 0 takes on the pre

vious value of C, and the negative flag becomes the previous bit 6. In addition, Z is

set or cleared, depending on the new memory contents.

Uses:

1. Doubles the contents of the byte that it references. In this way, ROL operates like

ASL, but in addition the carry bit may be used to propagate the overflow from

such a doubling. Multiplication and division routines take advantage of this prop

erty where a chain of consecutive bytes has to be moved one bit leftward. ROR is

used where the direction of movement is rightward.

ASL $4000/ ROL $4001/ ROL $4002 moves the entire 24 bits of

$4000-$4002 over by one bit, introducing 0 into the rightmost bit. If there is a

carry, the carry flag will be 1.

2. Like ASL, ROL may be used before testing N, Z, or C, especially N.

ROL A ;ROTATE 1 BIT LEFTWARD

BMI BRANCH ;BRANCHES IF BIT 6 WAS ON
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ROR
Rotate memory or accumulator and the carry flag right one bit.

76543210
n

Instruction

$66 (102 %0110 0110)

$6A (106 %0110 1010)

$6E (110 %0110 1110)

$76 (118 %0111 0110)

$7E (126 %0111 1110)

Addressing

ROR zero page

ROR accumulator

ROR absolute

ROR zero page,X

ROR absolute,X

Bytes

2

1

3

2

3

Cycles

5

2

6

6

7

Flags:

N V —

X

B D I Z

X

C

X

Operation: Nine bits, consisting of the contents of memory referenced by the

instruction and the carry bit, are rotated as the diagram shows. C becomes what was

bit 0, bit 7 and the N flag take on the previous value of C, and Z is set or cleared,

depending on the byte's current contents. For applications, see ROL.

RTI
Return from interrupt. SP:= SP+1, PSR:= S, SP:= SP+1, PCL:= S, SP:= SP+1,

PCH:= S

Instruction

$40 (64 %0100 0000)

Addressing

RTI implied

Bytes

1

Cycles

6

Flags:

N V -

X X

B

X

D

X

I

X

Z

X

C

X

Operation: RTI takes three bytes from the stack, deposited there by the processor it

self when the hardware triggered the interrupt. The processor status flags are re

covered as they were when the interrupt occurred, and the program counter is

restored so that the program resumes operation at the byte at which it was inter

rupted. Note that the contents of A, X, and Y are not saved or recovered automati

cally in this way, but must be saved by the interrupt processing and restored

immediately before RTI. If you follow the vector stored in ROM at $FFFE-$FFFF, you
will see how this works.
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Uses:

1. To resume after an interrupt. The techniques presented in Chapter 8 use the

interrupt-processing routine in ROM, which is the simplest approach; it's not nec

essary even to understand RTI. The routines invariably end PLA/ TAY/ PLA/

TAX/ PLA/ RTI because the contents of A, X, and Y are pushed on the stack in

A, X, Y order by CBM ROMs when interrupt processing begins.

2. To execute a jump. It is possible, as with RTS, to exploit the automatic nature of

this command to execute a jump by pushing three bytes onto the stack, imitating

an interrupt, then using RTI to pop the addresses and processor status. By

simulating the stack contents left by an interrupt, the following routine jumps to

256*HI + LO with its processor flags equal to whatever was pushed on the stack

as PSR.

LDA HI

PHA

LDA LO

PHA

LDA PSR

PHA

RTI

RTS
Return from subroutine. SP:= SP+1, PCL:= S, SP:= SP+1, PCH:= S, PC:

PC+1

Instruction

$60 (96 %0110 0000)

Addressing

RTS implied

Bytes

1

Cycles

6

Flags:

|N y — b D I Z c

Operation: RTS takes two bytes from the stack, increments the result, and jumps to

the address found by putting the calculated value into the program counter. It is

similar to RTI but does not change the processor flags, since an important feature of

subroutines is that, on return, flags should be usable. Also, unlike RTI in which the
address saved is the address to return to, RTS must increment the address it fetches

from the stack, which points to the second byte after a JSR.

Uses:

1. Return after a subroutine. This is straightforward; a batch of ML to be callable by
JSR is simply ended or exited from with RTS. This also applies to ML routines

callable from BASIC with SYS calls; in this case the return address to the loop
which executes BASIC is put on the stack first by the system.

2. As a form of jump. RTS is used as a form of jump which takes up no RAM space
and can be loaded from a table. For example, the following routine jumps to the

address $HILO+1, so put the desired address —1 on the stack.

321



Vocabulary of the 6510 Chip

LDA #$HI

PHA

LDA #$LO

PHA

RTS

Notes: See PLA for the technique of discarding (popping) return addresses. JSR

SUB/ RTS is identical in effect to JMP SUB, since SUB must end with an RTS. This

point can puzzle programmers.

SBC
Subtract memory with borrow from accumulator. A:= A—M—(1 —C)

Instruction

$E1 (225 %1110 0001)

$E5 (229 %1110 0101)

$E9 (233 %1110 1001)

$ED (237 %1110 1101)

$F1 (241 %1111 0001)

$F5 (245 %1111 0101)

$F9 (249 %1111 1001)

$FD (253 %1111 1101)

Addressing

SBC (zero page,X)

SBC zero page

SBC # immediate

SBC absolute

SBC (zero page),Y

SBC zero page,X

SBC absolute,Y

SBC absolute,X

Bytes

2

2

2

3

2

2

3

3

Cycles

6

3

2

4

5*

4

4*

4*

•Add 1 if page boundary crossed.

Flags:

N

X

V -

X

B D I Z

X

C

X

Operation: It is usual to set the carry bit before this operation or to precede it by an

operation which is known to leave the carry bit set. Then SBC appears to subtract

from the accumulator the data referenced by the addressing mode. If the carry flag is

still set, this indicates that the result did not borrow (that is, that the accumulator's

value is greater than or equal to the data). When C is clear, the data exceeded the

accumulator's contents; C shows that a borrow is needed. Within the chip, A is

added to the twos complement of the data and to the complement of C; this con
ditions the N, V, Z, and C flags.

Uses:

1. Single-byte subtraction. The following example is a detail from PRINT. When

processing the comma in a PRINT statement, the cursor is moved to position 0,

10, 20, etc. Suppose the cursor is at 17 horizontally; subtract 10's until the carry

flag is clear, when A will hold —3. The twos complement is 3, so three spaces or
cursor-rights take you to the correct position on the screen. Note that ADC #$01

adds 1 only; the carry flag is known to be 0 by that stage.
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LDA HORIZ ;LOAD CURRENT CURSOR POSN

SEC

LOOP SBC #$0A

BCS LOOP

EOR #$FF

ADC #$01

;CARRY FLAG SET DURING LOOP

;SUBTRACT 10 UNTIL CARRY...

;...IS CLEAR (A IS NEG)

;FLIP BITS AND ADD 1 TO

;CONVERT TO POSITIVE.

Double-byte subtraction. The point about subtracting one 16-bit number from an

other is that the borrow is performed automatically by SBC. The C flag is first set

to 1; then the low byte is subtracted; then the high byte is subtracted, with borrow

if the low bytes make this necessary.

In the following example, $026A is subtracted from the contents of addresses

(or data) LO and HI. The result is replaced in LO and HI. Note that SEC is per

formed only once. In this way, borrowing is performed properly. For example,

suppose the address from which $026A is to be subtracted holds $1234. When

$6A is subtracted from $34, the carry flag is cleared, so that $02 and 1 is sub

tracted from the high byte $12.

SEC

LDA LO

SBC #$6A

STA LO

LDA HI

SBC #$02

STA HI

SEC
Set the carry flag to 1. C:

Instruction

$38 (56 %0011 1000)

= 1

Addressing

SEC implied

Bytes

1

Cycles

2

Flags:

N V — B D I Z c

1

Operation: Sets the carry flag. This is the opposite of CLC, which clears it.

Uses: Used whenever the carry flag has to be put into a known state; usually SEC is
performed before subtraction (SBQ and CLC before addition (ADC) since the nu
meric values used are the same as in ordinary arithmetic. Some Kernal routines re

quire C to be cleared or set, giving different effects accordingly. SEC/BCS is

sometimes used as a "branch always" command.
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SED
Set the decimal mode flag to 1. D:= 1

Instruction

$F8 (248 %1111 1000)

Addressing

SED implied

Bytes

1

Cycles

2

Flags:

N V — B D

1

I Z c

Operation: Sets the decimal flag. This is the opposite of CLD, which clears it.

Uses: Sets the mode to BCD (binary coded decimal) arithmetic, in which each nybble

holds a decimal numeral. For example, ten is held as 10 and ninety as 90. Two thou

sand four hundred fifteen is 2415 in two bytes. ADC and SBC are designed to op

erate in this mode as well as in binary, but the flags no longer have the same

meaning, except C. The result is not much different from arithmetic using individual

bytes for each digit 0-9, but it takes up only half the space and is faster.

SEI
Set the interrupt disable flag to 1. I:= 1

Instruction

$78 (120 %0111 1000)

Addressing

SEI implied

Bytes

1

Cycles

2

Flags:

N V — B D I

1

Z c

Operation: Sets the interrupt disable flag. This is the opposite of CLI, which clears it.

Uses: When this flag has been set, no interrupts are processed by the chip, except
non-maskable interrupts (which have higher priority), BRK, and RESET. IRQ inter

rupts are processed by a routine vectored through locations $FFFE-$FFFF, like BRK.
If the vector in the very top locations of ROM is followed, the interrupt servicing
routines can be found. In the 64, these are not all in ROM: The vectors use an ad
dress in RAM before jumping back to ROM.

The example here is a typical initialization routine to redirect the 64's RAM IRQ
vector into the user's own program at $C00D (where it may play a musical tone or
whatever).
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C000 SEI

C001 LDA #$C0

C003 STA $0315

C006 LDA #$0D

C008 STA $0314

C00B CLI

C00C RTS

STA
Store the contents of the accumulator into memory. M:= A

Instruction

$81 (129 %1000 0001)

$85 (133 %1000 0101)

$8D (141 %1000 1101)

$91 (145 %1001 0001)

$95 (149 %1001 0101)

$99 (153 %1001 1001)

$9D (157 %1001 1101)

Addressing

STA (zero page,X)

STA zero page

STA absolute •. .

STA (zero page),Y

STA zero page,X

STA absolute,Y k

STA absolute,X

Bytes

2

2

3

2

2

3

3

Cycles

6

3

4

6

4

5

5

Flags:

|n V — B D I Z C

Operation: The value in A is sent to the address referenced by the opcode. All reg

isters and flags are unchanged.

Uses:

1. Intermediate storage. Transfer of blocks of data from one part of memory to an
other needs a temporary intermediate store, usually in A, which is alternately

loaded and stored. See LDA.
2. Saving results of binary operations. Binary operations using the accumulator, nota

bly ADC and SBC, are performed within the accumulator; a common bug in ma

chine language programs is forgetting to save the result.

LDA $90 ;STBYTE

AND #$FD ; BIT 1 OFF

STA $90 ; REMEMBER THIS!

3. Setting the contents of certain locations to known values.

LDA #$89
STA $22 ; SETS VECTOR AT $22-$23

LDA #$C3

STA $23 ;TO$C389
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STX
Store the contents of the X register into memory. M:= X

Instruction

$86

$8E

$96

Flags:

N V

(134

(142

(150

- B

%1000

%1000

%1001

D I

0110)

1110)

0110)

z c

Addressing

STX zero page

STX absolute

STX zero page,Y

Bytes

2

3

2

Cycles

3

4

4

Operation: The byte in the X register is sent to the address referenced by the

opcode. All registers and flags are unchanged.

Uses: The uses are identical to those of STA. There is a tendency for X to be used as

an index, so STX is less used than STA.

STY91 I

Store the contents of the Y register into memory. M:= Y

Instruction

$84

$8C

$94

Flags:

N V

(132 %1000

(140 %1000

(148 %1001

— B D I

0100)

1100)

0100)

z c

Addressing

STY zero page

STY absolute

STY zero page,X

Bytes

2

3

2

Cycles

3

4

4

Operation: The byte in the Y register is sent to the address referenced by the

opcode. All registers and flags are unchanged.

Uses: STY resembles STX; the comments under STX apply.

TAX
Transfer the contents of the accumulator into the X register. X: = A

Instruction

$AA (170 %1010 1010)

Addressing

TAX implied

Bytes

1

Cycles

2

Flags:

N V —

X

B D I Z

X

C
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Operation: The byte in A is transferred to X. The N and Z flags are set as though

LDX had taken place.

Uses: This transfer is generally used to set X for use as an index or a parameter or to

temporarily hold A. The example is from a high-resolution screen-plotting routine; it

plots a black dot in a location with a coded value of 1, 2, 4, or 8 in $FB. On entry X

holds the position of the current X in a table. On exit X holds the position of the new

character. Intermediate calculations use the accumulator because there is no "EOR

with X" instruction.

TXA

EOR #$FF

ORA $FB

EOR #$FF

TAX

LDA TABLE,X

Note that registers A, X, Y, and the stack pointer are interchangeable with one

instruction in some cases, but not in others. The connections are shown below:

Y ^ A ^ X ^ S.

TAY
Transfer the contents of the accumulator into the Y register. Y:= A

Instruction

$A8 (168 %1010 1000)

Addressing

TAY implied

Bytes

1

Cycles

2

Flags:

N V —

X

B D I Z

X

C

Operation: The byte in A is transferred to Y. The N and Z flags are set as though

LDY had taken place.

Uses: See TAX.

TSX
Transfer the stack pointer into the X register. X:= SP

Instruction

$BA (186 %1011 1010)

Addressing

TSX implied

Bytes

1

Cycles

2

Flags:

N V -

X

B D I Z

X

C
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Operation: The stack pointer is transferred to X. Note that the stack pointer is al

ways offset onto $0100, so when the stack is accessed, the high byte of its memory

location is $01. The pointer itself is a single byte.

Uses:

1. To look at current values on the stack. TSX/ LDA $0100,X loads A with the con

tents presently at the top of the stack; LDA $0101,X loads the last item pushed on

the stack (one byte higher) into A, and so on. BASIC tests for BRK or interrupt

with PHA/ TXA/ PHA/ TYA/ PHA/ TSX/ LDA $0104,X/ AND #$10 because

the return-from-interrupt address and the SR are pushed by the interrupt before

the system saves its own three bytes. LDA $0104,X loads the flags saved when

the interrupt or BRK happened.

2. To determine space left on the stack. BASIC does this and signals ?OUT OF MEM

ORY ERROR if there are too many GOSUBs, FOR-NEXT loops, or complex

calculations with intermediate results.

3. Processing. Sometimes the stack pointer is stored and a lower part of the stack

temporarily used for processing.

TXA
Transfer the contents of the X register into the accumulator. A: = X

Instruction

$8A (138 %1000 1010)

Addressing

TXA implied

Bytes

1

Cycles

2

Flags:

N V —

X

B D I Z

X

C

Operation: The byte in X is transferred to A. The N flag and Z flag are set as though
LDA had taken place.

Uses: See TAX.

TXS
Transfer the X register into the stack pointer. SP:= X

Instruction

$9A (154 %1001 1010)

Addressing

TXS implied

Bytes

1

Cycles

2

Flags:

|N V — B D I Z c]
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Operation: X is stored in the stack pointer. PHA or PHP will place a byte onto the
stack at $0100 plus the new stack pointer, and PLA or PLP will pull from the next
byte up from this. In addition, RTI and RTS will return to addresses determined by

the stack contents at the new position of the stack.

Uses:

1. As part of the RESET sequence. TXS is always part of the RESET sequence; other
wise, the stack pointer could take any value. CBM computers use the top bytes of
the stack for BASIC addresses. When the 64 is turned on, LDX #$FF/ TXS sets
the pointer to the top of the stack, but if BASIC is to run (that is, if no autorun

cartridge is in place), SP is moved to leave locations $01FA-$01FF ready for use

by the RUN command.
SP has high values to start with because it is decremented as data is pushed

onto the stack. If too much data is pushed, perhaps by an improperly controlled
loop, SP decrements right through $00 to $FF again, crashing its program.

2. Switching to a new stack location. This is a rarely seen use of TXS. As a simple
example, the following routine is an equivalent to PLA/ PLA which you have
seen (under RTS) to be a "pop" command which deletes a subroutine's return ad

dress. Incrementing the stack pointer by 2 has the identical effect.

CLC

TSX

TXA

ADC #$02

TAX

TXS

TYA
Transfer the contents of the Y register into the accumulator. A:= Y

Instruction

$98 (152 %1001 1000)

Addressing

T\A implied

Bytes

1

Cycles

2

Flags:

N V —

X

B D I Z

X

C

Operation: The byte in Y is transferred to A. The N flag and Z flag are set as though
LDA had taken place.

Uses: See TAX. The transfers TAX, TAY, TXA, and TYA all perform similar functions.
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64 Memory Map
This chapter maps in detail the first few hundred RAM locations, the BASIC ROM,

and the Kernal ROM. It will be especially valuable to programmers who want to

make full use of Commodore 64 BASIC.

Locations are listed for both the Commodore 64 and the VIC, since many loca

tions are the same on the two computers.

Commodore 64 BASIC is stored in ROM from $A000 to $BFFF. The computer's

operating system, the ML that controls input/output and related operations, is stored

in ROM from $E000 to $FFFF, called the Kernal ROM. It contains a large number of

routines, but generally Kernal routines are taken to be only those which are called

through the Kernal jump table.

Commodore recommends that ML programmers use only Kernal routines. That,

however, rules out most of BASIC. Moreover, transportability between machines is

likely to be very difficult even with the Kernal. Generally, you should use any of

these routines where they are likely to make better programs.

There is a potential problem between machines of the same type. For example,

several 64 ROM versions exist, with Kernal ROM variations. In practice this is rarely

a problem. But if you want to be certain, relocate your routines into RAM as much as

possible.

A number of ROM routines are vectored through RAM; Chapter 8 explains how

to take advantage of this.

Notation

Labels have been included as reference points, and where possible they refer back to

well-known labels.

BASIC number handling is a bit complex. FAC1 and FAC2 refer to Floating Point

Accumulators 1 and 2. They hold two numbers during addition, multiplication, etc.,

which is done in a six-byte format (EMMMMS, consisting of exponent/mantissa or

data/sign), called FLPT for short. MFLPT refers to the way numbers are stored in

memory after BASIC, in a five-byte format with one bit of data less than FLPT.

MFLPT format is explained in Chapter 6. BASIC of course has routines to convert

these. INT or FIX format is the simpler format with bytes in sequence.

A, X, and Y are the 6510/6502's registers. A/Y means the two-byte value with

A holding the low byte and Y the high byte. String descriptors are three bytes of

data, the first holding the string's length, the second and third the low and high

bytes of the pointer to the start of the string.

The following listings consist of three columns. The first column gives the label.

The second column lists the 64 and VIC addresses; where one address is given, it

applies to both computers unless otherwise noted, but where two are given, the 64

address comes first. Finally, a description of the use of the location or of the routine

that begins at the specified address is given.
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Page 0:

Label

D6510

R6510

FACINT

INTFAC

CHARAC

INTEGR

ENDCHR

TRMPOS

VERCHK

COUNT

DIMFLG

VALTYP

INTFLG

GARBLF

SUBFLG

INPFLG

TANSGN

CHANNL

LINNUM

TEMPPT

LASTPT

TEMPST

INDEX1

INDEX2

RESHO

TXTTAB

VARTAB

ARYTAB

STREND

FRETOP

FRESPC

MEMSIZ

CURLIN

RAM$l

64/VIC

$00

$01

$02

$03-$04

$05-$06

$07

$07-$08

$08

$09

$0A

$0B

$0C

$0D

$0E

$0F

$10

$11

$12

$13

$14-$15

$16

$17-$18

$19-$21

$22-$23

$24-$25

$26-$2A

$2B-$2C

$2D-$2E

$2F-$30

$31-$32

$33-$34

$35-$36

$37-$38

$39-$3A

Descriptions

6510 on-chip data direction register (Commodore 64 only).

6510 on-chip input/output register (Commodore 64 only).

Unused byte (Commodore 64 only).

Vector to routine to convert FAC to integer in A/Y (usually

$B1AA).

Vector to routine to convert integer in A/Y to floating point in

FAC (usually $B391).

Delimiting character used when scanning. Also temporary integer

(0-255) used during INT.

Intermediate integer used during OR/AND.

Delimiter used when scanning strings.

Temporary location used for calculating TAB and SPC column.

Flag to indicate LOAD (0) or VERIFY (1).

Temporary pointer used with BASIC input buffer.

Flag: default array dimension.

Flag: current variable data type; 0 means numeric, $FF means

string.

Flag: current variable data type; 0 means floating point; $80 means

integer.

Flag used in garbage collection, LIST, DATA, error messages.

Flag to indicate integers or array elements, which are forbidden as

indexes of FOR/NEXT loops and in function definitions.

Flag used by READ routine; $00 means INPUT, $40 means GET,

$98 means READ.

Sign byte used by TAN, SIN. Also set according to any comparison

being performed: > sets this location to $01, = sets $02, and <

sets $04.

Current I/O device number; prompts suppressed if not 0.

Line number integer (0-63999) or standard two-byte address used

by GOTO, GOSUB, POKE, PEEK, WAIT, and SYS.

Index to next entry on string descriptor stack (may be $19, $1C,

$1F, or $22).

Pointer to current entry on string descriptor stack.

Stack for three temporary string descriptors.

General-purpose pointer, for example, for memory moves.

General-purpose pointer, for example, for number movements.

Floating point workspace used by multiply and divide.

Pointer to first byte of BASIC program (2049 for the 64).

Pointer to start of program variables; first byte beyond end of

program.

Pointer to start of arrays; first byte beyond end of variables.

Pointer to start of free RAM available for strings; first byte beyond

end of arrays.

Pointer to current lower boundary of string area. (Set to the con

tents of MEMSIZ on CLR or RUN.)

Utility pointer used when new string is being added to string area.

Pointer to one byte beyond the top of RAM available to BASIC.

BASIC line number being interpreted ($FF in $003A indicates

immediate mode).

334



64 ROM Guide

OLDLIN $3B-$3C

OLDTXT $3D-$3E

DATLIN $3F-$40

DATPTR

INPTR

$41-$42

$43-$44

VARNAM $45-$46

VARPNT

FORPNT

OPPTR

OPMASK

DEFPNT

TEMPF3

DSCPNT

SIZE

FOUR6

JMPER

TEM^tl

HIGHDS

ARYPNT

HIGHTR

TEMPF2

DECCNT

TENEXP

DPTFLG

LINPTR

EXPSGN

FACl

$47-$48

$49-$4A

$4B

$4D

$4E-$4F

$4E-$52

$50-$51

$52

$53

$54-$56

$57-$5B

$58-$59

$58-$59

$5A-$5B

$5C-$60

$5D

$5E

$5F

$5F-$60

$60

$61-$66

If STOP, END, or BREAK occurs, this holds the last BASIC line

number executed for CONT.

Pointer to beginning of current BASIC line for CONT.

Line number of current DATA statement. Initialized to $0000 on

RUN.

Pointer to one byte beyond the DATA item read by the last READ

statement. Initialized to contents of TXTTAB on RUN.

Temporary storage of DATPTR during READ statement; also

pointer within input buffer during INPUT (points to last character

entered).

Current BASIC variable; two-character name with most significant

bit (bit 7) of each byte used to indicate variable type: bit 7 clear in

both bytes means floating point, bit 7 set in both means integer,

bit 7 set in $46 means string, bit 7 set in $45 means function.

Pointer to current variable's address in RAM. Points one byte

beyond variable name.

Temporary pointer to variables in memory for INPUT, assign

ments, etc., and for loop variable in FOR/NEXT loops. Also holds

the two parameters for WAIT statements.

Pointer within operator table during expression evaluation in rou

tine FRMEVL.

Comparison mask used in FRMEVL: > sets this location to $01, =

sets $02, and < sets $04.

Pointer to variable in function definition, within variable table in

RAM. Also used by garbage collection routine GARBAG.

Temporary storage for a MFLPT item.

Pointer to descriptor in variable list or to string in dynamic string

area; used during string operations.

Length of the current BASIC string.

Length of string variable during garbage collection.

Jump vector for function evaluations, JMP ($4C) followed by func

tion address from function vector table.

Temporary pointers (for example, in memory move); also tem

porary floating point accumulator.

Pointer used by block transfer routine BLTU.

Pointer used when initializing arrays (when DIM is encountered).

Pointer used by block transfer routine BLTU.

Temporary floating point accumulator.

Number of digits after/before decimal point in ASCII-to-FLPT and

FLPT-to-ASCII conversion for the FIN and FOUT routines.

Exponent used in ASCII-to-FLPT and FLPT-to-ASCII conversion in

the FIN and FOUTroutines.

Flag use4 by the FIN routine ($BCF3) when inputting numbers; set

to $80 [i s'lring contains decimal point.
Pointer used when searching for line numbers, searching for vari

ables in variable list, doing block transfers.

Sign of exponent of number being input by FIN routine; a value of

$80 signifies negative.

Floating Point Accumulator 1. Consists of exponent byte, four

mantissa bytes, and a sign byte. (The results of most arithmetic op

erations are placed here.) Integer results are stored in two bytes

FACl+3andFACl+4.
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SGNFLG $67

BITS

FAC2

FACOV

TEMPTX

CHRGET

$68

$69-$6E

ARISGN $6F

$70

$71-$72

CHRGOT $79

TXTPTR

RNDX

STATUS

STOPFL

TSERVO

VERCK

ICHRFL

IDATO

TEOB

TEMPXY

NFILES

DFLTI

DFLTO

TPARIT

TBYTFL

MSGFLG

HDRTYP

PTR1

PTR2

TIME

TSFCNT

TBTCNT

CNTDN

BUFPNT

INBIT

PASNUM

BITCI

RINONE

TBITER

RIDATA

RIDATA

$7A-$7B

$8B-$8F

$90

$91

$92

$93

$94

$95

$96

$97

$98

$99

$9A

$9B

$9C

$9D

$9E

$9E

$9F

$A0-$A2

$A3

$A4

$A5

$A6

$A7

$A7

$A8

$A9

$A9

$AA

$AA

Flag used by FIN when inputting numbers; set to $FF if the num

ber is negative. Also stores count of terms in polynomial series

when evaluating trig functions.

Bit overflow area on normalizing FAC1.

Floating Point Accumulator 2; used with FAC1 in evaluation of

products, sums, differences, etc.

Sign comparison between FAC1 and FAC2; $00 means same sign,

$FF means opposite.

Rounding/overflow byte for FAC1.

General pointer used in CRUNCH, VAL, series evaluation, with

tape buffer, etc.

Subroutine to fetch next BASIC character into A (spaces are

skipped) and set flags; C cleared if ASCII numeral 0-9; Z set if

end-of-line or colon (:).

Entry point within CHRGET to re-get current BASIC character and

set flags as CHRGET does. Does not increment TXTPTR first.

Pointer into BASIC text used by CHRGET and CHRGOT routines.

Floating point random number seed and subsequent pseudo

random values.

Status ST for serial devices and cassette.

Flag: contains $7F (127) if RUN/STOP key pressed.

Tape timing constant.

Flag to indicate LOAD (0) or VERIFY (1).

Serial flag: a value of $FF indicates a character is awaiting output.

Serial character to be output; a value of $FF indicates no character.

Hag: end of data block from tape.

Temporary X,Y storage during cassette read/RS-232 input.

Number of files open (maximum of ten); index to file table.

Current input device number; default value is 0 (keyboard).

Current output device number; default value is 3 (screen).

Parity of byte written to tape.

Flag: byte read from tape is complete.

Flag: $00 means program mode; $80 means direct mode.

Tape buffer header ID.

Cassette pass 1 read errors.

Cassette pass 2 read errors.

Three-byte jiffy clock for TI, updated 60 times per second. Bytes

arranged in order of decreasing significance.

Tape read/write bit counter.

Tape read/write pulse counter.

Tape synchronization write countdown.

Count of bytes in tape I/O buffer.

RS-232 temporary storage for received bits.

General temporary store for cassette read/write.

RS-232 received bit count. Also temporary store for cassette read/

write.

RS-232 receive: check for start bit.

Write start bit/read bit sequence error.

Tape read mode; 0 means scan, 1-15 means count, $40 means

LOAD, $80 means end-of-tape marker.

RS-232 received byte buffer.
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TCKS

RPRTY

SAL

EAL

CMPO

TAPE1

BITTS

TTIX

NXTBIT

TEOT

RODATA

TERRR

FNLEN

LA

SA

FA

FNADR

ROPRTY

TCHR

FSBLK

MYCH

CAS1

STAL

MEMUSS

LSTX

NDX

RVS

INDX

LXSP

LYSP

KEYVAL

BLNSW

BLNCT

GDBLN

BLNON

CRSW

PNT

PNTR

QTSW

LNMX

TBLX

TMPD7

$AB

SAB

$AC-$AD

$AE-$AF

$BO-$B1

$B2-$B3

$B4

$B4

$B5

$B5

$B6

$B6

$B7

$B8

$B9

$BA

$BB-$BC

$BD

$BD

$BE

$BF

SCO

SC1-SC2

SC3-SC4

$C5

$C6

$C7

$C8

$C9

$CA

$CB

$CC

$CD

$CE

$CF

$D0

$D1-$D2

$D3

$D4

$D5

$D6

$D7

INSRT $D8

Counter of seconds before tape write. Also checksum.

RS-232 received byte parity.

Start address for LOAD/SAVE. Pointer also used by screen

scrolling and INSert routines.

End address for LOAD/SAVE. Also used as pointer to color RAM

used by the INSert routine.

Timing constants for tape.

Pointer to start of cassette buffer, usually $033C.

RS-232 transmit bit count.

Tape read timer flag.

RS-232 transmit: next bit to send.

End of tape read.

RS-232 transmit: byte to be sent.

Tape read error flag.

Number of characters in filename; a value of 0 means no name.

Current logical file number.

Current secondary address.

Current device number; for example, 3 means screen, 4 means

printer, etc.

Pointer to start of current filename.

RS-232 output parity.

Byte to be written to/read from tape.

Number of blocks remaining to read/write.

Serial word buffer where byte is assembled.

Cassette motor control flag.

Start address for LOAD and cassette write.

Pointer for general use, for example, calculating LOAD address.

Matrix value of key pressed during last keyboard scan; a value of

$40 means no key pressed.

Number of characters in keyboard buffer.

Flag: print reverse characters; 0 means normal, $12 means reverse.

Count of characters in line input from screen.

Cursor Y value (row) at start of input.

Cursor X value (column) at start of input.

Copy of keypress LSTX checked by interrupt so that a held key

registers only once.

Flag: cursor blink mode; a value of 0 means enabled, 1 means

disabled.

Countdown to next cursor toggle (from $14).

Character (screen code) at cursor position.

Flag: 1 means cursor in blink phase, 0 means not in blink phase.

Flag: 3 means input from screen, 0 means input from keyboard.

Address of start of current line on the screen.

Cursor position (X value) along current logical line (0-$4F).

Quote mode flag: flips each time quotes are encountered; 0 means

move cursor, etc.; 1 means print reverse characters.

Length of current logical screen line.

Row of cursor.

CHR$ value of last character input/output to screen; tape tem

porary I/O storage and checksum.

Number of keyboard inserts outstanding.
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LDTBl

USER

$D9-$F2

$F3-$F4

Table of 25 high bytes of pointers to the start of screen lines in

RAM. (The low bytes are held in ROM from $ECF0.) lines with

wraparound have bit 7 set to 0; otherwise, bit 7 is 1.

Pointer to byte in color RAM corresponding to beginning of cur

rent line on the screen.

Address of current keyboard decoding table.

RS-232: pointer to start of receive buffer.

RS-232: pointer to start of transmit buffer.

Unused; available for user programs.

Temporary storage area for FLPT-to-ASCII conversion.

Page 1 (Stack Area): RAM $O1OO-$O1FF

Label 64/VIC Descriptions

ASCWRK $0FF-$10A Area for conversion of numerals into ASCII string format for

printing.

BAD $100-$13E Table of tape read errors.

STACK $14O-$1FF BASIC stack area.

KEYTAB

RIBUF

ROBUF

BASZPT

$F5-$F6

$F7-$F8

$F9-$FA

$FB-$FE

$FF

Page 2: RAM $0200-$02FF

Labe}

BUF

LAT

FAT

SAT

KEYD

LORAM

HIRAM

TIMOUT

COLOR

GDCOL

HIBASE

XMAX

64/VIC

$200-$258

$259-$262

$263-$26C

$26D-$276

$277-$280

$281-$282

$283-$284

$285

$286

$287

$288

$289

RPTFLG $2§A

KOUNT

DELAY

SHFLAG

$28B

$28C

$28D

LSTSHF $28E

Descriptions

System input buffer; all keyboard input is read into here.

Table of up to ten active logical file numbers.

Table of up to ten corresponcjing device numbers.

Table of ten corresponding secondary addresses as used by system.

Keyboard buffer: maximum of ten characters are read from key

board and placed here by the interrupt routine.

Pointer to lowest available byte of RAM for BASIC program stor

age (initialized on power-up; normally 2048).

Pointer to highest available BASIC RAM byte (initialized on

power-up).

Serial bus time-out flag.

Current color code: POKEd into color RAM when printing charac

ters to screen.

Color of character under cursor.

High byte of screen memory address.

Maximum number of characters storable in keyboard buffer

(initialized to 10).

Flag controlling key repeats; a value of $00 means repeat cursor

move and space keys; $80 means repeat all keys; $40 means no

keys repeat. Default is $00.

Delay before repeat operates (system resets this).

Delay between repeats.

Detect SHIFT, Commodore key, CTRL keypress: a value of $01

means SHIFT is pressed, $02 means Commodore key, $04 means

CTRL. These are additive: $05 means SHIFT and CTRL keys are

both pressed, etc.

Last SHFLAG pattern; used for debouncing.
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KEYLOG

MODE

AUTODN

M51CTR

M51CDR

M51AJB

RSSTAT

BITNUM

BAUDOF

RIDBE

RIDBS

RODBS

RODBE

IRQTMP

$28F-$290

$291

$292

$293

$294

$295-$296

$297

$298

$299-$29A

$29B

$29C

$29D

$29E

$29F-$2A0

$2A1-$2A5

$2A6

$2A7-$2FF

Vector to routine to check SHIFT pattern; used by SCNKEY Kernal

routine.

Flag: $00 means enable upper/lowercase toggle using SHIFT and

Commodore key; $80 means disable the toggle.

Flag: autoscroll down during input; $00 means disable.

RS-232: control register.

RS-232: command register.

RS-232: nonstandard transmission rate value (not used).

RS-232: status register ST.

RS-232: number of bits to send/receive.

RS-232: baud rate timing constant.

RS-232: input buffer pointer; points to latest character input (end

of buffer).

RS-232: input buffer pointer; points to first available character

(start of buffer).

RS-232: output buffer pointer: start of buffer.

RS-232: output buffer pointer: end of buffer.

Temporary storage for IRQ vector during tape operations.

Temporary storage during tape operations.

PAL/NTSC Flag (0 means NTSC, 1 means PAL)

Free RAM available to user

Page 3: RAM $0300-$03FF

IMAIN $302-$303

Label 64/VIC Descriptions

IERROR $300-$301 Vector to BASIC print error message (normally $E38B); X register

holds error message number.

Vector to routine to input or execute line of BASIC (normally

$A483).

ICRNCH $304-$305 Vector to BASIC tokenizing routine (normally $A57C).

IQPLOP $306-$307 Vector to BASIC LIST routine (normally $A71A).

IGONE $308-$309 Vector to BASIC RUN routine (normally $A7E4).

IEVAL $30A-$30B Vector to BASIC single-expression evaluation routine (normally

$AE86).

SAREG $30C 6510/6502 Accumulator storage for SYS; A is loaded from this

location on SYS call and stored back into it when the SYS call

ends.

SXREG $30D 6510/6502 X register storage for SYS; handling as above.

SYREG $30E 6510/6502 Y register storage for SYS; handling as above.

SPREG $30F 6510/6502 Status register storage for SYS; handling as above.

USRPOK $310/$00 USR function JMP instruction ($4C).

USRADD $311-$312/ USR function address, low/high byte form, initialized to point to

$01-$02 BASIC error message routine ($B284).

$313 Unused byte.

(Note that the vectors from $3U-$333 are initialized each time RUN/STOP-RESTORE is pressed,

assuming NMINV is normal)

CINV $314-$315 Vector for IRQ interrupt (normally $EA31). Called from $FF58.

CBINV $316-$317 Vector for BRK (normally $FE66). Called from $FF55.

NMINV $318-$319 Vector for NMI (normally $FE47).
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Vector to Kernal OPEN routine (normally $F34A). Called from

$FFC0.

Vector to Kernal CLOSE routine (normally $F291). Called from

$FFC3.

Vector to Kernal CHKIN routine (normally $F20E). Called from

$FFC6.

Vector to Kernal CHKOUT routine (normally $F250). Called from

$FFC9. y

Vector to Kernal CLRCHN routine (normally $F333). Called from

$FFCC.

Vector to Kernal CHRIN routine (normally $P157). Called from

$FFCF.

Vector to Kernal CHROUT routine (normally $F1CA). Called from

$FFD2.

Vector to Kernal STOP routine (normally $F6ED). Called from

$FFE1.

Vector to Kernal GETIN routine (normally $F13E). Called from

$FFE4.

Vector to Kernal CLALL routine (normally $F32F). Called from

$FFE7.

Unused vector: May be defined by user; initialized to BRK vector

($FE66).

Vector to Kernal LOAD routine (normally $F4A5).

Vector to Kernal SAVE routine (normally $F5ED).

Eight unused bytes.

Tape I/O buffer (192 bytes long). Can be used for ML programs

but tape use will overwrite.

Four unused bytes.

Note: The following summary of the memory map applies to the 64 only, since there are consid

erable hardware differences between the 64 and other CBM machines.

In the Commodore 6£, locations $8000 and above are subject to memory management by both

hardware (EXROM and GAME lines) and software (locations 0 and 1), and therefore can contain

different things at different times. All this is explained in Chapter 5. Note that a plug-in cartridge

is assumed to be ROM in what follows.

Hex Decimal Description

$0400-$07E7 1024-2023 Usual screen memory area: 25 lines with 40 columns each.

$07F8-$07FF 2040-2047 Pointers to sprite data blocks (assuming screen starts at

$0400).

Space normally occupied by BASIC programs and associated

variables, arrays, and strings.

$8000-$9FFF 32768-40959 RAM or cartridge ROM (usually with autorun feature).

$A000-$BFFF 40960-49151 BASIC ROM or RAM or cartridge ROM (may have

autostart).

$C000-$CFFF 49152-53247 RAM.

$D000-$DFFF 53248-57343 I/O chips and color RAM or cartridge ROM (without

autostart).

The region $D000-$DFFF is configured as follows (note that I/O chips have repeat images):

$D000-$D02E 53248-53294 VIC chip (see Chapter 12).

$D400-$D41C 54272-54300 SID chip (see Chapter 13).

IOPEN

ICLOSE

ICHKIN

ICKOUT

ICLRCH

IBASIN

IBSOUT

ISTOP

IGETIN

ICLALL

USRCMD

ILOAD

ISAVE

TBUFFR

$31A-$31B

$31C-$31D

$31E-$31F

$320-$321

$322-$323

$324-$325

$326-$327

$328-$329

$32A-$32B

$32C-$32D

$32E-$32F

$330-$331

$332-$333

$334-$33B

$33C-$3FB

$3FC-$3FF

$0800-$9FFF 2048-40959
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$D800-$DBE7 55296-56295 Color RAM (low nybbles store character colors 0-15).

$DC00-$DC0F 56320-56335 CIA 1 (see Chapter 5).

$DD00-$DD0F 56576-56591 CIA 2 (see Chapter 5).

This region also includes the character generator ROM:

$D000-$D7FF 53248-55295 Uppercase/graphics character set.

$D800-$DFFF 55296-57343 Lower/uppercase character set.

BASIC and Kernal ROM
Commodore 64 and VIC-20 BASIC and Kernal ROMs are similar. VIC's BASIC ROM

starts at $C000 and is exactly $2000 bytes up from the 64 BASIC ROM, which starts

at $A000. Both Kernal ROMs start at $E000, but the 64 has an extra JMP instruction

to bridge the gap between BASIC and the Kernal, so the addresses of routines in the

Kernal initially differ by three bytes between these machines.

/Descriptions

BASIC cold start vector ($E394). NEWs BASIC, prints BYTES

FREE and READY. Part of the reset sequence; see routines at

$E394 and $FCE2.

BASIC warm start vector ($E37B). CLRs BASIC, prints READY.

Part of the NMI sequence; see routines at $E37B and $FE43.

CBM BASIC message.

Table of addresses — 1 of routines for handling BASIC state

ments (FOR, RUN, PRINT, REM, CONT, etc.). (Address - 1

because of the way they are utilized.)

Table of true addresses of routines for handling numeric and

string functions (FRE, POS, SQR, etc.).

Table of addresses — 1 of routines for handling BASIC op

erators (add, subtract, divide, etc.); each address is followed by

a byte indicating the operator priority.

BASIC keywords as CBM ASCII strings with bit 7 of final

character of each keyword set high.

Table of miscellaneous keywords (TAB, STEP, etc., with no ac

tion address) with bit 7 of final character of each keyword set

high.

Table of operator tokens; also AND, OR as strings with bit 7 of

final character of each operator set high.

Table of function keywords (SGN, INT, ABS, etc.) with bit 7 of

final character of each keyword set high.

Table of 28 error messages (TOO MANY FILES, FILE OPEN,

etc.) with bit 7 of final character of each message set high.

Table of pointers to error messages.

Table of other messages: OK, ERROR IN, READY, BREAK.

Check stack for FOR entry. Called by NEXT; if FOR not found,

?NEXT WITHOUT FOR results. Also clears stack of a FOR data
block if called by RETURN.

Open up a gap in BASIC text to allow insertion of new BASIC

line. Check whether there is enough room.

Label

BCOLD

BWARM

FNDFOR

BLTU

64/VIC

$A000/$C00(K

$A002/$C002

$A004/$C004

$A00C/$C00C

$A052/$C052

$A080/$C080

$A09E/$C09E

$A129/$C129

$A140/$C140

$A14D/$C14D

$A19E/$C19E

$A328/$C328

$A364/$C364

$A38A/$C38A

$A3B8/$C3B8
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BLTUC

GETSTK

REASON

ERROR

READY

MAIN

MAIN1

INSLIN

FINI

LNKPRG

INLIN

CRUNCH

FNDLIN

FNDLNC

NEW

SCRTCH

RUNC

CLEAR

STXPT

LIST

LIST1

$A3BF/$C3BF

$A3FB/$C3FB

$A408/$C408

$A437/$C437

$A474/$C474

$A480/$C480

$A49C/$C49C

$A4A4/$C4A4

$A52A/$C52A

$A533/$C533

$A560/$C560

$A579/$C579

$A613/$C613

$A617/$C617

$A642/$C642

$A644/$C644

$A659/$C659

$A65E/$C65E

$A68E/$C68E

$A69C/$C69C

$A6C9/$C6C9

Move block starting at address pointed to by $5F-$60 and end

ing at address pointed to by $5A-$5B — 1 up to a new block

ending at the address pointed to by $58-$59 — 1.

Test to see whether stack will accommodate A*2 bytes: ?OUT

OF MEMORY if not.

Check whether address pointed to by A/Y is below FRETOP

(current bottom of string area). If yes, exit; otherwise, do gar

bage collection and check again. If still not, then print ?OUT

OF MEMORY.

Print error message; X holds error number (half of offset within

error message address table). Vectored via ($0300) to $E38B.

Then set keyboard input and screen output, reset stack, and

print IN with line number if in program mode.

Restart BASIC; print READY, set direct mode. .

Receive a line into input buffer and add a terminating zero

byte. Check for program line or immediate mode command; if

immediate mode command, execute it. MAIN is vectored via

($0302) to $A483.

If program line, tokenize it.

If the line number already exists, replace it. If it's new, insert it.

Line number is in $14-$15 on entry, length 4- 4 is in Y. If the

first byte in buffer is 0, the line is null; delete it.

Having inserted a new line, do RUNC (thus, variables are lost

on editing, and you cannot CONT after editing) and LNKPRG;

then jump to MAIN.

Chain link pointers in BASIC program using end-of-line zero

markers.

Input a screen line into the BASIC text buffer at $200, and add

a zero terminating byte.

Tokenize keywords in input buffer. Vectored via ($0304) to

$A57C.

Search BASIC text from beginning for line number in $14-$ 15.

Carry bit set if line found. Locations $5F-$60 point to link

address.

Search BASIC text from address in A (low byte) and X (high

byte) for line number in $14-$15.

NEW routine enters here; check syntax, and continue with

SCRTCH.

Reset first two bytes of text (first link pointer) to 0; load start-

of-variables pointer $2D-$2E with start-of-BASIC + 2, and

continue with RUNC.

Set pointer within CHRGET to start of BASIC text, using

STXPT, then continue with CLEAR.

BASIC CLR routine; erase variables by resetting end-of-

variables pointers to coincide with end-of-program pointer;

appropriate string variable pointers are also reset. Abort I/O

activity and reset stack.

Reset pointer within CHRGET routine to beginning of BASIC

text ($2B-$2C - 1 is loaded into $7A-$7B).
Entry point of routine to process LIST command.

List one line of BASIC; line number, then text.
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QPLOP

FOR

NEWSTT

CKEDL

GONE

EXCC

RESTOR

STOP

$A717/$C717

$A742/$C742

$A7AE/$C7AE

$A7C4/$C7C4

$A7E1/$C7E1

$A7ED/$C7ED

$A81D/$C81D

$A82C/$C82C

CONT $A857/$C857

RUN

GOSUB

GOTO

DATA

DATAN

$A871/$C871

$A883/$C883

$A8A0/$C8A0

RETURN $A8D2/$C8D2

$A8F8/$C8F8

$A906/$C906

Handle character to be listed; if ordinary character or control

character in quotes, print it; expand and print tokens. Vectored

via ($0306) to $A71A.

Entry point for routine to handle FOR statement. Push 18 bytes

onto stack: pointer to following statement, current line number,

upper-loop value, step value (defaults to 1), loop variable

name, and FOR token.

Execute BASIC; test for RUN/STOP key and check for end-of-

line zero byte or colon.

If at end of text, stop; otherwise, set pointer within CHRGET to

beginning of next line.

Handle the BASIC statement in the current line. Vectored via

($0308) to $A7E4, loop back to NEWSTT.

Execute a BASIC keyword. Uses address for start of routine

from table at $A00C. Assumes LET if a token is not the first

byte in the statement. Address pushed on stack so RTS of

GETCHR jumps to it.

Entry point for routine to handle RESTORE; set the data

pointer at $41-$42 to start of BASIC text.

Entry point for routine to handle STOP; also END and break in

program. Information for CONT (pointer in BASIC text, line

number) is stored. STOP prints BREAK IN nnn while END

skips this to READY. The RUN/STOP key invokes STOP.

Reaching the end-of-BASIC program text c^Jls END.

Entry point for routine to handle CONT; performs this by set

ting current linj number (stored in $39-$3A) and the pointer

within CHRGET to values stored by STOP. 7CANNOT CON

TINUE ERROR occurs if the high byte of the pointer has been

set to 0 on syntax error.

Entry point for routine to handle RUN; if RUN is encountered

alone, then CLR variables and reset stack, set CHRGET to start

of BASIC, and begin execution. If RUN nnn, CLR variables and

reset stack, then do GOTO nnn.

Entry point for routine to handle GOSUB; push five bytes onto

stack: pointer within CHRGET (two bytes), current line number

(two bytes), and the GOSUB token. The GOTO routine is then

called.

Entry point for routine to handle GOTO; fetch the line number

following the GOTO command and search BASIC text for this

line. If high byte of destination is higher than high byte of cur

rent line number, search from position of current line onward

to shorten search time; otherwise, search from beginning. Put

pointer to found line into CHRGET pointer.

Entry point for routine to handle RETURN; stack is cleared up

to GOSUB token (7RETURN WITHOUT GOSUB if not found);

then the calling line number and pointer are reinstated, and

execution continues.

Entry point for routine to handle DATA statements; routine to

let CHRGET skip DATA statement up to terminating byte or

colon.

Search for statement terminator; exits with Y containing

displacement to end of line from CHRGET's pointer.
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REMN

IF

REM

DOCOND

ONGOTO

LINGET

LET

PUTINT

PTFLPT

PUTTIM

ASCADD

GETSPT

PRINTN

CMD

STRDON

PRINT

VAROP

CRDO

STROUT

STRPRT

OUTSTR

OUTSPC

PRTSPC

OUTSKP

OUTQST

OUTDO

TRMNOK

$A909/$C909

$A928/$C928

$A93B/$C93B

$A940/$C940

$A94B/$C94B

$A96B/$C96B

$A9A5/$C9A5

$A9C4/$C9C4

$A9D6/$C9D6

$A9E3/$C9E3

$AA27/$CA27

$AA2C/$CA2C

$AA80/$CA80

$AA86/$CA86

$AA9A/$CA9A

$AAA0/$CAA0

$AAB8/$CAB8

$AAD7/$CAD7

$AB1E/$CB1E

$AB21/$CB21

$AB24/$CB24

$AB3B/$CB3B

$AB3F/$CB3F

$AB42/$CB42

$AB45/$CB45

$AB47/$CB47

$AB4D/$CB4D

Search for end-of-BASIC line.

Entry point for routine to handle IF statement. Evaluate the ex

pression; if result is false (0), skip the THEN or GOTO clause

by doing REM.

Entry point for routine to handle REM; scan for end of line and

update pointer in CHRGET, to ignore contents of REM

statement.

Continue IF; if expression true, then execute next command, or

do GOTO if digit follows.

Entry point for routine to handle ON-GOTO and ON-GOSUB

statements; evaluate expression, test for GOTO or GOSUB

token, scan line number list, skipping commas for specified line

number, and GOTO or GOSUB it.

Read an integer (usually a line number) from the BASIC text

into locations $14 and $15; must be in range 0-63999.

Entry point for routine to handle LET statement; find target

variable in variable list (or create it if it doesn't exist), test for

= token, evaluate expression, and move result or string

descriptor into the variable list.

Round FAC1 and put, as integer, into variable list at current

variable position, pointed to by $49-$4A.

Put FAC1 into variable list at location pointed to by $49-$4A.

Assign the system variable TI$.

Add ASCII digit to FAC1.

LET for strings; put string descriptor pointed to by

FAC1+3-FAC1+4 into variable list at location pointed to by

$49-$4A.

Entry point for routine to handle PRINT# statement; call CMD,

then clear I/O channels and restore default I/O device

numbers.

Entry point for routine to handle CMD; set output device from

file table using Kernal CHKOUT routine, then call PRINT.

Part of PRINT routine; print string and continue with punctua

tion of PRINT.

Entry point for routine to handle PRINT statement; identify

PRINT parameters (TAB, SPC, comma, semicolon, etc.), and

evaluate expression.

Print variable; if numeral, convert to string before printing.

Print carriage return (ASCII 13) followed (if channel > 128) by

linefeed (ASCII 10).

Print string beginning at address specified in A/Y, and ter

minated by a zero byte or quotes.

Print string; FAC1+3-FAC1+4 points to string descriptor.

Output string; locations $22-$23 point to string, length in A.

Output cursor-right (or space if the screen is not the current

output device).

Output space.

Output cursor-right.

Output question mark for error messages.

Output the character in A.

Output appropriate error messages for GET, READ, and

INPUT.
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GET

INPUTN

INPUT

QINLIN

READ

INPCON

INPCO1

DATLOP

VAREND

EXINT

NEXT

$AB7B/$CB7B

$ABA5/$CBA5

$ABBF/$CBBF

$ABF9/$CBF9

$AC06/$CC06

$AC0D/$CC0D

$AC0F/$CC0F

$ACB8/$CCB8

$ACDF/$CCDF

$ACFC/$CCFC

$AD1E/$CD1E

FRMNUM

CHKNUM

CHKSTR

FRMEVL

$AD8A/$CD8A

$AD8D/$CD8D

$AD8F/$CD8F

$AD9E/$CD9E

EVAL

PIVAL

PARCHK

CHKCLS

$AE83/$CE83

$AEA8/$CEA8

$AEF1/$CEF1

$AEF7/$CEF7

Entry point for routine to handle GET and GET# statements;

test for direct mode (illegal) and fetch one character from key

board or file.

Entry point for routine to handle INPUT# statement; fetch file

number, turn the device on, call INPUT, and then turn the de

vice off.

Entry point for routine to handle INPUT statement; output

user's prompt string if present, then continue with QINLIN

routine.

Print 7 prompt and receive line of text (terminated by

RETURN) into input buffer.

Entry point for routine to handle the READ statement. GET

and INPUT also share this routine, but are distinguished by a

flag in location $11.

Entry point into READ routine for INPUT; set flag and call

READ, with buffer at the address specified in X (low byte) and

Y (high byte).

Entry point into READ routine for GET; set flag and call

READ, with buffer at the address specified in X (low byte) and

Y (high byte).

Scan text and read DATA statements.

Tests for 0 at end of input buffer; if not found, print 7EXTRA

IGNORED.

Messages 7EXTRA IGNORED and 7REDO FROM START.

Entry point for routine to handle NEXT; check for FOR token

and matching variable on stack, and print 7NEXT WITHOUT

FOR if not found; calculate next value. If the loop increment is

still valid, reset current line number and the pointer in

CHRGET and continue.

Evaluate a numeric expression for BASIC by calling FRMEVL,

then CHKNUM.

Check that FRMEVL has returned a number by testing flag at

location $0D. If a number was not returned, issue a 7TYPE

MISMATCH ERROR message.

Check that FRMEVL has returned a string by testing flag at

location $0D. If a string was not returned, issue a 7TYPE MIS

MATCH ERROR message.

Evaluate any BASIC expression in text and report any syntax

errors; set $0D (VALTYP) to $00 if the expression is numeric

and $FF if it is a string. For numeric expressions, location $0E

(INTFLG) is set to $00 if the expression is floating point, and

the value is placed in FAC1. If the variable type is integer, set

INTFLG to $80, but leave the result in floating point format in

FAC1. Complicated expressions may need simplifying to retain

stack space and prevent 7OUT OF MEMORY.

Evaluate a single term in an expression; look for ASCII

numeral strings, variables, pi, NOT, arithmetic functions, etc.

Value of pi in five-byte floating point format.

Evaluate expression within parentheses.

Check whether CHRGET points to a ) character; issue a 7SYN-

TAX ERROR message if not.
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CHKOPN

CHKCOM

SYNCHR

SYNERR

DOMIN

TSTROM

ISVAR

TISASC

ISFUN

OROP

ANDOP

$AEFA/$CEFA

$AEFD/$CEFD

$AEFF/$CEFF

$AF08/$CF08

$AF0D/$CF0D

$AF14/$CF14

$AF28/$CF28

$AF48/$CF48

$AFA7/$CFA7

$AFE6/$CFE6

$AFE9/$CFE9

DOREL

NUMREL

STRREL

DIM

PTRGET

$B016/$D016

$B01B/$D01B

$B02E/$D02E

$B081/$D081

$B08B/$D08B

ORDVAR $B0E7/$D0E7

ISLETC

NOTFNS

$B113/$D113

$B11D/$D11D

Check whether CHRGET points to a ( character; issue a ?SYN-

TAX ERROR message if not.

Check whether CHRGET points to a comma; issue a 7SYNTAX

ERROR message if not.

Check whether CHRGET points to a byte identical to that in A;

if it does, routine exits with next byte in A; otherwise, a ?SYN-

TAX ERROR message is issued.

Output a 7SYNTAX ERROR message and return to READY.

Evaluate NOT.

Set carry flag to 1 if FAC1+3-FAC1+4 point to the ROM area

indicating reserved variables TI$, TI, ST.

Search variable list for variable named in locations $45-$46; on

exit FAC1 will hold numeric value in FLPT format (whether

integer or floating point variable); FAC1+3-FAC1+4 will

point to the descriptor if it's a string variable.

Read clock and set up string containing TI$.

Identify function type and evaluate it.

Entry point for routine to handle the OR function; set flag and

do OR between two two-byte integers in FAC1 and FAC2.

Entry point for routine to handle the AND function. Both AND

and OR are performed by one routine; a flag (in Y) holds $FF

for OR, $00 for AND. Convert FLPT to integer (and give an er

ror message if the result is out of range). The result in FLPT

format is left in FAC1.

Entry point for routine to handle string and numeric compari

sons (< = >). Check variable types, then continue with

NUMREL or STRREL, as appropriate.

Perform numeric comparison, using FCOMP at $BC5B.

Perform string comparison; exit with X holding $00 if strings

equal, $01 if the first string is greater than the second, and $FF

if the second is greater than the first.

Entry point for routine to handle the DIM statement; set up

each array element using the PTRGET routine.

Validate a variable name in BASIC text; the first character must

be alphabetic, the second may be either alphabetic or numeric;

subsequent alphanumerics are discarded. Set VALTYP (location

$0D) to $FF to indicate a string variable if $ is found; other

wise, set VALTYP to $00 to indicate a numeric variable. Set

INTFLG (location $0E) to $80 to indicate an integer variable if

% is found. The name is Stored in VARNAM (locations

$45-$46) with high bits set to indicate the variable type, as de
scribed in Chapter 5.

Search variable list for variable whose name is in VARNAM

(locations $45-$46) and set VARPNT (locations $47-$48) to

point to it. Create new variable if the name is not currently in

the list.

Set the carry flag if the accumulator holds A-Z.

Create a new simple (not array) variable in variable list im

mediately before arrays; name is in VARNAM ($45-$46). Any

arrays have to be moved up by seven bytes to accommodate

the new variable. Exit with locations $5F-$60 pointing to

newly created variable.
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FMAPTR

N32768

FACINX

INTIDX

AYINT

ISARY

FNDARY

BSERR

NOTFDD

INPLN2

UMULT

FRE

GIVAYF

POS

SNGET

ERRDIR

DEF

$B194/$D194

$B1A5/$D1A5

$B1AA/$D1AA

$B1B2/$D1B2

$B1BF/$D1BF

$B1D1/$D1D1

$B218/$D218

$B245/$D245

$B261/$D261

$B30E/$D30E

$B34C/$D34C

$B37D/$D37D

$B391/$D391

$B39E/$D39E

$B3A2/$D3A2

$B3A6/$D3A6

$B3B3/$D3B3

GETFNM

FNDOER

STRD

$B3E1/$D3E1

$B3F4/$D3F4

$B465/$D465

Calculate pointer value in $5F-$60, to be used when setting up

space for arrays.

Holds —32768 as a five-byte floating point number.

Convert contents of FAC1 to two-byte integer (-32768 to

+32767) in A/Y.

Fetch and evaluate a positive integer expression from the next

part of BASIC text; if result is 0-32767, store in FAC1+3 and

FAC1+4.

Convert the contents of FAC1 to integer in range 0-32767;

leave the result in FAC1+3-FAC1+4.

Get array parameters from BASIC text (number of dimensions

and number of elements) and push the values onto the stack.

Find array named in VARNAM ($45-$46), with other details of

the array stored on the stack.

?BAD SUBSCRIPT error. BSERR+3 will print 7ILLEGAL

QUANTITY error message.

If the specified array is not found, create it using details on

stack with DIMension 10.

Locate specified element within array and point VARPNT

($47-$48) to it.

Compute offset of specified array element relative to array

pointed at by VARPNT ($47-$48); put in X/Y.

Entry point for routine to handle FRE function; perform gar

bage collection and set Y/A to point to lowest string minus

pointer to end of arrays; then place in FAC1 and continue with

GIVAYF.

Convert two-byte integer in Y/A (range -32768 to +32767)

to FLPT in FAC1.

Entry point for routine to handle POS function; calls Kernal

routine PLOT to fetch cursor position, then loads it into FAC1

using SNGET.

Convert byte in Y to FLPT in FAC1 (0-255).

Test that command was not entered in direct mode;

CURLIN+1 ($3A) containing $FF indicates direct mode.

7ILLEGAL DIRECT ERROR if it was. Called by routines that

may not be used in direct mode (for example, GET).

Entry point for routine to handle DEF statement; create func

tion definition and find or set up dependent variable. When an

FN is invoked, the pointer within CHRGET is set to the begin

ning of the FN definition in the BASIC text and the expression

found there is evaluated; it is then switched back. Information

to enable it to do this is stored within the function variable set

up in GETFNM.

Check syntax of FN; find or set up variable with function name

and set DEFPNT ($4E-$4F) to point to it (must be numeric, not

string, variable).

Evaluate function; evaluate expression within parentheses in

statement invoking function, leaving it in FAC1, then evaluate

the FN expression (see DEF).

Entry point for routine to handle STR$ function; evaluate ex

pression and convert to ASCII string.
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STRINI

STRLIT

GETSPA

GARBA2

DVARS

CAT

MOVINS

FRESTR

FRETMS

CHRD

LEFTD

RIGHTD

MIDD

PREAM

LEN

LEN1

ASC

GTBYTC

VAL

GETNUM

GETADR

PEEK

POKE

WAIT

$B475/$D475

$B487/$D487

$B4F4/$D4F4

$B526/$D526

$B606/$D606

$B63D/$D63D

$B67A/$D67A

$B6A3/$D6A3

$B6DB/$D6DB

$B6EC/$D6EC

$B700/$D700

$B72C/$D72C

$B737/$D737

$B761/$D761

$B77C/$D77C

$B782/$D782

$B78B/$D78B

$B79B/$D79B

$B7AD/$D7AD

$B7EB/$D7EB

$B7F7/$D7F7

$B80D/$D80D

$B824/$D824

$B82D/$D82D

Make room in string space for a string to be inserted: A con

tains length and FAC1+3-FAC1+4 points to the string. On

exit, $61-$63 contains descriptor for new string. CHR$, LEFT$,

and so on all use this routine.

Copy a string into string space at top of memory; A/Y points

to the start of the string. Scans for quotation mark ("), colon (:),

or zero byte as terminator to determine length. Exit with

descriptor in $61-$63.

Allocate space for string, length in A, in dynamic string space

at top of memory; do garbage collection if space exhausted.

Called by STRINI.

Do garbage collection; eliminate unwanted strings in string

area and collect together valid strings. The garbage collection

routine is slow for large numbers of strings.

Search variables and arrays for next string to be saved by gar

bage collection.

Concatenate two strings.

Move string to string area high in RAM; entered with $6F-$70

pointing at the descriptor of the string to be stored.

Discard string; entered with pointer to string descriptor in

FAC1+3-FAC1+4, exits with new string length and pointer in

INDEX1.

Clean the descriptor stack.

Entry point for routine to handle CHR$ function; sets up a

one-byte string.

Entry point for routine to handle LEFT$.

Entry point for routine to handle RIGHTS.

Entry point for routine to handle MID$.

Pull string descriptor pointer to $50-$51, length to A (also

inX).

Entry point for routine to handle LEN function; floating point

value of string length parameter placed in FAC1.

Extract length of string, put in Y, leave string mode, and enter

numeric mode. Called by LEN, VAL.

ASC function; get first character of string and convert to float

ing point in FAC1. String of length 0 gives 7SYNTAX ERROR.

Read and evaluate an expression from BASIC text; must eval

uate to a one-byte value; value left in X and FAC1+4.

Entry point for routine to handle VAL function; convert value
to floating point value in FAC1.

Read parameters for WAIT and POKE from BASIC text; put
first (two-byte integer) in $14-$15, second in X.

Convert FAC1 to two-byte integer (range 0-65535) in $14-$15
and Y/A.

Entry point for routine to handle PEEK function; on entry

FAC1 contains address to be PEEKed in FLPT form; exit with
PEEKed value in Y.

Entry point for routine to handle POKE statement; fetch two
parameters from BASIC text; do POKE.

Entry point for routine to handle WAIT statement; fetch two

parameters from text, plus optional third, which is 0 if none
found; do WAIT loop.
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FADDH

FSUB

FSUBT

FADD

FADDT

COMPLT

OVERR

MULSHF

FONE

LOG

FMULT

FMULTT

MLTPLY

CONUPK

MULDIV

MUL10

TENC

DIV10

FDIVF

FDIV

FDIVT

MOVFM

MOV2F

MOV1F

MOVVF

MOVMF

$B849/$D849

$B850/$D850

$B853/$D853

$B867/$D867

$B86F/$D86F

$B947/$D947

$B97E/$D97E

$B983/$D983

$B9BC/$D9BC

$B9EA/$D9EA

$BA28/$DA28

$BA30/$DA30

$BA59/$DA59

$BA8C/$DA8C

$BAB7/$DAB7

$BAE2/$DAE2

$BAF9/$DAF9

$BAFE/$DAFE

$BB07/$DB07

$BB0F/$DB0F

$BB14/$DB14

$BBA2/$DAB2

$BBC7/$DBC7

$BBCA/$DBCA

$BBD0/$DBD0

$BBD4/$DBD4

Add 0.5 to contents of FAC1; used when rounding.

Floating point subtraction; FAC1 is replaced by MFLPT value

pointed to by A/Y, minus FAC1.

Entry point for routine to handle floating point subtraction;

FAC1 is replaced by FAC2 minus FAC1.

Floating point addition; FAC1 is replaced by MFLPT value

pointed to by A/Y, plus FAC1.

Entry point for routine to handle floating point addition; FAC1

is replaced by FAC2, plus FAC1. On entry, A holds FACl's

exponent (contents of $61) to speed the addition in the event

that FAC1 contains 0.

Replace FAC1 with twos complement of the value currently

there.

Output 7OVERFLOW ERROR message, then READY.

Multiply by a byte.

Table of constants in MFLPT format: first 1, then constants for

LOG evaluation; SQR(0.5), SQR(2), -0.5, and LOG(2).

Entry point for routine to handle the LOG function; compute

logarithm to the base e of FAC1.

Floating point multiply; FAC1 is replaced by MFLPT value

pointed to by A/Y times FAC1.

Entry point for routine to handle floating point multiplication;

FAC1 is replaced by FAC1 times FAC2.

Multiply FAC1 by a byte and store in $26-$2A.

Load FAC2 from MFPLT value pointed to by A/Y, unpacking

sign bit and storing it separately, forming FLPT format. On

exit, A holds FACl's first byte.

Test floating point accumulators for multiply and divide; if

FAC2 is 0, set FAC1 to 0; if exponents together are too large

then 7OVERFLOW ERROR. If they are too small, force the re

sult to 0 without an underflow message.

Multiply FAC1 by 10 and put result in FAC1.

The value 10 in MFLPT format.

Divide FAC1 by 10 and put result in FAC1.

Floating point division; FAC1 is replaced by FAC2 divided by

MFLPT value pointed at by A/Y; on entry, X contains sign of

result.

Floating point division; FAC1 is replaced by MFLPT divided by

FAC1.

Entry point for routine to handle floating point division; FAC1

is replaced by FAC2 divided by FAC1. On entry, A holds

FACl's first byte.

Load FAC1 from MFLPT value pointed to by A/Y, unpacking

sign bit and storing it separately, forming FLPT format.

Convert FAC1 to MFLPT format and store at $5C-$60,

TEMPFP2.

Convert FAC1 to MFLPT format and store at $57-$5B,

TEMPFP1.

Convert FAC1 to MFLPT format and store at address pointed

to by $49-$4A.
Convert FAC1 to MFLPT format and store at address pointed

to by A/Y .
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MOVFA

MOVAF

ROUND

SIGN

SGN

ABS

FCOMP

QINT

INT

FIN

AADD

STCONS

INPRT

LINPRT

FOUT

FOUTIM

TICONS

SQR

FPWRT

NEGOP

EXCONS

EXP

POLYX

RMULC

RADDC

$BBFC/$DBFC

$BC0C/$DC0C

$BC1B/$DC1B

$BC2B/$DC2B

$BC39/$DC39

$BC58/$DC58

$BC5B/$DC5B

$BC9B/$DC9B

$BCCC/$DCCC

$BCF3/$DCF3

$BD7E/$DD7E

$BDB3/$DDB3

$BDC2/$DDC2

$BDCD/$DDCD

$BDDD/$DDDD

$BE68/$DE68

$BF11/$DF11

$BF71/$DF71

$BF7B/$DF7B

$BFB4/$DFB4

$BFBF/$DFBF

$BFED/$DFED

$E059/$E056

$E08D/$E08A

$E092/$E08F

Copy FAC2 into FAC1.

Round FAC1 by calling ROUND, then copy into FAC2.

Round FAC1.

Get sign of FAC1; on exit A holds 0 if value is 0, 1 if value is

positive, or $FF if value is negative.

Entry point for routine to handle SGN function; calls SIGN,

then converts A into floating point form in FAC1.

Entry point for routine to handle ABS function; replace FAC1

with the absolute value of the current contents of FAC1.

Compare FAC1 with MFLPT value pointed to by A/Y; on exit,

A holds 0 if values were equal, 1 if FAC1>MFLPT, or $FF if

FAC1<MFLPT.

Convert FAC1 to four-byte integer in FAC1 + 1-FAC1 + 4, high

est byte first.

Entry point for routine to handle INT function; round down

FAC1 but leave it in FAC1 in FLPT form.

Convert an ASCII string (for example, "—99.375") to a float

ing point value in FAC1. On entry, TXTPTR points to the start

of the string, then JSR GETCHR/JSR FIN accomplishes the

conversion.

Add contents of A to FAC1.

Three constants used in string conversions, in MFLPT form:

99999999.9, 999999999, and 1000000000.

Print IN followed by current line number in CURLIN

($39-$3A).

Output integer in A/Y, range 0-65535.

Convert contents of FAC1 to ASCII string starting at location

$100 and ending with zero byte. On exit, A/Y holds start ad

dress, so STROUT can print string.

Convert TI to ASCII string starting at $100 and ending with

zero byte.

String and TI conversion constants: 0.5 in MFLPT form, then

15 four-byte integer constants.

Entry point for routine to handle SQR function; FAC1 is re

placed by square root of FAC1.

Entry point for routine to perform power calculation; FAC1 is

replaced by FAC2 raised to the power of FAC1. On entry, A

must hold contents of FAC2 so powers of 0 are correct.

Negate FAC1.

Table of eight constants for evaluating EXP series.

Entry point for routine to handle EXP function; FAC1 is re

placed by e raised to FAC1.

Series evaluation routine. Entered with A/Y pointing to the

counter at the beginning of the table of constants used in the

power series evaluation.

The value 11879546.4 in MFLPT format; multiplicative con
stant for RND evaluation.

The value 3.92767778E-8 in MFLPT format; additive con
stant for RND evaluation.
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RND $E097/$E094

RNDO $E09E/$E09B

QSETNR $EOBE/$EO66

RND1 $E0D3/$E0D0

RNDRNG $E0E3/$E0E0

BIOERR $E0F9/$E0F6

BGHOUT $E10C/$E109

BCHIN $E112/$E10F

BCKOUT $E118/$E115

BCKIN $E11E/$E11B

BGETIN $E124/$E121

SYS $E12A/$E127

SAVET $E156/$E153

VERFYT

LOADT

LOADR

LDFIN

$E165/$E162

$E168/$E165

$E16F/$E177

$E195/$E195

OPENT $E1BE/$E1BB

CLOSET $E1C7/$E1C4

SLPARA $E1D4/$E1D1

Entry point for routine to handle RND function; set FAC1 to a

number according to sign of FAC1 by branching to either

RNDO, QSETNR, or RND1.

If FAC1=O, Joad FAC1 from VIA timer registers; a simple way

of reseeding it with a random number.

If FACl>0, load FACl with the result of multiplying the stored

random number (in $88-$8C) generated by previous calls, by

RMULC, and adding RADDC.

If FACl<0, load FACl with mixed digits from FACl itself, so

RND with a negative argument is constant and therefore

repeatable. After any of these three conditions, FACl is stored

in $88-$8C.

Force the value in FACl into the range 0-1 excluding 0 and 1.

I/O error message routine if any of the following calls return

error flags:.

Output character; uses CHROUT.

Input character; uses CHRIN.

Set up for output; uses CHKOUT.

Set up for input; uses CHKIN.

Get one character; uses GETIN.

Entry point for routine to handle SYS statement; load A, X, Y,

and SR from locations $30C-$30F, call machine language rou

tine at address specified by the argument, then reload the reg

ister contents into $30C-$30F on return from the routine.

Entry point for routine to handle SAVE; save a BASIC pro

gram. Set A to point to address in zero page pointing to start

address, set X/Y to the value in $2D-$2E (end-of-program

pointer). Then Kernal routine SAVE is called via vector at

$FFD8.

Entry point for routine to handle VERIFY; set flag in A to in

dicate VERIFY operation, enter LOADT and check for errors.

Entry point for routine to handle LOAD; fetch parameters from

BASIC text and set them up, call Kernal routine LOAD via vec

tor at $FFD5 .

Load from device already set, into RAM starting at start-of-

BASIC address pointed to by $2B-$2C.

Finish LOAD; if LOAD was called in direct mode, set top-of-

BASIC pointer ($2D-$2E) to address of last byte loaded. This

step is omitted if the routine is called from within a program,

so variable list is preserved. Finally, reset pointer in CHRGET

and warm start BASIC to run the new program.

Entry point for routine to handle OPEN; read parameters from

text and set them up via appropriate Kernal calls; call Kernal

OPEN routine via vector at $FFC0.

Entry point for routine to handle CLOSE; read parameters from

text and set them up; call Kernal CLOSE routine via vector at

$FFC3.
Fetch parameters for LOAD, SAVE, and VERIFY from BASIC

text; set defaults if not supplied. Set up file by a call to SETLFS

via vector at $FFBA.
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COMBYT $E2OO/$E1FD

CMMERR $E20E/$E20B

OCPARA $E219/$E216

COS $E264/$E261

SIN $E26B/$E268

TAN $E2B4/$E2B1

$E2E0/$E2DD

ATN $E30E/$E30B

$E33E/$E33B

BASSFT $E37B/$E467

INIT

INITV

CPATCH

IOBASK

SCRENK

PLOTK

CINT

HOME

INITVC

$E394/$E378

CHRCPY $E3A2/$E387

INITCZ $E3BF/$E3A4

INITMS $E422/$E404

$E453/$E45B

$E4DA

$E500/$E500

$E505/$E505

$E50A/$E50A

$E518/$E518

$E566/$E581

$E5A0/$E5C3

Check for comma and evaluate the following one-byte param

eter, which is put in X.

Check for comma followed by anything other than end of

statement; otherwise, issue a 7SYNTAX ERROR message.

Get parameters from BASIC text for OPEN or CLOSE calls; set

defaults if not supplied.

Entry point for routine to handle the COS function; the value

in FAC1 is replaced by the cosine of that value.

Entry point for routine to handle the SIN function; the value in

FAC1 is replaced by the sine of that value.

Entry point for routine to handle the TAN function; the value

in FAC1 is replaced by the tangent of that value.

Table of constants in MFLPT format: tt/2, tt*2, and 0.25. Then

comes a counter value (5) and six MFLPT constants used in

evaluating SIN, COS, and TAN.

Entry point for routine to handle ATN; the value in FAC1 is

replaced by the arctangent of that value.

A counter value (11) and table of 12 constants in MFLPT for

mat for ATN evaluation.

BASIC warm start routine, entered on JMP ($A002); part of the

break sequence performed if BRK instruction encountered or

RUN/STOP-RESTORE keys are pressed. Close all I/O I/O

channels, initialize stack, output 7BREAK ERROR, and jump to

READY.

BASIC cold start routine, entered on JMP ($A000); part of the

reset sequence. Performs INITV, INITCZ, INITMS; sets stack

and jumps to READY.

CHRGET routine and RND seed in ROM for relocation into

RAM.

Initialize USR jump instruction and default vector, vectors from

$003 to $006; transfer CHRGET and RND seed to RAM; call

Kernal routines MEIvfBOT and MEMTOP to set start-of-BASIC

and top-of-memory pointers ($2B-$2C and $37-$38) from the

pointers at $282-$285 initialized on power-up. Set end-of-

program zero byte at 2048.

Output start-up message: **** CBM BASIC V2 ****, then num

ber of free bytes, then BYTES FREE.

Initialize vectors for ERROR, MAIN, etc., at $0300-$030B.

Patch to diminish screen sparkle; called from $EA0B (used by

CLR). Commodore 64 only.

Returns base address of CIA in X/Y (used by SCNKEY).

Returns screen columns (40) in X, lines (25) in Y.

Set/Read cursor row (X), column (Y).

General screen and VIC chip initialization; set up screen

editing tables at $D9-$F2, initialize VIC chip, set character

color to light blue, do CLR and HOME, reset default I/O de

vice numbers at $99 and $9A.

Home the cursor.

Initialize the VIC chip from table of values at $ECB9-$ECE6

(international variations).
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GETKBC

INPPRO

QTSWC

PRT

CHKCOL

COLTAB

SCROL

DSPP

KEY

$E5B4/$E5CF

$E5CA/$E5E5

$E684/$E6B8

$E716/$E742

$E8CB/$E912

$E8DA/$E921

$E8EA/$E975

$EA13/$EAA1

$EA31/$EABF

KBDTBL

VICINT

LDRUN

RSTRAB

SPMSG

$EB81/$EC46

$ECB9/$EDE4

$ECE7/$EDF4

$EEBB/$EFA3

$EF2E/$F09F

$F014/$F0ED

$F086/$F14F

$F0BD/$F17F

$F12B/$F1E2

$F179/$F230

$F1DD/$F29O

$F38B/$F44B

$F3D5/$F495

Get character from keyboard queue and move remaining

characters along; queue must contain at least one character on

entry (number of characters in queue is stored in $C6). On exit,

the character is in A.

Input and process SHIFT-RUN/STOP, RETURN, etc.

Flip quotes flag ($D4) if A contains quotes on entry.

Print character in A to screen, like PRINT CHR$; handles such

characters as home cursor, clear screen, delete, etc.

Test A for character color code; change color in $286 if one is

found.

Table of color-change codes, arranged Black, White, Red, Cyan,

etc.

Scroll screen up. If the top line is more than 40 characters long,

the routine scrolls up appropriate number of lines to com

pletely remove it. The CTRL key is tested for by directly

interrogating the CIA chip, and a slight delay is performed if it

is held down.

Put the character in A onto the screen at the current cursor po

sition; no checking for control characters, etc., is performed.

The color for the character is held in X.

Interrupt servicing routine: All IRQ interrupts are processed by

this routine unless the vector in $0314-$0315 has been altered.

The functions of KEY are to update the clock and location $91

using Kernal routine UDTIM, maintain flashing cursor if cursor

is enabled (see $CC-$CF), set the cassette motor on or off

according to the flags at $C0, and test the keyboard for new

character using Kernal routine SCNKEY. Finally, the interrupt

register at $DC0D in the CIA is cleared; the A, X, and Y reg

isters are pulled from the stack and restored; and a return from

interrupt instruction (RTI) continues processing the main

program.

Tables to convert keyboard matrix values to CBM ASCII

values.

Table of values from which VIC chip is initialized (the exact

values vary internationally, depending on the local television

standards).

The characters LOAD <RETURN> RUN <RETURN>, trans

ferred to the keyboard queue when SHIFT-RUN/STOP is

pressed.

Part of the routine used by NMI when servicing RS-232

output.

Flag RS-232 errors into ST byte.

Output RS-232 character.

Get RS-232 character.

Tape messages.

Output Kernal message from table starting at $F0BD if flag at

$9D is set.

Get character from tape.

Output character to tape.

Open tape file.

Open serial device (printer, disk) file.
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FAH

READ

WRITE

START

RAMTAS

IOINIT

NMI

$F409/$F4C7

$F4BF/$F563

$F539/$F5D1

$F5FA/$F692

$F65F/$F6F8

$F6FB/$F77E

$F72C/$F7AF

$F76A/$F7EF

$F7EA/$F867

$F84A/$F8C9

$F867/$F8E6

$F92C/$F98E

$FBA6/$FBEA

$FCE2/$FD22

$FD50/$FD8D

$FDA3/$FDF9

$FE43/$FEA9

Open RS-232 file.

Load from disk.

Load from tape.

Save to disk.

Save to tape.

Table of I/O error numbers (1-9) and messages.

Load next tape header.

Write tape header.

Load named tape header.

Load tape.

Write tape.

Routines for tape reading.

Routines for tape writing.

Reset routine; entered from the 6510/6502 RESET vector at

$FFFC. If a ROM cartridge is present, JMP ($8000) runs it.

Otherwise, the routine calls RAMTAS, RESTOR, IOINIT,

CINT, and NEW. Note that all other RAM is unaltered, so

BASIC programs can be recovered after reset.

Fill low RAM (except for the stack area) with zeros, find the

start and end of contiguous RAM for BASIC, and set the

appropriate screen position according to the amount of mem

ory present.

Initialize CIA chips on power-up.

NMI routine; entered from the 6510/6502 NMI vector at

$FFFA. The JMP ($318) at $FE44 routes control back to $FE47;

altering this vector is one way to modify RUN/STOP-

RESTORE. If the RUN/STOP key is down, Kernal routines

RESTOR, IOINIT, and CINT are called, and a warm start of

BASIC is performed by doing a JMP ($A002). This sequence is

also performed on BRK. Otherwise, the interrupt is the result of

RS-232 activity.

RS-232 baud rate table (22 bytes; varies internationally).

IRQ or BRK routine; entered from the 6510/6502 IRQ vector at

$FFFE. Save the contents of A, X, and Y on the stack, and

examine the status register already pushed onto the stack to

determine whether a hardware IRQ interrupt or the execution

of a BRK instruction occurred. If it was a standard IRQ inter

rupt, perform JMP ($314), usually to KEY at $EA31; if it was a

BRK operation, JMP ($316), usually to part of the NMI se

quence at $FE66, which resets chips and restarts BASIC.

Kernal Jump Table Routines

In Commodore computers, the uppermost half-page of ROM contains a very im
portant collection of vectors known as the Kernal jump table. Each three-byte table
entry consists of a JMP instruction and a two-byte address. The JMP may be either a
direct JMP to an absolute address in ROM, or an indirect JMP through a RAM vec
tor, such as those in locations $314-$333. The significance of the table is that the
location of table entries should remain fixed regardless of future revisions of the
ROM routines.

PULS

$FEC2/$FF5C

$FF48/$FF72
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For example, if you use JMP $FFD2, the jump table entry for the CHROUT rou

tine, you could have some assurance that your program would still work on future

64s; moreover, that jump table entry would also work on the Commodore VIC-20

and PET/CBM computers. On the 64, JMP $FFD2 arrives at $F1CA via an indirect

jump through the RAM vector in locations $326-$327.

The 64's Kernal jump table begins at location $FF81. Note that the table entries

have their own labels, which may be different from the labels of the routines they

point to.

Label

PCINT

IOINIT

RAMTAS

RESTOR

VECTOR

SETMSG

64/VIC

$FF5B/$E518

$FDA3/$FDF9

$FD50/$FD8D

$FD15/$FD52

$FD1A/$FD57

$FE18/$FE66

Jump Table

Entry

$FF81 CINT

$FF84 IOINIT

$FF87 RAMTAS

$FF8A RESTOR

SFF8D VECTOR

SECNDK $EDB9/$EEC0 $FF93 SECOND

TKSAK $EDC7/$EECE $FF96 TKSA

MEMTOP

MEMBOT

SCNKK

SETTMO

ACPTRK

CIOUTK

UNTLKK

UNLSNK

LISTNK

TALKK

JIEADSS

SETLFS

SETNAM

NOPEN

NCLOSE

NCHKIN

$FE25/$FE73

$FE34/$FE82

$EA87/$EB1E

$FE21/$FE6F

$EE13/$EF19

$EDDD/$EEE4

$EDEF/$EEF6

$EDFE/$EF04

$ED0C/$EE17

$ED09/$EE14

$FE07/$FE57

$FE00/$FE50

$FDF9/$FE49

$F34A/$F40A

$F291/$F34A

$F20E/$F2C7

$FF99 MEMTOP

$FF9C MEMBOT

$FF9F SCNKEY

$FFA2 SETTMO

$FFA5 ACPTR

$FFA8 CIOUT

$FFAB UNTALK

$FFAE UNLSN

$FFB1 LISTN

$FFB4 TALK

$FFB7 READST

$FFBA SETLFS

SFFBD SETNAM

$FFC0 OPEN

$FFC3 CLOSE

$FFC6 CHKIN

Descriptions

Initialize screen editor and video chip, set

interrupt frequency.

Initialize input/output chips.

Test and initialize RAM.

Restore standard input/output vectors.

Store/set input/output vectors.

Enable/disable Kernal control message out

put to screen.

Send secondary address for LISTEN com

mand on serial bus; LISTEN must be called

before using this routine.

Send secondary address for TALK com

mand on serial bus; TALK must be called

before using this routine.

Read/set BASIC top-of-memory limit.

Read/set BASIC bottom-of-memory limit.

Scan keyboard.

Set serial bus time-out.

Get a byte from a serial device (usually

disk).

Output a byte to a serial device (usually a

printer or disk).

Send an UNTALK command to devices on

the serial bus.

Send an UNLISTEN command to devices

on the serial bus.

Cause a device on the serial bus (usually a

printer or disk) to listen.

Cause a device on the serial bus (usually a

disk drive) to talk.

Read status byte into A.

Set file number, device number, and

secondary address.

Set filename.

Open a file for reading or writing. Uses

RAM vector at $031A.

Close a file. Uses RAM vector at $031C.

Prepare a file for input. Uses RAM vector at

$031E.
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Prepare a file for output. Uses RAM vector

at $0320.

Restore default I/O devices. Uses RAM vec

tor at $0322.

Get a character from the designated input

device. Uses RAM vector at $0324.

Send a character to the designated output

device. Uses RAM vector at $0326.

Load data into memory from disk or tape.

Save memory block to disk or tape.

Set TI clock.

Read TI clock.

Test whether RUN/STOP key is pressed.

Uses RAM vector at $0328.

Get a character, usually from the keyboard.

Uses RAM vector at $032A.

Abort all I/O and close all files. Uses RAM

vector at $032C.

Add 1 to TI clock; reset to 0 if the count

reaches 240000.

Return the maximum number of screen col

umns and rows in X and Y (40 and 25,

respectively, for the Commodore 64).

Move the cursor to a specified row and col

umn, or read the current row and column

position of the cursor.

Find the starting address of the keyboard

CIA chip registers.

6510/6502 Hardware Vectors

The 6510/6502 microprocessor chip reserves the highest six bytes of the address

space (locations $FFFA-$FFFF) for use as vectors. These three vectors point to

routines that handle processing under three special sets of circumstances. The chip

automatically causes a JMP through one of these vectors when external hardware

sends a signal on the 6510/6502's NMI, RESET, or IRQ lines.

The list below shows the label of the vector, the address of the first byte of the
vector, and the address to which the vector points in the 64 and VIC.

Descriptions

When the 6510/6502 receives an NMI (Non-Maskable

Interrupt) signal, it causes a jump to the address held
here.

When the 6510/6502 receives a RESET signal, it causes a
jump to the address held here.

When the 6510/6502 receives an IRQ (Interrupt Re-
Quest) signal or processes a machine language BRK

instruction, it causes a jump to the address held here.

NCKOUT

NCLRCH

NBASIN

NBSOUT

LOADSP

SAVESP

SETTMK

RDTIMK

NSTOP

NGETIN

NCLALL

UDTIMK

SCRENK

PLOTK

IOBASK

$F250/$F309

$F333/$F3F3

$F157/$F20E

$F1CA/$F27A

$F49E/$F542

$F5DD/$F675

$F6E4/$F767

$F6DD/$F760

$F6ED/$F770

$F13E/$F1F5

$F32F/$F3EF

$F69B/$F734

$E505/$E505

$E50A/$E50A

$E500/$E500

$FFC9 CHKOUT

$FFCC CLRCHN

$FFCF CHRIN

$FFD2 CHROUT

$FFD5 LOAD

SFFD8 SAVE

$FFDB SETTIM

$FFDE RDTIM

$FFE1 STOP

$FFE4 GETIN

$FFE7 CLALL

$FFEA UDTIM

$FFED SCREEN

$FFF0 PLOT

$FFF3 IOBASE

Label

NMI

RESET

IRQ

Vector

$FFFA

$FFFC

$FFFE

64/VIC

$FE43/$FEA9

$FCE2/$FD22

$FF48/$FF72
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Chapter 12

Graphics

This chapter starts with the simplest types of graphics using only ordinary BASIC

and progresses to full-screen graphics and motion. All the special graphics effects of

the 64 are covered.

Graphics with Basic
Effective graphics can be obtained with ordinary BASIC. Before going into program

ming details, here's a look at the way the 64 stores its standard characters.

Each character is made up of 8 dots by 8 dots on the screen. (Commodore's

printers use different dot layouts and cannot easily give an identical copy of the

screen—apart from the difficulty with color.) The actual pattern of dots making up

each character is stored in ROM at $D000 (53248) to $DFFF (57343), a total of 4K

bytes of memory. There are four subdivisions of this ROM:

$D000-$D3FF Uppercase plus extended graphics

$D400-$D7FF Reversed uppercase plus extended graphics

$D800-$DBFF Lowercase with uppercase and some graphics

$DC00-$DFFF Reversed lowercase with uppercase and some graphics

This is where the character ROM is placed from the point of view of the 6510;

as you'll see in the section on user-defined graphics, the VIC-II chip is wired to

"see" the character ROM elsewhere in memory.

Each byte is made up of eight bits, which correspond neatly to a single row of
dots in a character definition. So every character takes eight bytes to define. For ex

ample, the first definition, for the @ sign, from 53248, is stored like this:

Bit Equivalent Which

Byte Value Defines the Character

28 ($1C) 00011100

34 ($22) 00100010

74 ($4A) 01001010

86 ($56) 01010110

76 ($4C) 01001100

32 ($20) 00100000

30 ($1E) 00011110

0 ($00) 00000000

Each 1 in the character definition appears on the screen as the foreground color
and each 0 as the background color. Elsewhere in the ROM, similar patterns appear.

The eight bytes from 54272, for example, correspond to the reverse-video @ and
have exactly the opposite bit pattern; dots which were foreground with @ are now

background and vice versa.

Since the total amount of memory dedicated to character definitions is 4K, it
provides room for 4096/8 = 512 characters. Because the screen memory area holds
only ordinary bytes, it is possible for each position in the screen RAM to select only
1 of 256 possibilities; thus, 256 characters at most can be displayed simultaneously.
In BASIC, much of the screen usually contains spaces, of course, so the display is
made from some of the 254 nonspace characters. There are two distinct sets of
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characters; SHIFT-Commodore key switches between them by directing the VIC-II to

fetch its character definitions either from $1000, which is set when the 64 is

switched on and is the uppercase mode, or from $1800, lowercase mode. Lowercase

can be selected by PRINT CHR$(14), and uppercase by PRINT CHR$(142).

The two sets are identical to those in Commodore's other machines; the idea is

that one can be used for word-processing applications, where the distinction between

capital and lowercase letters is important, and the other can be used for pictorial

applications, for example, using playing-card symbols. Because of this they are often

called text and uppercase/graphics modes.

This simple program displays all 256 characters of either mode in white at the

top of the screen. Press SHIFT-Commodore key to flip between modes; note how

many characters are present in both modes:

10 FOR J=0 TO 255: REM 256 CHARACTERS NEED 256 SCREEN LOCATIONS

20 POKE 1024+J, J: REM SCREEN STARTS AT 1024: POKE 0,1,2 ETC

30 POKE 55296+J,l: REM SET COLOR RAM TO WHITE

40 NEXT

Tables of these characters are available for reference in the Appendices. Apart

from space and SHIFT-space, which PEEK as 32 and 96, there is no duplication of

character definitions. There is a rather confusing distinction between characters as

they are POKEd into the screen (Appendix I) and character codes that are printed

(Appendix H). PRINT translates many characters in special ways—changing color,

clearing the screen, moving the cursor up and down or to the top of the screen, and

so on. Some, like RETURN, are fairly standard, while others are peculiar to the 64.
Appendix G lists the control functions associated with certain ASCII codes. True

ASCII reserves the first 32 character codes for control information, and Commodore
has borrowed this idea. The displayed characters corresponding to PRINTed codes
are in fact closer to true ASCII than is the case in earlier CBM machines, so conver
sion to true ASCII is easier. However, the upper- and lowercase alphabets are inter
changed in relation to true ASCII.

Only some of the 256 screen characters can be displayed by using statements of
the form PRINT CHR$(N). Since some CHR$ codes are for control purposes, like
cursor-move commands, there are only 128 ordinary printing characters; all are

obtainable by typing key combinations on the keyboard. The reverse feature allows
any of the 256 screen characters to be displayed using PRINT; the ordinary character
is preceded by a {RVS} character.

Within both blocks of 256 characters, reverse characters are arranged in step
with the unreverse characters, but displaced by 128. An easy way to reverse charac
ters in the screen RAM is to set bit 7, or in BASIC terms, add 128 (or, OR 128). Try
POKE 55296,1 (to set the color RAM location for the top left of the screen) then
POKE 1024,128. The fact that this flag or {RVS} is necessary to print a complete
graphics set can be irritating if you have laboriously designed a large graphic display
on the screen. It is impossible to save reverse characters in strings by inserting a line
number and quotation marks before the characters, and then pressing RETURN In
stead, the strings need embedded {RVS} and {OFF} characters to flip between
modes. Block saving of the relevant part of memory may be best. See Chapter 6.

There is no simple translation between unSHIFTed and SHIFTed keys but
usually setting bit 6 of the screen code to 1 displays the SHIFTed version. In BASIC
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terms, add 64 (or, OR with 64). Try POKE 55296,1: POKE 55297,1 to set the color
RAM, then POKE 1024,1, and POKE 1025,65 in lowercase mode.

Note that the pairs of characters on the front right of most keys apply only in
uppercase/graphics mode, the mode selected when the machine is switched on.
After SHIFT-Commodore key puts the machine into lowercase, only the left-hand
graphics symbol can be displayed on the screen, and a SHIFTed key gives the upper
case version, except for a few keys with no SHIFTed version, like @ and *. So the
right-hand set of graphics is unobtainable in lowercase mode. Fortunately, some very
useful graphics are retained; for example, boxes can be ruled on the screen, in either
mode, using Commodore key-A, Commodore key-S, Commodore key-Z, Com

modore key-X, SHIFT-* and SHIFT-.
Toggling between the two modes with SHIFT-Commodore key can be disabled

by PRINT CHR$(8) and reenabled with PRINT CHR$(9), or with POKE 657,128 and
POKE 657,0 which set the relevant flags. If programs with user-defined characters
fail to disable this toggle, SHIFT-Commodore key can produce odd results as charac

ter definitions are looked for in a region $800 bytes away from that intended by the

programmer.

Some graphics symbols are missing from the keys. Thirty-one keys have a pair
of symbols, making 62. Adding pi and SHIFT-space gives 64 graphics characters. But

four characters, only accessible in lowercase mode, also exist and are listed in the
cross-reference table of graphics: they are Commodore key-up arrow (checkerboard
characters), Commodore key-* and SHIFT-E (sloping diagonal lines), and SHIFT-@

(a square root or check mark).

Printing BASIC Graphics
This is certainly the easiest way to produce graphics effects. First, though, let's exam
ine what PRINT actually does. PRINT has to interpret the information it's given and,
in the case of printing characters, convert them into POKEs into the correct part of
screen and color RAM. In the case of special, nonprinting characters, PRINT per
forms operations like selecting uppercase mode, changing foreground color, moving
the cursor around on the screen, and so on. This is complicated and relatively slow.
It uses memory locations to store current color (646/$286), status of the reverse flag
(199/$C7), and the position on the screen at which the next character is to be
printed (row is 214/$D6, column is 211/$D3), among other things. Try POKE 646,7.

The 64 now prints in yellow, as though you'd typed PRINT "{YEL}" or CTRL-YEL.
POKE 199,1: PRINT "HELLO" prints HELLO in reverse. The reverse flag is, how

ever, turned off when RETURN is printed.
PRINT uses the Kernal output routine $FFD2 to put characters in the screen. Try

POKE 780,65 : SYS 65490. This uses $FFD2 and has the same effect as PRINT
CHR$(65). ML programmers can trace the routine to $E716; program control goes to
$E7D4 for characters above 128, while characters from 0 to 127 are processed from
$E72A. Comparison instructions look for RETURN, space, SHIFT-space, and so on.

The actual routine which POKEs the character is at $EA1C. The accumulator holds

the character and the X register holds its color code.
Examples using PRINT. Programmers unused to the graphics set, or looking

for new ideas on graphics, could experiment with a short program like Program 12-

1, which fills the screen with repeats of whatever string is entered:
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Program 12-1. Simple Print Demo

10 INPUT "GRAPHICS";G$
20 PRINT "{CLR}";

30 PRINT G$;:IF PEEK(214)<23 THEN 30
40 PRINT:GOTO 10

Try, for example, Commodore key-* and SHIFT-E, or Commodore key-A, Com
modore key-S, Commodore key-Z, and Commodore key-X, or other combinations
of characters, generally in uppercase/graphics mode.

If the string is preceded by quotes, {RVS} and color-change characters may be
included as in this example:

?"Sn(BLK} {SP£CE} {WHT} {SPACE> (RED) {SPACE} {CYN} {SPACE} {PUR} {SPACE}

Program 12-2 fills the screen with a repetitive design based on three shapes
which are designed to match, like tiles, when put next to each other, at least as far as
the character set allows. Try also SHIFT-E, Commodore key-*, and Commodore
key-+ characters. (We'll see more impressive examples when we deal with user-
defined characters.)

Program 12-2. Simple Design

10 A$(0)= "N":A$(l)= "M":A$(2) = liV"
20 X$="":L=RND(1)*20+1 "~
30 FOR J=l TO L

40 X$=X$+A$(RND(1)*3):NEXf

50 FOR J=l TO 999/L:PRINT X$;:NEXT
60 GET X$:IF X$="" THEN 60

70 RUN

Program 12-3 shows how strings can be overprinted to produce the effect of
movement. The colored message is continuously scrolled to the left:

Program 12-3. Simple Motion

10 S$=M{WHT}THIS IS {CYN}A {PUR} {RVS}MOVING{OFF}
{SPACE}{GRN}MESSAGE! "

20 FOR J=l TO LEN(S$)

30 PRINT MID$(S$,J)LEFT$(S$,J)

40 C$=MID$(S$,J,1)

50 IF C$>= " " AND C$<="Z" THEN FOR K=l TO 50: NEXT

60 PRINT "{UP}";: NEXT: RUN

In Program 12-4, four substrings are extracted from the graphics string B$ and
are printed to give four rows of characters, alternate rows moving in opposite direc
tions across the screen:
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Program 12-4. Froggie Graphics

10 POKE 53281,0:POKE 53280,0:PRINT "{WHT}{CLR}"

20 A$="{7 SPACES}11
30 B$=A$+ " Q"+A$+"A"+A$+"Z"+A$+"S"+A$+"X "

40 B$=B$+B$+B$+B$

100 FOR J=l TO 40

110 D1$=MID$(B$,J,40)

120 D2$=MID$(B$,80-J,40)

130 D3$=MID$(B$,J+20,40)

140 D4$=MID$(B$,100-J,40)

150 PRINT "{HOME}H+D1$+"{HOME}{3 DOWN}H+D2$+M

{HOME}{6 DOWN}"+D3$+"{HOME}{9 D0WN}"+D4$

160 NEXT:FOR D=l TO 50:NEXT:GOTO 100

Lines 110-140 extract the substrings from a different position in B$ with each
pass through the loop; each substring is like a window moving along the string. Line

150 prints them, first positioning the cursor at the top-left position of the screen and

spacing them out vertically using {DOWN} characters. B$ contains a repeating cycle

of 40 characters (graphics characters separated by spaces) to produce continuity in

the movement of the graphics characters.

In Program 12-5, colors are randomly selected and mirrored, using string arrays,

to give an attractive symmetry when used to color reverse spaces (see line 60). Each

display takes about 15 seconds to generate. Because of the large number of strings

and despite the fact that most are very short, there is a potential problem with gar

bage collection. The CLR in line 70 discards all the strings that have just been used,

allowing the next display to be constructed with a completely uncluttered string

memory, and avoids the problem.

Program 12-5. Kaleidoscope
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

5 POKE 53281,0:POKE 53280,0:PRINT"{CLR}" :rem 40
10 DIM M$(38,19),A$(19),RN$(38) :rem 246
15 CO$="{BLK}{WHT}{RED}{CYN}{PUR}{GRN}{BLU}{YEL}

Bl3g23g33E4lB5§B63B73E8i" :rem 13

20 FOR J=0 TO 38:RN$(J)=MID$(CO$#RND(1)*16+1,1)+"

{SPACE}11:NEXT :rem 173

25 FOR J=8 TO 19:FOR K=0 TO J:C$=RN$(J-K) :rein 149

30 M$(K,J)=C$:M$(J,K)=C$ :rem 235

35 M$(38-J,K)=C$:M$(38-K,J)=C$ :rem 32

40 NEXT:NEXT :rem 28

45 FOR J=8 TO 19:A$( J) = fl" :FOR K=0 TO 38 : rem 190

50 A$(J)=A$(J)+M$(K,J) :rem 80

55 NEXT:NEXT :rem 34

60 PRINT "{HOME}":FOR J=8 TO 19:PRINT "{RVS}" A$(J
):NEXT :rem 205

65 FOR J=18 TO 8 STEP-1:PRINT "{RVS}" A$(J):NEXT
:rem 77

70 CLR:GOTO 10 :rem 28
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POKEing BASIC Graphics

PRINTing to the screen involves the 64 in time-consuming calculations, but

POKEing to the screen can be even slower. POKE itself is not a fast command in

BASIC. Machine language "pokes" that write characters directly to the screen RAM

are much faster than BASIC ones, because the 6510 processor has fundamental com
mands which perform this function of transferring data from one memory location to

another. But the BASIC POKE command spends a lot of time in calculations, so

there is no great speed advantage. Color RAM will also need to be POKEd, unless

the screen background color has been selected to make this unnecessary or the color
RAM is already set satisfactorily. FOR 1=0 TO 999: POKE 1024+I,1:POKE

55296+1,1: NEXT fills the whole screen. Note that it's slower, in fact, than
PRINTing.

POKE has some advantages over PRINT. Any part of the screen can be changed
without the need to keep track of the cursor position. PRINT is also liable to produce

unwanted effects, like scrolling the screen when the bottom-right character is

printed, and linking two lines together which makes the effect of RETURN un

predictable. POKEing has none of these side effects. The complete character set is

available using POKE, too, without the need to use {RVS}.

To POKE to the screen, you need to know where the screen is. For now, the dis

cussion will concern itself with the default position. Later you'll see how to move the

screen around in the 64's memory. The screen can display 25 lines, each containing

40 characters, so its RAM consists of 1000 memory locations. It normally lies be

tween 1024 ($0400) and 2023 ($07E7); the color RAM, each byte of which corre

sponds to a byte in the screen RAM, is at 55296 ($D800) to 56295 ($DBE7). Note

that the color RAM is always here, irrespective of which bank the VIC-II chip is cur

rently looking at. If you are unused to color RAM, try POKE 1024+40*3,1: POKE

55296+40*3,0 to plot a black A at the start of the third line. It is essential to know

what value to POKE; consult Appendix I for a table of the 256 characters available
by POKEing, in both lowercase and uppercase mode.

As an example, Program 12-6 puts solid squares of random color onto random
locations in the 64's screen:

Program 12-6. Simple Poke

10 L=RND(1)*1001

20 POKE 1024+L,160

30 POKE 55296+L,RND(l)*16

40 GOTO 10

Finding the offset from the start of the screen for any given line and column is

simple if you take some care in numbering: it is easiest to start at 0, so the horizontal

position is 0-39, and the vertical position is 0-24, with 0 being the top of the screen.

The offset is then 40*vertical position + horizontal position. The subroutine below,

Program 12-7, POKEs the character X with color C into the screen at position H
across and V down.
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Program 12-7. Simple Subroutine Poke

30000 POKE 1024+40*V+H,X

30010 POKE 55296+40*V+H,C

30020 RETURN

The next example program draws a maze. This example (based on the work of

C. Bond in COMPUTED First Book of Commodore 64 Games—which includes an ML

translation) draws a simply connected maze (a maze that is basically a contorted tube

with no isolated islands within it). The algorithm uses space characters to mark

boundaries, so there's an unused border of space characters. This version selects a

random start point, and on finishing, POKEs A and B into the two points furthest re

moved from each other in the maze. Line 114 records the current longest path and

can be deleted. Conversion to ML is needed to make it run faster; white-on-white

plotting, for example, followed by color RAM POKEs is necessary if the plotting pro

cess is to be invisible.

Program 12-8. Maze Demo
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 POKE 53280,PEEK(53281):PRINT "{CLR}11 :rem 213

20 A(0)=-2:A(1)=-80:A(2)=2:A(3)=80 :rem 160

30 SC=1024:A=SC+81+80*INT(10*RND(1))+2*INT(10*RND(

1)) :rem 125

40 FOR J=l TO 23:PRINT"{RVS}{39 SPACES}11:NEXT
:rem 161

100 POKE A,4 :rem 97

110 J=INT(RND(1)*4):X=J :rem 50

112 IP S>SMAX THEN SMAX=S:FIN=B :rem 123

114 PRINT "{HOME}" SMAX;FIN :rem 203
120 B=A+A(J):IF PEEK(B)=160 THEN POKE B,J:POKE A+A

(J)/2,32:A=B:S=S+1:GOTO 110 :rem 224

130 J=J+1 AND 3:IF J<>X THEN 120 :rem 110

140 J=PEEK(A):POKE Af32:S=S-1:IF J<4 THEN A=A-A(J)

:GOTO 110 :rem 8

150 POKE A,1:POKE FIN,2 :rem 7

160 GOTO 160 :rem 103

Graphics with Machine Language
BASIC is likely to be slow when dealing with graphics. This section discusses typical
ML methods, which are much faster. Knowledge of machine language is not nec

essary to run these examples.

Printing Characters to the Screen
The routine at $FFD2, the Kernal's CHROUT routine, behaves like PRINT, except
that it's your responsibility to store the characters you want to be printed in RAM.
The speed advantage is considerable, but the price to be paid is the need to organize
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memory. Type in the following short BASIC program, which loads the machine lan

guage routine. The last line of Program 12-9 holds the ASCII values for the letters

HELLO preceded by a space and followed by a zero byte which signals the end of
the string.

Program 12-9. Simple ML Output
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49152 TO 49171:READ X:POKE J,X:NEXT

:rem 219

20 DATA 162,0,189,14,192,240,6 :rem 188

30 DATA 32,210,255,232,208,245,96 :rem 84

40 DATA 72,69,76,76,79,0 :rem 172

This is

RPT

LOOP

EXIT

the ML

LDX

LDA

BEQ

JSR

INX

BNE

RTS

#$00

TABLE,X

EXIT

$FFD2

LOOP

; X TO 0. USED AS POINTER

; GET NEXT CHARACTER

; 0 SIGNALS END OF STRING

; OUTPUT CHARACTER

; INCREMENT POINTER

; CONTINUE

TABLE .BYT "HELLO",0 ; STRING TERMINATED BY 0: MAX LENGTH 255

Run Program 12-9 to load the ML, then type SYS 49152 to print HELLO. Al

though this example uses only straightforward lettering, the technique can easily be
extended to include color change or cursor-move characters so that a 3 X 3 colored

block of characters, say, can be printed at the current cursor position with a SYS call.

Reversing Part of the Screen

This effect, useful in highlighting parts of the screen or making them flash (by
repeating the reversal several times) is easy to obtain. The high bit of each character
code in screen RAM determines whether it's reverse or not; all we need to do is re
place each character by its equivalent with the high bit reversed. LDA from an ad
dress, EOR #$80 to flip the high bit, then STA back into the address does this in
ML. The program given here has been made user-friendly by incorporating param
eters. It is relocatable, but the loader places it at 49152. When it's been loaded SYS
49152,1024,40 reverses 40 characters starting at 1024, the topmost line of the 64's
screen.

Program 12-10. ML Reverse
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C

10 FOR J=49152 TO 49178:READ X:POKE J,X:NEXT

:rem 226

20 DATA 32,178,177,165,100,133,253,165,101 :rem 12
30 DATA 133,252,32,155,183,138,168,136,177 :rem 29
40 DATA 252,73,128,145,252,136,16,247,96 :rem 188

Here is the ML routine this loads:
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START JSR

LDA

STA

LDA

STA

JSR

TXA

TAY

DEY

LOOP LDA

EOR

STA

DEY

BPL

RTS

$B1B2

$64

$FD

$65

$FC

$B79B

<$FC), Y

#$80

($FC), Y

LOOP

FETCH START ADDRESS FOR REVERSAL OPERATION

; ($FC) POINTS TO START ADDRESS IN SCREEN

; FETCH NUMBER OF CHARACTERS TO BE REVERSED

; Y HOLDS THIS VALUE

Other related effects include reversing all characters, with ORA #$80, and

unreversing all characters with AND #$7F. Flashing the whole screen is more easily

done by altering the background color rather than the characters—a couple of

POKEs to 53281 ($D021) are all you need.

Plotting Rows or Columns

Table 12-1 groups similar graphics characters together. From the layout it is clear

that the completeness of the graphics set enables some progress to be made toward

accurate graphics. To show the approach, we'll write a routine which plots vertical

columns on the screen, to the nearest 1/8 square (with 0-7 rows of dots on top of

each column of solid characters).

Program 12-11. Histogram Demo
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

1 DATA 32,178,177,165,100,133,252,165,101,133,251,

32,155,183,134,143 :rem 9

2 DATA 32,155,183,138,160,0,201,8,144,38,233,8,72,

169,160,145,251,165 :rem 68

3 DATA 251,133,253,165,252,41,3,9,216,133,254,165,

143,145,253,165,251 :rem 67

4 DATA 233,40,133,251,165,252,233,0,133,252,104,17

6,214,170,240,21,189 :rem 99

5 DATA 88,192,145,251,165,251,133,253,165,252,41,3

,9,216,133,254,165 :rem 31
6 DATA 143,145,253,96,100,111,121,98,248,247,227,1

60 :rem 5

10 FOR J=49152 TO 49248;READ X:POKE J,X:NEXT

:rem 224

100 FOR J=0 TO 39 :rem 62
110 SYS 49152,1024+24*40+J,J,J+64:NEXT :rem 23

150 FOR D=l TO 1000:NEXT :rem 12
200 FOR J=0 TO 39 :rem 63

210 SYS 49152,1024+20*40+J,2,SIN(J*t/20)*80+81:NEX
T :rem 130
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Line 10 loads the ML routine into RAM. To make the routine easy to use, three

parameters are input as part of the SYS call. The syntax is:

SYS 49152,bottom of column, color, height

Lines 100-120 draw columns with increasing heights across the screen; lines

200-210 draw a histogram derived from a sine wave. Finding the offset from the

start of the screen is simple with some care in numbering: it is easiest to start at 0, so

the horizontal position is 0-39 and the vertical position is 0-24. Now the offset is

40*vertical position + horizontal position. The parameters to the SYS call in line 110

illustrate this.

Table 12-1. Quick Cross Reference to 64 Graphics

KEY:

CHR$:

POKE:

C-@

228

100

SH-R

210

82

SH-F

198

70

SH-*

192

64

SH-C

195

67

SH-D

196

68

SH-E

197

69

C-T

227

99

KEY:

CHR$:

POKE:

C-G
229

101

SH-T
212

84

SH-G
199

71

SH-B
194

66

SH--
221

93

SH-H
200

72

SH-Y
217

89

C-M
231

103

KEY:

KEY:

CHR$:

POKE:

C-@

228

100

C-P

239

111

C-O

249

121

REVERSE, CHR$(18), THEN-

C-I C-U C-Y C-T SH-space

226 184 183 163 160

98 248 247 227 224

u y m m *
KEY:

KEY:

CHR$:

POKE:

C-G
229

101

C-H

244

116

C-J
245

117

C-K

225

97

REVERSE, CHR$(18), THEN-

C-L C-N C-M SH-space

182 170 167 160

246 234 231 224

□ □ i
KEY:

CHR$:

POKE:

SH-O
207

79

□

SH-P

208

80

SH-@
186

122

SH-L
204

76

SH-V
214

86

SH-+

219

91

SH-M
205

77

□ D

SH-N

206

78

KEY:

CHR$:

POKE:

C-X
189

125

C-Z
173

109

C-A
176

112

C-S
174

110

C-E
177

113

C-R
178

114

C-W
179

115

C-Q
17f
107
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KEY:

CHR$:

POKE:

C-V

190

126

C-C
188

124

C-D
172

108

C-F
187

123

H H

C-B
191

127

C-I
226

98

C-K
225

97

KEY:

CHR$:

POKE:

SH-K

203

75

SH-J
202

74

SH-U
213

85

SH-I

201

73

SH-W
215

87

SH-Q

209

81

J
r o •

KEY:

CHR$:

POKE:

SH-£
169

105

C-*
223

95

C-+
166

102

C-£
168

104

220

92

KEY:

CHR$:

POKE:

SH-A

193

65

SH-S
211

83

SH-Z

218

90

SH-X

216

88

SH-t

222

94

* ♦ 4

Notes:

1. C- means press the Commodore key and the indicated character; SH- means press the SHIFT key and the

indicated character.

2. There are ambiguities in many of the CHR$ figures—CHR$(227) or CHR$(163) for example might equally

well be chosen. I've preferred the values with a constant difference of 64 or 128 from the screen

POKE/PEEK value.

3. As the characters are made of 8 x 8 dots, a line cannot appear exactly in the center of any character; some

characters, when positioned as neighbors, will not exactly line up together.

4. In lowercase mode, some characters aren't available; those with POKE values 65-90 appear as A-Z. The full

128 graphics characters are obtained by reversing all those in the table, whether by PRINTing the reverse

character first or by POKEing the values listed here + 128.

5. Four extra graphics, obtainable only in lowercase mode, are:

Double-Density Graphics
This program exploits the fact that all 16 possible graphics with internal quadrants

exist on the 64.

Program 12-12. Double Density
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 DATA 32,155,183,134,5,32,155,183,134,6,32,155

:rem 50
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11 DATA 183,134,2,165,5,-48,89,201,80,176,85,165,6

:rem 120

12 DATA 48,81,201,50,176,77,169,0,133,4,169,50,229

:rem 163

13 DATA 6,70,5,38,4,106,38,4,133,6,166,4,169,0,133

:rem 146

14 DATA 4,133,210,56,38,4,202,16,251,165,6,10,10

:rem 30

15 DATA 101,6,10,38,210,10,38,210,10,38,210,133,20

9 :rem 167

16 DATA 169,4,101,210,133,210,164,5,177,209,162,15

:rem 145

17 DATA 221,117,192,240,4,202,16,248,96,138,5,4,17

0 :rem 203

18 DATA 189,117,192,145,209,32,36,234,165,2,145,24

3 srem 219

19 DATA 96,32,126,123,97,124,226,255,236,108,127

:rem 74

20 DATA 98,252,225,251,254,160 :rem 197

100 FOR J=49152 TO 49284:READ X:POKE J,X:NEXT

:rem 16

Figure 12-1. Sixteen Quadrant Pictures

0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

The ML routine replaces one of these graphics symbols with another, depending

on the position of the "dot" to be plotted, so the whole screen in effect has a resolu

tion of 80 X 50 small squares. The color can be set in any pair of squares. Graphics

of this type don't compare to full hi-res pictures, buf tfiey have the advantage of be

ing completely compatible with BASIC, needing no special POKEs or bitmap calcula

tions. Note that the algorithm is designed to ignore text and other characters which

aren't among the 16 quadrants, so BASIC text can be intermingled with dot

diagrams.

The syntax is SYS 49152,X,Y,COLO2? where X=0-79, Y=0-49, COLOR=0-15.

All parameters are evaluated, so using variables (SYS P,X,Y,Q is accepted. The point
X=0, Y=0 starts at the bottom left of the screen.

Changing Color RAM with ML

Color RAM occupies 1000 bytes from 55296 ($D800) on. Unlike, for example, the
background color, which can be changed with one single POKE, each byte in the
color RAM has to be changed if an entire screen of characters' colors is to be

changed at once. Program 12-13 alters color RAM only, leaving the characters un
changed. POKE 842 with the color number (1-15), and SYS 830 to run the routine.
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Program 12-13. Change Color RAM
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=830 TO 853:READ X:POKE J,X:NEXT :rem 11

20 DATA 169,216,133,3,169,0,133,2,168,162,4,169

:rem 8

30 DATA 7,145,2,200,208,251,230,3,202,208,246,96

:rem 41

When the screen is cleared, screen RAM is filled with space characters. The fore
ground color is now irrelevant; only the background color shows. The original ROM

version of the 64 fills color RAM with white after clearing the screen, so that charac
ters POKEd to screen RAM show up in white. Some newer 64s fill color RAM with

the background color, stored in 53281, so that POKEs to a cleared screen are in

visible. The most recent version of the 64 fills color RAM with the current character
color (stored in 646), so POKEs will be visible.

Because of these ROM changes, the effect of a simple screen POKE depends on

when your 64 was built; the POKEd character may appear white, invisible, or the

same color as the cursor. To make screen POKEs work correctly on all 64s, POKE

color RAM with the desired value whenever you POKE a character into screen
memory.

ML modifications of color RAM can give many effects. The following program

gives the effect of motion by drawing colored bars, then cycling through RAM

colors:

Program 12-14. Color RAM Motion
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49152 TO 49177:READ X:POKE J,X:NEXT

:rem 225

20 B1=55296:B2=56296 :rem 20

30 FOR J=1024 TO 2023:POKE J,160:NEXT :rem 241

40 FOR Y=*0 TO 24:FOR X=0 TO Y : rem 252

50 P1=X+40*Y:P2=Y+40*X :rem 240

60 POKE B1+P1,Y:POKE B2-P1-1,Y :rem 167

70 IF Y<20 THEN POKE Bl+P2,Y: POKE B2-P2-1,Y

:rem 95

80 NEXT:NEXT :rem 32

90 FOR J=0 TO 50:NEXT:WAIT 53266,128:SYS 49152:GOT

O 90 :rem 222

100 DATA 160,0,132,253,162,4,169,216,133 :rem 159

110 DATA 254,177,253,24,105,1,145,253,136 :rem 219

120 DATA 208,246,230,254,202,208,241,96 :rem 123

The ML adds 1 to each color location. Line 90 delays, waits for the raster-line to

be offscreen, then updates color RAM. Raster scanning is discussed in detail later.

371



Graphics

Scrolling the Entire Screen

This section shows how to scroll the entire screen left, right, up, or down, moving

one character's width or height. Color RAM must be moved to match so that the

characters keep their colors, unless a deliberate effect of static color is desired. Be

cause the movement is in whole characters, scrolling is somewhat jerky. Smooth

scrolling is discussed later.

These routines have to move 960 or 975 characters to new positions in screen

memory and repeat the process for color RAM. Not 1000, because in each direction

25 or 40 characters are lost when the scrolling effect overwrites them. A new row or

column of characters has to be POKEd to complete the scroll, or the displayed

characters can be stored and reused, giving an indefinitely repeating scroll effect.

Two thousand BASIC PEEKs and POKEs, with calculations, are slow, but repet

itive loads and moves are easily written in ML, so this is a good application. ML pro

grammers can alter the routines, for example, to scroll strips of background across

the screen at different speeds to simulate motion.

The following four routines are each placed in RAM by a BASIC loader. When

loaded, they can be called by a simple SYS command from BASIC and are therefore

easy to use. All are relocatable, so if the start address is altered from 49152 they will

run correctly, provided all the bytes are POKEd to RAM, and the SYS calls the cor

rect starting address. There are limitations to the programs, but they do illustrate the

basic concept of scrolling.

Program 12-15. Scroll Down
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix G

10 FOR J=49152 TO 49206:READ X:POKE J,X:NEXT

:rem 218

30 DATA 169,7,133,253,169,191,133,252,169 :rem 240

40 DATA 219,133,255,169,191,133,254,160,0 :rem 225

50 DATA 177,252,160,40,145,252,160,0,177 :rem 171

60 DATA 254,160,40,145,254,165,252,208,2 :rem 172

70 DATA 198,253,198,252,165,254,208,2,198 :rem 253

80 DATA 255,198,254,165,253,201,3,208,218,96
:rem 135

Program 12-16. Scroll Up
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49152 TO 49209:READ X:POKE J,X:NEXT

:rem 221

30 DATA 169,4,133,253,169,0,133,252,169,216:rem 71
40 DATA 216,133,255,169,0,133,254,160,40,177

:rem 114

50 DATA 252,160,0,145,252,160,40,177,254,160

:rem 106

60 DATA 0,145,254,230,252,208,2,230,253,230:rem 47

70 DATA 254,208,2,230,255,165,252,201,192 :rem 221
80 DATA 208,222,165,253,201,7,208,216,96 :rem 180
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Program 12-17. Scroll Right
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49152 TO 49215:READ X:POKE J,X:NEXT

:rem 218

30 DATA 169,4,133,253,169,0,133,252,169,216:rem 71

40 DATA 133,255,169,0,133,254,162,24,160,39:rem 65
50 DATA 177,252,200,145,252,136,177,254,200:rem 66

60 DATA 145,254,136,136,16,241,24,165,252 :rem 226

70 DATA 105,40,133,252,165,253,105,0,133,253

:rem 100

80 DATA 165,254,105,40,133,254,165,255,105 :rem 19

90 DATA 0,133,255,202,16,211,96 :rem 236

Program 12-18. Scroll Left
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49152 TO 49214:READ X:POKE J,X:NEXT

:rem 217

20 DATA 162,22,189,235,3,157,234,3,189,235 :rem 25

30 DATA 215,157,234,215,232,208,241,189,234:rem 70

40 DATA 4,157,233,4,189,234,216,157,233,216:rem 73

50 DATA 232,208,241,189,233,5,157,232,5,189:rem 77

60 DATA 233,217,157,232,217,232,208,241,189:rem 74

70 DATA 232,6,157,231,6,189,232,218,157 :rem 136

80 DATA 231,218,232,208,241,96 :rem 198

100 FOR J=1063 TO 2024 STEP 40:POKE J,160:NEXT

:rem 195

110 R=RND(1) :rem 135

120 IF R<.4 THEN X=X+1 :rem 138

130 IF R>.6 THEN X=X-1 :rem 145

140 IF X>15 THEN X=15 :rem 74

150 IF X<0 THEN X=0 :rem 221

160 H=X*40 :rem 2

170 FOR J=39 TO 39+H STEP 40:POKE 55296+J,5:NEXT

:rem 87

180 FOR J=79+H TO 1000 STEP 40:POKE 55296+J,6:NEXT

:rem 178

190 SYS 49152:GOTO 100 :rem 162

How the Screen Is Scrolled
Thanks to the systematic memory mapping of the 64's screen, scrolling in any direc

tion is quite easy. Figures 12-2 and 12-3 show scrolling in two directions (down and

left) on a simplified 4X4 screen, labeled to show the effects of each scroll. The cells

marked with question marks have no definite contents.
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Figure 12-2. Scrolling Down
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Figure 12-3. Scrolling Left
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It is easy to deduce that for the 64, scrolling up or down requires that the entire

screenful of characters, excluding a set of 40 at the end, be moved 40 places along.

Scrolling right or left, in the simplest case, only requires every screen character but

one to be shifted one place along. This is what the left-scrolling program does.

Simply enter the line 0 SYS 49152: GOTO 0 and run it to see the screen roll sideways.

With scroll down, the characters at the bottom-right must be moved first; other

wise, because there is no temporary storage and characters are moved directly into
the screen, characters will be overwritten before they have been moved.
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Speedy ML routines help. If screen RAM and color RAM are both moved, the

fastest methods use LDA $0401,X:STA $0400,X:LDA $D801,X:STA $D800,X or simi

lar commands to move each character; this takes about 1/50 second on the 64.

The VIC-II Chip
Color TVs and monitors display color by electronically causing small patches of

color, called phosphor, to glow on the screen. This is additive color. Each extra color

adds to the brightness, unlike painting or printing, which uses subtractive color. The

primary colors for additive color are red, green, and blue. All three colors combined
equally produce white.

The phosphor dots can be seen with a low-power magnifier; typically, there are

columns of red, green, and blue repeating the full width of the screen. TVs are likely

to show some defects—a red screen will have some green and blue, too. As the color

is turned down, TVs have a device to average colors locally, giving shades of gray.

Secondary colors are yellow, blue green, and magenta; these are known by a

variety of names, the 64's choice being yellow, cyan, and purple. Each is made of

about equal amounts of two primary colors: yellow is red and green, cyan is green

and blue, and purple is blue and red. On the 64, adjacent pairs of color-control keys

are complementary: They add to white or gray. For example, red and cyan contain

between them red, green, and blue, in the right proportions to mix to give white.

The eight foreground colors obtainable with CTRL and a color key are simply the

three primaries, each of which is either on or off, giving eight combinations. Of the

further eight colors, three are light versions of the primary colors, but the three

secondary colors are turned to shades of gray. Brown and orange have also been

added.

There are three perceptual effects worth mentioning. One is that the weaker, less

saturated colors are very influenced by stronger, adjacent colors, so the 64's gray

tones can be visually stabilizing.

Another is the advancing effect of red and the receding effect of blue, which can

be startling with solid blocks of these colors. Blue can look a long way behind red.

There are related problems in getting a bright color to look bright when compared

with, say, white, which has three times as many phosphors lighted. The VIC-II chip

doesn't allow control over the luminance of screen pixels, so many color combina

tions haven't enough contrast to be distinct. Red lettering on blue is unreadable, for

example.

Color RAM

The border and screen background colors are straightforward. Color RAM is a more

difficult concept, but seems natural enough after a time. It is a block of RAM

paralleling the screen RAM; each screen location has a corresponding color RAM

location, whose lower nybble (four bits) determines the character's foreground color;

thus, each screen character may have its own foreground color. (All characters have

a common background color determined by the register at 53281.)

The colors that correspond to numbers in the foreground and background reg

isters, and in the color RAM locations, follow:
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Color Nybble Color (Descriptions Vary Somewhat)

0 Black

1 White

2 Red

3 Cyan

4 Purple

5 Green

6 Blue

7 Yellow

8 Orange

9 Brown

10 Light Red

11 Gray 1, Dark Gray

12 Gray 2, Med. Gray

13 Light Green

14 Light Blue

15 Gray 3, Light Gray

Color RAM occupies 55296-56295 ($D800-$DBE7), a total of 1000 bytes. N

that the VIC-II chip always fetches its foreground color information from here,.ii

respective of which VIC-II bank is in use.

Multicolor Mode

Understanding user-definable characters is essential to getting the most from mu

color mode. However, the general idea is fairly easy to grasp. It is another Com

modore compromise: In order to get more color into the screen, resolution is cut

half. Below is a discussion of how this works with ordinary graphics; the principl

the same in high-resolution mode.

Normally, a one in a character definition shows up in the foreground color, a

a zero shows up in the background color; so only two colors are obtainable withii

each 8X8 dot character area. Multicolor mode allows four colors to be selected ]

character, at the cost of halving the horizontal resolution. Instead of 8 X 8 dots, i

offers 4X8 "wider" dots, each of which can take one of four colors.

Multicolor mode is enabled by setting bit 4 of VIC-II register $16 to 1. This is

done by using POKE 53270,PEEK(53270)OR16 (normally, POKE 53270,216). The

following command switches back to normal mode: POKE 53270,PEEK(53270)

AND239 (normally, POKE 53270,200).

The above POKEs enable and disable multicolor mode globally, over the who

text area; but it must also be enabled on a character-by-character basis to have an)

effect. This is done by the value in the corresponding color RAM location: If it is '
from 0 to 7, then the character appears in ordinary mode, and if it is from 8 to 15,

then the character will be in multicolor mode. In other words, bit 3 in a color RAM

location determines whether the corresponding character is in ordinary or multicolor

mode. Thus, the screen may simultaneously display multicolored and ordinary

characters.

To get the feel of this, type some lettering in several colors, including the less

saturated Commodore-key colors. Enable multicolor mode with the POKE given

above. You'll see that characters in black through yellow are unchanged, while those
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in orange through light gray alter dramatically, because bit 3 of their color RAM has

this dual function.

The source of the color in each two-dot unit is shown by the following table:

Bit Pattern: Color Specified By: Address of Register:

0 0 Background 0 color register 53281 $D021

(screen background color)

0 1 Background 1 color register 53282 $D022

1 0 Background 2 color register 53283 $D023

1 1 Lower three bits of color RAM

(character color)

The three registers can take values from 0 to 15; the three bits specified by color

RAM select values 0-7. Notice that units containing 00 appear as the background

color whether the display is in standard or multicolor mode. Note that the border

color in 53280 is independent of the background colors, unlike VIC-20's multicolor

mode.

It follows from this table that an orange (Commodore key-BLK) character will

be displayed as black when multicolor mode is enabled—try it with reverse-space

block in orange. Similarly, a light green character switches to green.

Consider how the character A is defined in ROM:

Normal: Multicolor: Displays As:

0 0 0 110 0 0 00 01 10 00 BG0 BGl BG2 BG0

0 0 11110 0 00 11 11 00 BG0 CR CR BG0

0 110 0 110 01 10 01 10 BGl BG2 BGl BG2

0 1111110 01 11 11 10 BGl CR CR BG2

0 110 0 110 01 10 01 10 BGl BG2 BGl BG2

0 110 0 110 01 10 01 10 BGl BG2 BGl BG2

0 110 0 110 01 10 01 10 BGl BG2 BGl BG2

0 0 0 0 0 0 0 0 00 00 00 00 BG0 BG0 BG0 BG0

The first illustration shows how the definition is interpreted in normal mode: ze

ros display in the background color and ones display in the foreground color, speci

fied by the character's color RAM.

The second and third illustrations show how the bits are interpreted as grouped

in pairs by the 64 in multicolor mode. The abbreviations BG0, BGl, and BG2 repre

sent the three background color registers, which are set to 6 (dark blue), 1 (white),

and 2 (red), respectively, on power-up. (The SX-64 sets BG0 to white, however.) CR

is color RAM, which is 14 (pale blue) on powering-up the 64. Note that the three

background colors apply over the whole screen area; only the character color can

vary from character to character. Therefore, when designing multicolor graphics, se

lect the three colors you wish to spread most widely on the screen, and let the

character color vary locally.

Assuming the 64 has its power-up values, enter POKE 53270,216 to enable

multicolor mode. All characters will be displayed in multicolor mode, since their

color RAM value is greater than 7. Assuming the relevant registers have their power-

up values, BG0 will show up as dark blue, BGl as white, BG2 as red, CR as a dark
blue (produced by the pale blue value with bit 3 stripped off). This is what the col
ors should be, but they may not show up particularly clearly on your TV or monitor.
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The cursor disappears because the reverse space character is a block of bit pairs in

the pattern 11; the color is given by color RAM and thus shows up in multicolor

mode as dark blue. Type Commodore key-GRN to make it reappear: printing will

continue in multicolor mode; CTRL-GRN will also make it reappear, but causes

printing to continue in standard mode because of the different color RAM settings.

Enter POKE 53283,1 to make BG2, as well as BG1, white; the multicolored charac

ters now contain large areas of white. Type Commodore key-WHT followed by a

few more characters: even larger areas now show as white, as BG1 and BG2 and CR

are all now white. Usually, of course, contrasting colors will be used. CTRL-WHT

will select a foreground color value less than 8; type this and then further characters:

these display in standard mode, because of the color RAM value, and are unaffected

by BG1 and BG2 settings.

These multicolor characters have a chunky appearance, since they have half the

horizontal resolution of standard characters. They can be used for decorative borders

and designs, and for graphics. You may need to experiment to find the best combina

tions of colors for this effect. They are easier to use than user-defined characters and

take up no extra space in RAM. Finding characters which look right may be difficult,

though.

With some work characters in multicolor mode can produce impressive results.

For example, BGO may be set to 12, and BG1 and BG2 to 8 and 14, giving orange

and light blue and the local colors on a medium gray background, allowing, say, a

gray sky, orange ground, and light blue middle-distance, with small objects in any of

the eight main colors.

The following BASIC program lets you experiment with all combinations of

BGO, BG1, BG2, and CR. It displays almost the entire character set twice, once at the

top of the screen in standard mode and again below it in multicolor mode. The func

tion keys fl, f3, f5,17 advance the values in the three register values and the color

RAM of the multicolor mode characters.

You may prefer to experiment with character sets in two colors only; if so, mod

ify the program to POKE the background registers with 0, and make the function

keys toggle, with POKE 53281,1 -(PEEK(53281) AND 15) or a similar statement.

The AND 15 is necessary to remove the high nybble, which varies. Also try replac

ing line 250 with 250 NC= 1-NC.

Program 12-19. Multicolor Mode
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 VIC=53248:COL=55296 :rem 230

20 PRINT M{CLR}M :rem 198

30 FOR J=0 TO 239 :rem 66

40 POKE 1024+J*2,J:POKE COL+J*2,0 :rem 21

50 POKE 1024+520+J*2,J:POKE COL+J*2+520,8 :rem 162

60 NEXT :rem 165

100 POKE VIC+22,PEEK(VIC+22) OR 16 :rem 76

200 GET X$:IF X$=IMI THEN 200 :rem 117

210 IF X$=M{F1}M THEN POKE 53281,(PEEK(53281)+l) A
ND 15 :rem 144

220 IF X$="{F3}" THEN POKE 53282,(PEEK(53282)+l) A
ND 15 :rera 148
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230 IF X$="{F5}M THEN POKE 53283,(PEEK(53283)+l) A

ND 15 :rem 152

240 IF X$oll{F7}il THEN 200 : rem 168

250 NC=((PEEK(COL+520)+l) AND 15) OR 8 :rem 139

260 FOR J=0 TO 239:POKE COL+J*2+520,NC:NEXT

:rem 135

270 GOTO 200 :rem 100

Multicolor mode is probably the 64's most popular graphics mode. Although in

theory resolution is halved, in practice TV limitations mean that 320 individual col

ored dots (that is, 40 sets of 8) aren't really distinguishable across a TV screen. The

64's Commodore key-+ character, for example, is not made of alternate 0's and l's.

It's composed of alternate 00 and 11 pairs. This is why multicolor characters often

look similar to their normal equivalents, and why normal characters—Commodore

key-Z, for instance—often appear thicker than you'd expect.

Even with multicolor mode enabled, characters don't have to be displayed in

multicolor mode, which adds to the mode's versatility. Programs can be developed

using PRINT and/or POKE to move characters around; such programs will work just

as well if the graphics are redefined in multicolor form. This requires more work,

since character definitions must be loaded into RAM and the VIC chip made to ac

cess them. However, this is still easier than full bitmapping.

Extended Background Color Mode

This is a relatively new display mode, and the YIC-20 has no analogous mode; it

cannot coexist with other modes. The screen blacks out as long as multicolor mode

or bitmapping is also switched on. Like multicolor mode, the full graphics set is di

vided by four to allow more color. Usually the 64's background color (BGO) extends

over the whole background, and though each of 1000 character colors can vary, the

background has to be in common—though this is disguisable by including solid

blocks of local color. Extended background color mode allows the background and

color of each character to be chosen from one of four colors. Dots are interpreted

singly, not in pairs like multicolor mode.

The trade-off is only 64 characters can be displayed at one time. The two high

est bits of each character determine the background color:

BG Color Specified By: Address of Register:

Background 0 color register 53281 $D021

(usual screen background)

Background 1 color register 53282 $D022

Background 2 color register 53283 $D023

Background 3 color register 53284 $D024

The displayable characters are the first 64 in the character definition area. The

foreground color is set by the color RAM nybble. In summary, each of the 1000

characters' foregrounds can be set to colors 0-15; each background can be set to one

of four colors, each of which may be 0-15; and only 64 differently shaped characters

can be displayed, each in two colors at most.
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Extended background color mode is selected by setting bit 6 of VIC-II register

$11 to 1; this can be done with POKE 53265,PEEK(53265) OR 64. The command

POKE 53265,PEEK(53265) AND 191 switches back to normal mode. (POKE

53265,91 for on and POKE 53265,27 for off normally work fine.)

You can reset the VIC-II registers using RUN/STOP-RESTORE. Background col

ors 0-3 are set to 6, 1, 2, and 3, corresponding to blue, white, red, and cyan. Now,

enable extended background color mode with the above POKE. The cursor flashes

red rather than pale blue, because reverse-space is POKEd as 160 to the screen: the

bit pattern is %10100000, which is 32 with %10 as the leading bits. So it shows as a

space character with background color governed by BG2, which is red.

Type a few unSHIFTed letters, and they will appear the usual light blue on dark

blue. Now try SHIFTed letters; they are unSHIFTed on the screen, but their back

ground is now white, governed by BG1. The POKE codes for A and SHIFT-A differ

by 64, so the same character is displayed in extended background color mode.

Type CTRL-{RVS} followed by unSHIFTed letters; now the background is red,

like the cursor, because bits %10 select register BG2. Finally, without pressing RE

TURN, type in a few SHIFTed letters: this {RVS}-SHIFT combination adds bits %11,

selecting BG3's cyan background. The result is a bit hard to read on some sets; try

POKE 53281,0: POKE 53283,7, setting BG0-BG3 to black, white, yellow, and cyan,

with red lettering (POKE 646,2).

For a further demonstration, add these four lines to the "Multicolor Mode"

demo program and run the result:

Program 12-20. Extended Background Color Mode
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

235 IF X$="{F8}" THEN POKE 53284,(PEEK(53284)+1) A

ND 15 :rem 164

236 IF X$="M" THEN POKE(53265),PEEK(53265) AND 191

i POKE 53270fPEEK(53270)OR16 :rem 82

237 IF X$="EM THEN POKE(53270)#PEEK(53270) AND 239

: POKE 53265,PEEK(53265)OR64 :rem 81

250 NC=PEEK(COL+520)+l :rem 215

Extended background color mode can now be selected by typing E, and multi

color mode by typing M. Pressing f8 advances the value in register BG3, while the

other keys function as before.

You'll see the reduced character set and extra background colors clearly. The

small available range of character shapes makes this mode unsuitable for most pur

poses. But if you're content with numerals, uppercase letters, and punctuation sym

bols, extended background color mode allows colored highlighting which is

otherwise much harder to program. The unSHIFTed, SHIFTed, reverse, and reverse-

SHIFTed characters (as ordinarily entered) will be displayed on background colors as

stored in 53281-53284. Note that unSHIFTed space, conveniently, appears as the de

fault background color.

Smooth Screen Scrolling

Sometimes it's nice to be able to display text scrolling smoothly up the screen or

landscape-type graphics shifting left or right. The scrolling we've looked at so far

380



Graphics

shifts whole characters and is rather jerky. We can improve on this with the VIC-II

chip's facility to move the screen. It positions the screen with single-dot resolution,

allowing a maximum of eight dots of movement, so the whole picture can be shifted

slightly. This allows screen scrolling, but since sprites have to be handled separately,

the technique can be difficult. Bits 0-2 of $D011 (53265) set the vertical position,

and bits 0-2 of $D016 (53270) set the horizontal position.

Here's the method for upward scrolling: the screen is moved up by one row of

pixels (dots) seven times; on every eighth movement the screen moves back to the

lowest position, and the screen characters are scrolled up by one whole character.

Normally, this gives a jiggling motion at the top and bottom borders, which can be

reduced by matching the border and background colors, or, better, by using the VIC

chip to cut out the picture edges.

The screen scroll must be fast; otherwise, the TV scan will display part of the

old picture, giving an uneven effect. The first demonstration, Program 12-21, is in

BASIC.

Program 12-21. Change Vertical Position

10 V=(PEEK(53265)-l) AND 7

20 WAIT 53266,128,128:WAIT 53266,128

30 POKE 53265,PEEK(53265) AND 248 OR V

40 GOTO 10

Program 12-21 repeatedly moves the screen up, then flips the register back

down when the register changes from 0 to 7. Line 20 helps insure that the VIC chip

is altered only when the TV is scanning outside the picture; the timing can be fine-

tuned by putting in extra colons.

Black bands may appear at the top or bottom of the picture. When the Y value

is 3, as it is on power-up, the screen fits perfectly, but not otherwise. The VIC chip

allows the edges of the picture to be suppressed. Bit 3 in $D016 (53270) selects 38

columns when set to 0, and bit 3 in $D011 (53265) selects 24 rows when set to 0.

This affects only the appearance onscreen. The 64 still internally assumes a 40 X 25

format.

Add the line 5 POKE 53265, PEEK(53265) AND (255-8) to Program 12-21 and

run it. The black bars are no longer displayed and the screen has one row less. In or

der to demonstrate scrolling, we need to scroll the screen up at regular intervals. A

simple PRINT statement, or SYS 59626, will scroll up a whole line. BASIC has no

sideways scroll, so a simple demonstration has to scroll up.

Add 25 IF V=7 THEN READ X$: PRINT "{HOME}{25 DOWN}" X$; to the
program (don't forget the semicolon), plus some DATA statements with strings.

You'll see the strings scroll up, after being written invisibly to the bottom line of the

picture. However, it isn't possible to get a completely smooth scroll by this method,

unless the text or graphics doesn't change. This is because screen scrolling typically

takes about 1/25 second, so a mixture of the new and the old screen is displayed.

This doesn't matter if the text is identical at each line of the screen, as you can see

by altering line 25 to print some fixed X$ string.

Improving this requires the use of ML. The problem is the time spent scrolling

the screen. (The situation is worse for bitmapped screens, which have more data to
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move.) One scan of the TV picture takes 1/60 (U.S.) or 1/50 (U.K.) second. A full

screen scroll must take less than about 1/50 second to be invisible. A full screen,

and color RAM, cannot be scrolled in this time using BASIC; the example program

above moves characters, not color RAM, because of this.

Program 12-22. Smooth Scroll
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

5 POKE 53270, PEEK(53270) OR 16 :rem 16

10 FOR J=l TO 10: C$=C$+"KLMN":NEXT :rem 99

20 C$=LEFT$(C$,39) :rem 165

30 POKE 53265,PEEK(53265) AND 247 :rem 174

40 PRINT M{CLR}M:FOR J=l TO 25:PRINT "{DOWN}";:NEX

T :rem 123

50 FOR J=55296 TO 56295:POKE J,PEEK(646 ) .-NEXT

:rem 250

60 FOR J=49152 TO 49213:READ X:POKE J,X:NEXT

:rem 221

70 POKE 53265,PEEK(53265) OR 7 :rem 26

100 SYS 49152 :rem 149

110 PRINT C$ "{UP}11 :rem 91

115 C$=C$+CHR$(65+RND(1)*26):C$=RIGHT$(C$,39)

:rem 125

120 FOR Y=l TO 7 :rem 27

130 SYS 49152 :rem 152

140 FOR D=l TO 15:NEXT :rem 176

150 NEXT Y:GOTO 100 :rem 50

200 DATA 173,17,208,48,0,173,18,208,201,255,208

:rem 4

210 DATA 244,169,7,44,17,208,208,8,13,17,208

:rem 120

220 DATA 141,17,208,208,4,206,17,208,96 :rem, 125

230 DATA 169,3,141,45,192,141,48,192,162,4,160,64
:rem 109

240 DATA 185,232,7,153,192,7,200,208,247,238,45

:rem 15

250 DATA 192,238,48,192,202,208,238,96 :rem 96

Load and run Program 12-22, then wait for the scrolling to begin. Each SYS call

in the program scrolls the screen up one dot; it does this by checking the value in

the Y register and decrementing it if it exceeds 0. When it becomes 0, Y is replaced

by 7 and a scroll routine is called. The ML routine is located at 49152, so SYS 49152

can be used as a versatile scroll (note that it's not relocatable). Line 70 insures that

the first PRINT statement in line 110 is in the invisible, bottom screen line, so the

scroll is completely smooth. It's easy enough to modify the register checking and

character shifting to scroll left.
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User-Defined Characters
This section explains how new character sets can be created for the 64, by exploiting

the VIC-II chip and controlling BASIC'S memory map. Some of the earlier explana

tory part also applies to the creation of bitmapped graphics, dealt with in the next

section, and will not be repeated there.

Using the VIC-II Chip

The Video Interface Chip (VIC-II) controls the 64's screen display. Two locations,

$D018 and $DD00 (53272 and 56576), are crucial in this. In BASIC, location $0288

(648) is also important.

Understanding the system is not particularly easy. Everything is designed

around the hardware without any attempt to ease programming tasks, so don't feel

too discouraged if it appears difficult. The key is to grasp a few details of the 64's

software.

VIC-II is a chip with 14 address lines. Since 214=16K, the chip can address a

range of 16K bytes. This is actually the minimum amount necessary to the chip,

since, as we'll see, it's required to look at at least 8K bytes of character definitions in

bitmap mode. It could have been designed to address all 64K, but wasn't—perhaps

because all the pins were already used. Unlike the VIC-20, whose VIC chip cannot

look outside a narrow range of memory, the 64's VIC-II can be made to address any

one of the four 16K subdivisions of 64 memory. Two bits in a CIA control this. The

CIA extends the 14-bit range to 16 bits. Although this enhances the versatility of the

64, it means that only a 16K range is accessible to VIC-II at any given moment.

The 64 has all its ROM at the top of memory, but screen RAM is positioned low

in memory, starting at $0400. The designers of the 64 included a hardware patch so

that the character generator ROM and the screen could be simultaneously used by

VIC-II. Character ROM appears to the 6510 to start at $D000, but the VIC-II chip is

wired to see it as RAM from $1000, in the same bank as the screen. When VIC-II's

registers are pointed to a different area of memory from usual, character definitions

are taken from RAM. This trick is carried out by the logic array chip and is transpar

ent to the programmer.

User-Defined and Bitmapped Displays
The 64 |ias two graphics modes: user-defined characters, discussed here, and

bitmapped graphics. Both modes divide up the screen into 1000 square regions.

User-defined characters, which are similar to the normal 64 characters, allow VIC-II

to display up to 256 different characters. It follows that many screen characters must

be identical, and in fact the screen is often largely filled with space. For example,
simple line-drawing illustrations, where much of the screen is blank, in user-defined

graphics use much less space than the bitmapped equivalent, so many more can be
fitted into the 64's memory. A complete set of 256 characters takes 8*256=2K of
memory to store. (Character ROM at $D000-DFFF is 4K, enough for both the 64's
complete character sets.) Bitmapping allows every part of the screen to be individ
ually controlled; with practice, this mode is easily recognized, since there's no
duplication of portions of the screen. Images like pinball or flight simulations, and
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graphics-drawing programs which allow any part of the screen to be drawn on, must

use bitmapping, where 8000 bytes are needed—nearly four times as many as user-

defined character sets require. (Note that reduced-sized screens in either mode per

mit less memory to be used.)

A character editor is a program that helps you design your own user-defined

characters, allowing up to 256 individual 8X8 dot characters to be designed. A full

screen graphics editor is appropriate to bitmapping. Examples of each are included in

this book. Sprites, if they're used, must also be defined within the VIC-II's 16K bank.

How the VIC-II Controls the Display

The registers at $D018 and $DD00 control two major parameters. These are the

screen starting position (or video matrix) and the character definition start (or charac

ter base). Try PRINT PEEK(53272) on your 64 just after power-up; the result is 21,

and the 64's screen starts at $0400, while the character images are at $1000.

SHIFT-Commodore key changes the PEEKed value to 23, implying that the charac

ter now starts at $1800 in lowercase mode. These registers are two special cases of

the VIC-II chip's control over graphics; their relevant bits are usually labeled as

shown here:

$D018 (53272) VM13 VM12 VM11 VM10 CB13 CB12 CB11 1

$DD00 (56576) x x x x x x Bl B0

Bit 0 of $D018 is unused; it is always set to 1. Bits 2-7 of $DD00 are irrelevant to

graphics.

The Screen start position is controlled by bits VM13-VM10 (the four high bits of

53272), and by Bl and B0 (the two low bits of 56576). We can find the actual full 16-

bit address by listing bits 0-15 and inserting the register values, like this:

Bit Number: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

Screen Start: Bl B0 VM13 VM12 VM11 VM10 0000000000

Note that bits Bl and B0 are inverted (that is, a 1 value is treated as 0), and that all

bits not controlled by the registers are set to 0.

Usually, $D018 and $DD00 contain 12 and 191 (=%0001 0101 and %xxxx

xxll). Thus, bits VM13 to VM10 are 0001, and bits Bl and B0 are both 1. The screen

therefore starts at %0000 0100 0000 00000 = $0400. Because bit VM10 is the least

significant programmable bit controlling the screen position, and 210=1024, screen

positions can be selected only to the nearest IK. Where multiple screens are used,

they can be stored next to each other, but not overlapping, in RAM.

The start of the character definitions is controlled by bits CB13-CB11, and by Bl
and B0, in exactly the same way:

Bit Number:

Screen Start:

15

Bl

14

B0

13

CB13

12

CB12

11

CB11

10

VS10

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0
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Again, Bl and BO are inverted, and all lower bits are 0. The reset 64 has $15 in

$D018, so, taking the right nybble 0101 and dropping bit 0, we see that CB13-CB11

are 010. The characters, therefore, are taken from %0001 0000 0000 0000 = $1000,
the RAM image of the character-generator ROM. SHIFT-Commodore key toggles

$D018 between $15 and $17, and we can see now that the second value sets the

right nybble of $D018 to %0111, so CB13-CB11 are now 0111. The characters now

come from %0001 1000 0000 0000 = $1800.

Bit CB11 has the least effect on assigning the memory region from which VIC

draws its character definitions, controlling it to the nearest $800, or 2K, bytes. In

other words, character memory is treated as though it's divided into 2K chunks by

the 64's VIC chip. This allows multiple character sets to be placed in memory ad

jacent to each other. One example is the built-in graphics and lowercase sets, which

are adjacent in memory.

How Characters Are Displayed

Figure 12-4 shows how screen RAM and character definitions are combined by the

VIC-II chip as it generates the TV display. In the example the top-left screen contains

a space, then ABC; these appear as their ASCII values 32, 65, 66, and 67. When the

VIC-II chip generates the TV scan for the top lines, it looks at screen RAM for the

current character, multiplies this by 8, and offsets the result from the character-

definition start. This takes it to the eight bytes which define the character. The byte

selected depends on the line being scanned; the first line gets the first byte, the sec

ond line the second byte, and so on. Whether a pixel is set depends on the bit value

within the byte, and also on the color information, which VIC-II takes from color

RAM. All this intricate work is performed by the VIC-II.

To illustrate, consider a CHR$(32) at the top left of the screen. The VIC-II cal

culates 8*32=256, and offsets this from the character base, which typically is $1000
as the chip sees it. The bytes read are-256-263 (decimal) locations away from $1000.
They hold the 64 bits of information needed to define CHR$(32). Normally, these

bits are all 0, since CHR$(32) appears as the space character. Similarly, any number

from 0 to 255 in screen RAM is automatically converted into its bit equivalent. It's

clear that a full 256 characters aren't necessary; a game, for example, might have a
number of frogs, aliens, spaceships, or whatever, some made up from several graph

ics to increase the size, without using the full set.
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Memory Maps of the 64 with User-Defined Graphics
The memory map in Figure 12-5 shows all the 64's memory features needed to de

sign your own characters and incorporate them in your programs. Advanced meth

ods are possible—the use of several screens, allowing animation or instantaneous

switching between displays, the use of several character sets, and the use of inter

rupts for split-screen effects—and they rely on the same principles.

Figure 12-5. User-Defined Graphics Memory Maps

VIC-II BankO

Chr.

Image

Bank 1 Bank 2 Bank 3

Chr.

Imagei

0 400 800

RAM

4000 8000 9000 A000 C000 D000 E000 FFFF

j
N

43/44 = Prog. Start

I

BASIC RAM Area

45/46 = Prog. End

1

1

5

RAM

under ROM

Free

RAM

RAM

under

Chr. ROM,

I/O

i/56 = End of BASIC Area.

RAM

under

Kemal

ROM, I/O BASIC ROM RAM Chr. ROM

I/O

Kerrial

ROM

VIC-II's current bank at any one time must contain screen, character, and sprite

data. But BASIC normally starts at $0800 and ends where there's hardware, either at

$9FFF or, if an autorun cartridge is present which returns to BASIC, at $7FFF. To
gether, these facts mean that a long BASIC program with user-defined characters

must either store characters at the low end of BASIC, followed by BASIC itself, start

ing higher in RAM than usual; store them after the BASIC program, but before BA-
SIC's area for variables; or store them higher in memory, in banks 1, 2, or 3. In any

of these cases, it's necessary to alter some of the pointers in (43-44), (45-46), and
(55-56) to alter the boundaries allocated to BASIC, unless the characters are stored
under ROM, with the screen RAM at or near $C000. (This is quite simple, though
it's best to avoid the I/O area. Note that there's a possible problem if you use the
area to edit characters, because, being under ROM, they're difficult to PEEK in the
usual way, and are therefore difficult to save; VIC-II, of course, is designed to PEEK

them without any problem.)
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User-Defined Graphics Examples

Bank switching. Bits 0 and 1 in $DDOO (56576) control bank switching. Strictly, bits

0 and 1 in $DD01 (56577) could also be set to 1, but as they are 1 already unless

specifically changed, these bits can usually be left to take care of themselves. Enter

and run the following one-line program:

0 INPUT X: X=3-X: POKE 56576,(PEEK(56576) AND 252) OR X: GOTO 0

Entering 0 selects the normal default, bank 0, so there's no change. Note the use of

3—X which converts 0 to 3; this allows for the fact that the two controlling bits are

inverted.

Entering 2 gives garbage, because bank 2 now treats RAM at $8400 as the start

of screen. The characters are displayed as normal 64 characters, however, because

the ROM character set is active in this bank. Entering 1 or 3 displays a screenful of

characters which aren't properly defined—they're from RAM starting at $5000 or

$D000, respectively. Try exiting the program and executing FOR J=33792 TO 34047:

POKE J,X: X=X+1: NEXT which puts 0-255 into $8400 on. You'll find that bank 2

now displays all 256 normal characters at the top of the screen, color RAM

permitting.

Moving the screen. The following line will move the screen in sixteen IK steps

within its current bank (insert a value in the range 0-15 for X):

POKE 53272/(PEEK(53272) AND 15) OR 16*X

The two lines below will allow you to instruct VIC-II to treat $0, $0400, $0800,

and so on, as the screen start. Enter 2, for example, to select $0800. You'll see the

BASIC program at the top of the screen. (SHIFT-Commodore key may make it

clearer.)

0 INPUT S: POKE 53281,247: REM MAKE CHRS VISIBLE

1 POKE 53272,(PEEK(53272) AND 15) OR 16*S: GOTO 0

Enter 0 to make the screen from the zero page on, so the region including the stack

and the keyboard buffer is displayed. Entering 1 returns the screen to the normal
position.

Moving the character definitions. Enter and run the following line:

0 INPUT C: POKE 53272,(PEEK(53272) AND 240) OR 2*C: GOTO 0

As C varies from 0 through 7, the character definitions are taken by VIC-II from $0,
$0800, $1000, and so on, in 2K steps. Two interesting examples are C=0 and C=3:
the former draws character definitions from the zero page, which means that some
of them continually fluctuate with background BASIC activity. When C is 3, charac
ters start from $1800, so the screen goes into lowercase mode. Toggling with
SHIFT-Commodore key alternates with uppercase.

Bank 0 characters can't occupy $1000-$lFFF, since VIC-II fetches data in this
area from ROM. They could be positioned anywhere else, subject to some restric
tions. RAM from $0800 on can be used, but the start of BASIC would have to be
moved up; $00 is usable, too, but an entire set of 256 characters couldn't be defined
Bank 1 characters can be placed in any of the eight available areas. Bank 2 is accept
able except for $9000-$9FFF, where VIC-II uses the ROM sets. Bank 3 is all avail
able, though $D000-$DFFF RAM can be POKEd only after switching out I/O.
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Moving the character ROM into RAM. This requires care to avoid I/O and

ROM selection clashes by VIC-II. Bit 2 of location 1 controls whether ROM or I/O
appears from $D000 on. As an example, delete GOTO 0 from line 0 directly above,

and add the following:

1 POKE 56333,127: POKE 1,51

2 FOR J=0 TO 2047: POKE 12288+X,PEEK(53248+X): X=X+1: NEXT

3 POKE 1,55: POKE 56333,129

4 POKE 56,48: CLR

Line 2 moves 2K of character ROM from $D000-$D7FF down to $3000-$37FF.

Lines 1 and 3 control the hardware line which turns on the ROM. Note that one of
the POKEs turns off IRQ interrupts, which is necessary since they make use of the
I/O chips. NMI interrupts aren't turned off; when using this, don't press

RUN/STOP-RESTORE, or you'll crash the program. Line 4 lowers the top of BASIC

to $3000, protecting the character set in RAM, and incidentally dramatically reducing

the free bytes available to BASIC.
Run the program, entering 6 to point the VIC-II to fetch its characters from

$3000. When READY comes back, toggling with SHIFT-Commodore key produces

garbage characters—since the lowercase set is not copied.
Toggle back to the readable characters and enter the following direct mode line:

FOR J=0 TO 255: FOR K=0 TO 7: POKE 14336+8*J+K,PEEK(12288+8*J+7-K): NEXT:

NEXT

This copies our RAM characters into $3800 on, but inverts them. Now

SHIFT-Commodore key toggles between ordinary and upside-down characters.

Backward and other modified characters are also feasible. It's possible to have 80-

column alphanumerics on the 64. Unfortunately, they're truly readable only with a

monitor, not a TV.
Saving and reloading character definitions. Character definitions (and screens)

can be saved as DATA statements or as sequential files (written by PRINT#, read

back by INPUT#) or, most efficiently, as program files, that is, as a block of data to

be loaded back, typically with a forced (nonrelocatable) LOAD like this at the start of

a program:

0 IF X=0 THEN X=l: LOAD "CHRS",8,1.

Chapter 6 explains how to save blocks of data; one method is used in the character

editor program that follows.

If you're familiar with the internal workings of BASIC, you'll appreciate that

characters can be saved along with BASIC, as a single program, which makes a

convenient package. All that's necessary is to manipulate the pointers at 43-44

and/or 45-46, which mark the limits of the program which will be saved to tape or

disk, and/or the pointer at 55-56 to the end of RAM allocated to BASIC.
One way of including characters in BASIC is to follow the program almost im

mediately with character definitions—there must be a 2K boundary, however. This is

mapped in Figure 12-6 below:
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Figure 12-6. Character Definitions Below BASIC Variables

BASIC Program Char. Defns. BASIC Variables Space

43/44 45/46 55/56

The principle is exactly the same as saving BASIC followed by ML. All that's

needed is to alter the address in (45-46) to point after the characters. This will save

satisfactorily, and will also run properly when reloaded, assuming it loads back into
the same RAM area.

Figure 12-7 shows characters at the end of BASIC. This is a typical situation

when bank 0 is used, and character definitions are stored from $3000 (if there are
two sets) or $3800 (if there's just one).

Figure 12-7. Character Definitions Above BASIC Variables

BASIC Program BASIC Variables Space Char. Defns.

43/44 45/46 55/56

It's easy to save such a program: just POKE 45,0: POKE 46,64 to force the 64 to

save from BASIC start, right up to $4000. On LOAD, this program will store its vari
ables after BASIC and will work perfectly well, becoming converted into the first
type of program/character definitions. In fact, it may well have more RAM than it

would have if its variables were forced to exist below the characters. But it makes
sense, particularly with tape, to keep the characters after BASIC without too great a

gap, as in the first example; saving right up to $4000 means saving about 14K bytes.

The only problem where redefined characters are saved above BASIC and vari
ables is that editing BASIC will probably disrupt the display. Changing a line or two
moves the whole character set in RAM, so the characters alter with the program

length. Obviously, this doesn't matter with a finished program, but where it's im
portant to be able to edit, include this line:

0 POKE 45,000: POKE 46,000: POKE 55,0: POKE 56,48: CLR

This will allow you to put different values into 45 and 46. (They must be put in just
before saving the program. The three zeros allow any figure to be input without
changing the program's length, 013 for 13, for example.)

Memory Configurations with User-Defined Characters
The examples show how to go about arranging memory as you choose. The simplest
method stores characters below $4000, so bank switching isn't needed.

VIC-II in bank 0. Single character set starting at $3800. This example shows
BASIC'S variables stored below the character set; they could just as easily be stored

above, by putting POKE 45,0: POKE 46, 64: CLR in the program, to move the end-
of-program up to $4000.
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Figure 12-8. VIC-II Batik 0, Characters at $3800

$0
$3800 $4000

BASIC Prg. BASIC Vars. Chrs.

Program 12-23. Mosaic
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=0 TO 39:READ X:POKE 14336+J,X:NEXT
:rem 152

20 POKE 646,0:POKE 53280,1:POKE 53281,1:PRINT "

{CLR}"; *rem 247
30 POKE 53272,31 «rem 37
40 POKE 55,0:POKE 56,56:CLR :rem 223
50 GET Q$:IF Q$="" GOTO 50 srem 23
60 L=ASC(Q$)-64 srem 35
70 A$=IIM: FOR J=l TO L: A$=A$+CHR$( RND(0)*5+64) :NE

XT :rem 165

80 A$=A$+A$+A$+A$+A$+A$+A$+A$:M=LEN(A$) : rem 184

90 PRINT "{HOME}";:FOR J=l TO 960/M:PRINT A$;:NEXT
:rem 255

100 PRINT LEFT$(A$,960-M*INT(960/M));

110 GOTO 50

500 DATA 36,36,255,0,0,255,36,36

501 DATA 36,36,231,36,36,231,36,36

502 DATA 36,18,9,132,66,33,144,72

503 DATA 36,72,144,33,66,132,9,18

504 DATA 36,66,153,36,66,36,153,66

:rem 36

*rem 48
:rem 31

:rem 134

:rem 90

:rem 91

:rem 152

Program 12-23, above, is memory-mapped as Figure 12-8 shows. It uses only
five characters, which print as @, A, B, C, and D, and PEEK as 0-4. (Try RUN/STOP,
then type keys @ through D.) Line 10 POKEs in the characters' bit patterns; line 30
points VIC-II's character base to $3800 and line 40 puts BASIC'S topmost byte just

below $3800.
VIC-II in bank 3. Character sets under Kernal ROM. The screen RAM is

moved to $CC00, and the character sets to $E000-$EFFF. This requires POKE 648,204:
POKE 53272,57: POKE 56576, PEEK(56576) AND 252 to change the VIC-II chip,

and also the following:

0 POKE 56333,127: POKE 1,51: FOR J=0 TO 4095
1 POKE 57344+J/PEEK(53248+J): NEXT: POKE 1,55: POKE 56333,129

After this, characters are taken from $E000 on. They can be altered by POKEing,
but cannot easily be read back. The usual screen area from $400 to $7FF is now un
used, and RAM from $C000 to $CBFF can be used for ML. No BASIC pointers need
be set since the characters aren't in a part of RAM which BASIC can overwrite.
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Switching between several screens in bank 1 for animation. Sixteen full
screens can be stored between $4000 and $7FFF. Switching between them requires

one POKE, and the effect is instantaneous, allowing animation. The screens share

color RAM, so the easiest arrangement is to keep the color identical in all the
screens. The difficult part is the design of all the screens.

Character Editor

The following character editor, Program 12-24, processes 2K bytes, the definitions of
the first 256 characters in ROM, which are stored at $3000-$37FF (12888-14335).
The finished definitions can be stored and reloaded from tape or disk, giving a
permanent record of your new characters.

Program 12-24. Character Editor
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix G

6 POKE 56,48: CLR: SCREEN=1064: VIC=53248: CHARS=1

2288 srem 209

8 DEF FN RV(Q)=Q+128*(1+(Q>127)*2) :rem 230
11 DIM CO$(15):FOR J=0 TO 15:READ CO$(J):NEXT

srem 170

12 FOR J=49152 TO 49213:READ X:POKE J,X:NEXT

:rem 218

18 INPUT "FETCH CHARACTERS FROM ROM";X$ :rem 96

19 IF X$="Y" THEN GOSUB 500 :rem 147

22 POKE 646,0:POKE 650,128:PRINT "{CLR}11 :rem 248

27 FOR J=0 TO 127:POKE SC+2M+401,J:POKE SC+J*2+72

1,J+128:NEXT :rem 148

40 POKE VIC+24,(PEEK(VIC+24)AND240) OR 12 :rem 217
100 NC=0:OF=NC*8:GOSUB 3000 :rem 11

140 POKE 53280,5:POKE 53281,5:POKE 53282,2:rem 191

146 POKE 53283,8:POKE 48197,0:SYS 49188:GOSUB 2000

0 :rem 248
180 XC=0:YC=0:CC=SC:POKECC,PEEK(CC)OR128 :rem 202
200 GET X$:IFX$=MM THEN 200 :rem 117

202 IF X$=M{UP}" AND YC> 0 THEN YC=YC-1: GOTO 250

:rem 154

204 IF X$="{RIGHT}" AND XC<39 THEN XC=XC+1: GOTO 2

50 :rem 93
206 IF X$=M{DOWN}" AND YC<23 THEN YC=YC+1: GOTO 25

0 :rem 79
208 IF X$="{LEFT}" AND XC> 0 THEN XC=XC-1: GOTO 25

0 :rem 169
218 IF X$="{HOME}" THEN GOSUB 4000: GOTO 180

:rem 185

220 IF X$=" " THEN GOSUB 2000: GOTO 200 :rem 150

226 FOR Z=l TO 8:IF X$<>MID$("{Fl}{F3}{F5}{F7}{F2}
{F4}{F6}{F8}",Z,1) THEN NEXT :rem 11

228 CB=Z-1:ON Z GOSUB 21000,21000,21000,21000,1100
0,12000,13000,14000 :rem 149

229 IF Z>0 AND Z<9 GOTO 200 :rem 97
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236 FOR Z=l TO 7:IF X$<>MID$("=DCIMT",Z,1) THEN NE
XT :rem 117

237 ON Z GOSUB 6000,7000,9000,9500,10000,10500
:rem 250

239 IF Z>0 AND Z<8 GOTO 200 :rem 97

246 IF X$=MS" THEN GOSUB 16000:GOTO 22 :rem 248

247 IF X$="L" THEN GOSUB 18000:GOTO 22 :rem 244

248 GOTO 200 :rem 105

250 GOSUB 4000:CC=XC+YC*40+SC:GOSUB 4000:GOTO 200
:rem 12

387 DATA "BLACK ","WHITE ","RED{3 SPACES}","CYAN
{2 SPACES}","PURPLE" 2rem 124

388 DATA "GREEN","BLUE","YELLOW","ORANGE","BROWN "

,"LT RED" :rem 101

389 DATA "GRAY 1","GRAY 2","LT GRN","L BLUE","GRAY

3" :rem 236

390 DATA 120,162,8,160,0,169,208,133,252 :rem 171

391 DATA 169,48,133,254,169,0,133,251,133 :rem 235

392 DATA 253,177,251,145,253,200,208,249 :rem 188

393 DATA 230,?52,230,254,202,208,242,88,96 :rem 28

395 DATA 0,169,216,133,252,169,0,133,251 :rem 179

396 DATA 162,4,160,0,173,35,192,145,251 :rem 129

397 DATA 200,208,248,230,252,202,208,243,96:rem 75

500 POKE 56333,127:POKE 1,51:SYS 49152 :rem 248

540 POKE 1,55:POKE 56333,129:RETURN jrem 222

2000 IF YC>7 OR XC>7 THEN RETURN :rem 34

2010 PT=CH+YC+OF:BY=PEEK(PT):MS=2t(7-XC) :rem 217

2030 POKE CC,382-PEEK(CC) :rem 108

2040 IF (BY AND MS)=0 THEN POKE PT,BY+MS:GOTO 2060
:rem 240

2050 POKE PT,BY-MS :rem 46

2060 POKE 214,YC:PRINT:PRINTTAB(9)"{3 SPACES}
{4 LEFT}";PEEK(PT) :rem 82

2070 RETURN :rem 169

3000 PRINT "{HOME}":FOR Y9=0 TO 7:PT=CH+Y9+OF:BY=P

EEK(PT) :rem 240

3020 FOR X9=0 TO 7 :rem 132
3030 IF (BYAND2t(7-X9))>0 THEN PRINT "Q";:GOTO 304

0 :rem 158

3035 PRINT "-"; *rem 4
3040 NEXT:PRINT "{4 SPACES}{4 LEFT}"BY:NEXT

:rem 153

3060 PRINT "{HOME}{12 SPACES}SCREEN CODE=
{3 SPACES}{4 LEFT}" NC :rem 202

3070 RETURN *rem 170
4000 POKE CC,FNRV(PEEK(CC)): RETURN :rem 72
6000 IF YC<9 THEN RETURN s rem 117
6010 NC=FNRV(PEEK(CC)):OF=NC*8:GOSUB 3000:RETURN

:rem 180

7000 IF YC>7 OR XC<13 OR XO27 THEN RETURN :rem 53
7030 POKE CC,FNRV(NC):RETURN* :rem 227
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9000 FOR J=CH+OF TO CH+OF+7:POKE J,0:NEXT:GOSUB 30

00 :rem 215

:rem 196

:rem 172

9025 IF YC<8 AND XC<8 THEN GOSUB 4000

9030 RETURN

9500 FOR J=CH+OF TO CH+OF+7:POKE J,255-PEEK(J):NEX

T :rem 184

9525 GOSUB 3000:IF YC<8 AND XC<8 THEN GOSUB 4000

:rim 70

9530 RETURN :rem 177

10000 V=PEEK(VIC+22) . :rem 107

10010 IF (VAND16)>0 THEN POKE VIC+22,V AND 255-16:

RETURN :rem 62

10020 POKE VIC+22,V OR 16:RETURN :rem 55

10500 IF YC<9 THEN RETURN :rem 165

10520 NN=FNRV(PEEK(CC)):OG=NN*8 : rem 101

10530 FOR J=0 TO 7: POKE CH+OG+J,PEEK(CH+OF+J) :NEX

T: RETURN :rem 144

11000 T=(PEEK(53280)+1) AND 15 :rem 225

11003 POKE 53280,T:POKE 53281,T:GOTO 20000:rem 247

12000 T=(PEEK(53282)+l) AND 15 :rem 228

12003 POKE 53282,T:GOTO 20000 : rem 14

13000 T=(PEEK(53283)+1) AND 15 :rem 230

13003 POKE 53283,T:GOTO 20000 :rem 16

14000 T=(PEEK(49187)+1) AND 15 :rem 239

14003 POKE 49187,T:SYS 49188:GOTO 20000 :rem 96

16000 GOSUB 19000:PRINT:SYS 57812NM$,DN :rem 245

16020 POKE 193,0:POKE 194,48:POKE 174,0:POKE 175,5
6 :rem 190

16040 SYS 62957:RETURN :rem 33

18000 GOSUB 19000:POKE 147,0:SYS 57812NM$,DN,0

:rem 237

18033 L9=12288:POKE 781,L9 AND 255:POKE 782,L9/256

:rem 118

18034 SYS 62622:RETURN :rem 27

19000 INPUT "{CLR}{9 SPACES}FILENAME";NM$ :rem 156
19005 INPUT "DISK OR TAPE (D/T)";X$ :rem 152

19010 IF X$="D" THEN DN=8:RETURN :rem 27

19020 DN=1:RETURN srem 22

20000 PRINT "{HOME}{DOWN}"TAB(29)"BG0 "CO$(PEEK(53
280) AND 15) :rein 47

20040 PRINT TAB(29)"BG1 "CO$(PEEK(53282) AND 15)

:rem 206

20060 PRINT TAB(29)"BG2 "CO$(PEEK(53283) AND 15)

srem 210

"CO$(PEEK(49187) AND 15) :R
:rem 59

21000 IF YC>7 OR XC>7 THEN RETURN Irem 83
21010 CP=CC AND 2046:IF CB>1 THEN POKE CP,81:GOTO

{SPACE}21030 :rem
21020 POKE CP,45 :rem

20080 PRINT TAB(29)"TXT
ETURN
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21030 CP=CP+1: IF(CB AND 1)=1 THEN POKE CP,81:GOTO

21050 :rem 183

21040 POKE CPf45 :rem 78

21050 GOSUB4000;PT=CH+YC+OF:BY=PEEK(PT) :rem 149

21060 MP=7-XC AND 6:MK=2tMP*3:BY=(BY AND NOT MK) +

CB*2tMP :rem 213

21070 POKE PT,BY:POKE 214,YC:PRINT :rem 35

21080 PRINT TAB(9)"{3 SPACES}{4 LEFT}" PEEK(PT):RE

TURN :rem 213

When you run the character editor, you're asked FETCH CHARACTERS FROM

ROM? Enter Y to call an ML routine to copy character ROM into RAM. Otherwise,

characters already present at $3000 are retained. The screen displays all 256 of the

RAM characters in the bottom half of the screen. The top displays an enlarged ver

sion of the current character plus its screen code—for example, @ is shown as 0—

and a list of the four current color settings. (All character colors are the same.)

There's also a central scratch-pad area where several graphics can be placed so that

their joint effect can be checked. This is useful where several graphics characters to

gether build a larger composite character.

Editing is done by moving the inverted cursor with the usual cursor control keys

on the enlarged 8X8 diagram, and typing the space bar to invert the dot beneath

the cursor. The result of the modifications is instantly visible in the display at the

screen bottom and on the scratch area.

New characters are selected for editing by moving the cursor to the lower part of

the screen and typing an equal sign (=) over the chosen character. Then home the

cursor and edit.

Other commands are:

C Clears a character, setting all bits 0.

D Draws the current character in the scratch area.

I Inverts the current character's bits.

T With the cursor over a character in the bottom half of the screen, transfers

the current character's definition there—now there are two of them.

f2 Advances the screen background color.

f8 Advances the text color.
M Toggles between ordinary and multicolor modes. The text color must be

from orange to gray 3 for multicolor mode to show. When it does, keys fl,

f3, f5, and 17 set pairs of points to 00, 01, 10, and 11, corresponding to the
four colors. Keys f4 and f6 also advance background colors 1 and 2.

L and S Load and save (respectively) the character set, allowing your choice of file

name and device.

Applications could include the creation of chess and other game pieces, special
alphabet sets, musical and other notations, monsters, bombs and so on, for arcade
games If you're going to PRINT your graphics, remember that the second batch of
128 characters on the screen is generated with {RVS}, even though characters need

The early part of the program handles initialization. Lines 200-250 handle the
keypresses and call appropriate subroutines.
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Bitmapped Graphics
Bitmap mode gives the best graphics available on the 64. However, 64 BASIC has no

specific commands to handle this mode: in fact, it would be possible to program a 64

for years and never discover that bitmap mode existed.

Bitmapping allows each dot on the screen to be controlled. Since VIC-II maps

the screen into individual characters of 8 X 8 pixels, and displays 40 X 25 of these

characters, there are 320 X 200 = 64000 addressable dots. (In practice, resolution

isn't this good, because, for example, ordinary TVs cannot display alternate on/off

dots without color interference, and some color combinations don't have sufficient

contrast to be properly distinguishable, even on color monitors.) These figures still

apply if the screen is narrowed or shortened—see the earlier section on smooth

scrolling—or mixed with ordinary text by the use of split-screen techniques ex

plained below, but offscreen graphics are obviously less important.

Bitmapping is a more accurate expression than high resolution, with which it's

often confused. Bitmapping resolution is in fact identical to that of normal characters.

The distinction should be between high resolution and multicolor mode.

A bitmap is 8000 consecutive bytes (not quite 8K, which is 8192 bytes), enough

to map the whole screen as 64,000 bits. The display is treated by VIC-II just like

1000 consecutive user-definable characters. Bitmap mode is selected by bit 5 in

53265 ($D011).

In bitmap mode, since each bit in the bitmap can only be on or off, just two

alternatives exist for each point on the screen, which means a choice of two colors.

VIC-II allows each of the 1000 characters 2 independent colors, selectable from the

full range of 16 colors. In each bitmapped character, the 2 colors are not set in color

RAM, which has only one usable nybble. Instead, they're controlled by screen RAM,

the area, usually starting at $400, treated by BASIC as the screen, which of course

has two nybbles available for each character. This new usage can be confusing.

Unlike all other modes, the screen's normal background color setup is no longer

operative.

You don't control the color of every dot on the screen, though. One reason is the

memory requirement: a choice of 16 colors per bit would require 32K of RAM to

store the full bitmap.

Multicolor mode is selected by bit 4 in 53270 ($D016). Where multicolor mode
is used with bitmap mode, there's the usual trade-off—pairs of bits together allow a

choice of 4 colors. Each of the 1000 characters has a choice of 3 colors, plus a com
mon background color. All the colors are selected from the full palette of 16 colors.

Any 64 graphics design program, and generally flight-simulators and games
where the entire screen is filled without repetition, must be bitmapped. (Sprites can
sometimes give a similar impression, though.) The high-resolution bitmap mode has
finer resolution than the multicolor version, but is less colorful—except in the sense
of being more prone to unwanted color fringing. For example, you may find an
adventure game including black line drawings on white, which are colored by a fill-
in color (unless they're on a boundary), since three colors can't coexist in one 8 X 8
area. Multicolor mode builds the picture from 160 short horizontal bit pairs by 200
down. This is more versatile than regular 64 multicolor graphics; the background
color is in common, but all the other three colors are independently variable within
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every 8X8 block. This allows the character boundaries, where colors can change, to

be made imperceptible, at the cost of some loss in resolution.

The VIC-II Chip and Bitmapping
Everything about the VIC-II chip in the previous section applies to bitmap mode, ex

cept that the character base can only be made to start at 8K intervals (at $0, $2000,

$4000, $6000, . . . $E000). Since 8000 bytes are necessary for a bitmap, this is

reasonable enough. There are eight possible positions for the bitmap area, and there

fore two possible positions within each of the four VIC-II banks. Note that bits 1 and

2 in $D018 have no effect; it's not possible to adjust the bitmap character base to the

nearest $800 bytes.

Screen RAM is controlled by VIC-II as in character mode, but interpreted dif

ferently, as color information. With BASIC, this gives odd effects, as we'll see. Mean

while, BASIC bitmap programs under development should be run from time to time

with the bitmap POKEs REMed out, since syntax errors won't be readable in bitmap

mode. Otherwise, you may not even know that a syntax error has occurred. Remem

ber also that if you've used RUN/STOP-RESTORE to get back to normal, POKE

648,4 will be needed if the screen was moved.

How to Use Bitmapping

Bitmap mode is interesting, but needs to be approached with caution. Here is a brief

discussion of when its use is appropriate.

Normal BASIC screen commands don't work in bitmap mode, since the charac

ters and screen are organized differently. Therefore, POKEs and often PEEKs are

essential. The 8X8 organization means it's essential to go through a conversion

process. If you want to locate a pixel 100 dots across and 50 dots down the screen, it

must be translated into the bit definition corresponding to the twelfth character

across and seventh down the screen; then the byte and its bit have to be found. This

illustrates that ML is necessary if you cannot tolerate delays. BASIC is too slow even

to clear the bitmapping screen satisfactorily.

Bitmapped pictures can be loaded from disk and tape. All that's needed is to

first save the relevant 8K bytes and then save their screen RAM for color infor

mation. Later a forced LOAD of both, with VIC-II set, reconstructs the picture. This

works well; a disk can hold about 18 such pictures. Where this isn't suitable, the bit

map can be loaded with the program. If movement is wanted, the 8K bitmap itself

must be processed, probably with ML.

Fairly simple pictures can be effective. The most efficient method is to draw the
figures while the program runs. Fairly simple line-segment drawings can be com
posed like this more quickly than loading 8K of data. Subroutines to draw a line seg

ment between two points and to color an enclosed region are often used.
Several bitmaps can coexist in RAM; switching between them requires a simple

POKE, which can also change the color RAM. So it's possible to store two or more

completely independent pictures and instantly switch from one to the other. How

ever, this uses a lot of memory.
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Memory Maps in Bitmap Mode

Figure 12-9 shows all eight available bitmap positions. Two of these can't be used

for full-screen bitmaps, since the ROM characters appear, immovably, in the lower

half of the screen. Because $C000-$DFFF occupies what could be useful free RAM

and also risks conflict with I/O, it is easier to use another location.

Figure 12-9. Available Bitmap Addresses

$0 $2000 $4000 $6000 $8000 $A000 $C000 $E000 $FFFF

VIC Bank

BASIC

Workspace

+ Chr. ROM

0 1

Chr. ROM

Image

BASIC

ROM

2

I/O Kernal

ROM

3

Of the five other regions, $2000-$3FFF involves no bank switching and is

easiest, but the others aren't much more difficult. Remember that each bitmap screen

must have 1000 bytes in the same bank for its color. So if $A000 onward holds the

bitmap, the colors must start somewhere like $8C00, avoiding character-ROM

images.

Bitmaps can be tucked away below ROM. VIC-II uses these regions happily. The

drawback is that they can't be PEEKed without switching ROM out; this makes

graphics which need to be altered (for example, to give the effect of motion) slightly

trickier.

Note that $4000-$7FFF can't be used to store two full bitmaps, because there's

no place to put the color screens in the same bank. If you want to switch between

full screens, it's therefore necessary to have bitmaps and color RAM in two or more

different banks. If the positions are similar in each, a single POKE to bank select will

switch between them. This applies to full screens. However, it's possible to overlap

the color with the bitmap—for example, by starting the bitmap at $2000 and the

screen at $3C00. At the screen bottom, 104 characters (about 2-1/2 lines) will echo

the colors in bitmap form. This is acceptable with split-screen techniques. It's the
only way two full bitmaps can occupy the same VIC bank.

Calculations

One way to visualize bitmapping is to imagine that all 8000 bytes are divided into
25 sets of 320 bytes. Each 320-byte block corresponds to a horizontal line, eight dots
high, on the screen. Another way to visualize bitmapping is to consider the infor
mation as 1000 eight-byte chunks of memory-defined characters 0-999 in the famil
iar 40 X 25 layout.

To control a screen dot with given X and Y coordinates, we have to determine
which bit of which byte to process. Let's consider X and Y relative to the top left of
the screen, with X=0-319 and Y=0-199. The object is to calculate where a particu
lar point, say, X=100, Y=50, will be. Points with Y from 0 to 7 lie in the top row of
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characters; Y from 8 to 15 must be in the next row, and generally Y has INT(Y/8)

complete pixel rows above it, each of 320 bytes. Now, points with X from 0 to 7 fall

within the first character in any row; X from 8 to 15 corresponds to the next character,

and so on. Generally, the number of characters along a row is INT(X/8). The point

can be in one of eight bytes in the character, determined by the remainder after divid

ing Y by 8; in BASIC, this is Y AND 7 for our range of Y values. If MAP is the vari

able storing the start of the bitmap, this is the address of the byte containing X,Y:

MAP + 320*INT(Y/8) + 8*INT(X/8) + (Y AND 7)

This expression can be improved to the following line, which BASIC evaluates faster:

MAP + 40*(Y AND 248) + (X AND 504) + (Y AND 7)

Finally, the actual bit within the target byte is 7 - (X AND 7), because X AND

7 gives 0-7, increasing with X, but the bits are arranged in the sequence 7-0. Bit 0-7

has to be set or cleared to set or clear the screen pixel, with:

POKE AD, PEEK (AD) OR 2t(7-(X AND 7)): REM SETS PIXEL

The same expression with AND clears the bit.

Examples Using Bitmap Mode
A bitmapped window. Turn on the 64, then enter and run this line:

10 POKE 53265, PEEK(53265) OR 32: REM SET BITMAP MODE

The 64 displays the first 8000 bytes, from $0, in bitmap mode. Character definitions,

seen by the VIC-II at 4096 and following, are displayed in the bottom half of the

screen. The zero page and stack are displayed at the top of the screen, so some of

these locations continually change. The screen RAM, at $400-$7E7, is displayed in

the top eighth to quarter of the screen; you'll see changes in the display if you cursor

around the screen and type keys. Note that the colors are mainly red and black be

cause spaces PEEK as 32 (=%0010 0000), so the high nybble is red, the low nybble

black. Nonspace characters appear in colors depending on the characters' PEEK

values.

Multicolor mode is more complex. If you select it, you'll see the common blue

background, the mode extending over the whole screen, and the light blue of the or

dinary color RAM.

Bitmapping at $6000. Add these lines to the above example to alter the bitmap

and color locations:

20 POKE 56576,150: POKE 648,92: POKE 53272,121: REM BITMAP PARAMETERS

30 FOR J=6*4096 TO 6*4096+7999: POKE J,l: NEXT: REM POKE BITMAP

40 FOR J=23553 TO 24551: POKE J,l: NEXT:REM POKE COLOR

Line 20 starts the bitmap at $6000, in bank 1, and starts its color just below at

$5C00. Line 30 fills the bitmap with 1, giving 40 fine vertical lines on the screen.

Line 40 sets the colors to black and white. This part is faster, by eight times, than

filling the screen. (Note that line 30 could clear the screen by POKEing in 0 or 255.

Random numbers would fill the screen with random dots.)

After adding the following line, BASIC strings will move down to overwrite the
bitmap, then the color, giving textilelike patterns.
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50 X$="": FOR J=l TO 7: X$=X$+CHR$(256*RND(1)): X$=X$+X$: NEXT: GOTO 50

Inserting a line like 45 POKE 55, 0: POKE 56, 92: CLR prevents this. This sets the

top of BASIC memory at $5C00, protecting the color and bitmap information.

Bitmapping at $2000. Program 12-25 POKEs 5 into the color area, setting colors

to green (since the low nybble is 5, which determines the color of bits cleared to 0)

and black (since the high nybble is 0, for bits set to 1). Lines 50 to 70 scan across the

screen, plotting dots. Note how the Y value is forced into the range 0-200. This can

be made automatic by picking out the maximum and minimum within a loop.

Program 12-25. Bitmap Draw Routine

10 POKE 53265,PEEK(53265) OR 32

20 POKE 53272,25:MAP=8192

30 FOR J=MAP TO MAP+7999:POKE J,0:NEXT

40 FOR J=1024 TO 2023:POKE J,5:NEXT

50 FOR X=0 TO 319:Y=SIN(X*t/80)*50+100
60 AD=MAP+40*(Y AND 248) + (X AND 504) + (Y AND 7)

70 POKE AD,PEEK(AD) OR 2t(7-(X AND 7)):NEXT
80 GET R$:IF R$="" THEN80

Program 12-25 puts the bitmap at $2000, but keeps the BASIC screen RAM so

READY prints as colored blocks. Try LIST when the program has finished running

(drawing a figure on the screen); the bitmapped dots remain, like a sprite, as the

screen scrolls. This happens whenever BASIC'S screen shares the color area. The key

E which has a PEEK value of 5 gives the same black on green color effect.

Memory map examples. Bank 0 isn't very suitable for bitmapping. The range

$2000-$4000 has to be used for the bitmap, and $1000-$lFFF is filled with character

ROM. Therefore, if the color isn't to coincide with BASIC'S screen, it must start at

$0C00, leaving only IK if BASIC starts in its usual place.

To set this configuration, POKE 53272,57: POKE 55,0: POKE 56,12: CLR,

assuming bank 0 is on.

However, BASIC'S start can be moved up to $4000, with POKE 43,1: POKE

44,64: POKE 16384,0:NEW. To move the end of BASIC to $A000, POKE 55,0: POKE

56,160: CLR. This provides 24K of RAM available for BASIC, the maximum possible

with the bitmap and color both in free RAM. If you're writing BASIC and don't want

a loader to first reconfigure BASIC, the setup with 21K for BASIC is better.

Drawing lines. Program 12-26 draws black lines on a white bitmapped screen;

an ML routine (by B. Grainger) plots individual points, and this is called by a BASIC

routine which calculates optimum points to generate straight lines.

Program 12-26. Drawing Lines
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 FOR J=49152 TO 49310:READ X:POKE J,X:NEXT

:rem 214

20 POKE 56576,(PEEK(56576) AND 252) OR 2 :rem 221

30 POKE 53272,9 :rem 250

40 POKE 53265,PEEK(53265) OR 32 :rem 69
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50 POKE 56,64:CLR :rem 176

60 CLEAR=49152:PLOT=49197 :rem 211

100 SYS CLEAR ;rem 247

110 X2%=X1%:X1%=RND(0)*320:Y2%=Y1%:Y1%=RND(0)*200

:rem 146

120 GOSUB 1000:GOTO 110 :rem 217

1000 XD%=X1%-X2% :rem 73

1010 IF XD%>0 THEN XSH%=-1:GOTO 1100 :rem 151

1020 XD%=-XD%:XSH%=1 :rem 111

1100 YD%=Y1%-Y2% srem 77

1110 IP YD%>0 THEN YSH%=-l:GOTO 1200 :rem 155

1120 YD%=-YD%:YSH%=1 :rem 115

1200 XC%=X1%:YC%=Y1% :rem 85

1210 YC%=Y1% .rem 113

1220 IF XD%<YD% THEN 1500 :rem 8

1222 ACC%=-XD%/2 :rem 63
1225 IF XC%=X2% THEN 2000 :rem 246

1230 SYS PLOT,XC%fYC% :rem 221

1240 XC%=XC%+XSH% :rem 199

1250 ACC%=ACC%+YD% :rem 202

1260 IF ACC%<=0 THEN 1225 :rem 230

1270 ACC%=ACC%-XD% :rem 205

1280 YC%=YC%+YSH% :rem 206

1290 GOTO 1225 xrem 207

1500 ACC%=-YD%/2 :rem 63

1510 IF YC%=Y2% THEN 2000 :rem 245

1520 SYS PLOT,XC%,YC% :rem 223

1530 YC%=YC%+YSH% :rem 204

1540 ACC%=ACC%+XD% :rem 203

1550 IF ACC%<=0 THEN 1510 :rem 229

1560 ACC%=ACC%-YD% :rem 208

1570 XC%=XC%+XSH% :rem 205

1580 GOTO 1510 :rem 206

2000 SYS PLOT,X2%#Y2%:RETURN :rem 209

30000 DATA 169,0,133,187,169,96,133,188,160,0,169

:rem 122

30001 DATA 0,145,187,200,208,251,230,188,165,188

:rem 59

30002 DATA 201,128,208,241,169,64,133,188,169,1,14

5 :rem 211

30003 DATA 187,200,208,251,230,188,165,188,201,68

:rem 116

30004 DATA 208,241,96,32,121,0,32,253,174,32,138

:rem 46

30005 DATA 173,32,247,183,132,176,133,177,32,121

:rem 58

30006 DATA 0,32,253,174,32,158,183,134,187,169,0

:rem 61

30007 DATA 133,188,234,169,96,133,140,165,187,41

:rem 77

30008 DATA 7,133,139,69,187,162,3,10,38,188,202,20

8 :rem 218
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30009 DATA 250,133,187,101,139,133,139,165,188,101

:rem 162

30010 DATA 140,133,140,165,187,162,2,10,38,188,202

:rem 143

30011 DATA 208,250,101,139,133,139,165,188,101,140

:rem 147

30012 DATA 133,140,165,176,41,7,170,69,176,101,139

:rem 158

30013 DATA 133,139,165,177,101,140,133,140,232,56

:rem 97

30014 DATA 169,0,106,202,208,25-2,1,139,129,139,96

:rem 110

Summary of Bitmap Mode
Start of bitmap and color. Bits 0 and 1 of $DD00 select the VIC-II bank. Bit 3 of

$D018 defines the start of the bitmap from either the beginning or the midpoint of

the selected bank, while bits 4-7 select the main color area.

Mode. Bit 5 of $D011 controls the 64's graphics mode. Therefore, POKE 53265,

PEEK(53265) OR 32 selects bitmapping, while POKE 53265, PEEK(53265) AND 223

selects characters.

Bit 4 of $D016 controls the color mode. Thus, POKE 53270, PpEK(53270) OR 16

selects multicolor bitmap mode, and POKE 53270,PEEK(53270) AND 239 selects

high-resolution bitmap mode.

Colors. In high-resolution mode, colors are determined by 1000 bytes starting

from the area set by VIC-II. The high nybble determines the color of bits set to 1,

and the low nybble of bits set to 0, in each 8 X 8 dot area.

In multicolor bitmap mode, one of four colors is chosen according to bit pairs:

11 Low nybble of color RAM from $D800 (55296)

10 Low nybble of screen RAM, often from $0400 (1024)

01 High nybble of screen RAM

00 Low nybble of $D021 (53281), the background color

Drawing Onto the Bitmapped Screen

The pair of programs which follow allow drawings to be made directly to the

bitmapped screen, which is set up from 8192 to 16191, with its color from 1024 to

2023. (Finished pictures can be saved, using techniques discussed in Chapter 6.)

The high-resolution version, Program 12-27, is joystick controlled. Dots are plot

ted in any of eight directions or erased if the delete mode is on. The fire button

toggles between plot and delete. If the stick and button are pressed at the same time,

a flashing cursor moves without altering the screen. Keys f3 and f5 advance back

ground and foregound colors, respectively.

Program 12-27. Bitmap Drawing with a Joystick
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 POKE 56,8192/256:CLR :rem 226

14 POKE 53265,PEEK(53265) OR 32 :rem 70
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15 POKE 53272,PEEK(53272) OR 8 :rem 22
24 CE=16*0 +3 :rem 74

25 FOR J=1024 TO 2023:POKE J,CE:NEXT srem 230
29 FOR J=49152 TO 49171:READ X:POKE J,X:NEXT

:rem 229

30 SYS 49152 : rem 103

80 FOR 1=0 TO 7:P2(7-I)=2tl:NEXT :rem 40

90 X=160:Y=100 srem 246

100 PE=PEEK(56320) :rem 217

101 R=PE AND 8 :rem 193

102 D=PE AND 2 :rem 174

103 L=PE AND 4 .rem 185

104 U=PE AND 1 Srem 192

105 B=PE AND 16 .rem 228
200 IF B=0 THEN DEL=1-DEL :rem 68
210 IF B=0 AND U*D*L*R=0 THEN MOV=l :rem 85

220 IF B<>0 THEN MOV=0 srem 157
340 IF L=0 THEN X=X-1:IF X<0 THEN X=0 :rem 218
350 IF R=0 THEN X=X+1:IF X>319 THEN X=319 :rem 187
360 IF U=0 THEN Y=Y-1:IF Y<0 THEN Y=0 :rem 233

370 IF D=0 THEN Y=Y+1:IF Y>199 THEN Y=199 :rem 191
500 OF=40*(Y AND 248)+(X AND 504) +(Y AND 7)

:rem 47

510 SCREENCHR=INT(OF/8) :rem 168
520 BIT=X AND 7 srem 21

530 CHAR=8192+OF srem 135

540 PE=PEEK(CH) srem 108

550 POKE CH,PEEK(CH) OR P2(BIT) srem 212

560 IF DEL THEN POKE CH,PEEK(CH) AND NOT P2(BIT)

:rem 139

570 IF MOVE THEN POKE CH,PE: REM RESTORE VALUE IF

{SPACE}MOVE srem 145
580 IF MOVE=0 THEN POKE 1024+SC,CE :rem 106

600 GET X$ srem 242

610 IF X$="{F3}" THEN CE=((CE+1) AND 15) OR (CE AN
D 240) srem 63

620 IF X$=li{F5}11 THEN CE=(CE+16') AND 255 : rem 121
700 GOTO 100 :rem 97

20000 DATA 162,32,138,133#252,169,0,133,251,145

:rem 251

20010 DATA 251,200,208,251,230,252,202,208,246,96

:rem 92

The multicolor mode editor, Program 12-28, is keyboard controlled, using cursor

keys rather than a joystick. Four colors are set when the program is run, and the

fourth, with bit pattern 11, chosen when plotting starts. Keys 1-4 select current

background, high nybble, low nybble, and color RAM colors. Keys fl, f3, f5, and il

advance the background, high nybble, low nybble, and color RAM, so plotting in

different colors on the screen is simple. Note that the background color affects the

entire screen—press fl to see this. Typing the space bar toggles between plot and

move modes.
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Program 12-28. Multicolor Bitmap Draw Routine
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 POKE 56,8192/256:POKE 55,0:CLR :rem 17

11 PRINT "BACKGROUND?";:GOSUB 50000:BA=G :rem 125

12 PRINT "{6 SPACES}AUX1?";:GOSUB 50000:A1=G
:rem 172

13 PRINT "{6 SPACES}AUX2?"y:GOSUB 50000:A2=G
:rem 175

14 PRINT " CHARACTER?";:GOSUB 50000:CC=G :rem 48

15 POKE 53265,PEEK(53265) OR 32 :rem 71
16 POKE 53272,PEEK(53272) OR 8 :rem 23

17 POKE 53270,PEEK(53270) OR 16 :rem 67

20 POKE 53281,BA :rem 67
26 FOR J=49152 TO 49205:READ X:POKE J,X:NEXT

:rem 224

28 CE=16*A1 + A2:POKE 49188,CC:POKE 49192,CE
:rem 31

30 SYS 49152 :rem 103

80 FOR J=0 TO 7:P2(J)=2tJ:NEXT :rem 199
90 B=3:X=160:Y=100 :rem 226

100 GET G$:G=ASC(G$+CHR$(0)) :rem 218

110 IF G>48 AND G<53 THEN B=G-49:GOTO 500 :rem 103

200 IF G$=" " THEN MOVE=1-MOVE :rem 69

210 IF G$="{RIGHT}" THEN X=X+2:IF X>318 THEN X=318

:rem 255

220 IF G$="{LEFT}" THEN X=X-2:IF X<0 THEN X=0

:rem 168

230 IF G$="{UP}" THEN Y=Y-1:IF Y<0 THEN Y=0

:rem 160

240 IF G$="{DOWN}" THEN Y=Y+1:IF Y>199 THEN Y=199

:rem 7

250 IF G$="{F1}" THEN BA=(BA+1) AND 15:POKE53281,B

A :rem 10

260 IF G$="{F3}" THEN A1=(A1+1) AND 15:CE=(CE+16)
{SPACE}AND 255 :rem 168

270 IF G$="{F5}" THEN A2=(A2+1) AND 15:CE=(CE+1) A
ND 255 srem 118

280 IF G$="{F7}" THEN CC=(CC+1) AND 15 :rem 251

500 SCREENCHR=40*INT(Y/8)+INT(X/8) :rem 31
510 ROW=Y AND 7:BIT=6-(X AND 7) :rem 154

520 CHAR=8192+8*SCR+ROW:PE=PEEK(CH) :rem 107
530 POKE CH,(PE AND (255-3*P2(BIT))) AND NOT B*2fB

IT :rem 255
540 POKE CH,(PE AND (255-3*P2(BIT))) OR B*2tBIT

:rem 221

550 IF MOVE=1 THEN POKE CH,PE srem 120

590 IF MOVE=0 THEN POKE 1024+SC,CE:POKE 55296+SC,C

c :rem 82
600 GOTO 100 :rem 96

20000 DATA 162,32,138,133,252,169,0,133,251:rem 53
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20001 DATA 145,251,200,208,251,230,252,202,208

:rem 191

20005 DATA 246,134,252,134,254,169,216,133,253

:rem 219

20006 DATA 169,4,133,255,162,4,160,0,169,3 :rem 12

20010 DATA 145,252,169,53,145,254,200,208 :rem 221

20011 DATA 245,230,253,230,255,202,208,238,96

:rem 163

50000 GET G$:IF G$="H GOTO 50000 :rem 35

50010 PRINT G$ "{RVS} {8 .SPACES}11 :rem 68
50020 G=PEEK(646):PRINT "{ WHT }": RETURN :rem 187

Sprites
Sprites (or Movable Object Blocks) are large user-definable graphics which can be

put anywhere on the screen. The VIC-II chip handles them automatically—a consid
erable technical achievement to Commodore's credit. Since many people feel intimi
dated by sprites, this section begins with simple demonstrations and leaves the
technical details for later.

First, turn on the 64, type POKE 53269,1 and press RETURN. You now have a

sprite. However, you can't actually see it since it is not in the screen display area.

Type POKE 53248,100 and POKE 53249,100 and a sprite will appear. Vary the val
ues in these locations and watch the sprite move. The sprite is, or is supposed to be,
white. This color was set on power-up.

At this point, the sprite's shape is not very satisfactory; it is defined by the first

63 bytes of RAM. We can alter it by POKEing different values into location 2040, the

location which tells the VIC-II where to find this sprite's shape data. Some values
yield a sprite which continuously changes; this means that the RAM which defines

the sprite's shape is being used for BASIC workspace and isn't a flaw in the 64.

POKE 2040,16 causes the top one-and-a-half screen lines (strictly, the first 63

characters) to define the sprite; try homing the cursor and redefining the sprite with

{RVS}-Commodore key-B, {RVS}-*, SHIFT-U, and @, setting bit patterns

11111111, 10101010, 01010101, and 00000000.

Now, POKE 53287 with different values. These change the color of the sprite.

Color changes in the sprite correspond to bits set to 1 in the sprite's definition. (You

may get color effects because of the spacing of the defining bits on the screen.) Bits

set to 0 don't represent a color, but are treated as transparent by the VIC chip, so the

background shows through.

POKE 53276,1 sets multicolor mode for the sprite. (Poke 53276,0 to return to

high-resolution.) Multicolor mode increases the available colors from 1 to 3; the extra

two are stored in 53285 and 53286, so POKEs into these locations will alter multi

color sprites (if bit patterns 10 or 01 are present), but will leave high-resolution

sprites unchanged. All multicolor sprites share these extra two colors.

POKE 53277,1 makes the sprite expand horizontally, and POKE 53271,1 ex

pands it vertically to twice the unexpanded dimensions. Without special techniques,

only eight sprites are available at one time, so this can be useful where you'd like

reasonable coverage of the screen.
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POKE 53275,1 changes the priority of the sprite with regard to text; check to see

that characters are now displayed in front of it.

PRINT PEEK(53279) is set to 1 if the sprite overlaps text. This is called a col

lision. As you'll find, this location is reset only when it's read from, so two PEEKs

are actually necessary to give the current status.

Finally, POKE 53265,187 sets bitmap mode. You'll see that a sprite is still dis

played—the graphics mode doesn't affect it.

Detailed Description of Sprites
Enabling and disabling sprites. The seven bits of the VIC register at $D015 (53269)

control sprite enabling. The VIC chip can handle up to eight sprites at one time,

numbered 0-7, turned on when corresponding bits 0-7 are 1, and turned off when

bits 0-7 are 0. Examples: POKE 53269,1 turns on sprite 0—the introduction used

this sprite; POKE 53269,255 turns on all sprites. Sprites coexist with all graphics

modes—ordinary text, user-defined characters, and bitmapping.

When sprites are on, the VIC-II needs extra processing time, which it takes at

the expense of the 6510 central processor. For example, if all sprites are enabled, the

6510 operates at 0.95627 times the speed it runs at with all sprites disabled, and this

effect is present even if the VIC chip is disabled in border-color mode. This slow

down affects disk, tape, and RS-232 operations, so it makes sense to press

RUN/STOP-RESTORE before loading or saving.

Sometimes it's helpful to quickly disable sprites, then reenable them (for ex

ample, when moving a sprite). Two POKEs are needed to alter the position, and if

one acts noticeably before the other, motion will be in two parts, horizontal and

vertical (another way to handle sprites is to move them when the raster scan is off

the screen).

Defining sprites. Unexpanded sprites are about 3X3 characters wide. Nine

characters use 9*8*8 dots, and require 72 bytes for definition, but to fit sprite data in

RAM compactly, VIC allows 64 bytes per definition, allowing 24 X 21 dot sprites.

Byte 64 is ignored, while the other 63 are arranged in 21 three-byte groups as in Fig

ure 12-10.

Sprite definitions must coexist in the VIC-II bank with the screen and any user-

defined characters or bitmap and color screen that may be in use. Since only 64

bytes are needed per definition, there's usually plenty of room.

When sprites are enabled, VIC-II immediately displays them in accordance with

the values held in its various sprite control registers. The only parameters not in the

VIC-II chip are eight pointers to the sprite shape definitions, which are stored after

the screen. If the screen is moved, these pointers move with it, but normally loca

tions 2040-2047 apply. They can hold anything from 0 to 255, since 256*64 is ex

actly the size of a VIC-II bank. So, POKE 1020,13 points sprite 0's start to

13*64 = 832, near the start of the tape buffer.

Positioning sprites. Since there are 40 X 25 characters, and sprites can be con

trolled to the nearest pixel, at least 320 horizontal (X) and 200 vertical (Y) positions

have to be programmable. Each sprite's Y value has its own one-byte VIC register,

but X values require nine bits. The X values are stored in one-byte registers, with all

the extra high bits collected elsewhere in another register. The first 16 VIC registers,
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$DOOO-$DOOF (53248-53263), hold X, then Y positions for sprites 0-7, followed by

the high-bit register at $D010 (53264). The X,Y pairs define the top-left corner of the

complete sprite because VIC scans the screen from the left and down.

You might at first expect X values to range from 0 to 319, but this wouldn't take

into account the way the VIC-II chip scans the screen. In fact, X values from 24 to

342 define the screen width, and Y values from 50 to 249 define the height. These

figures refer to the sprite's top-left corner, and you must allow for the sprite's size.

An unexpanded sprite is 24 dots across by 21 down, so to just fit a sprite in the

screen, X should range from 24 to 296, and Y from 50 to 208. By using X and Y val

ues outside of these ranges, you can move a sprite gradually off the screen in any

direction. For instance, if Y=29, the sprite is just above the top of the screen; if

Y=250, the sprite is below the screen, and so on.

Note that X=0 makes an unexpanded sprite just vanish off the left border. But

an expanded sprite with X=0 is still partly visible. It can be made to move further

left only by making X high, up to a maximum of 511. (PAL TVs, in the U.K., have a

different maximum of 503. A larger X won't display at all.) This means it's tricky to

move X-expanded sprites smoothly off the left side of the screen.

Sprite colors. High-resolution sprite colors are stored in eight registers from

$D027 (53287) to $D02E (53294). On power-up, these are set to 1, 2, 3, 4, 5, 6, 7,

and 12.

Figure 12-10. Sprite Data Arrangement

Byte Number

21 bits

24 Bits

Sprite high-resolution and multicolor modes. Bits 0-7 of $D01C (53276) con

trol the modes of each sprite independently. High-resolution sprites interpret each
bit set to 1 in their definitions as the sprite color, stored in one of the color registers
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at $D027-$D02E. Bits cleared to 0 are transparent, using the background color.

Multicolor sprites interpret pairs of bits in their shape definitions like this:

00 Transparent

01 Sprite MCM register 0 ($D025 = 53285)

10 Sprite color in one of $D027-$D02E

11 Sprite MCM register 1 ($D026 = 53286)

The two new colors are shared by all multicolor sprites. Note that character or back

ground colors aren't used, which makes sense, since you do not generally want the

sprite's colors to vary as it moves. Note that if the second bit is set to 1, an MCM

register is selected.
Expanded sprites in effect use each dot twice, so the resolution isn't improved.

Note that expanded multicolor sprites are still displayed in multicolor—the sprite

handling does not treat 01 as 0011, for example.
Expansion of sprites. Bits 0-7 of $D01D (53277) and $D017 (53271) control the

X and Y expansion of each of the eight sprites. Thus, POKE 53277,1: POKE 53271,9

causes sprite 0 to be doubled in both directions, and sprite 3 to be doubled in the Y

direction. Expansion in the Y direction elongates a sprite downwards from its present

position, and X expansion stretches it to the right.

Priority of sprites. When sprites are superimposed, the VIC-II chip can't display

both at once, but has to select which gets priority. The same happens on a back

ground of graphics, so we have to distinguish two types of priority.

Sprite-sprite priority determines which of two or more sprites is displayed where

they overlap. Lower numbered sprites always appear in front of higher numbered

ones; this is built into VIC-II and must be taken into account when designing pro

grams with sprites which may overlap. The nearest sprite could be 0, say, and the

furthest sprite, 7. This priority applies to the nontransparent parts of both high-

resolution and multicolor sprites. Transparent parts of a sprite allow lower priority

sprites or background graphics to show through.

Sprite-data priority is more complicated. Seven bits of $D01B (53275) control

sprite-data priority for each sprite. This determines whether a sprite appears behind

or in front of character data when the two overlap. When a bit is 0, its sprite gets

priority, and when 1, data gets priority. On power-up all bits are set to 0, so sprites

initially have priority. This concept is sometimes termed sprite-background priority,

since sprites are often displayed on a background of character data. Do not confuse

this with the background color of the screen, over which sprites always have

priority.

With high-resolution sprites the transparent parts always allow what's under

neath to show, but the parts mapped with 1 allow character data to show only if the

bit in $D01B is 1. Thus, an airplanelike sprite can be made to fly in front of or be

hind user-defined character "mountains."

Multicolor-sprite priority with data is controlled in the same way. When the

sprite's bit in $D01B is 0, the sprite, except the transparent areas defined by bit pat

tern 0, has priority over data. When the bit is 1, data has priority over the entire
sprite.

Priority with several sprites and data is more complex. The setting of the lower

numbered sprite gets priority. Now, suppose sprite 0 overlaps sprite 1, and there's
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some data under both. If sprite 0 is set to appear below data, then data will show

through, even where sprite 1 is set with priority over data.

Collision detection. This is an essential aspect of sprite programming. The idea

is to signal whenever a nontransparent part of a sprite contacts screen data or an

other sprite. VIC-II has two registers for this purpose, plus two interrupt registers.

Without all these, detecting collisions would be enormously difficult. They can be

PEEKed or used with ML to generate interrupts. Here's a simple example:

Program 12-29. Sprite Collision

10 FOR J=0 TO 62:POKE 832+J,7:NEXT

20 POKE 2040,13:POKE 2041,13

30 V=53248

40 POKE V+21,3

50 POKE V+39,1:POKE V+40,0

60 POKE V,135:POKE V+l,70

100 POKE V+3,60

110 PRINT "{CLRHWHT} SPRITE-SPRITE{3 SPACES}SPRIT
E-DATA{3 SPACES}INT REG"

120 FOR J=0 TO 255: POKE V+2,J

130 PRINT SPC(8) PEEK(V+30) SPC(ll) PEEK(V+31);

140 PRINT SPC(8) PEEK(V+25) AND 6:PRINTM{UP}";

150 POKE V+25,6

160 NEXT:GOTO 20

The seven bits of $D01E (53278) register sprite-sprite contact, so at least two bits

are set on any sprite overlap. The register must be read to determine which sprites

were involved. Reading resets all the bits to 0. If the register is not read, the collision

bits simply stay 1 indefinitely, which is why reading twice is essential to find the

current status. Note that offscreen collisions set these flags, too.

Bits 0-7 of $D01F (53279) register sprite-data collisions in the same way. Typi

cally, just one bit will be set. In high-resolution this is straightforward. With multi

color sprites there's more flexibility. The sprite color and the transparent "color" are

each treated as transparent for collision flagging; only bit-pairs 10 or 11, that is, the

colors in multicolor registers $D025 and $D026, cause collisions to be registered.

Sprite Memory Maps
Each sprite definition takes up 64 bytes which must coexist in a VIC-II bank with
screen RAM, characters, and/or a bitmap with its color. Areas giving images of ROM

characters can't be used.
Figure 12-11 shows how bank 0 can hold a full set of 256 user-defined charac

ters, 32 sprite definitions, and a 10K BASIC program starting at the usual $0800:

409



Graphics

Figure 12-11. Mapping Sprites with User-Defined Characters
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Program 12-30 uses the memory map in Figure 12-11. The program is long, but

is as short as a reasonable demonstration can be:

Program 12-30. Programming Sprites with User-Defined Charac

ters
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 POKE 55,0:POKE 56,48:CLR :rem 221

20 POKE 53272,29 :rem 43

30 FOR J=12288 TO 12288+31:READ X:POKE J,X:NEXT

:rem 107

40 DATA 0,0,0,0,0,0,0,0 :rem 50

50 DATA 1,3,7,31,31,63,63,127 :rem 130

60 DATA 255,255,255,255,255,255,255,255 :rem 148

70 DATA 128,128,224,240,240,254,255,255 :rem 130

80 FOR J=l TO 5:M1$=M1$+M@@@AC@@@":NEXT :rem 134

85 FOR J=l TO 5:M2$=M2$+II@<3ABBC@@":NEXT :rem 145

90 FOR J=l TO 5:M3$=M3$+"@ABBBBC@":NEXT :rem 147

95 FOR J=l TO 5:M3$=M3$+"ABBBBBBC":NEXT :rem 156

100 POKE 53280,14:POKE 53281,14 :rem 80

110 FOR J=l TO 40:SP$=SP$+"@":BL$=BL$+MB":NEXT

:rem 241

120 PRINT M{CLR}g7l":FOR J=l TO 6:PRINT SP$;:NEXT

:rem 133

130 PRINT "{BLU}11 Ml$ M2$ M3$ M4$; :rem 77

140 FOR J=l TO 5:PRINT BL$;:NEXT :rem 57

150 FOR J=l TO 8:PRINT "{RED}11 BL$; :NEXT :rem 157
200 DATA 1,255,224, 0,7,240, 0,3,96, 192,54,195, 2

27,252*251 :rem 184

210 DATA 255,255,255, 111,255,251, 0,127,3, 0,14,0

:rem 238

220 FOR J=14336 TO 14362:READ XsPOKE J,X:NEXT

:rem 4

230 FOR J=14363 TO 14400:POKE J,0:NEXT :rem 40

240 POKE 53269,3 :rem 45

250 POKE 2040,224:POKE 2041,224 :rem 68

260 POKE 53277,1:POKE 53271,1 :rem 244

270 POKE 53287,0.-POKE 53288,11 :rem 46

280 POKE 53275,2 :rem 45

300 X0=0 :rem 136

310 POKE 53249,50+150*RND(1) :rem 172
320 POKE 53251,100+30*RND(1) :rem 159
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330 X0=X0+2:IF X0>255 THEN POKE 53264,PEEK(53264)

{SPACE}OR 1 :rem 69
340 IF X0<256 THEN POKE 53264,PEEK(53264) AND 254

:rem 253

350 IF X0>360 GOTO 300 : rem 82

360 POKE 53250,X0/3 :rem 221

370 POKE 53248,X0 AND 255:GOTO 330 :rem 251

Four user-defined characters build a mountain range (@, A, B, and C become

blank, left slope, solid block, and right slope, respectively). One sprite, which looks

like an airplane, is defined. It's displayed twice: once as sprite 0, in enlarged format

in black, with priority over data, and again as sprite 1, in gray at normal size, with

priority lower than data. The two planes move left to right, the nearer plane moving

faster, the further disappearing behind the mountains and also, because of automatic

sprite-sprite priority, behind sprite 0 if they cross. Lines 300 onward move the

planes, and lines 320 and 330 allow for the possible high bit in the X direction as the

plane moves. (If you experiment with sprite shape definitions, you'll see single dot

widths aren't handled well by the VIC chip. Sprites generally need to be fairly

chunky to work well.)

The tape buffer has room for three sprite shape definitions (at $0340, $0380,

and $03C) and is useful for small experiments with BASIC. Values of 13, 14, and 15,

POKEd into the sprite pointers after the screen, access the area.

The memory map shown in Figure 12-12 illustrates how a bitmapped screen, its

color, and 16 sprite shape definitions can be used with the normal screen RAM in

bank 0. BASIC has to be shifted up to start at $4000, with POKE 43,1: POKE 44,64:

POKE 16384,0: NEW.

Figure 12-12. Mapping Sprites and a Bitmap
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Notes on Programming with Sprites
Extending the number of sprites available. Without special techniques, only eight

sprites can exist on the screen at one time. Unexpanded sprites occupy about a 7.9
character area, so even eight fully expanded sprites cover only 25 percent of the
screen. If this isn't enough, you'll need user-defined characters or bitmapping to add
graphic interest. The VIC-II chip can be caused, with interrupt techniques, to display
more than eight sprites simultaneously, so it is possible to fill the screen with sprites,

but ML is essential.
How to use sprites. The number of sprites is usually limited, so it is necessary

to mix them with built-in graphics. If that will not suffice, the next easiest method is
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to mix them with user-defined graphics. In either case they must be used carefully.

For example, to liven up a word processor or calculation program, you could use

sprites to define arrows, pointing fingers, rectangular frames, or other prompts.

Games might use several moving sprites to simulate cars or motorcycles on a con

ventional graphics background.

Another example is a frog trying to cross a road and a stream without being hit.

A screenful of moving trucks, cars, and logs isn't possible with simple sprite tech

niques: user-defined graphics are better, allowing duplication of the moving objects.

If the frog is defined as a sprite, with priority over character data, it will always be

visible upon its road, log, or wherever. Several sprite definitions cover the cases

where it moves left or right and extends its legs. You can choose either a high-

resolution frog in one color or a chunkier multicolor frog.

Sprites can be superimposed if extra color detail is needed, but this isn't often

done, partly because it reduces the number of available sprites, partly because mo

tion now requires two sprites to be moved, and partly because TVs may not display

the result satisfactorily anyway.

Movement with sprites. To animate sprites, you need to replace a sprite with a

similar sprite, possibly repeating the process many times. We could change the sprite

definitions themselves, change the sprite pointers to point to different definitions, or

cycle through the sprites, say, from 0 through 3.

Generally, changing the definition pointers is best, since one POKE is all that's

needed to update a sprite, and it's easy to store plenty of sprites in RAM. Some

times, though, changing the actual definition is better (for example, where an object

is fired at, and you want to make parts of it disappear). In this case, it may be easier

to set bits in the sprite definition to 0. The third option isn't usually good; it uses up

valuable sprites.

Receding and approaching motion can be simulated to a certain extent by using

the expansion feature along with changing definitions; a 2 X 2 and a 3 X 3 un-

expanded sprite will give a sequence of four sprites in about the right ratio to sug

gest constant speed. Note, however, that expansion stretches the sprite downward

and to the right (rather than equally in all dimensions), which makes this feature less

than ideal for three-dimensional effects. Lighter and bluer colors suggest distance, as
opposed to deeper and redder colors.

Sprite Editor

Rather than drawing sprites on 24 X 21 areas of squared paper and converting the
result into bytes, try the following sprite editor, Program 12-31, which automates the
process. The program processes one sprite at a time, which is displayed in four
ways, standard and enlarged, and both high-resolution and multicolor modes.
There's also an enlarged diagram of the sprite, on which individual points can be set
and cleared with the space bar, while the cursor keys allow movement. Function
keys control colors and allow plotting in pairs for multicolor mode; instructions on
the screen explain which function keys to use. Press C to erase a sprite. (You may
prefer to omit the C option to remove the risk of accidental deletion.)

The program asks which block is to be used; if a sprite already exists in mem
ory, it's not cleared and can be examined and altered.
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Program 12-31. Sprite Editor
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

5 INPUT "{CLR}{3 DOWN} WHICH BLOCK OF 64 BYTES (EG

13)M;B:SP=64*B :rem 225

10 FOR J=0 TO 3:POKE 2040+J,B:NEXT :rem 96

15 V=53248:SS=1024 :rem 227

20 POKE V+21,15 :rem 7

25 POKE V+0,240:POKE V+2,240:POKE V+4,250:POKE V+6

,250 :rem 171

30 POKE V+1,90:POKE V+3f140:POKE V+5,190:POKE V+7,

220 :rem 125

35 FOR J=39 TO 42:POKE V+J,6:NEXT :rem 90

40 POKE V+37,0:POKE V+38,13 :rem 191

45 POKE V+32,1:POKE V+33,1 :rem 136

50 POKE V+29,3:POKE V+23,3 :rem 141

55 POKE V+28,5 :rem 229

60 FOR J=0 TO 7:P(J)=2t(7-J):NEXT :rem 72

65 GOSUB 500 :rem 128

100 PRINT "{CLR}{2 DOWN}{BLK}":GOSUB 3000 :rem 36

130 XC=0:YC=0:C=160:POKE SS+C,PEEK(SS+C) OR 128

:rem 159

140 GOSUB 20000 :rem 7

200 GET X$:IF X$="" THEN 200 :rem 117

210 IF X$=" " THEN GOSUB 2000:GOTO 400 :rem 151

220 IF X$="C" THEN GOSUB 1000:GOTO 100 :rem 215

230 IF X$="{Fl}M THEN CB=0:GOSUB 21000:GOTO 400

:rem 123

240 IF X$="{F3}lf THEN CB=1:GOSUB 21000:GOTO 400
:rem 126

250 IF X$=M{F5}" THEN CB=2:GOSUB 21000:GOTO 400
:rem 129

260 IF X$="{F7}" THEN CB=3:GOSUB 21000:GOTO 400
:rem 132

270 IF X$="{UP}" AND YC>0 THEN YC=YC-l:GOTO 400
:rem 156

280 IF X$="{DOWN}M AND YC<20 THEN YC=YC+1:GOTO 400
:rem 75

290 IF X$="{ RIGHT}11 AND XC<23 THEN XC=XC+1:GOTO 40
0 :rem 88

300 IF X$="{LEFT}" AND XO0 THEN XC=XC-1:GOTO 400
:rem 159

310 IF X$="{F2}11 THEN GOSUB 4000:GOTO 200 :rem 33

320 IF X$="{F4}H THEN GOSUB 5000:GOTO 200 :rem 36
330 IF X$="{F6}" THEN GOSUB 6000:GOTO 200 :rem 39

340 IF X$=M{F8}" THEN GOSUB 7000:GOTO 200 :rem 42

350 GOTO 200 :rem 99
400 POKE SS+C,PEEK(SS+C) AND 127:C=XC+40*YC+160

:rem 102

410 POKE SS+C,PEEK(SS+C) OR 128:GOTO 200 :rem 207
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500 DATA "BLACK ","WHITE ","RED{3 SPACES }", "CYAN

{2 SPACES}","PURPLE" :rem 111

505 DATA "GREEN ","BLUE{2 SPACES}","YELLOW","ORANG
E","BROWN " :rem 113

510 DATA "LT RED"#"D GRAY","M GRAY","LT GRN","L BL

UE","L GRAY" :rem 16

520 DIM CO$(15):FOR J=0 TO 15:READ CO$(J):NEXT:RET

URN :rem 249

1000 FOR J=SP TO SP+62:POKE J,0:NEXT:RETURN:rem 77

2000 PT=SP+XC/8+YC*3:BY=PEEK(PT) :rem 195

2010 BP=XC-INT(XC/8)*8:MS=P(BP) :rem 68

2020 IF (BY AND P(BP))=0 THEN POKE PT,BY+MS:rem 70

2030 IF (BY AND P(BP))>0 THEN POKE PT,BY-MS:rem 74

2040 POKE SS+C,254-PEEK(SS+C):RETURN :rem 161

3000 FOR YC=0 TO 20:FOR XB=0 TO 2 :rem 181

3010 PT=SP+XB+YC*3:BY=PEEK(PT) :rem 93

3020 FOR J=0 TO 7 :rem 61

3030 IF (BY AND P(J))>0 THEN PRINT "Q";: GOTO 3050

:rem 180

3040 PRINT "-"; :rem 0

3050 NEXT:NEXT:IF YC<>20 THEN PRINT:NEXT :rem 246

3060 RETURN :rem 169

4000 T=(PEEK(V+32)+l) AND 15 :rem 151

4010 POKE V+32,T:POKE V+33,T:GOTO 20000 irem 143

5000 POKE V+37,(PEEK(V+3 7)+l) AND 15:GOTO 20000

:rem 183

6000 T=(PEEK(V+39)+l) AND 15 :rem 160

6010 FOR J=V+39 TO V+42:POKE J#T:NEXT:GOTO 20000

:rem 189

7000 POKE V+38,(PEEK(V+38)+l) AND 15:GOTO 20000

:rem 187

20000 PRINT "{HOMEHbLK}"; : rem 161

20010 PRINT "BACKGROUND = "CO$(PEEK(V+32) AND 15)"

{2 SPACES}F2{3 SPACES}F1=00" :rem 77
20020 PRINT "SPRITE MC0 = "CO$(PEEK(V+37) AND 15)"

{2 SPACES}F4{3 SPACES}F3=01" :rem 15
20030 PRINT "SPR COLOR{2 SPACES}= "CO$(PEEK(V+39)

{SPACEjAND 15)"{2 SPACES}F6{3 SPACES}F5=10"
:rem 243

20040 PRINT "SPRITE MC1 = "CO$(PEEK(V+38) AND 15)"
{2 SPACES}F8{3 SPACES}F7=11" :rem 28

20050 RETURN .rem 215

21000 CP=(C+SS) AND 2046:IF CB>1 THEN POKE CP,81:G
OTO 21030 :rem H5

21010 POKE CP,45 :rem 75

21030 CP=CP+1:IF (CB AND 1)=1 THEN POKE CP,81:GOTO

21050 :rem 183
21040 POKE CP,45 srem 78

21050 PT=SP+XC/8+YC*3:BY=PEEK(PT):MP=7-XC AND 6:MK
=2tMP*3 .rem 174

21060 BY=(BY AND NOT MK)+CB*2tMP:POKE PTfBY:RETURN
:rem 14
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When sprites have been defined, press RUN/STOP to exit the program. The

sprite definition values can then be saved as DATA or written to a file or block

saved, using the techniques discussed earlier in this book.

Using Interrupts with Graphics

Chapter 8 explains NMI and IRQ interrupts on the 64. Graphics applications include

such things as clocks, countdown indicators, and radar displays to show approaching

aliens and screen responses to keypresses. Any display which needs to be periodi

cally updated is a candidate for processing during the interrupt. Interrupts require

ML, but offer a solution to many problems. Often, a similar effect can be achieved in

BASIC, but this is far clumsier and slower.

Program 12-32 processes graphics during interrupts, PEEKing the first 256

screen positions for values specified as DATA, replacing them by the next in the se

quence. Note how the interrupt routine is transparent to BASIC. The ML is set (by

the 5 in line 200) to search and replace at about 1/10 second intervals.

Program 12-32. IRQ Polling
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49152 TO 49207:READ X:POKE J,X:NEXT

:rem 219

20 POKE 56333,127:POKE 788,0:POKE 789,192:POKE 563

33,129 :rem 213

30 PRINT "{CLRj'^FOR J=l TO 100:PRINT CHR$(228) fl

{ SPACE }";:NEXT :rem 129

200 DATA 206,47,192,208,23,169,5,141,47,192,160,0

:rem 103

201 DATA 162,7,185,0,4,221,48,192,240,9,202,16

:rem 202

202 DATA 248,200,208,240,76,49,234,232,224,8,208

:rem 58

203 DATA 2,162,0,189,48,192,153,0,4,76,25,192

:rem 165

204 DATA 5 :rem 229

210 DATA 100,111,121,98,248,247,227,224 :rem 120

This process can be extended, with user-defined characters, to simulate flying birds,

crawling insects, and so on.

This style of interrupt is a poll At regular intervals, the 6510 goes off to perform

what may be a long series of operations, deciding to do some and not do others. CIA

chip 1 allows the frequency of interrupts to be changed, but the process is always
similar. However, the VIC-II chip provides a more active control over interrupts.

VIC-ll's Interrupt Registers
Locations $D019 (53273) and $D01A (53274) are VIC's interrupt flag register and
interrupt mask register, respectively. They allow the source of any interrupt to be
identified, and also allow interrupts to be enabled or disabled (masked). Six other
registers are related to the VIC-II chip's interrupts, as discussed below.
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Bit 7 of the interrupt flag register is set to 1 when the VIC chip generates an

interrupt; otherwise it's 0. This allows you to determine the source of an interrupt,

where there are several possibilities, since whenever bit 7 is on, one of the register's

other four used bits will reveal this. Note, though, that bits 4-6 are unused and that

bits 0-3 are set even when interrupts aren't enabled.

PRINT PEEK(53273) AND 143 prints the value of this register; ANDing the

value with 143 masks the bits which are fixed at 1. Bits 0-3 act as the flags. When a

bit is low (contains 0) the flag is clear; if a certain event occurs, the bit becomes high

(contains 1) and the flag is set. Bit 0 is set by a raster compare; sprite-data collisions

show in bit 1; sprite-sprite collisions show in bit 2; and connecting and using a light

pen sets bit 3.

Once a flag bit is set, it can be cleared only by POKEing it high (unlike many

other flags, which are cleared by POKEing a bit low). This is called latching, and the

idea of this dual function in the register is to keep a record of interrupts within the

flags themselves, saving programming effort. As an example, a sprite-data collision

sets bit 1; if no other triggering events have occurred, the PEEKed value will be 2.

POKE 53273,2 is required to turn off the collision flag (assuming the sprite no longer

overlaps data) and return the bit to 0. The interrupt flag register, therefore, is de

signed to store the past results of four possible events until they're cleared, and also

shows whether the VIC-II chip caused an interrupt currently in force.

The use of this register requires considerable care. Confusion will result if you

forget to clear a flag, try to clear it by POKEing its bit low, or try to clear it while the

condition that triggered it still exists. Other anomalies might arise because the key

board and light pen share common wiring.

Using the interrupt enable register to enable interrupts is simple, but the IRQ

routine which they're wired to needs modifications to handle them properly. Try

PRINT PEEK(53274) AND 15. The result is 0, showing that the VIC chip has no

interrupts enabled. Enter POKE 53266,0: POKE 53274,1. This enables raster-scan

interrupts: each time the TV picture is scanned, an interrupt occurs. But, in addition,

the flag register isn't cleared, so immediately when an interrupt finishes, a new one

begins. This stops processing, although (try SHIFT-Commodore key) the keyboard is
processed normally. Similarly, POKE 53274,2 has no effect until there's a sprite-data

collision, whereupon interrupts continuously come into effect. Because of this, user-
written interrupt routines based on the VIC-II chip always clear the interrupt flag
register before exiting.

Sprite Collision and Light Pen Interrupts and Registers
The demonstration routine below, Program 12-33, adds a sprite-data interrupt to the
normal IRQ.

Program 12-33. Sprite-Data Collision
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49152 TO 49172:READ X:POKE J,X:NEXT

:rem 220

20 POKE 2040,13:POKE 53269,1 :rem 182

30 FOR J=832 TO 894:POKE J,255:NEXT :rem 170
40 POKE 53248,100:POKE 53249,53 :rem 90
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100 POKE 56333,127:POKE 788,0:POKE 789,192:rem 207

110 POKE 56333,129 :rem 141

120 POKE 53274,2 :rem 37

130 X=100:D=1 :rem 166

140 PRINT M{CLR}{DOWN}{2 SPACES}gJ§{16 SPACES}gJ§"
• :rem 174

200 IF PEEK(2)=0 GOTO 230 :rem 4

210 IF X>100 THEN D=-l : rem 87

220 IF X<101 THEN D=+l :rem ,85

230 X=X+D:POKE 53248,X:GOTO 200 :rem 233

1000 DATA 173,31,208,240,8,173,31,208,169,2:rem 57

1001 DATA 141,25,208,133,2,173,31,208,76,49,234

:rem 0

After Program 12-33 is run, there are two sources of interrupts, the result of

redirecting the IRQ vector in locations 788-789. The sprite's direction reverses when

it collides with data, so it moves left and right across the screen. This is the ML

loaded by Program 12-33:

LDA $D01F

BEQ EXIT

LDA $D01F

LDA #$02

STA $D019

EXIT STA $02

JMP $EA31

This reads the sprite-data collision register and resets the interrupt flag register

on a collision, as well as clearing $D01F a second time. The result is passed to BASIC

in location 2. JMP $EA31 continues in the ordinary key-scan interrupt. In fact, the

extra interrupt isn't necessary here; reading the relevant register works. But in more

complex situations, when several interrupts may be enabled, processing them prop

erly requires a routine like LDA $D019:AND #1:BNE RASTER:AND #2:BNE

SPRDATA, and so forth, with RASTER STA $D019, and so forth, where the first act

is to turn off the flag.
Light-pen registers can be read during interrupts, but can also generate inter

rupts of their own, by setting bit 3 in the IRQ Mask Register ($D01A), and setting bit
3 of the Interrupt Flag Register ($D019) high to clear the flag once the light pen
causes an interrupt. But since the light pen cannot trigger more than 60 interrupts

per second (50 in the U.K.), it's easier not to bother, but simply to add a test for bit 3
of $D019 to the normal IRQ, reading from $D013 and $D014 when the bit becomes

high.

Raster Interrupt and Registers
TV pictures are generated by an electron beam which sweeps horizontal lines from
top to bottom of the screen, lighting up individual phosphor dots, called pixels, in
the process. Each row is a raster line and is scanned left to right. Persistence of
vision, plus the time taken for the phosphors to dim, allows realistic movement, and
the picture is improved by interlacing, where alternate scans display odd numbered
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and even numbered lines; in other words, a single screen scan displays half the pic

ture. Sixty top-to-bottom scans (50 in the U.K.), are displayed every second, so the

entire picture is refreshed every 1/30 second (1/25 in the U.K.). The VIC-II chip

generates each raster line, keeping track of the current line as it does so.

NTSC (U.S.) TVs have 262 lines per frame, PAL (U.K.) TVs have 312. The 64

displays lines 51-251, making 200 lines—enough for 25 sets of eight dots. Raster

lines 0-50 and 252 up aren't visible. TVs in the U.K., with more lines; give a more

compressed picture.

Bit 7 of $D011 (53265) with register $D012 (53266) together make a nine-bit

register for use with raster scanning. Nine bits are necessary to include all the raster

lines, though the highest bit is often not used. The register has two different func

tions. It allows you to PEEK the current raster line. Writing to one or both registers

latches the new value, setting the VIC-II chip so an interrupt flag, bit 0 in $D019,

goes high whenever the current raster line matches all nine bits. If the interrupt is

enabled, an interrupt will be caused. POKEs which set bit 7 of $D011 and also put a

high value in $D012, prevent raster interrupts from occurring. This fact allows the 64

to deduce which type of VIC chip is fitted and set its PAL/NTSC flag in $02A6. On

power-up, VIC's raster register is POKEd with 311, a value too high for U.S. (NTSC)

signals, but within the range of U.K. (PAL) TVs.

So, when we use raster lines in programs, we have a choice of methods: reading

the raster line from its registers or, more ambitiously, generating precisely timed

interrupts synchronizing with the screen.

Using the Raster Interrupt

WAIT 53265,128,128: WAIT 53265,128 shows how the raster line can be used, in

this case to detect the scan somewhere above midscreen. A carefully timed delay,

followed perhaps by a change of background color, allows a smooth change when

the scan is offscreen. But BASIC isn't generally fast enough; the raster may scan sev

eral lines in the time it takes to perform one PEEK.

A SYS call to the ML routine below changes screen colors twice every screen

scan, until a keypress returns to BASIC.

;READ EIGHT BITS OF SCREEN LINE

START ;WAIT TILL WE GET POSITION 0

;RED BACKGROUND

;WAIT TILL RASTER LINE IS 128

;CYAN BACKGROUND

;EXIT ON KEYPRESS

Routines like this use the processor full time to handle the screen. Alter #$80 to
watch the dividing-line move; the loops WAIT and START occupy almost all the

6510's time. Interrupts are trickier but allow other processing. Effects include the use
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of alternate fields: semitransparent sprites, fades, new colors obtained by super

imposing one or more standard colors. Eighty-column lettering is sometimes dis

played with half of each character in every other field. All that's needed is an

interrupt routine synchronized with the screen with a counter to select alternative

processing paths. Experiments like this, however, tend to be flickery and unclear.

More important are split-screen methods, where the screen is separated across

the middle into zones, allowing mixed bitmapping with text, multiple sprites, or dif

ferent character sets in coexistence.

Timing is important. For example, the keyscan routine takes roughly a milli

second. Since the TV draws 15 raster lines in this time, interrupt-driven routines are

vulnerable to slight timing errors which make the split-screen boundary unstable.

Split screens. It is possible to divide the screen in half using a raster interrupt.

The bottom half can be text, and the top half bitmapped graphics, stored from $2000

in VIC bank 1, for example. (This means characters printed in the top half would

show as colored squares.) However, you can allow scrolling by filling the top text

line with spaces and filling the line above with color codes. It's possible to avoid this

problem by moving the bitmap color elsewhere. Most of the interrupt routine would

be taken up by alternately changing $D011 and $D018 between text and graphics,

then resetting $D012 to cause an interrupt half a screen later.

If the program allows the normal CIA interrupt as well, you'll see the dividing

line become irregular, since the exact raster synchronization is lost. The cursor

flashes at twice the normal rate, if the ML exits to $EA31, the key-scan routine. For

more on using split screens, see "Split Screens" and "Son of Split Screens" in Com

pute's First Book of Commodore 64.

Thirty-two sprites demonstration. The next example, Program 12-34, avoids

the fast cursor problem by exiting at $EA81 for all interrupts except one per frame. It

puts 32 sprites on the screen, by generating multiple interrupts in each frame. Using

sprites like this requires more work than usual. For example, to move a sprite down
the screen means controlling X and Y for several sprites, some of which won't be

displayed because the scan is in the wrong place for them.

Program 12-34. Thirty-Two Sprites
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

1 REM 32 SPRITES DEMONSTRATION PROGRAM :rem 163

2 REM 828 COUNTS 0 TO 3 :rem 154
3 REM 829-832 STORES 4 SETS OF SPRITE ENABLES

:rem 61

4 REM 833,834 &C=4 SETS LO/HI RASTERS. (HI=128)
:rem 1

5 REM 841-844 STORES 4 SETS OF X-POSN HIGH BITS
:rem 130

6 REM 845-860,861-876,877-892,AND 893-908 :rem 54
7 REM STORE ALL 4 SETS OF SPRITES1 X,Y PAIRS

:rem 54

8 REM OTHER LINE 1001 REMOVES COLORED BANDS:rem 25

9 REM srem 29
10 FOR J=49152 TO 49242:READ X:POKE J,X:NEXT

:rem 218
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19 REM ENABLE ALL 32 SPRITES, & SET POSNS :rem 46

20 POKE 828,3 :rem 146

30 POKE 829,255:POKE 830,255:POKE 831,255:POKE 832

,255 :rem 100

40 POKE 833,90:POKE 835,130:POKE 837,170:POKE 839,

210 :rem 42

50 POKE 834,0:POKE 836,0:POKE 838,0:POKE 840,0

:rem 190

60 POKE 841,0:POKE 842,0:POKE 843,0:POKE 844,0

:rem 186

70 FOR K=845 TO 860 STEP 2:READ X:POKE K,X:POKE K+

16,X :rem 214

75 POKE K+32,X:POKE K+48,X:NEXT :rem 66

80 FOR J=0 TO 3:READ Y:FOR K=846 TO 861 STEP 2

:rem 134

85 POKE K+16*J,Y:NEXT:NEXT :rem 100

99 REM ENABLE RASTER INTERRUPTS :rem 238

100 POKE 56333,127 :rem 138

110 POKE 788,0:POKE 789,192 :rem 157

115 POKE53265,PEEK(53265)AND127 :rem 223

120 POKE 53274,129 -rern 143

199 REM PUT SPECIMEN MOB IN TAPE BUFFER :rem 45

200 FOR J=2040 TO 2047:POKE J,15:NEXT :rem 244

210 FOR J=960 TO 1023:POKE J,255:NEXT :rem 253

999 REM ML FOR RASTER INTERRUPT HANDLING :rem 242
1000 DATA 174,60,3,232,224,4,208,2,162,0,142,60,3

:rem 72

1001 DATA 142,33,208,189,61:REM 234,234,234,189,61

:rem 206

1002 DATA 3,141,21,208,189,73,3,141,16,208,138,10

:rem 90

1003 DATA 170,189,66,3,13,17,208,141,17,208,189,65

:rem 166

1004 DATA 3,141,18,208,138,10,10,10,170,160,0,189

1005 DATA 77,3,153,0,208,189,78,3,153,1,208,#232,23
2 :rem 202

1006 DATA 200,200,192,16,208,236,169,1,141,25,208,
173 :rem 36

1007 DATA 13,220,41,1,240,3,76,49,234,76,129,234

1999 REM SAMPLE X & Y POSNS OF 32 SPRITES Irem 16
2000 DATA 40,70,100,130,160,190,220,250(17 SPACES}
-*«« :rem 92
3000 DATA 60,100,140,180 :rem 134

At each interrupt, all the X and Y positions are reset, so the sprite positions are
all independent. The sprite-enable registers are also reset, so any number of sprites
from 0 to 32 can be chosen. The colors, priority, expansion, and so on, are shared
between them here to save space. Note the color bands, to show where interrupts
occur: Their positions can be changed in lines 40 and 50. The bands are removable.
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The ML disassembly is too long for inclusion here. It consists of loops which

load new X,Y values, the sprite-enable register, and the timing for the next interrupt.

Motion Without Sprites

Although sprites are powerful, and the screen can be filled with them, you may pre

fer to PRINT strings of characters (or use JSR $FFD2 in ML) if, for example, you've

defined your own graphics. It's fairly easy to move characters one full step in any

direction, but the result is inevitably somewhat jerky, though this is less noticeable

when bunches of characters move together. Where it's a problem, an improvement is

to make up intermediate characters from halves of the original. Following is a simple

example routine to give you an idea of how to use the standard graphics that are

available on the 64.

Program 12-35. Animation

10 M$=g3B3

20 PRINT M{2 SPACES}
30 FOR J=l TO 40

40 FOR 10=1 TO 30: NEXT

50 PRINT "{2 LEFT} EB|";

60 FOR K=l TO 30:NEXT

70 PRINT "{LEFT}11 M$;:NEXT

Program 12-36 makes use of the fact that the checked block can be imitated by

another pair of graphics. Resolution is to four dots. This method is unwieldy for a lot
of movement in many directions, because any single character needs eight more

characters to allow half-character motion in the main directions.

If the movement is one-dimensional, as in games, 80 or so mobile characters can

be used. Smooth motion like this requires 15 characters just to move one single
character, so only 17 different objects would use the entire set. This is usually less

practical than using sprites.
Dynamic redefinition of characters. An advanced method to simulate motion

and other effects is to alter the character definitions or bitmaps themselves, so partial
characters are generated when needed, rather than being stored. ML is necessary

since 16 POKEs to alter the bytes defining two characters would be slow.
Planning is important. First, the original definitions should usually be kept in

memory, away from the area that will be redefined, because characters might be irre
coverably changed by dynamic redefinition. Second, characters should be numbered
conveniently—generally consecutively down or across the screen—to simplify ML.

Vertical smooth motion. The following BASIC routine, Program 12-36, dem
onstrates up-and-down motion in this way. ROM graphics are copied into $3000 up,
and screen codes 128-137 (normally reverse-@ through reverse-I) are redefined as
numerals 0-9. These numerals, starting at $3400, are processed by ML routines, giv
ing a realistic odometer effect, while retaining the normal numeral definitions. Up-
and-down motion is simple to program; as Figure 12-13 shows, all that's necessary is

to move over the bytes making up the characters.
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Program 12-36. Vertical Motion
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C

10 FOR J=49152 TO 49177:READ XrPOKE J,X:NEXT

20 POKE 56333,127:POKE 1,51

30 FOR J=0 TO 511:POKE 12288+J,PEEK(53248+J):NEXT

40 POKE 1,55:POKE 56333,129

50 POKE 56,48:CLR:POKE 53272,29

100 FOR J=0 TO 10:PRINT "{RVS}" RIGHT$("IHGFEDCBA@

M,J);"{UP}M:NEXT

110 FOR J=0 TO 79:POKE 13312+J,PEEK(12672+J):NEXT

120 FOR J=0 TO 79:SYS 49152:NEXT

130 FOR J=0 TO 79.-POKE 13312+J,PEEK(12672+J):NEXT

140 FOR J=0 TO 79:SYS 49164:NEXT

150 GOTO 100

200 DATA 162,79,189,254,51,157,255,51,202

210 DATA 208,247,96,162,1,189,0,52,157

220 DATA 255,51,232,224,80,208,245,96

Figure 12-13. Vertical Character Motion

After Move

Original

Screen Character

After move up

1 row

Character Definition

SYS 49152 uses the loop below, which moves only the required portion of the
character definitions. (You may need to add a zero byte at the end points.)

LDX #$4F

LOOP LDA $33FE,X

STA $33FF,X

DEX

BNE LOOP

RTS

Horizontal smooth motion. Because of the way screen and character memory
are allocated, this is trickier. It is necessary to number the relevant screen locations
consecutively. As Figure 12-14 shows, you must store a bit from each byte and ro
tate it into another byte eight bytes away.
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Figure 12-14. Horizontal Character Motion

Original After Shift Right

1 Column

Screen Characters
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Character Definitions

Replace the following lines in Program 12-36 and run it. Program 12-37 will
produce a similar effect, as the special numerals 0-9 scroll smoothly sideways.

Program 12-37. Horizontal Motion
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49178 TO 49205:READ X:POKE J,X:NEXT

20 POKE 56333,127:POKE 1,51
30 FOR J=0 TO 511:POKE 12288+J,PEEK(53248+J):NEXT

40 POKE 1,55:POKE 56333,129

50 POKE 56,48:CLR:POKE 53272,29

100 FOR J=0 TO 10:PRINT "{RVS}" RIGHT$("@ABCDEFGHI

M,J);"{UP}":NEXT
110 FOR J=0 TO 79:POKE 13312+J,PEEK(12672+j):NEXT

120 FOR J=0 TO 79:SYS 49178:FORK=1TO99:NEXT:NEXT

150 GOTO 100

200 DATA 160,7,152,170,24,126,0,52,8,138,24

210 DATA 105,8,170,224,79,176,5,40,208,240

220 DATA 240,238,40,136,16,231,96
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Chapter 13

Sound

This chapter explains sound and music on the 64 and shows how the SID chip

handles both in practice. Although the theoretical side is important for full under

standing, it is also quite difficult, so you may prefer to try the programs first to get

the feel of SID.

Sound Waves: Analysis and Synthesis
Sound is a psychological phenomenon produced by vibrations. The pressure waves

that produce sound are three-dimensional and are mainly concentric waves in air

centered on sound sources. Additional complications arise due to conductance,

reflection, and so on, which cause reverberation, echo, and other acoustic effects.

Any elastic medium (such as metal, bone, or water) propagates sound at a speed

depending on the medium's elasticity—faster in warm air than in cold air, and much

faster in metal. The medium's molecules oscillate with very little net movement, and

this motion gives rise to compressions and rarefactions which transmit the wave. The

wave moves a lot, but the medium moves very little.

Waves are usually depicted by graphs which show how the back-and-forth

movements vary with time: A cycle of a regular wave is the interval from one point

on the wave to the next similar point in the repeating wave pattern. The frequency of

a wave is its number of cycles per second. One hertz (abbreviated Hz) means the

same as cycles per second. The distance in magnitude between the peak and the
trough of a wave is known as its amplitude. The larger the amplitude of an audible

wave, the louder the sound will be. The process of perceiving sound from pressure

waves is performed by the ear and brain. Frequency, a physical property of the
vibration, is related to the psychological property of pitch: high frequency is per

ceived as a high note and low frequency as a low note. The maximum range of fre
quencies audible to human beings is about 20-20,000 Hz, though the actual range

varies between individuals and generally decreases with increased age and exposure
to noise. These frequencies are determined by such factors as the size of the ear

drum, which resonates when vibrated.
Sounds with a distinct, steady pitch, produced, for example, by tuning forks and

some musical instruments, result from the repetition of similar vibrations. A note
may sound very different on different instruments; this quality, the timbre, depends
on the relation between its fundamental (lowest) frequency and its harmonics.

Sine Waves
Sine waves are important for two reasons. First, any note in any timbre can be an
alyzed by breaking it into its component sine waves, and this analysis gives a com
mon basis of comparison between all notes and timbres. This makes the results of
electronic sound processing predictable. The second reason is psychological, in that a
similar process of analysis happens in the brain. As a result, we can think of the
timbre of the sine wave as the simplest and purest sounding of any waveform. Fig

ure 13-1 outlines a sine wave.
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Figure 13-1. Sine Wave

Circular motion generates sine curves; the SIN function describes this motion.

As it happens, the prongs of a sounding tuning fork give a good approximation of si

nusoidal motion. In fact, simple harmonic motion derives its name from the sound

analogy.

A tuning fork is a simple musical instrument. It works the way it does because a

struck prong is pushed toward its still position by a force that varies with (among

other things) the distance from its still position, and it can also be shown that this

produces a sine curve. This is a typical application of physics to sound.

Consider a tuning fork with a smaller tuning fork attached to one prong, so the

movement of both forks contributes to the movement of the small fork. The com
posite motion will be two sine waves added together.

If the smaller fork's frequency is exactly 2, 3, 4, or any integer times the fre

quency of the larger, then the ear-brain mechanism fuses them into a harmonious

tone, of richer timbre than a pure sine wave. As stated above, sine waves which are

multiples of a sine wave are known as harmonics of that sine wave. The fun

damental frequency is known as the first harmonic, the wave at twice this frequency
is known as the second harmonic, that at three times its frequency is the third har
monic, and so on. Most musical instruments are designed to generate harmonics, and
the relative importance of harmonics determines the instrument's timbre. For ex
ample, a closed air column can vibrate stably along its full length, or half its length,
or one-third, and so on, and therefore has a full range of harmonics; a string,
plucked in the center, cannot easily vibrate for half its length and has only odd
harmonics.

Harmonic analysis is the process of determining the sine wave components that
make up a waveform. Fourier analysis, a popular technique, is based on the principle
that any repeating function f(x) is of form bl sin (x) + b2 sin (2x) + . . ., where the
integral from minus pi to pi of f(x) sin (kx) is bk. The idea isn't new, and ancient
astronomers built up ellipses from many circular movements. The harmonics and
their relative amplitudes make up the harmonic spectrum of the waveform, which
can be drawn on a graph as amplitude against frequency.
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Conversely, any repeating waveform, like that from the two tuning forks, can be

built up by adding harmonics with the right amplitudes: this is additive synthesis.

The process of starting with timbres which are rich in harmonics and deriving a

sound with a desired spectrum by filtering out the unwanted ones is known as

subtractive synthesis.

The SID chip isn't designed to generate sine waves, but as we'll see, it does gen

erate quite complex waves with rich spectra and also allows limited subtractive syn

thesis, since it has a filter.

Waveforms and Their Harmonic Contents

The SID has four main waveforms: noise, pulse (square), sawtooth, and triangle. You

can view the SID's outputs by modifying the "ADSR Plotter," later in this chapter.

Use PEEK (SID+27) to read voice 3's wave output, decrease SID+15 to reduce the

frequency, and POKE SID+18 with 129, 65, 33, or 17 for noise, pulse, sawtooth,

and triangle waves, respectively (setting SID+16 and SID+17 when trying the pulse

wave).

Following is a discussion of the three repeating (and one nonrepeating) wave

forms that the SID chip generates.

Triangle
The triangle wave (see Figure 13-2) is SIN (X) - SIN (3*X)/9 + SIN (5*X)/25 -

SIN (7*X)/49 + . . . where X is the harmonic number. A triangular wave with 100

Hz as its fundamental contains frequencies of 300, 500, 700, 900 Hz, and so on,

which rapidly decrease in importance.

Figure 13-2. Triangle Wave

This is SID's closest approximation to a sine wave, and it sounds like a flute or
xylophone. Four sinusoidal harmonics—the first, third, fifth, and seventh—add to

form an approximately triangular waveshape.
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Sawtooth

The sawtooth wave is SIN (X) + SIN (2*X)/2 + SIN (3*X)/3 + SIN (4*X)/4 +

It contains the complete harmonic series, with amplitude in inverse proportion to the

harmonic number, so the second harmonic has half the amplitude of the fun

damental, and so on. The harmonics have more importance than the triangular

wave's: Figure 13-3 adds six harmonics to provide an approximation.

Figure 13-3. Sawtooth Wave

The large numbers of significant harmonics enable this wave to simulate such

instruments as the trumpet, oboe, clarinet, and accordion, especially when filtered to

change the harmonic balance.

This wave's asymmetry causes a few oddities. For example, every other term of

its analysis makes up a square wave: if this is subtracted, what's left is SIN (2*X)/2

+ SIN (4*X)/4 + . . ., another sawtooth wave of twice the frequency and half the

amplitude. Add the square wave to the sawtooth on the diagram to see this. The

sawtooth also tends to sound higher than its fundamental would suggest.

Pulse (Square) Wave

This is the most useful waveshape provided by SID. The signal is alternately held

high for a measured time period, then low for another, generally different period. In
other words, there is a regular pulse. The ratio of the time the signal is high to the
complete cycle is the duty cycle of the pulse wave.

A square wave is the special case in which the duty cycle ratio is 1:2. It analyzes
into SIN (X) + SIN (3*X)/3 + SIN (5*X)/5+ .... Therefore, like the triangular
wave, it contains only odd harmonics, but with larger amplitudes, inversely related
to the harmonic number. The third harmonic has one-third the amplitude of the fun
damental, for example. Figure 13-4 shows a wave constructed from the first, third,
fifth, and seventh harmonics.

The pulse wave's interesting feature is the way its harmonic content changes
when the duty cycle is altered. Full analysis is tricky. The Kth harmonic varies with
(COS(NK)-COS (K*PI))/K, but generally if the duty cycle is 1:N, then every Nth
harmonic will be absent, and harmonics between these suppressed harmonics will be
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boosted. Very asymmetrical pulse waves have very irregular harmonic spectra, with

some large amplitudes in the harmonics. The square wave, with N=2, lacks all even

harmonics, as we've seen.

A wave of duty cycle 1:5 lacks fifth and tenth harmonics, and so on, but does

have second, third, fourth, sixth, seventh, eighth, and ninth harmonics, with the

seventh and eighth harmonics of higher amplitude than the sixth and ninth. A duty

cycle of 1:5.1 will cause the fifth, tenth, etc., harmonics to be much reduced in am

plitude, but not totally negated.

Altering the duty cycle while a note is playing causes most harmonics to change

their levels, and some to vanish altogether or reappear. Thus, we have a way of

producing a dynamically changing spectrum with richer, more interesting sounds

than the triangle or sawtooth waves.

If the pulse width is altered from square toward a narrow pulse, loudness

diminishes, and the timbre becomes more nasal or buzzy compared with the well-

rounded sound of the square wave, as some high harmonics are boosted. As the

width of the pulse becomes very narrow, the decreasing amount of energy present is

spread out among very many harmonics, and the sound fades to inaudibility.

The square wave is louder than any other pulse wave of equal amplitude,

mainly because the total energy in a square wave is greater: A very short pulse is

simply quieter. A secondary factor is the energy distribution amongst the harmonics:

a square wave's harmonics taper off smoothly, but a pulse wave with duty cycle of

1:2 has a very irregular distribution, and some boosted harmonics may be inaudible.

Typical sound simulations are a piano (square wave), organ (1:4 wave), and

banjo (1:10 wave). Very narrow pulses at low frequency give a car engine sound.

Figure 13-4. Pulse Wave

Noise
Noise is sound with no fundamental frequencies and is typically generated by an un

musical source which has no dominant modes of vibration. Rumbles and hisses,

crashes and explosions, scrapes and rattles, jet engines and gas burners, wind and

water flow, illustrate this sort of sound.
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SID generates noise by loading new random values into the oscillator output, at

regular intervals controlled by the frequency setting. While the result cannot be an

alyzed into repeating sine waves, any single interval can be analyzed, so the ear gets

a definite overall feeling of low, medium, or high pitch. White noise contains all fre

quencies in equal proportion. The SID's noise generation method sets a minimum

frequency and plays all available notes above this minimum with equal probability,

so most SID noise is biased to high frequencies; this is called blue noise.

Noise (diagrammed in Figure 13-5) is useful in simulating the sorts of sounds

mentioned above, and also certain percussion sounds like snare drums, brushed

drums, and cymbals. Dynamic changes in noise frequency can simulate ripping, tear

ing sounds, fireworks in motion, and moving vehicles.

Figure 13-5. Noise

Ring Modulation and Synchronization

Bells, gongs, chimes, clamped metal bars, and so on, vibrate differently from strings

and air columns, generating nonsinusoidal waves, which analyze into complex wave

forms containing several series of fundamentals and harmonics.

Ring modulation simulates this process. The principle isn't too difficult, and

understanding it makes it easier to achieve the desired effect.

Ring modulation obtains a complex signal by combining two input signals. The

process is simply a point-by-point multiplication of one input signal by the other.

The trigonometric identity SIN(Fl) * SIN(F2) = -SIN (Fl+F2+90)/2 + SIN

(Fl—F2+90)/2 gives a clue as to what happens; two sine waves are combined, giv

ing two new sine waves with frequencies F1+F2, of reduced amplitude and different

phase.

As mentioned, the ring modulated output from two sine waves with frequencies

Fl and F2 consists of sine waves with frequencies (F1+F2) and (Fl—F2). The input

signals aren't present in the output. So if one of the input signals to the ring modu

lator has a frequency of 1 Hz, the output is two signals of F+l Hz and F—1 Hz,

which should be heard as a tremolo effect, because notes which are close together

pulsate in loudness. Piano tuners use this beat effect. Its frequency is half the dif

ference between the component frequencies. In fact, the SID cannot generate very
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slow frequencies satisfactorily; you'll get clicks and pops rather than pulsations, so

tremolo is better achieved by controlling volume.

When one or both inputs contain harmonics, each harmonic gives rise to a sum

and difference signal with each harmonic of the other input. SID's ring modulator

can be used only when the triangular wave is selected for the ring modulated voice

(even though this waveform is less rich in harmonics than others). Ring modulation

is controlled by setting the frequency of the modulating voice; other parameters of

the modulating voice are irrelevant to the effect.

Consider two frequencies, a and b. The triangular waves have harmonics a, 3a,

5a, ... (and b, 3b, 5b, . . .). Combining only the first three harmonics of each (to

save space) gives:

Adding a+b a+3b a+5b

3a+b 3a+3b 3a+5b

5a+b 5a+ 3b 5a+5b

Subtracting a—b a —3b a—5b

3a—b 3a—3b 3a—5b

5a-b 5a-3b 5a-5b

This shows there are two triangular waveforms based on (a+b) and (a—b); look at

the main diagonals to see this. There are also many extra waves, with such fre

quencies as 3a+b and 5a+3b.

Consider the case where b is very small. The result will be many sine waves,

each of frequency approximately a, many of frequency about 3a, and so on. The re

sult is a modified triangular wave, where all the harmonics beat.

In the special case where a is a multiple of b, the output is a harmonic series.

For example, if 100 Hz is input with 300 Hz, all the sum and difference signals must

be multiples of 100 Hz. The result is a distinctly pitched note, typically something

like a square wave. If the frequencies aren't quite exact multiples, the output is a pair

of enhanced triangular waves which will beat, since their fundamentals aren't quite a

ratio. This gives realistic banjo twangs or rubber-band "boings."

Where one input changes continuously relative to the other, some frequencies

(those produced by addition of harmonics) slide up, and the others (produced by

subtraction) slide down, and the output passes through points where it has a single

pitch.

Bell-like timbres are produced with such inputs as 110 and 152 Hz, which give

two audible notes (42 Hz and 262 Hz) of unrelated frequency.

Synchronization also forms a joint output from two inputs, but in a different

way. The frequency and waveform remain virtually unchanged. However, at inter

vals decided by the inputs, the waveform restarts. The effect is to add high harmon

ics to the wave, while keeping frequency fairly constant.

Envelopes
So far we've discussed steady tones, produced by stable waveforms. A note's en

velope describes the rise and decay of the note's loudness against time. The time

scale of SID envelopes is much longer than for waves.

Figure 13-6 shows the envelope of a triangular wave over a tenth of a second.
The envelope has a short attack phase, and a much longer decay phase. The wave

form is independent of the envelope, but it's easy to forget the distinction.
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Figure 13-6. Envelope Diagram

Envelope of Above Note

The SID chip's programmable envelope has four parts:

• Attack. The time in which the note reaches full volume from zero. Typically very

short.

• Decay. Allows the volume to be reduced from its initial maximum to a steady

level.

• Sustain. Period where the volume is steady, like the waves discussed earlier in this

chapter.

• Release. Period during which amplitude falls from the sustain level to zero.

The above parameters help the programmer emulate sounds by controlling the

envelope. Figure 13-7 gives some illustrations of how ADSR envelopes might be

used.

Energy is used to generate sound. In a system radiating sound with a relatively

constant loudness, like an organ or violin, energy must be input as long as a steady

note is desired. With notes produced by a piano or a guitar, though, energy is ap

plied once, to dissipate as the note dies away.

The guitar envelope has zero attack time, decay starts immediately, and there is

no sustain level. A triangular wave approximates its odd-harmonic wave. This en

velope is characteristic of cymbals, bells, drums, and many percussion instruments.

A piano envelope is similar, except that a piano key may be released, and if it is,
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decay is interrupted and the release phase terminates the note. A square wave

approximates the piano's timbre.

The organ has a noticeable attack and decay, as the note is established or fades.

While a key is pressed the sustain level is held, after which there's a short fade-out.

A pulse wave gives about the right timbre.

A flute has a longer attack and release, and has roughly a triangular waveform.

Figure 13-7. Common Envelope Shapes

Guitar

Percussion

Piano (Sustained)

Piano (Note

Released)

Flute Organ

Filtering and Resonance

Filtering in electronic music means removing a range of unwanted frequencies. The

result can be predicted by analysis of the input waveform: for example, a low-pass

filter passes low harmonics, but cuts out high ones, cutting treble and giving a more

bass tone. This is the most common type of filter. The level where it begins to act is

called its cut-off frequency. A high-pass filter passes frequencies only above the cut

off frequency, and a band-pass filter passes a narrow band of frequencies, removing

those not in the vicinity of what's called the center frequency. The cut-off isn't al

ways sharp. The SID's low-pass filter, for example, reduces perceived volume by

about half for each octave above cut-off.

A notch filter takes effect when low- and high-pass filters are on together. The

SID's filter type is controlled by three bits, each of which can be on or off, so the

SID can be set as a notch. Resonance amplifies or boosts frequencies close to the cut

off point. SID's filter has 16 linear resonance settings. See Figure 13-8.
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Figure 13-8. Filters
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Synthesis Notes

Any waveform can be synthesized by sampling (by measuring the sound's amplitude

at a series of points) and simply duplicating the sequence. This is not how most syn

thesizers work, though they generate sawtooth, noise, and variable pulse waves, and

have controls for such things as vibrato and chorus (where all voices are turned on

in approximate unison). ADSR envelopes are often used, the release phase being en

tered when a key is no longer pressed. The Commodore 64 SID chip, designed by a

specialist in music synthesis, has many of these features.

Sounds produced by acoustic instruments tend to have extremely complex

changing harmonic structures, especially in the attack phase. And harmonics aren't

absolutely perfect. Their frequencies aren't quite exact multiples of the fundamental

frequency. For these reasons, it's difficult to make electronic instruments sound just

like acoustic ones.
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Speech Synthesis

The vocal cords generate a roughly triangular wave of fundamental 70 (men) or 100

(women), which resonates in the throat, mouth, and nose and is shaped by the

tongue, palate, and lips. Speech is typically synthesized from three main frequencies

(formants), plus low-frequency noise (nasals) and high-frequency noise (fricatives). For

example, "oo" is roughly a sine wave, and "ee" a sine wave plus a 3000 Hz tone.

The frequencies of formants typically change somewhat in the course of vowel

sound. Consonants are often bursts of noise which are abruptly cut off. Since SID

has only three voices, no sine wave capability, and a single filter, speech is not easy

to synthesize with the 64, although it is possible.

Plug-in speech cartridges usually include their own speech chip, bypassing SID

and providing a known quality of output. Such chips typically store waveforms of 64

component parts of speech sound (phonemes) and allow control of such parameters

as duration. Their software converts some form of phonetic spelling into phonemes;

for example, A$="H/E/LL/OO/P2" may define a string which sounds like "hello"

followed by a pause. Standard words and sounds and the alphabet may be supplied

in ROM. Commands are either wedged into BASIC or accessed by SYS calls.

The SID Chip
Overview of the SID Chip

Before a more technical discussion of the SID chip, here is a plain English descrip

tion. The SID will generate a range of waveforms, as discussed above. These waves

are always output in an ADSR envelope. In other words, the chip is designed to pro

duce individual notes, of programmable timbres and frequencies. Steady notes are

obtainable in the extreme case where sustain is simply left on. Accurate direct con

trol of the output signal isn't part of the SID chip's function. The next best option is

to set a pulse wave at its far range so that it never actually pulses and to alter the

sustain level.

Notes are controlled like an organ: individual notes must be consciously turned

on and turned off. To play a full ADSR note therefore requires two POKEs or ML

stores—one to start it, the other to trigger the final release phase.

To save money and memory, Commodore didn't incorporate commands like

SOUND or ENV into BASIC for the 64. Consequently, programming sound involves

many POKEs. Even the simplest sounds require four POKEs.

It's fairly easy to play multipart tunes with the SID chip. Once each voice has its

envelope set up and waveform selected, all that's needed is to periodically change a

note's pitch, turn the note on, wait for some suitable sustain interval, turn the note

off, and wait for sufficient release time. The automatic timing of attack, decay, and

release phases saves some work. If you're happy to do without a sustain phase, a

note can be made up of attack and decay components only; this simplifies program

ming. BASIC programs are slow enough for some of the delays to occur invol

untarily. This is the usual way the SID chip is programmed; it assumes that the

envelopes are satisfactory. Dynamic effects such as raining or ripping sounds, the

Doppler effect, and envelopes controlling filters rather than volume require more

work and probably ML subroutines as well.

437



Sound

The SID chip (officially, the 6581 Sound Interface Device) has 29 eight-bit reg

isters, numbered 0-28 in its specification. The SID chip starts at $D400 (54272) in

the 64. Address decoding is incomplete, and 31 extra images of the SID chip reg

isters appear at $D420, $D440, and so on. The SID images are a side effect of the

way the SID chip is wired into the 64; they are not designed to be used at all. While

it is possible to use image registers in place of the actual SID registers, there is no

real advantage in doing so, and the practice is likely to confuse anyone else who

looks at such a program.

The SID chip has three electronic voices. They may be used independently, or

linked, giving ring modulation from two voices, for instance. Each voice has an os

cillator, able to generate sawtooth, triangular, variable-width pulse, noise, and other

combination waveforms, of frequency ranging from about 1/20 Hz to 4000 Hz, in

extremely small steps. Much higher frequencies than this relatively low top limit are

generated by harmonics. Each voice has its own envelope shaper, with pro

grammable attack, decay, sustain, and release phases. Any of the three voices may

be routed together via the SID chip's single filter, which has programmable low-

pass, high-pass, and band-pass modes, resonance, and cut-off or center frequency.

The often published block diagram of the SID chip charts all these features.

Most SID registers are write-only; PEEKing returns 0. Consequently, monitor-

style programs need an array to keep track of values which have been POKEd in.

However, the last four registers are read-only. Two of them return potentiom

eter readings, used with game paddles, drawing tablets and other devices. These are

dealt with in Chapter 16. Although sound could be controlled by them, perhaps as

an alternative to the keyboard, they're not directly relevant and we'll say little more

about them here.

The two other read-only registers return, respectively, the oscillator and the en

velope, as output by voice 3. We can use these to inspect the SID chip's waveforms

and envelopes, and for such control purposes as modifying oscillator frequencies for

vibrato or siren effects, or changing filter frequency to get a wah-wah effect.

The SID chip produces a reasonably high quality electrical signal, obtainable on

the audio-video socket at the rear of the 64 (pin 3 is the signal, and pin 2 is the

ground). Play this signal through an amplifier and speaker, preferably with some tre

ble removed, for a significantly higher quality sound than is available via your TV.

External input can also be processed by the SID chip: the signal, to pin 5, must be in

the range 5.7 to 6.3 volts DC, matched to the SID chip's 100K ohm impedance. The

signal can be filtered and mixed with output from the SID chip's voices, but not pro

cessed in any other way. If you're not sure how to make such external connections,

get help from someone who understands electronics. The SID chip can be damaged

by an external input that exceeds its design levels.

Voice Generator Registers

The three voice's registers are arranged in identical patterns of seven bytes, so you

may find it mnemonically helpful to use expressions like SID=54272 and HF=SID

+ VOICE*7 + 1 in BASIC. The second example sets the high byte of the frequency

of one of the voices, depending on the value of VOICE (which must be in the range

0-2).
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Frequency control registers (offsets of 0 and 1, 7 and 8,14 and 15). The first

two registers of each group hold a two-byte value which controls the frequency of

the note produced by that voice. The frequency is directly proportional to the value,

which means that doubling the value doubles the frequency. The frequency resolu

tion is extremely good. There are about 250 values between middle C and the next

semitone, permitting glissandos (pitch changes between notes with no perceptible

steps), though resolution is not as good at extremely low frequencies.

The registers' values increment every 256 clock cycles, setting a new output

value whenever 0 is reached; this explains how the timing works out.

The 16-bit register value is related to the true frequency like this:

U.S. True frequency = 0.0609597 * Register value

U.K. True frequency = 0.058717 * Register value

Or the other way around:

U.S. Register value = 16.40426 * True frequency

U.K. Register value = 17.0309 * True frequency

To produce a tuning standard note A (frequency 440 Hz) in the U.S., the value is

440*16.404261, or about 7218. Note that U.S. software plays at a lower pitch in the

U.K.

The highest obtainable pitch is about 0.0609597*65535 = 3995 Hz, about four

octaves above middle C, and the lowest about 0.06 Hz, far below audibility. Two or

three octaves below middle C are perceptible as a pitched sound, so the SID chip's

total range of pitched sounds is about six or seven octaves.

If the variable F contains a value to be placed into these registers, then

H%=F/256 then L%=F-H%*256 will assign the high and low bytes to H% and

L%

Pulse width registers (offsets of 2 and 3, 9 and 10,16 and 17). The pulse width

is set by a 12-bit value. The lower 8 bits are set by the first of these register pairs,

and the upper 4 bits by the least significant nybble of the second register, leaving

the upper nybble unused. So the maximum value it may take is 4095. The duty cycle

is given by the ratio ?6f'pulse width: 4095. A duty cycle of 1:2 (a square wave) results
from 2048 (8 in the second register, 0 in the first). The value 0 or 4095 gives a con

stant DC voltage. Consequently, if a pulse waveform is to be audible, a pulse width

must be set in addition to a frequency. The pulse width registers have no effect on

other waveforms.

Note that a 1:4 duty cycle sounds identical to a 3:4 duty cycle. It's the same

waveform upside down, so the value 1024 will produce the same harmonic content

as 3072.

However, if other tones are sounding simultaneously, they'll interact with the

pulse wave, and there may be a noticeable difference between 1:4 and 3:4 ratio

pulse waves. In particular, if a pulse wave and another waveform are enabled to

gether in a control register (see next section), a low ratio gives an inaudible result,

while a high ratio creates a much louder signal.
To load the contents of the variable PW into the SID chip, POKE the first reg

ister of the pulse-width register pair with PW/256, and the second with PW AND

255.
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Control registers (offsets of 4,11, and 18). The fourth register in each group

has eight more-or-less independent bits; as usual, each is off when 0, on when 1. In

ordinary use, only one waveform will be enabled in a voice at any given time. En

abling several waves (but not noise) in the same voice logically ANDs the outputs

from point to point. A square wave cuts out half the other wave, giving variations on

the sawtooth, but ANDed triangular and sawtooth waves mostly cancel out. A very

wide pulse adds high frequencies without cutting volume too much. The following

list describes the function of each bit of the control registers:

Bit 7; Noise.

Bit 6: Pulse waveform. Pulse width must be set.

Bit 5: Sawtooth waveform.

Bit 4: Triangular waveform.

Bit 3: Test bit. This suspends the voice; when cleared to 0, the output is con

tinued. This can be useful where the exact realtime phase of a waveform is im

portant. But the most common use is probably to restart a voice, locked up after

noise has been enabled with another waveform.

If noise is selected with another waveform, the noise waveform is silenced and

will remain silent until the test bit is set to 1 and then reset to 0.

Bit 2: Ring modulation. When this bit is set to 1, its voice's output (which must

be a triangular wave) is replaced by the ring modulated signal obtained from its own

signal and the previous voice, which is automatically treated by the ring modulation

process as a triangular wave. Only the frequency setting of the previous voice has

any effect. It isn't necessary to set the waveform or even turn on the voice. Both voices

can still be used: voice 3 might play noise, while voice 1 could play a ring modu

lated signal based on the triangular wave of voice 3's frequency setting.

A common combination is to set the ring modulation bit of voice 1 and use

voice 3 for the other input signal. The voice before voice 1 is treated as voice 3. If

two or even three ring modulation bits are on, and appropriate triangular waveforms

have been selected, still more elaborate ring modulation occurs.

Bell timbre notes can be tuned by multiplying both input frequencies by

1.059463, or using tables, to find semitone values which retain the same pattern of

harmonics. Glockenspiel and vibraphone effects can be obtained in this way.

Bit 1: Synchronization bit. This links two voices just as the ring mod bit does.

As with ring modulation, only the frequency of the previous voice need be set for

sync to operate. There are two small differences: the voice with sync bit set can have

any waveform, and the synchronized output frequency is determined by the earlier

register, the one with sync bit not set.

Synchronization can be used in several ways. It provides an easy way to vary

timbre. Suppose voice 1 plays a tune on its own. If voice 2's sync bit is set, voice 1

still plays the tune, but you can get new timbres on replaying the tune by simply

POKEing a new value into voice 2's frequency.

With ring modulation, sync adds more high frequencies and may improve the

sound. It's probably always worth trying. However, voice 3 alone, not voices 1 and 3

together, now controls the pitch.

Bit 0: Gate bit. This controls the playing of the voice's note. It has two functions.

Transition from 0 to 1 immediately starts the ADSR envelope. Transition from 1 to 0

immediately starts the release phase of the ADSR envelope.
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Both events take place irrespective of the stage reached by the current ADSR se

quence in progress. For example, if the gate bit is turned off during a slow attack, re

lease starts without decay or sustain phases.
Envelope shape registers (offsets of 5 and 6,12 and 13,19 and 20). These reg

isters control the attack, decay, sustain, and release phases of the sound envelope.

Each of the envelope register pairs is arranged as a four-nybble group in A, D, S, R

order. Thus, the high nybble of the first register controls the attack, while the low

nybble controls the decay. In like fashion, the high nybble of the second register is

for sustain, and the low nybble determines release.

Program 13-1 allows you to watch the SID chip generating envelopes. It reads

the envelope generated by voice 3 and draws the result on the screen in a distinctive

color, so several envelopes can be overlapped and compared. The envelope is timed

so a BASIC loop can read it. Try entering ADSR values such as 3, 3, 3, 3 and 7, 5, 5,

6 to get the idea.

Note that A, D, and R set rates of increase or decrease, but sustain is a level, so

a high S value raises the level portion of the envelope. Release is timed by the pro

gram to occur about 2/3 the length of the axis.

Program 13-1. ADSR Plotter
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 SID=54272:DIM X(500) srem 212
20 INPUT "ATTACK, DECAY, SUSTAIN,RELEASE"; A,D,S,R

:rem 233

25 FOR J=SID TO SID+24:POKE J,0:NEXT :rem 81
27 POKE SID+24,15 srem 155
30 POKE SID+19,16*A+D:POKE SID+20,16*S:REM A,S,D

:rem 168

40 POKE SID+14,11 srem 145
42 POKE SID+15,48 :rem 158
50 POKE SID+18f0:POKE SID+18,33 :rem 211
60 FOR J=0 TO 25:X(J)=PEEK(SID+28):NEXT :rem 220

70 POKE SID+18,0 srem 102
80 FOR J=26 TO 40:X(J)=PEEK(SID+28):NEXT :rem 19

90 Z=(Z+1) OR 8 AND 15:POKE 646,Z :rem 168
100 GOSUB 200:FOR J=0 TO 40 :rem 130
110 FOR K=l TO X(J)/20:PRINT "{RVS} {UP}{LEFT}";:N

EXT :rem 88

120 GOSUB 200:FOR K=l TO J:PRINT "{RIGHT}";:NEXT:N
EXT :rem 193

130 PRINT "{WHTHll SPACES}ADSR=" A;D;S;R:GOTO 20
:rem 129

140 PRINT "{HOME}";:FOR X=l TO 24:PRINT "{DOWN}";:
NEXT:RETURN :rem 142

200 PRINT "{HOME}";:FOR X=l TO 24:PRINT "{DOWN}";:
NEXT:RETURN :rem 139

The attack/decay register (5,12,19) consists of two nybbles which hold the at

tack value (0-15) and decay value (0-15). POKE 16*A+D.
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The sustain/release register (6,13,20) consists of two nybbles which hold the

sustain level (0-15) and release value (0-15). POKE 16*S+D.

Table 13-1 is a list of approximate attack times and maximum rates for decay
and release.

Table 13-L Envelope Register Values

Value

Dec

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Hex

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Attack Rate

2 ms

8 ms

16 ms

24 ms

38 ms

56 ms

68 ms

80 ms

100 ms

250 ms

500 ms

800 ms

1 second

3 seconds

5 seconds

8 seconds

Decay/Release Rate

(Maximum time)

6 ms

24 ms

48 ms

72 ms

114 ms

168 ms

204 ms

240 ms

300 ms

750 ms

1.5 seconds

2.4 seconds

3 seconds

9 seconds

15 seconds

24 seconds

Attack times are 1/3 the other times, because they are shorter in practice. The

ratios between steps are erratic: incrementing from 5 to 6 makes little difference,

while raising the value from 8 to 9 is more significant. The idea is to give more

choice in the useful 1/20 to 1/3 second range. Attack rises to maximum output,

which declines in the decay phase to the sustain level. Sustain therefore helps deter

mine volume of a note. To increase a note's relative importance, increase its sustain

level. Release, if and when it happens, drops from sustain to zero. The phases aren't

quite linear.

To understand sustain levels, consider the three similar notes shown in Figure

13-9 with different si^tain levels.

The notes diagrammed above are identical except for the sustain level. Note

how the decay increases in importance and release decreases in importance as the

sustain level drops.

With a sustain level of 0, these envelopes decay to 0 without needing release to

be gated. POKE SID+4,16: POKE SID+4,17 plays notes of this type. If release is

gated, the envelope shape depends on the release value; the note is lengthened, un

changed, or shortened, respectively, if the release value is greater than, equal to, or

less than the decay value.
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Figure 13-9. Varying Sustain Levels

Filter and Volume Registers

Cut-off and center frequency registers (offsets of 21 and 22). The filter cut-off and

center registers (FC) use 11 bits, and the range is 0-2047. The register value is re

lated to the true filter frequency as follows:

Filter frequency in Hz = 30 + 5.8 * Value in register

Register value FC = (Desired filter frequency - 30) * 0.17

The range of frequencies is therefore about 30-12,000 Hz.

Filter and resonance control register (offset of 23). Bits 7-4: The high nybble

of this register sets the amount of resonance on a linear scale. Clear all bits to 0 for

none, and set all to 1 for maximum.

Bit 3: External device filter. If external sound is routed through the 64, it will be

filtered if this bit is 1.

Bit 2: Voice 3 filter. O=off; l=on.

Bit 1: Voice 2 filter. O=off; l=on.

Bit 0: Voice 1 filter. O=off; l=on.

Volume and filter selection register (offset of 24). Bit 7: Disconnect voice 3.

When this bit is set, voice 3 is turned off, even if otherwise enabled. This allows

voice 3 to generate both waves and envelopes, which can be read from the read-only

registers for control purposes, without itself being audible.

Bit 6: High-pass filter. O=off; l=on.

Bit 5: Band-pass filter. O=off; l=on.

Bit 4: Low-pass filter. O=off; l=on.

Bits 3-0: Master volume. The low nybble of this register sets overall volume of

the three voices.
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Notes on filters. The SID chip has only one filter. When it's on, not all voices

need pass through it. Bass accompaniment could be low-pass filtered to remove high

harmonics and have resonance added. For example, if you put 17 into offset register

21, 241 (or 15*16+1) into register 23, and 31 into register 24 to low-pass filter voice

1 with cut-off starting at 128 Hz (an octave below middle C). High-passing imitation

cymbal noises might need 21 in register 22, 1 in 23, and 79 in 24 to high-pass from

1000 Hz without resonance.

Bandpass filtering, notches, and resonance act on quite small regions of the fre

quency spectrum, so it's important to get the register values correct.

Read-Only Registers

Potentiometer readings (offsets of 25 and 26). See Chapter 16.

Waveform reading of voice 3 (offset of 27). Voice 3's frequency, and a wave

form, must be set, but the gate needn't be on. For example, set register 14 (fre

quency, low byte) to 4 and register 18 (waveform) to 32. This sets up a very low

frequency sawtooth wave, which takes about eight seconds to climb from 0 through

255. A sequence of PEEKs will show these changing values. With much higher fre

quencies, BASIC is too slow to PEEK consecutive values, but instead returns values

taken from different waves, so the pattern appears to bear no relation to the wave

shape. This is a standard result of wave sampling. It makes the effects of ML pro

grams like the one below difficult to guess at.

For random numbers, particularly when using ML, POKE register 15 with 255,

and register 18 with 129. This generates a fast changing noise output. Simply PEEK

(or load in ML) the location to obtain a value.

Envelope reading of voice 3 (offset of 28). Voice 3's ADSR must be set, but a

waveform needn't be selected. This is similar to the previous register; the major dif

ference is that the envelope starts only when gated, and release starts only when the

gate is set to 0.

Examples and Troubleshooting with the SID Chip

It is easier to understand the functions of the SID chip once you have heard the

sound it generates. Program 13-2 controls individual bits in the SID chip's registers,

so you can experiment with any combination. It displays the first 25 registers (the

write-only ones) as eight bits, with register numbers and text to remind you what

the registers do. The cursor keys move the colored cursor, and the space bar inverts

the bit under the cursor and loads the new register value into the SID, so any

change will be immediately audible. Since the space bar repeats, holding it down is
an easy way to repeatedly gate and ungate a tone.

Program 13-2. Simple SIDmon
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

2 DATA "FREQ CONTROL LO{2 SPACES}{RVS}VOICE 1",FRE
Q CONTROL HI :rem 63

3 DATA PULSE WIDTH BITS 7-0,PULSE WIDTH XXXX 11-8

:rem 120

4 DATA "N OL&GlNgGlNM TST RING SYN GATE" :rem 116
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5 DATA ATTACK{2 SPACES}DECAY, SUSTAIN RELEASE

:rem 193

6 DATA "FREQ CONTROL LO{2 SPACES}{RVS}VOICE 2",FRE
Q CONTROL HI :rem 68

7 DATA PULSE WIDTH BITS 7-0,PULSE WIDTH XXXX 11-8

:rem 124

8 DATA "N OL&GlN&GiNM TST RING SYN GATE" :rem 120

9 DATA ATTACK{2 SPACES}DECAY, SUSTAIN RELEASE

:rem 197

10 DATA "FREQ CONTROL LO{2 SPACES}{RVS}VOICE

{SHIFT-SPACE}3",FREQ CONTROL HI :rem 16
11 DATA PULSE WIDTH BITS 7-0,PULSE WIDTH XXXX 11-8

:rem 167

12 DATA "N OLBG3NBG3NM TST RING SYN GATE" : rein 163

13 DATA ATTACK{2 SPACES}DECAY, SUSTAIN RELEASE

:rem 240

16 DATA "XXXXX FC2-FC0{2 SPACES}{RVS}FILTER",FILTE
R BITS FC10-FC3 :rem 237

18 DATA RESONANCE FX F3 F2 Fl, V3OFF HP BP LP VOL3

-VOL0 :rem 239

20 DIM RV(24) :rem 155

25 FOR X=0 TO 23:POKE 54272+X,0:NEXT :rem 224

30 RV(1)=32:RV(4)=33:RV(6)=136:RV(24)=15 :rem 181

40 PRINT "{CLRHWHT}"; :FOR Y=0 TO 24:FOR X=0 TO 7

:rem 184

50 PRINT CHR$(49 + ((RV(Y) AND (2\(7-X)))=0));

:rem 57

60 NEXT:POKE 54272+Y,RV(Y) :rem 20

70 READ M$:PRINT Y; M$;:IF Y<24 THEN PRINT:rem 123

80 NEXT Y :rem 0

100 X=0:Y=0:OL=55296:GOTO 1100 :rem 168

1000 GET X$:IF X$="" THEN 1000 :rem 211

1010 IF X$=" " THEN GOSUB 2000:GOTO 1000 :rem 243

1020 IF X$="{RIGHT}" THEN X=X+1:IF X= 8 THEN X=0

:rem 110

1030 IF X$="{LEFT}" THEN X=X-1:IF X=-l THEN X=7

:rem 30

1040 IF X$="{DOWN}" THEN Y=Y+1:IF Y=25 THEN Y=0

:rem 151

1050 IF X$="{UP}" THEN Y=Y-1:IF Y=-l THEN Y=24

:rem 71

1100 NW=55296+X+Y*40:POKE OL,1:POKE NW,4:OL=NW:GOT

O 1000 :rem 254

2000 SP=1024+X+Y*40:IF PEEK(SP)=48 GOTO 2020

:rem 134

2010 POKE SP,ASC("0"):RV(Y)=RV(Y) AND (NOT 2t(7-X)
):GOTO 2030 :rem 98

2020 POKE SP,ASC("1"):RV(Y)=RV(Y) OR 2t(7-X)
:rem 184

2030 POKE 54272+Y,RV(Y):RETURN :rem 20
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Type in the program and run it. A few registers are preset by the program.

Sawtooth: Cursor over the gate bit of register 4 and tap the space bar a few

times. A sawtooth tone sounds, with frequency about 500 Hz. Its envelope has zero

attack and decay, but a sustain level of 8 (midvolume setting) and decay of 8, giving

about a 1/3 second decay.

Triangle: Turn the triangle bit on and the sawtooth off. Gating again turns on

the note, this time with the mellower triangle waveform. Altering bits in registers 1

and 2 changes the pitch. Also experiment with different attack and decay settings.

Pulse: Select the pulse-wave bit in register 4. You'll get no pulse-wave sound

until registers 2 and/or 3 are POKEd.

Noise: Set the noise bit and experiment. A long attack, for example, helps simu

late a steam train.

Ring modulation: Set the ring bit in register 4; set bit 2 in register 15, which sets

voice 3's frequency. This has no effect; however, selecting triangle wave in register 4

gives ring modulation. Bell-like sounds are best obtained with 00001111 in register 5

and 00000000 in register 6, so the note has only a decay phase.

The array RV stores the current register values. The program initializes volume,

as well as voice l's frequency, sustain phase, waveform, and gate. This is the mini

mum required for the steady tone produced on RUN.

The cursor is controlled by POKEing color RAM, so the new X,Y position

changes color, and the old reverts to white.

Experiments and examples. These straightforward examples are typical SID

approximations of musical sounds.

Noise Cymbals A4 Dll SO R0 High-pass filter

Pulse Piano A0 D9 SO R0 Square wave (2048)

Organ Al D2 S5 Rl 1:4 Pulse (1024)

Banjo A0 D9 SO R0 1:10 Pulse (410)

Sawtooth Trumpet A6 DO S10 Rl Band-pass

Accordion A6 D7 S5 R3 High-pass filter

Triangle Flute A4 D2 S10 R5

Problems with the SID Chip

Often, the registers are simply not properly set. Volume (register 24) must be on.

Each voice's frequency must be set; this takes either one or two POKEs. The wave

form must be kept enabled while the gate, in the same register, is POKEd on or off.
And the envelope shape must be set, with one or two POKEs. Pulse width must be
set for pulse waves, which takes one or two POKEs.

Filtering requires registers 21 and/or 22 to set the filter frequency, and register
23 to select the voices to be filtered (and perhaps resonance). Volume register 24 also
controls the type of filter, as well as on/off for voice 3.

Ring modulation must use a triangle waveform in the voice with ring bit set.
And the frequency of the modulating voice must be set.

Special difficulties. At power-on, the SID chip is POKEd with zeros, but
RUN/STOP-RESTORE only turns off the volume. So it can happen that a music
program doesn't work even after RUN/STOP-RESTORE, typically because a gate bit
is set to 1. To avoid this problem, sound programs should always start by POKEing
zeros into all the SID chip's locations.
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Low-frequency (bass) notes always sound weaker than high-frequency notes of
the same amplitude. A bass-drum simulation on the SID chip, low-pass filtered at 70
Hz, is almost inaudible. If this is a problem, try increasing the relative sustain level

of low frequencies.

After an envelope has decayed to zero, sound may still leak through. Turning

off the gate bit is the solution. Also, long decays aren't reliable. The volume doesn't

fall smoothly, but jumps noticeably in places.
The filter may not give repeatable results on other 64s. Early 64 programmers

were warned by Commodore that filter characteristics varied considerably.
As noted, the noise waveform can't be mixed freely with other waveforms.
ML routines with read-only registers. The routine below is about the shortest

practical ML routine using the read-only registers:

LDA $D41B ;READ VOICE 3 OSCILLATOR

STA $D41F ;STORE IN FREE LOCATION

LDA $D41C ;READ VOICE 3 ENVELOPE

STA $D41F ;STORE IN FREE LOCATION

JMP $EA31 ;CONTINUE INTERRUPT

The BASIC loader, Program 13-3, POKEs this ML into RAM, then points the

IRQ interrupt to it, so about every 1/60 second, voice 3's parameters are read and
POKEd somewhere else. As it stands, the ML has no effect, since $D41F isn't used

by the SID chip; but replacing the fifth byte with a number in the range 0-24 directs

the oscillator into the register having that offset, and replacing the eleventh byte has
the same effect with the envelope reading. For example, changing STA $D41F to
STA $D400 means that voice l's frequency control (low byte) now gets altered every

1/60 second to voice 3's output. Locations 56324 and 56325 control the interrupt

rate (changing this rate also affects internal operations, making the cursor blink

faster or slower, and so on).

Program 13-3. ML Read-Only Routine
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=49152 TO 49166:READ X:POKE J,X:NEXT

:rem 223

20 DATA 173,27,212,141,31,212,173,28,212,141,31,21

2,76,49,234 :rem 168

30 POKE 56333,127:POKE 788,0:POKE 789,192:POKE 563

33,129 :rem 214

40 SID=54272:FOR J=SID TO SID+24:POKE J,0:NEXT

:rem 169

100 POKE SID+24,9+32 :rem 38

110 POKE SID+15,16 :rem 197

112 POKE SID+18,16 :rem 202

118 POKE SID+1,32 :rem 150

120 POKE SID+6,160 :REM VOICE 1 SUSTAIN :rem 178

130 POKE SID+4,16+1: REM GATE VI TRIANGLE :rem 13

200 POKE 49156,0: REM V3 OUTPUT TO R0 :rem 227
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Voice 3's frequency determines oscillator register 27's output. Register 27 is loca

tion 54299 ($D41B). A very low frequency is inaudible, but when the register is

controlling an audible frequency, it causes a slow, distinct pulsation. Higher fre

quencies are audible in themselves and also generate much faster changing output,

giving frequency-modulated output (where the waveforms are rapidly condensed,
then rarefied).

Voice 3's ADSR settings and the gate bit control register 28's output. Register 28

(location 54300, $D41C) therefore needs more work than 27, often more than is jus
tified in view of the similarity between the outputs of 27 and 28.

Program 13-3 shifts the triangular oscillator output of voice 3 into register 0, so

the low byte of voice l's frequency pulsates, giving vibrato. POKE 49156,1 uses reg

ister 1 and, of course, usually sounds more erratic. Register 2 or register 3, with

pulse wave selected, causes fluctuations in readiness. POKE 49156,4 causes clicks

and buzzes as the interrupt POKEs in assorted waveform and gate configurations.

Register 22 (54294, $D416) alters the filter setting; provided voice 1 is filtered, you'll

get a repetitive wah-wah effect. Register 24 (54296, $D418) alters master volume and

a few other things, and gives vibrato or such effects as random changes in loudness

when the noise voice is chosen. Whenever a register is partly used for different pur

poses, obviously LDA $D41B:AND #$0F:STA $D418 or similar constructions can
help.

The envelope can modulate frequency or filtering, producing somewhat similar

results: A note might start deep and faint, rise to a louder, more treble sound, then

lose frequency as it decays. Voice 3 is easiest to modify in this way, since it can

modulate itself. Run Program 13-3 and do these POKEs: POKE SID+4,0 (turns voice

1 off). POKE SID+ 19,176 (sets AD of voice 3). POKE 49162,15 (causes envelope

reading to alter frequency of voice 3). Now type POKE SID+18,0: POKE SID+18,17

to gate a triangular wave, and you'll get a whistling sound. There are innumerable

ways to combine voices, waveforms, ADSR shape, and duration.

Music Theory
Figure 13-10 shows a section of a piano keyboard, starting at C.

Figure 13-10. Piano Keyboard

u
It has 12 keys, tuned with frequencies in constant ratio to each other, so melodies

can be played in any key, starting on any note. Adjacent notes are all separated by

semitones. Octaves differ in frequency by a ratio of exactly 2, and similarly fre

quencies of semitones differ by the twelfth root of 2, which is 1.059463. Repeated di

vision of a high frequency by this value generates regular subdivisions and provides

an efficient way to generate tuned frequency settings for the SID chip. American

standard pitch sets A at 440, while international standard pitch is 435. Whichever

scale is used, any notes' frequencies can be calculated from any one note. (The sub-
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routine starting at line 4000 in Program 13-5 evaluates 95 semitones from a single

value.)
A conventional scale consists of 7 notes taken from these 12, plus the eighth

(octave higher) note. So all scales have 12 semitones between the starting keynote
and its octave. Of the 800 or so possible scales, in practice only a few are used. C
major is the best known scale, starting with C and using only the white notes C, D,

E, F, G, A, B, C.
The notes of this scale are separated by semitones like this: C tone D tone E

semitone F tone G tone A tone B semitone C. All major scales have this pattern, and
the arrangement of musical intervals in this type of scale has the same quality what

ever the keynote. # #
Any major scale other than C uses some black keys. For example, G major is G,

A, B, C, D, E, F-sharp, and G. Black keys are sharps moving up, and flats moving
down, so C-sharp is the same key as D-flat. White keys are called naturals.

Natural minor scales have this pattern: A tone B semitone C tone D tone E semi
tone F tone G tone A. Note the total of 12 semitones.

A chord is a simultaneous combination of notes. Here is a look at two types of
three-note chords. A major chord has four semitones between its first and second
notes, and three between its second and third notes. The first, third, and fifth notes
of a major scale identify this, so C major is C, E, and G. The fourth, sixth, and
eighth notes of any major scale also produce a major chord (F, A, and C make F ma
jor), as do the fifth, seventh, and ninth notes (G, B, and D in the next octave make G
major). Check the intervals between their notes to verify that they are major chords.
These three chords include all the notes in the scale; consequently, any tune in a
major scale may be harmonized by using one of these three chords. This is easy to

implement on the 64.
A chord using the second, fourth, and sixth notes of the major scale is a minor

chord, with three and four semitones separation between the notes. A minor chord is
also produced if we build a chord on the third or the sixth notes of the scale. In the
scale of C major, we get D minor, E minor, and A minor. Again, any note can be

harmonized by one of these chords.
As we can see, it's possible to automate harmony to some extent, although the

results are unexciting if prolonged. In general, minor chords are considered dull or
sad and major chords are thought of as bright or triumphant.

It's also possible to generate tunes, by deciding on features like rhythms of mea
sures or bars, the next note to be played, perhaps with probability depending on
previous notes, and ascending or descending sequences, and then varying them ran

domly. Again, the results are generally unexciting.
Musical notation uses a staff of five lines, or two staves, with symbols to repre

sent notes. Pitch is specified by their vertical position; the clef determines the actual
pitch, and the treble clef is usually set with E on the lowest line, G on the next, and
so on. Duration, and thus the rhythm of the music, is signaled by the type of sym
bol. Durations are relative, not absolute. A dot after a note symbol multiplies its
duration by 1.5. Sharp or flat symbols precede the symbols for notes which are to be
sharpened or flatted. Consult your dictionary for a list and explanation of basic

musical notation.
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Sound Demonstrations
Bach to the BASICS

The BASIC listing below, Program 13-4, plays a sequence of notes stored as three

bytes of data each, two bytes controlling frequency and one, duration. It gates each

note twice, allowing the full ADSR sequence, and consequently needs two delay

loops, during sustain, then during release.

Program 13-4. Jesu Joy
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

1 DIM SH(81),SL(81) :rem 229

5 FOR Y=l TO 81:READ SH(Y),SL(Y):NEXT :rem 120

10 S=54272 :rem 245

20 FOR J=0 TO 24:POKE S+J,0:NEXT jrem 15

21 POKE S+12,64:POKES+13,152:POKE S+19,64:POKE S+2

0,32 :rem 217

30 POKE S+5,16*1+5 :rem 147

40 POKE S+6#16*12+10 :rem 243

50 X=1:POKE S+24,8 :rem 220

60 READ HV,LV,DU :rem 179

70 IF HV<0 THEN FOR X=8 TO 0 STEP-1:POKE S+24,X:NE

XT:END :rem 171

80 POKE S,LV:POKE S+1,HV:POKE S+4,17:POKE S+8,SH(X

):POKE S+7,SL(X):POKE S+11,33 :rem 69

85 X=X+1 srem 182

90 FOR D=l TO 2*DU:NEXT :rem 19

93 POKE S+4,16 :rem 224

95 FOR D=l TO 2*DU:NEXT:GOTO 60 :rem 241

100 DATA 21,31,21,31,21,31,21,31,21,31,21,31,22,96

,22,96,22,96 :rem 186

110 DATA 25,30,25,30,25,30,25,30,25,30,0,0,25,30,2
5,30,25,30 :rem 72

120 DATA 22,96,22,96,22,96,22,96,22,96,22,96,21,31
,21,31,21,31 :rem 224

130 DATA 18,209,18,209,0,0,18,209,18,209,18,209,18
,209,18,209,18,209 :rem 26

140 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

:rem 251

150 DATA 21,31,21,31,21,31,21,31,21,31,21,31,22,96
,22,96,22,96 :rem 191

160 DATA 25,30,25,30,25,30,25,30,25,30,25,30,21,31
,21,31,21,31 :rem 174

170 DATA 18,209,21,31,22,96,18,209,18,209,18,209,0
,0,16,195,0,0 :rem 14

180 DATA 16,195,16,195,16,195,16,195,16,195,16,195
,16,195,16,195,16,195 :rem 213

200 DATA 21,31,32,16,235,32,18,209,32 :rem 7

210 DATA 21,31,32,25,30,32,22,96,32,22,96,32,28,49
,32,25,30,32 :rem 207

220 DATA 25,30,32,33,135,32,31,165,32,33,135,32,25
,30,32,21,31,32 :rem 81
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230 DATA 16,195,32,18,209,32,21,31,32,22,96,32,25,

30,32,28,49,32 irem 62

240 DATA 25,30,32,22,96,32,21,31,32,18,209,32,21,3

1,32,16,195,32 :rem 47

250 DATA 15,210,32,16,195,32,18,209,32 :rem 67

255 DATA 12,143,32,15,210,32,16,195,32,18,209,32,2

5,30,32,23,181,32,25,30,32 :rem 122

257 DATA 18,209,32,15,210,32,12,143,32,15,210,32,1

8,209,32 :rem 14

260 DATA 22,96,32,21,31,32,18,209,32,21,31,32

:rem 143

270 DATA 16,235,32,18,209,32 :rem 94

280 DATA 21,31,32,25,30,32,22,96,32,22,96,32,28,49

,32,25,30,32 :rem 214

290 DATA 25,30,32,33,135,32,31,165,32,33,135,32,25

,30,32,21,31,32 :rem 88

300 DATA 16,195,32,18,209,32,21,31,32,14,36,32,25,

30,32,22,96,32 :rem 51

310 DATA 21,31,32,18,209,32,16,195,32,12,143,32,16

,195,32,15,210,32 :rem 195

320 DATA 16,195,32,21,31,32,25,30,32,33,135,32,25,
30,32,21,31,32 :rem 32

330 DATA 16,195,96,-1,-1,-1 :rem 27

A table of note values allows faster programming of short tunes. Weaknesses in

clude the large amount of data needed per note, and the fact that all other process

ing stops. The program in the next section avoids these weaknesses.

Music Program
The music routine below, Program 13-5, is much more complex; it plays three-voice

music from data written in approximately conventional notation, so music is fairly
easy to write, compared with programs like the last, with their unnaturally formatted
music data. The drawback is the time taken by BASIC to convert it into ML-readable

bytes; however, once calculated, these can be stored for later use.

Program 13-5. Music Program
For mistake-proof program entry, be sure to use the "Automatic Proofreader/'Appendix C.

10 POKE 56,88:CLR:GOSUB 4500 J25J£
20 INPUT "IS MUSIC DATA IN RAM";A$:IF A$="Y" THEN

{SPACE} 1019 :rem "^
30 GOSUB 5000XGOSUB 4000 :re?,J
1000 TOR VN»0 TO 2:RA(VN)=0.50:DU=16:OC=4:P=:22528+

VN*6144 :rem 150
1005 READ VA$:IF VA$="Z" THEN POKE P,255:NEXT:GOTO

1019 :rem 41
1007 IF LEFT$(VA$,1)="O" THEN READ RA(VN):GOTO 100

c srem 235

1008 IF LEFT$(VA$,1)="W" THEN POKE P,253:P=P+1tREA
D WV»POKEP,WViP=P+l:GOTO 1005 »rem 16
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IF LEFT$(VA$,l)=nPM THEN GOSUB 1400:GOTO 1005

:rem 143

IF LEFT$(VA$,1)="R" THEN VA$=MID$(VA$,2):GOSU

B 2130:PI=0:GOTO 1014 :rem 100

GOSUB 2000:PI=PI+OC*12 :rem 249

IF P>40950 THEN PRINT "TOO MUCH DATA":END
:rem 46

POKE P,PI:P=P+1:POKE P,DU*RA(VN):P=P+1:rem 32

POKE P,DU-INT(DU*RA(VN)):P=P+1:GOTO 1005
:rem 108

INPUT "TEMPO (1-255)";TM:POKE 56325,TM

:rem 134

POKE 56334,0:GOSUB 1500 : rem 211

POKE 165,0:POKE 167,0:POKE 169,0 :rem 180

POKE 166,88:POKE 168,112:POKE 170,136:rem 189

POKE 788,208:POKE 789,192:POKE 254,0 :rem 156

FOR J=49355 TO 49359 STEP 2:POKE J,32:NEXT

:rem 28

FOR J=49349 TO 49354:POKE J,0:NEXT :rem 120

FOR J=0 TO 2:POKE 49344+J*2,J*7:NEXT :rem 208

POKE 56334,1 :rem 93

IF PEEK(254)=7 THEN 1020 :rem 211

GOTO 1039 :rem 203

POKE P,254:P=P+1:READ RG:POKE P,RG :rem 235

P=P+1:READ PA:POKE P,PA:P=P+1:RETURN :rem 233

SI=54272:PRINT "INITIALIZING SID" :rem 25

FOR J=SI TO SI+28:POKE J,0: NEXT :rem 49

POKE SI+5,17:POKE SI+12,17:POKE SI+19,17

:rem 219

POKE SI+6,177:POKE SI+13,177:POKE SI+20,177

:rem 123

:rem 133

:rem 171

THEN OC=OC+1:VA$=MID$(VA$

:rem 116

THEN OC=OC-1:VA$=MID$(VA$

:rem 125

OR LEFT$(VA$,1)>"9" THEN

:rem 195

OC=ASC(VA$)-ASC("0"):VA$=MID$(VA$,2) :rem 218
PI=ASC(VA$)-ASC("A") -rem 89
PI=PC(PI):IF PI<=0 THEN PI=PI+12 :rem 82

VA$=MID$(VA$,2):IF VA$="" THEN RETURN :rem 61
IF LEFT$(VA$,1)="#" THEN PI=PI+1: VA$=MID$(VA

$'2) :rem 74
IF LEFT$(VA$,1)="F" THEN PI=PI-1: VA$=MID$(VA

IF VA$="" THEN RETURN jrem 160
IF LEFT$(VA$,1)>"9" OR LEFT$(VA$,1)<"0" THEN
{SPACEjPRINT "?":END •rem 34
DU=VAL(VA$):RETURN -rem 167

1009

1010

1012

1013

1014

1016

1019

1020

1022

1023

1024

1025

1026

1028

1038

1039

1040

1400

1410

1500

1505

1510

1520

1530 POKE SI+24,4

1550 RETURN

2000 IF LEFT$(VA$,1)="+

,2):GOTO 2040

2005 IF LEFT$(VA$,1)="-

,2):GOTO 2040

2010 IF LEFT$(VA$,1)<"0

{SPACE}2040
2030

2040

2060

2070

2090

2110

2130

2140

2150
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4000 PRINT "INITIALIZING FREQUENCY TABLE" :rem 58

4010 DIM FQ(95):FQ(95)=64814 :rem 201

4040 TOR J=94 TO 84 STEP -1:FQ(J)=FQ(J+l)/2t(1/12)
:NEXT :rem 207

4050 FOR J=6 TO 0 STEP -1:FOR K=l TO 12 :rem 186
4060 P1=12*J+K-1:FQ(P1)=FQ(P1+12)/2:NEXT:NEXT

:rem 93

4070 FOR J=l TO 95:POKE 49151+J,FQ(J)-256*INT(FQ(J
)/256) :rem 233

4080 POKE 49247+J#FQ(J)/256:NEXT:RETURN :rem 55

4500 PRINT "LOADING ML" :rem 49
4502 FOR J=49360 TO 49537:READ X:POKE J,X:NEXT:RET

URN :rem 102

4504 DATA 162,0,32,226,192,162,2,32,226,192,162,4
:rem 98

4512 DATA 32,226,192,76,49,234,189,197,192,240,18

:rem 138

4524 DATA 222,197,192,240,1,96,188,192,192,189

:rem 249

4530 DATA 203,192,41,254,153,4,212,96,189,198

:rem 184

4542 DATA 192,240,6,222,198,192,240,1,96,161,165

:rem 71

4554 DATA 240,61,201,255,208,18,188,192,192,169

:rem 32

4566 DATA 0,153,4,212,138,208,2,232,138,5,254

:rem 164

4572 DATA 133,254,96,201,254,240,55,201,253,240

irem 10

4584 DATA 71,168,138,72,189,192,1*92,170,185,255
:rem 51

4596 DATA 191,157,0,212,185,95,192,157,1,212

:rem 134

4608 DATA 138,168,104,170,189,203,192,9,1,153,4

:rem 22

4614 DATA 212,32,123,193,161,165,157,197 :rem 188

4626 DATA 192,32,123,193,161,165,157,198,192,32

:rem 32

4632 DATA 123,193,96,32,123,193,161,165,168,32

:rem 231

4644 DATA 123,193,161,165,153,0,212,32,123,193

:rem 213

4656 DATA 76,4,193,32,123,193,161,165,157,203,192

:rem 127

4662 DATA 32,123,193,76,4,193,246,165,208 :rem 244

4674 DATA 2,246,166,96 :rem 77

5000 PRINT "INITIALIZING PITCH ARRAY PTRS" :rem 97

5010 FOR J=0 TO 6:READ PC(J):NEXT:RETURN :rem 84

5020 DATA -2,0,1,3,5,6,8 :rem 127

10000 DATA W,64,P,3,3,O,0.9 :rem 112

10001 DATA R64,R,4BF8,5D,F16,4BF8,5EF,G20 :rem 197
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10005 DATA BF4,A#G,F8,EF,D,C4,D,EFfD,C,4BF :rem 14
10010 DATA 5C8,C,F20,EF4,D,EF,F,EF,D,C :rem 25

10015 DATA D8,D,G24,C8,D4,EF,F16 :rem 177

10020 DATA 4BF8,5C4,D,EF12,4G4,AF,5C,4BF,AF,G#F

:rem 21

10025 DATA 5F8,D,EF20,G4,F,EF,D,C,4BF,5C :rem 137

10030 DATA DF,4AF,G,F,EF,G,AF,BF,5C,4BF,AF,G,F,BF,
5C,D :rem 225

10035 DATA EF,C,-BF,AF,G,+D,EF,F,-BF,+EF,F,G,C,F,-
BF,AF srem 245

10040 DATA G16,R8,G,F4,AF,+D,C,D,-AF,F,AF :rem 190
10045 DATA G,BF,+EF#-BF,G,BF,EF,G,D8,F,BF16:rem 88

10050 DATA EF8,G,BF20,+C4,E,D,E,-BF,G,BF :rem 132
10055 DATA A,+C,F,C,-A,+C,-F,A,E8,G,+C16 :rem 46
10060 DATA -F8,A,+C20,D4,F#,E,F#,C,-A,+C :rem 7
10065 DATA -BF,+D,G,D,-BF,+D,-G,BF,+C8,-F,+F,EF4,D

srem 130

10070 DATA C,-F,G,A,BF,+C,D,EF,F8,D,-BF16 :rem 171
10075 DATA +F8,D,-AF16,+F8,D,-G,+F

10080 DATA EF,C,-G,+C4,D,EF8,C,-F,+EF

10085 DATA D8,-BF,F,BF4,+C,DF8,-BF,E,+DF
10090 DATA C4,-BF,A,G,F,EF,D,C,D8,BF,C,A
10100 DATA BF16,R,R,R

19999 DATA Z

20000 DATA W,64,P,10,5,O,0.8

20001 DATA 4EF8,G,BF16,EF8,AF,5C20

20005 DATA EF4,D,C,4BF8,AF,G,F4,G,AF,G,F,EF:rem 93
20010 DATA F,EF,D,C,3BF,4D,EF,F,G,F,EF,D,C,F,G,A

srem 106

20015 DATA BF12,5C4,4A12,BF4,BF8,F,BF20 :rem 53
20020 DATA AF4,G,AF,BF,AF,G,F,G8,G,5C20 :rem 95
20025 DATA 4BF4,A,BF,5C,4BF,AF,G,AF,G,AF,5C,4BF,AF

'G'F :rem 211
20030 DATA G,F#G,BF,AF,G,F,EF,F,EF,F,AF,GfF,EF,D

:rem 152

20035 DATA EF,D,C,3BF,4BF8,AF,G16,F :rem 132

20040 DATA EF8,G,BF16,EF8,AF,5C20 :rem 9

20045 DATA EF4,D,C,-BF8,AF,G,+EF,-F,+D :rem 14

20050 DATA -EF16,R8,EF8,D,F,BF16 :rem 210
20055 DATA EF8,G,BF16,F4,AF#+D#C#D#-AF#F,AF:rem 63

20060 DATA G,BF#+EFf-BF,G#BF#EF#D#E8#G#+C16:rem 59
20065 DATA -F8,A,+C16,-G4,BF,+E,D,E#-BF,G,BF

:rem 61

20070 DATA A,+C,F#C,-A,+C,-F,E,F#8,A,+D16 :rem 79

20075 DATA -G8,BF,+EF20#D4#C#D#EF#D#C#-BF :rem 182

20080 DATA A16#R4#AfBF#+C,-BF#+D#F#EF#F#D#-BF#+D
:rem 44

20085 DATA -AF#+D#F#EF#F,D,-AF#+D,-G#+D,F#EF#F,D,-
G#+D :rem 111

20090 DATA -G,+C,EF,D,EF,C#-G,+C#-F,+C,EF,D,EF,C,-
F#+C :rem 105

:rem 249

:rem 202

:rem 138

:rem 140

:rem 117

.rem 137

:rem 160

:rem 58
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20095 DATA -F,BF,+D,C,D,-BF,F,BF,E,BF

,E,BF

20100 DATA F,G,A,BF,+C20,-F4,D,F,G,EF

20105 DATA D16,R,R,R

29999 DATAZ

30000 DATA W,64,P,17,7fOf0.98

30001 DATA 3EF16,R4,G,F,G,C16,R4,EF,D

30005 DATA -AF16,BF,EF8,+EF,D,C

30010 DATA D,F,D,-BF,+EF,G,EF,C

30015 DATA D,EF,F,-F,BF16,R8,+D

30020 DATA F16,R8,AF#C16,R8,EF

30025 DATA G16,R8,BF,C,EF,AF16

30030 DATA -BF8,+D,G16,-AF8,+C,F,AF16

30035 DATA -AF8,G,+C,-BF,+BF16,AF8

30040 DATA G,BF,G,EF,AF,+C#-AF,F

30045 DATA G,AF,BF,D,EF,C,-AF,BF

30050 DATA EF,F,G,EF,BF16,R8,+D

30055 DATA EF16,R8,-G,BF16,R8,+D

30060 DATA EF16,R8,G,C16,R8,E

30065 DATA F16,R8,-Af+C16,R8,E

30070 DATA F16,R8,A,D16,R8,F#

30075 DATA G16,R8,+C,-BF,AfBF,EF

30080 DATA F,-F,+F,EF,D16,R8,+D

30085 DATA C16,R8,-C,-B16,R8,+B

30090 DATA +C16,R8,2BF,A16,R8,+A

30095 DATA BF16,R8,AF,G16,R8,-G

30100 DATA A,+C,-A,F,BF,+D,EF,F

30105 DATA -BF16,R,R,R

39999 DATA Z

,+DF,C,DF,-BF

:rem 243

,C,EF:rem 232

:rem 55

:rem 138

:rem 227

,EF :rem 163

:rem 145

:rem 144

:rem 139

:rem 104

:rem 108

:rem 176

:rem 32

:rem 213

:rem 238

:rem 165

:rem 203

:rem 43

:rem 61

:rem 6

:rem 208

:rem 118

:rem 103

:rem 169

:rem 163

urem 109

:rem 169

:rem 139

To use Program 13-5, after entering the program and saving, type RUN and
press RETURN. Answer N to the question IS MUSIC DATA IN RAM? and wait for
the frequency table to be set up (about a minute and a half). To begin with, enter a

tempo of 160 to hear the music. Press RUN/STOP to leave the routine, and enter
RUN to restart, answering Y to IS MUSIC DATA IN RAM? this time. Enter a new

tempo to hear the music again.
This program uses an interrupt. The music can play during BASIC program run

ning without much slowing effect. The ML sets frequency values, gates, and so on.
Different rhythms between voices are handled correctly, which BASIC cannot do ex

cept at a very slow tempo.
Music encoding system. Notes can be specified by data items of this form:

[Octave 1-7 or + or -] Note A-G [# or F] [duration 1-255]

No spaces are allowed between parameters. The items in square brackets are op

tional: When omitted, current values are used, or defaults, where no value has yet
been input. Octave defaults to 4, the octave starting on middle C; 1 to 7 sets the oc
tave; + or — can indicate a change to the next octave up or down. Note letters are,
of course, A-G, with optional # (sharp) or F (flat) indicators. Duration is in terms of
interrupts. A smaller duration means faster tempo; the default is 16. Some examples

of valid data are:
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C C in current octave with current duration.

3D Change octave to 3. Play D.

+DF8 Change to next octave up. Play D-flat, duration 8.

4F#24 Change to octave 4, duration 24. Play F-sharp.

And, for example, DATA C,D,E,F,G,A,B,+C,-B,A,G,F,E,D,C defines an ascend
ing major scale followed by a descending major scale.

R defines a rest. If no duration value is included, the current value is used. R8,
R are examples.

O resets the on/off ratio, the fraction of the note for which the gate is held on.

It must be followed by a number from 0 to 1.0. DATA 0,0.1 is an example. The de

fault is 0.5. Don't confuse the letter O with the number 0.

W allows POKEs to the control register; W,128 selects noise and W,20 triangular

wave with ring mod bit on. The default waveform is sawtooth.

P allows POKEs to any SID register, which gives freedom to control filters,

pulse widths, and other low-level SID features. Two parameters are necessary: for

example, DATA P,24,6 sets SID register 24 to 6, POKEing volume to 6.

Z marks the end of a voice's data. So DATA C16,D,E,F,Z,B8,A,G,F,E,D,C,D,Z,Z

defines two music parts, with the second voice moving at twice the rate of the first,
and the third silent.

The program up to, but not including, line 10000 is the processing part; lines

10000 on hold the data, which in our example is part of the first Bach Organ Sonata,

in E-flat major. Its data illustrates all these notations. W,64 selects pulse wave; P,3,3
initializes the pulse-width high register; O,0.9 sets the on/off ratio to 0.9, appro

priately for an organ sound. The three voices have intentional slight differences in
quality: each has a different pulse width and on/off ratio. R64, a rest of duration 64,

corresponds to a complete bar or measure. The quarter note has been defined as 16
clock units in this piece, and there are four of these notes per bar. Most of the DATA
statements contain exactly one bar of information.

The program can be used to experiment with rapid, highly controlled modifica
tions to the registers as a sophisticated sound-effects generator. For example, edit the
first data line to appear as follows:

10000 DATA O

This sets the on/off ratio to 1 so that the gate is permanently held on, selects the
pulse wave, and plays four C notes, changing the pulse width between each note. A
note with a continuously changing timbre will be heard.

How the Music Program Works

ML data for the voices is stored at $5800-$6FFF, $7000-$87FF, and $8800-$9FFF.
It's put there by BASIC, which traps most format errors. Locations $C000-$C0BF
have frequency data for 96 notes. Line 4010 determines their value and allows tun
ing. The ML interrupt routine starts at $C0D0. All notes occupy three bytes: a pitch
number, 1-95, allowing eight octaves of 12 semitones, as well as an on value and an
off value, representing the number of interrupts before gating. Each voice can hold
about 2000 notes maximum. Rests are stored with pitch 0. A code of 253 is followed
by a waveform byte; 254 is followed by a SID register and new value; and 255 is the
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end-of-data marker. The BASIC lines from 1000 on convert music data into this

format.

The ML subroutine at $C0E2 processes this data. It's called three times each

interrupt, once for each voice, and uses indirect addresses ($A5), ($A7), and ($A9).
On and off values for the three notes are stored at $C0C5-$C0CA, to time down at

each interrupt. Location 254 is set to 7 when the end of data has been reached in all

three voices.

On RUN, if data hasn't yet been read, parsed, and POKEd into RAM, lines 1000

on and 2000 on do this. The tempo is POKEd into the CIA timer controlling inter

rupts: Use 160-180 for the Bach piece. (Any tempo can be obtained by choosing an

appropriate combination of tempo value and note duration values in the music data.)

Line 1025 sets the default waveform. The subroutine at 1500-1550 initializes the en

velope of each voice. The Bach piece has A, D, and R set at 1, and sustain at 11.

Note that ADSR values should not be zero with this program.

Organ Keyboard

Program 13-6 below turns the 64 into a simple two-voice organ. It also handles three

notes as far as the keyboard permits—some groups of three keys cannot be decoded

unambiguously by the 64. The keyboard design makes it impossible. The QWERTY

row sounds white notes from G to the E, almost two octaves above. Keys 1, 2, 3, 5,

6, and so on, play F-sharp, G-sharp, A-sharp, and so on. Keys R, Y, and I together

play C major; T, U, and O give D minor; T, *, and O give D major.

Program 13-6. Organ Keyboard
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

5 DATA 120,160,0,132,252,132,253,132,254,162,3,142

,74,192,169,254,141 :rem 52
6 DATA 0,220,162,8,72,173,1,220,205,1,220,208,248,

74,176,21,72,142,75 :rem 50
7 DATA 192,174,74,192,185,129,235,149,251,206,74,1

92,240,20,104,174,75 :rem 142
8 DATA 192,200,192,65,176,12,202,208,224,56,104,42

,141,0,220,208,205 :rem 255
9 DATA 104,104,88,96 :rem 224

20 FOR J=49152 TO 49225:READ X:POKE J,X:NEXT
:rem 220

40 GOSUB 3000 *rem 167
45 PW=400:GOSUB 2000 :rem 93

50 GOSUB 4000 srem 169
60 GOSUB 5000 :rem 171
70 POKE 53281,8 :rem 253
74 BL$="{3 SPACES}{BLK}{RVS}{RIGHT}1{RIGHT}2

{RIGHT}3{3 RIGHT}5{RIGHT}6{3 RIGHT}8{RIGHT}9
{RIGHT}0{3 RIGHT}-{RIGHT}£" : rem 59

75 PRINT M{CLR}" BL$:PRINT BL$ :rem 251
79 WH$=M{4 SPACES}{WHT}{RVS}{RIGHT}Q{RIGHT}W

{RIGHT}E{RIGHT}R{RIGHT}T{RIGHT}Y{RIGHT}U{RIGHT}

I{RIGHT}O{RIGHT}P{RIGHT}@{RIGHT}*{RIGHT}t"
:rem 53
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80 PRINT "{UP}11 WH$:PRINT WH$:PRINT WH$ : rem 161

90 L1=252:L2=253:L3=254:SR=49152 :rem 253

95 WN=33:WF=32 :rem 47

100 SYS SR :rem 53

110 N1=MA%(PEEK(L1)):N2=MA%(PEEK(L2)):N3=MA%(PEEK(

L3)) :rem 37

115 IF N1<>0 THEN POKE SI+ 4,WN:POKE SI,LQ%(Nl):P0

KE SI+1,HQ%(N1) :rem 87

116 IF N2<>0 THEN POKE SI+11,WN:POKE SI+7 ,LQ%(N2)

:POKE SI+8,HQ%(N2) :rem 242

117 IF N3<>0 THEN POKE SI+18,WN:POKE SI+14,LQ%(N3)

:POKE SI+15,HQ%(N3)

131 IF PEEK(197)=4 THEN WN=33:WF=32

132 IF PEEK(197)=5 THEN WN=17:WF=16

133 IF PEEK(653)=1 THEN WN=65:WF=64:GOSUB

150 IF PEEK(L1)=0 THEN POKE SI+4#WF

152 IF PEEK(L2)=0 THEN POKE SI+11,WF

153 IF PEEK(L3)=0 THEN POKE SI+18,WF

160 GOTO100

2000 REM **** ALTER PULSE WIDTH ****

2005 PW=(PW+50) AND 4095:PL=PW AND 255:PH=PW/256

:rem 131

2010 FOR 1=2 TO 16 STEP 7:POKE SI+I,PL:POKE SI+I+1

:rem 89

:rem 156

:rem 162

2000

:rem 30

:rem 167

:rem 216

:rem 225

:rem 97

:rem 119

,PH:NEXT

2020 RETURN

3000 REM

3003 SI=54272

3005 FOR J=SI TO SI+24:POKE J,0:NEXT

3010 POKE SI+ 5,16*5+11

3011 POKE SI+12,16*5+11

3012 POKE SI+19,16*5+11

3020 POKE SI+6,16*15+12

3021 POKE SI+13,16*15+12

3022 POKE SI+20,16*15+12
3030 POKE SI+24,3

3040 POKE SI+ 4,0

3041 POKE SI+11,0

3042 POKE SI+18,0

3050 RETURN

4000 REM

4005 DIM FQ(95),LQ%(95),HQ%(95)
4010 FQ(95)=64814

4020 FOR J=94 TO 84 STEP -1:FQ(J)=FQ(J+l)/(2?71/12

Aa*a )):NEXT :rem 30
4030 FOR J=6 TO 0 STEP -1:FOR K=l TO 12 :rem 184
4040 P1=J*12+K-1:FQ(P1)=FQ(P1+12)/2:NEXT:NEXT

:rem 50

:rem 164

:rem 167

:rem 163

:rem 42

:rem 110

:reift 157

:rem 165

:rem 162

:rem 209

:rem 208

:rem 129

:rem 77

:rem 124

:rem 132

:rem 168

:rem 168

:rem 79

:rem 95

4045 FOR Pl=l TO 95

4050 LQ%(P1)=FQ(P1)-256*INT(FQ(P1)/256):HQ%(P11)=|q
(PD/256 :rem 164
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4060 NEXT:RETURN :rem 35

5000 REM :rem 169

5005 DIM MA%(255) :rem 68

5010 FOR J= 0 TO 22:READ V$,V:MA%(ASC(V$))=V:NEXT
:rem 169

5020 RETURN :rem 167
5500 DATA 1,42,Q,43,2,44,W,45,3,46,E,47,R,48,5,49,

T,50,6,51,Y,52,U,53,8,54,1,55 :rem 4

5510 DATA 9,56,O,57,0,58,P,59,@,60,-,61,*,62,£,63

,t,64 :rem 228

Running the program sets the waveform to sawtooth. Pressing f3 selects the

triangular wave, and SHIFT selects the pulse waveform and, if held, alters its duty

cycle; it can operate when a note or chord is held, making audible the resulting

change in timbre. Pressing fl reselects sawtooth.

An ML routine is essential to determine which keys are pressed, as the keyscan

routine returns just one value. This program's ML puts ASCII values in 254, or 254

and 253, or 254, 253, and 252, depending on whether one, two, or three keypresses

were detected. BASIC PEEKs these locations and converts them to pitches.

Programmable Rhythm Box

Program 13-7 has six voices available, with the waveform and envelope defined by

DATA in lines 3040-3090. Each voice definition has eight bytes, one for each of the

seven SID registers plus an extra one. As it stands, this program uses no filtering,

ring, or sync controls, partly because six voices would be harder to generate. But

these and other features can be added without much difficulty. Since the SID chip

has only three voices, the six instruments cannot be played together: 1 and 2 are

played by SID voice 1; 3 and 4 by voice 2; and 5 and 6 by voice 3, so voices 1 and 2

can't sound simultaneously. However, they can alternate, so the rhythm might be 1,

1, 2, 2, 1, 1, or whatever.

Program 13-7. Rhythm Box
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

1 GOSUB 2000:NB=32:INPUT "NUMBER OF BEATS

{3 SPACES}(1-32: DEFAULT=32)";NB :rem 122
2 TM=5:INPUT "TEMPO{13 SPACES}(1-50: DEFAULT= 5)";
TM :rem 121

3 A$="Nil:INPUT "CLEAR RHYTHMS?{3 SPACES}(Y/N: DEFA

ULT IS N)";A$ :rem 58
4 IF A$="Y" THEN GOSUB 6000 s^em 119
5 A$="N":INPUT "LOAD RHYTHMS{5 SPACES}(Y/N: DEFAUL

T IS N)";A$ 5rem ^
6 IF A$="Y" THEN GOSUB 7000 *rem 122
8 GR$=" B+++B+++B+++B+++B+++B+++B+++B+++" :rem 142

9 PS$=" 7.. .7.. .7. . .7.. .7 ":rem 111
10 PRINT"{CLR}{2 DOWN}" LEFT$(GR$,NB+1) :rem 92
20 FOR J=l TO 3:PRINT LEFT$(PS$,NB+1):NEXT:rem 150
30 PRINT "{HOME}";:POKE 53280,6:POKE 650,128

:rem 26
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50 GOSUB 3000 :rem 168

60 GOSUB 5000 srem 171

70 N$="000000" :rem 122
100 PRINT M ": PRINT "{UP}"; :rem 57
110 TI$=N$:POKE 56334,17 :rem 4
120 PRINT " V{LEFT}";:POKE 252,BT:SYS 49200:rem 14

130 IF TKTM GOTO 130 :rem 106
140 BT=BT+1:IF BT=NB THEN BT=0:GOTO 100 :rem 188

150 GOTO 110 :rem 97
1999 REM srem 192

2000 SI=54272 :rem 159

2010 POKE SI+4,8:POKE SI+11,8:POKE SI+18,8 :rem 68

2020 FORI=SI TO SI+28:POKE 1,0 :rem 175

2030 POKE SI+24,8 :rem 133

2040 RETURN :rem 166

2999 REM :rem 193

3000 REM :rem 167

3010 REM :rem 168

3030 REM 1 FREQ LOW : rem 251

3031 REM 2 FREQ HI :rem 156

3032 REM 3 PW{3 SPACES}LO : rem 33

3033 REM 4 PW{3 SPACES}HI :rem 25
3034 REM 5 WAVEFORM + GATE :rem 150

3035 REM 6 ATTACK +{3 SPACES}DECAY ;rem 46

3036 REM 7 SUSTAIN +{2 SPACES} RELEASE : rem 58
3037 REM{2 SPACES}PLUS ONE 'DUMMY1 BYTE TO GIVE AN

8-BYTE BLOCK :rem 70

3039 DATA "INSTRS" :rem 16

3040 DATA 000,010,000,000,017,024,008,0 :rem 76

3050 DATA 000,015,000,000,017,023,007,0 :rem 80

3060 DATA 000,015,000,000,129,006,000,0 :rem 79

3070 DATA 075,001,000,008,065,025,008,0 :rem 103

3080 DATA 000,226,000,000,129,025,008,0 :rem 94

3090 DATA 255,253,000,000,129,040,008,0 :rem 104

3100 RESTORE:FOR J=l TO 1E9:READ X$:IF X$<>MINSTRS

11 THEN NEXT :rem 57

3110 FOR J=0 TO 6*8-1:READ X:POKE 49152+J,X:NEXT

:rem 138

3120 REM :rem 170

3130 RETURN :rem 167

4998 REM .rem 194

4999 DATAMMLM :rem 214

5000 DATA 165,252,141,245,192,9,32,141,246,192,73,
96,141,247,192,32,228 srem 182

5001 DATA 255,201,0,240,54,141,243,192,162,3,221,2
39,192,208,17,189,244 :rem 162

5002 DATA 192,170,169,63,157,92,193,169,46,32,214,
192,76,124,192,202,208 :rem 243

5003 DATA 231,173,243,192,56,233,49,201,6,176,14,4
2,42,42,72,42,41,96,5 -rem 166
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5004 DATA 252,170,104,157,92,193,174,245,192,189,9

2,193,201,63,240,9,168 :rem 245

5005 DATA 32,209,192,162,0,32,182,192,174,246,192,

189,92,193,201,63,240 :rem 181

5006 DATA 9,168,32,209,192,162,7,32,182,192,174,24

7,192,189,92,193,201 :rem 151

5007 DATA 63,240,9,168,32,209,192,162,14,32,182,19

2,96,185,4,192,41,254 :rem 188

5008 DATA 157,4,212,169,7,141,244,192,185,0,192,15

7,0,212,200,232,206,244 :rem 3

5009 DATA 192,208,243,96,106,106,106,105,49,72,138

,201,32,144,9,201,64 :rem 122

5010 DATA 144,3,24,105,8,105,8,170,104,157,121,4,1

69,1,157,121,216,96,133 :rem 249

5011 DATA 134,135 :rem 62

5015 RESTORE: FOR J=l TO 1E9: READ X$: IF X$<>"ML"

THEN NEXT :rem 246

5020 FOR J=49200 TO 49394: READ X: POKE J,X: NEXT:

RETURN :rem 92

5999 REM :rem 196

6000 FOR J=49500 TO 49500+95:POKE J,63:NEXT:rem 53

6010 REM :rem 171

6020 POKE 49500+32,16 :rem 28

6021 POKE 49500+40,16 :rem 28

6022 POKE 49500+48,16 :rem 37

6023 POKE 49500+56,16 :rem 37

6040 RETURN :rem 170

6998 REM :rem 176

6999 DATA "RHYTHMS" :rem 110

7000 DATA 63,63,63,63,63,63,63,63 :rem 93

7002 DATA 63,63,63,63,63,63,63,63 :rem 95

7004 DATA 08,63,00,63,63,63,00,63 :rem 78

7006 DATA 08,63,08,63,08,63,08,63 :rem 95

7007 REM :rem 178

7010 DATA 16,63,63,63,63,63,63,63 :rem 92

7012 DATA 16,63,63,63,63,63,63,63 :rem 94

7014 DATA 16,63,63,63,63,63,63,63 :rem 96

7016 DATA 16,63,16,63,63,63,63,63 :rem 96

7017 REM :rem 179

7020 DATA 40,63,63,63,40,63,40,63 :rem 80

7022 DATA 40,63,63,63,40,63,63,63 :rem 87

7024 DATA 32,63,63,63,32,63,32,40 :rem 82

7026 DATA 40,63,40,32,32,40,32,63 :rem 74

7030 RESTORE:FOR J=l TO 1E9:READ X$:IF X$<>"RHYTHM

S" THEN NEXT :rem 139

7040 FOR J=49500 TO 49500+95:READ X:POKE J,X:NEXT:

RETURN :rem 241

The program displays a grid of 3 rows and as many as 32 columns; the rows
represent the SID voices and the columns stand for beats in the bar. An X character
moves horizontally over the grid showing which beat is being played.
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The program first asks the user to specify the number of beats to be used, the

tempo, whether the rhythms currently in RAM should be cleared, and whether the

rhythms defined in lines 7000-7026 should be loaded into memory. Press RETURN

in response to the first three prompts to select the defaults, and Y to the last prompt

to load the built-in rhythms.

Typing 1-6 plays the designated instrument at that point in the bar and adds it

to the display and to the rhythm stored in RAM so that it will be heard at that point

in the bar from now on. Pressing fl, f3, or f5 as the program plays will delete voices

1 and 2, 3 and 4, or 5 and 6, respectively, from the display and from memory at the

position in the bar where they are typed. Thus, instruments can be added to and re

moved from the rhythm. If you press RUN/STOP, then run the program again, you

can keep the new values by being careful not to clear them or overwrite them.

DATA in lines 7000-7026 holds the start-up rhythms. There are three groups of

DATA statements, each of 32 values, one for each beat of the bar. A value of 63 in

dicates that no note is present at that beat. Values of 0 and 8 in the first group mean

that instrument 1 or 2 has a note on that beat; values of 16 and 24 in the second

group mean that instrument 3 or 4 has a note on that beat; and values of 32 and 40

in the third group mean that instrument 5 or 6 has a note on that beat. The data

may be edited to provide accurately programmed rhythms, and rhythms can be

edited as the system plays.

Music Programming Aids

A number of monitors and synthesizer programs exist, some commercial, others in

the public domain (free). Typically, these allow parameters to be altered relatively

easily; for example, F may alter frequency, P pulse width. Ideally, they should in

clude gate timing, true frequencies in Hz, smooth gliding through values, indications

of connections between ring, sync, and filter settings or registers, and facilities to use

the read-only registers. They should be able to report how sounds they're producing

are made. Otherwise, you can be put in the frustrating position of being unable to

reconstruct some attractive sound. Some indication of waveform, or even a wave

form analyzer/synthesizer, would be useful.

BASIC extensions are difficult to write for the 64. Some versions of BASIC, like

Simons' BASIC use the command WAVE 1,00010000 to set voice 1 to a triangular

wave, and ENVELOPE to set up a voice's ADSR values. Both therefore require

knowledge of the SID chip to use. The MUSIC command on some utilities has two

parameters: one to set the tempo and a second to select notes. The string uses letters

A-F (SHIFTed to indicate sharps; sometimes there is no notation for a flatted note
available, which is irritating to some musicians). This is followed by a number 0-8

specifying the octave, with function keys to set durations, and a couple of other con
trol characters. It calculates a set of frequencies corresponding to the notes. PLAY
plays the tune previously created using MUSIC; but only one line can be played at a
time. VOL, which sets the volume nybble, is the only other sound command. Three-
part harmonies and so on aren't supported by Simons' BASIC.
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Chapter 14

Tape Storage

Tape is a popular storage medium for the Commodore 64. This chapter discusses

tape operations completely; it will give you the information you need to handle

practically any tape operation.

Loading and Saving BASIC Programs with Tape
Loading and saving programs with tape is easy. The command LOAD prompts you

with the message PRESS PLAY ON TAPE; when that is done, the next program is lo

cated and loaded. Holding down the left SHIFT key and pressing the RUN/STOP

key enters LOAD and RUN into the 64; it is the method that uses the minimum of
keystrokes.

The command SAVE prompts with PRESS PLAY & RECORD ON TAPE. When

this is done, the BASIC program currently in memory is saved on tape.

Tape, as operated by the 64, is not very fast. Table 14-1 shows approximate

times needed to load or save BASIC programs. Obviously, longer programs take

more time. It also indicates the number of programs which can be expected to fit

onto one side of a cassette; as you might expect, longer tapes can store more

programs.

Table 14-1. Time Required to Load or Save Programs to Tape

Length of

Program

IK

4K

8K

Approx Time to

Load or Save

1/2 min

1-1/2 min

2-3/4 min

Approx Number of Programs, One Side of Cassette

C5

4

1

—

C10

8

3

1

C20

16

6

3

C30

25

9

5

Before considering the full syntax of LOAD and SAVE, it is helpful to look at a

few aspects of BASIC storage. These commands have the functions of loading RAM .

from tape and of dumping RAM to tape, respectively. In fact, they use the start- and

end-of-BASIC pointers, in locations 43 and 44 (start) and 45 and 46 (end). This is

why variables can't normally be stored along with BASIC. The zero byte at the very

start of all BASIC programs is not used; neither is the byte at the end-of-BASIC

position.

The cassette recorder (sometimes called the Datassette) is not under full com

puter control, which is why screen prompts are necessary. In particular, there's only

one line to test for a keypress on the cassette, so the 64 cannot distinguish PLAY

from RECORD. Even the fast forward and rewind keys are detected as though PLAY

or RECORD were being pressed. Thus, if you want to rewind a tape and record from

the start, rewind before pressing RETURN after SAVE.

In addition, be sure to press both RECORD and PLAY to save to tape. PLAY

looks the same on the screen but of course doesn't work. If PLAY and RECORD are
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accidentally pressed for the LOAD command, the program on tape will be erased,

unless the write-protect tabs at the back of the cassette are missing.

Tape operations use the IRQ interrupt, locking out the keyboard. However, the

RUN/STOP key subroutine is called at intervals, so RUN/STOP and RUN/STOP-

RESTORE still work. Without this, if tape reading failed in some way, the 64 would
have to be switched off. Note that the TI clock is turned off during tape operations.

Several programs can be stored consecutively on each side of a tape; however,

the simple LOAD syntax can't distinguish between them. So the system allows
BASIC programs to be named. The complete syntax for SAVE is SAVE "filename"
which saves the program along with a name. The corresponding LOAD "filename"
searches for the named program and also (so you know where you are) lists any
other programs it may find. For example, following the command LOAD "CHECK

ERS" the screen may show something like this:

LOAD "CHECKERS"

PRESS PLAY ON TAPE

OK

SEARCHING FOR CHECKERS

FOUND CHESS

FOUND CHECKERS

LOADING CHECKERS

READY.

The maximum length of a name, as it appears after FOUND, is 16 characters.

Provided the found program name matches, the program is loaded. LOAD "CH"

loads CHESS if it finds that program on the tape before CHECKERS. LOAD

"CHEC" loads CHECKERS. This is why LOAD alone always loads the first program

it finds.

Full Syntax of LOAD and SAVE
The full syntax introduces two new concepts: the forced-LOAD address and the end-

of-tape marker. A forced LOAD means that the starting address is the same as that

specified on tape; no relocatability is allowed. This is primarily important with ML

programs and hardly applies to BASIC.

An end-of-tape marker signals that there are no more programs on a tape. The

idea is to avoid the situation where time is wasted in reading blank tape. The marker

needn't be near the physical end of the tape, and if you choose to do so you can

record programs beyond it. When LOAD finds such a marker, it prints a message

which should be ?END QF TAPE, but is instead 7DEV1CE NOT PRESENT ERROR.

Full syntax for LOAD is LOAD string expression, device number, type-of-load

number, where string expression is the program name (e.g., "CHESS", or X$). Device

number is 1> or expression evaluating to 1 (tape is always device 1). Type-of-load is

0 for a relocating LOAD and 1 for a forced LOAD, or an expression evaluating to 0

or 1. Only bit 0 counts; a parameter of 16 is treated as 0.

As you've seen, forced LOADs are seldom used with BASIC. Also, if the middle

parameter is not specified, it is assumed to be 1, so the simpler syntax of LOAD

"filename" is usually enough.

Full syntax for SAVE is SAVE string expression, device number, type-of-save num-
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her. The type-of-save parameter uses two bits; 0 means SAVE allowing relocation,

while 1 means SAVE with a forced-LOAD address. This, too, is seldom used in

BASIC. If the parameter is 2, it means SAVE with an end-of-tape marker; a value of

3 means SAVE with both forced-LOAD address and end-of-tape marker.

Some examples will make this clearer. SAVE "TEST PROGRAM",1,2 stores

TEST PROGRAM on tape, followed by an end-of-tape marker. SAVE CHR$(18) +

CHR$(28) + "PROGRAM" adds an RVS/ON and a RED character to the program's

name. When it's found, this will generate FOUND PROGRAM and the name will be

reversed and in red characters.

SAVE "EXCEPTIONALLY LONG NAME" stores the program in memory onto

tape with the full name as it is given. Although LOAD checks only the first 16

characters, the others are in fact saved; as you'll see, they can be put to use in pro

gram protection.

Direct and Program Modes

So far, discussion has focused on direct mode. However, both LOAD and SAVE

work from within programs, too. SAVE has the same effect as it does in direct mode.

LOAD has a chaining effect; generally, the newly loaded program overwrites the

older program and GOTO is executed, pointing to the first line of the new program.

Screen prompts don't appear when PLAY is pressed on the cassette. This helps to

keep the screen layout clean.

Validation and Errors with LOAD and SAVE

SAVE, although very reliable, isn't 100 percent foolproof. The tape may be faulty,

for example. The best protection is to save your program twice, perhaps with names

like PROG and PROGCOPY to distinguish them.

An alternative is the VERIFY command. This has syntax identical to LOAD and

SAVE, so VERIFY "filename" or simply VERIFY is acceptable. VERIFY works much

like LOAD, except that the bytes aren't loaded into memory but are instead com

pared with the present memory contents. If the two are not equal, 7VERIFY ERROR

results. To use VERIFY, the tape must be rewound to the start of the program being

verified; note, too, that VERIFY takes at least as much time as saving a second copy.

If you use the VERIFY command, you will get the following screen display:

SAVE "GRAPHICS DEMO"

PRESS PLAY & RECORD ON TAPE

OK

SAVING GRAPHICS DEMO

READY.

(Rewind tape at this point.)

VERIFY (or VERIFY "GRAPHICS DEMO" or VERIFY "GR")

PRESS PLAY ON TAPE

OK

VERIFYING (or VERIFYING GRAPHICS DEMO or VERIFYING GR)

OK

READY.

VERIFY also works within a program, but if you use it in that way, it is
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necessary to include a message telling the user to rewind.

LOAD is generally reliable, but errors are possible for reasons explained in the

hardware section of this chapter. The message ?LDAD ERROR signals that the system

found uncorrectable errors on tape. PRINT ST prints the value of the error status

variable and gives a clue as to what happened; PRINT PEEK (159) indicates the

number of errors found.

?WAD ERROR doesn't always signify a failure to load. If a program is loaded

partly into ROM or into an area where there's no RAM, the system will find an

error. These situations won't normally apply to BASIC.

If you experiment with short test programs, deliberately recording over small

sections to corrupt them, you'll be able to generate LOAD errors. Note that the

resulting program is usually meaningless. Sometimes you'll generate an ?OUT OF

MEMORY ERROR instead; this happens if the header (at the start of the program) is

corrupted.

Programs may very occasionally seem to have disappeared from the tape. Either

the program hasn't been recorded (this can be checked most easily with an ordinary

audio tape recorder) or, more likely, the record/playback head needs to be cleaned

or demagnetized.

Handling Tape Data Files
Files are more difficult to understand than programs. A file is a collection of stored

data—in this case, data stored sequentially on tape. A typical use is with programs

that give multiple-choice tests; once the program is in memory, a tape on a particular

subject can be read and its information used. In principle, there's no limit to the

number of subjects. Tapes can be changed indefinitely, so the tape files are a storage

system which is independent of the program.

The 64's tape system is slower in this mode than it is with program storage.

Even in the best cases it's about half as fast. To put this in perspective, Table 14-2

shows the approximate amount of data which can be stored as a file on one side of a

cassette.

Table 14-2. Tape Storage Capacity

Cassette Type

Maximum Length of File

Minimum Time to Read or Write

C5

5K

3 min

C10

10K

6 min

C20

20K

12 min

C30

30K

18 min

Because of this slow speed, data file handling may be absurdly slow. It may be

worthwhile to save data along with programs, although this is a tricky technique,

requiring the end-of-program pointer to be moved to include variables and the first

line of the program to POKE in the correct value. In addition, strings are hard to

save. The whole of BASIC memory needs to be saved, plus the pointers which
handle strings.

Files need a buffer. Unlike a program, which has a place allocated in memory at
one time, files need to be written piecemeal, with data accumulating until the buffer
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is full. It's not possible to write directly to tape, because the motor needs to pick up
speed, so there's a stop/start option with files.

Commodore 64 tape files are inevitably sequential. Since data has to be written
(and read back) in order, the only way to access data that is part of the way into a
file is to read the whole file from the start. Moreover, there's no way to alter file
information, without reading everything into memory, altering it, and writing it
back. Thus, the system has severe limitations, although to be fair these are largely
constraints of the system and are unavoidable without advanced methods like those
described later in this chapter.

There are three stages in file use. First, the file must be opened, meaning that
preparations are made in memory to write data to tape. Second, write the file to
tape. Finally, close the file, meaning that the file is correctly terminated.

When the file is to be read back, perhaps by a different program, three other
steps are necessary. First, open the file for reading, which prepares the 64 for input

from tape. Second, read the file from tape; it may be read in parts. Finally, close the
file. The final step is often not really necessary; since nothing is being written to
tape, the file will be left unchanged.

File Handling Syntax

The full syntax of OPEN is OPEN file number, device number, type of OPEN, filename.
The file number is an expression evaluating a number from 1 to 255; the device
number must evaluate to 1, corresponding to tape. The filename is a string ex
pression, usually something like "TEST DATA".

The type of OPEN is an arithmetic expression, usually 0, 1, or 2. Use 0 to open

a file for reading, 1 to open a file for writing, and 2 to open a file for writing with an
end-of-tape marker after the file.

The rules for default values (values assumed by the system when not specifi

cally set) are similar to those for LOAD and SAVE. For example, when no name is

given to the file, it's saved without a name; when a file is opened for read, the first

file conforming to the name in the OPEN statement is taken to be the correct file.

Note that OPEN defaults to read; this prevents accidental overwriting of files.

Also note that there's no type 3. Reading a file, then writing an end-of-tape marker,

isn't allowed.

Because the 64 supports only one tape drive, the normal 64 setup never has

more than one file open. Thus, OPEN 1 is a typical command, assigning file number

1 to tape. Other file numbers are seldom used.

To see how this works, consider the following example. Type in OPEN 1,1,1/

"TESTING" in direct mode and press RETURN. This opens file number 1 (logical

file 1 is another name for it) to tape for writing. You'll be prompted PRESS RECORD

& PLAY ON TAPE. When you do this, the screen blanks and before text returns to

the screen, there's a delay of 12 seconds or so. A preparatory block of information,

giving the filename, has been written to tape. Now type PRINT #1,"HELLO" and

press RETURN. Nothing happens, although the buffer has stored the word HELLO.

But there's room for more. Type CLOSE 1 and press RETURN. The buffer is

written to tape. If you don't type CLOSE, no data is written; generally, if a file isn't

closed, the last batch of data will be missing. In addition, the system won't recognize

that the file has ended.
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To read this back, use the INPUT# command. This can only be used from within
a program. Therefore, most file reading is done in program mode. Type in Program
14-1, rewind the tape, and run it. After PRESS PLAY ON TAPE there'll be a delay
while the header is found and read; then the word HELLO should be printed on the
screen. The word was recovered from tape, showing in miniature how files work.

Program 14-1. Using Files

10 OPEN 1:REM OPENS FILE#1 TO TAPE,TO READ

20 INPUT*1,X$:REM INPUT A STRING FROM FILE #1
30 PRINT X$:REM PRINT THE SAME STRING TO THE SCREE

N

40 CLOSE 1:REM CLOSE THE TAPE FILE

Using Files Effectively
Note the 10 OPEN 1,1,O,"TESTING" is necessary if you wish to name the file to be
read; the default parameters have to be put in. PRINT# is generally used to write to
tape. The alternative is CMD 1, which causes PRINT to output to file 1. However, it

has the drawback of sometimes working in unpredictable ways. In particular, GET

prevents it from working.
Either INPUT# or GET# will let you read from a tape file. GET# takes in in

dividual characters, exactly like GET, and therefore tends to be slower than INPUT#.

But it is able to treat the various special characters of INPUT (comma, colon, quotes,

RETURN) as ordinary characters.

Generally, use INPUT# when you're sure of the format of each data item. Don't

try to read a string with INPUT#1,X, for example, or try to input a string longer than

88 characters. Null strings are also a problem and should be avoided.

Note, too, that number storage is inefficient. For example, ten bytes are taken up

storing 1234.56. When possible, write ASCII values to tape with PRINT#1,CHR$(X),

and use GET# to read them back.

The full syntax of CLOSE is identical to that of OPEN, but only the file number

is actually used. Therefore, CLOSE 1 is typical.

The Status Variable, ST
You can use ST to detect the end of a file. ST changes from 0 to 64 when the last

record of a file is read with INPUT#. However, it isn't necessary. Alternatives are to

arrange the data as it's written into a definite pattern (for instance, 100 strings

alternating with 100 numerals), then read back using the same pattern, so no prob

lems should arise. You could also write an end-of-file marker of your own (such

as "****") which can be checked on read-back.

ST will become 4 or 8 if a program is mistakenly read as a file. The errors mean

that the program is either too short or too long to fit the buffer.

Loading and Saving Machine Language
Programs in machine language are unlike BASIC in that they need to be positioned

in a fixed place in memory. Otherwise, they generally won't work. The same applies

to character definitions and screen memory; usually, it's easiest to keep these at fixed
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locations. All these examples occupy continuous chunks of RAM, so LOAD and

SAVE can be used. Data files aren't necessary. BLOCK LOAD and BLOCK SAVE,

discussed in Chapter 6, provide methods (with examples) for doing this reliably.

Forced-LOAD addresses. If memory is saved with the forced-LOAD parameter,
for example by SAVE "GRAPHICS",!,!, then LOAD will always position GRAPH

ICS back in the area it was saved from. SAVE "GRAPHICS" allows repositioning;
LOAD will now load starting at the BASIC pointer area. But LOAD "GRAPH

ICS", 1,1 forces a LOAD back into the original area. Thus, it is SAVE which deter

mines whether LOAD always puts data back where it came from.

Therefore, when saving ML, it is usual to insure a forced LOAD by using the

syntax SAVE "ML",1,1. Loading into an ML area changes BASIC pointers; use the
BASIC command (not the disk command) NEW to set them back to normal.

A more easily understood method to save blocks of data is simply to PEEK in

dividual bytes and write them as files. Reconstructing the data requires the reverse
process of reading back the file and POKEing individual bytes to RAM. This methoc}
is slower than a BLOCK SAVE, though. Programs 14-2 and 14-3 illustrate the

method, applied to bytes from $8000 to $9FFF. Other address ranges can of course
be used instead:

Program 14-2. Writing Bytes to Tape

10 OPEN 1,1,1,"ROM AREA FILE"

20 FOR J=8*4096 TO 10*4096-1

30 P=PEEK(J)

40 PRINT#1,CHR$(P);:REM ; IS ESSENTIAL

50 NEXT

60 CLOSE 1

Program 14-3. Reading Bytes from Tape

10 OPEN 1

20 FOR J=8*4096 TO 10*4096-1

30 GET#1,P$

40 POKE J,ASC(P$+CHR$(0))

50 NEXT

60 CLOSE 1

Tape Hardware Notes
Many 64 owners also have a Commodore C2N Datassette recorder (also marketed

with the model number VIC-1530). These units have undergone several redesigns,

both externally and internally. But all of them, from the early black PET/CBM mod

els to the newer compact rounded version, are compatible in most programming

situations.

The compact C2N has a tape counter and a SAVE light (lit when recording onto

tape). It also has a braided ground strap on its connector, which is not used with the

64. Pressing RECORD also presses PLAY; earlier models have the standard security

feature of requiring two separate RECORD and PLAY keys to be pressed

independently.
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The C2N takes its power from the 64 through the same connector that handles

data transfer, although it could be powered separately with a small modification, The
connector can be plugged in only one way; most recorders cannot be connected in

correctly. Cable lengths vary between models but are generally adequate.
C2Ns use an ordinary 1-7/8-inch-per-second tape transport mechanism, plus

additional circuitry to control the 64 specific features like keypress detection. All tape
recorders use similar principles: The C2N has an erase head, to remove signals (if
any) from tape, followed by the record head, which records vertical magnetic stripes

on the tape. On playback, the same head acts in reverse to play back the signals on

the tape, generating induced voltage when the tape is drawn past the head.
The 64 uses a square-wave system, alternately changing the direction of mag

netization. Square waves are relatively difficult to copy with ordinary audio equip
ment, which tends to round them off, and this provides some protection against

unauthorized tape copying. However, commercial tape duplication is done by
recording on tape from an original with equipment designed to preserve the original

signal shapes.
The C2N's record/playback head is mounted so that its angle to the tape is vari

able, although it's not usually advisable to alter it. However, if the angle isn't
reasonably perpendicular, read errors are possible with tapes made on other record
ers. The newest C2Ns have a small hole through which the relevant screw can be

turned with a plastic screwdriver.

A more common source of problems is a magnetized head. Demagnetizers are

simple coils which use alternating house current to magnetize the heads alternately

in opposite directions; as the demagnetizer is moved away, the inverse square law

insures that the remaining magnetism is minimal. Tapes played with magnetized

heads may be partly erased. If your recorder doesn't read tapes which it should be

able to read, demagnetize it immediately.

The capstan is the metal spike which drives the tape at a fairly constant speed.

Tape is trapped between it and a hard rubber pinch wheel when reading or writing.

It's best not to leave the PLAY key pressed with the recorder off, or the tape may

become dented by the capstan and give irregular playback.

When rewinding or running fast forward, the pinch wheel is disengaged and

one of the spools is driven directly. When playing at normal speed, the right-hand

spool is kept under tension so the tape is wound tightly.

The tape counter is connected by a belt to the right-hand spool. One turn of the

counter therefore indicates more tape when the right-hand spool is full than it does

when the spool is nearly empty. Actual tape length is a quadratic expression of the

counter reading, so the counter readings corresponding to programs of equal length

on the same tape show progressively smaller differences.

Routine recommended maintenance involves cleaning the heads, typically with

a cleaning kit consisting of cotton swabs and cleaner. The cleaner is a liquid like iso-

propyl alcohol, never a plastic solvent like trichloroethane.

The best type of tape is ordinary ferric oxide (not chromium) tape of reasonable

quality. A screw-type cassette casing is preferable, since it can be taken apart if the

tape gets tangled. Very long tapes are good for storage, but shorter tapes, perhaps

with only one program each, save search time. It's not really possible to test tapes;
this is far too time-consuming.
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All cassettes have write-protect tabs at the back left of the cassette case, one tab

for each side of the tape. If these tabs are removed, the recorder won't save to that

tape, so much commercial software is packaged in cassettes like this. Put a piece of

masking tape over the gap if you wish to record over a protected tape.

Since both sides of the tape are usable, only half the width (1/16 inch) is used

at one time. Thin tape is prone to problems with print-through: in fact, a tightly

wound spool left for some time may degrade as magnetism is transferred between

adjacent turns of tape. However, even short tapes may be thin, and thus prone to

this problem; there's no easy way to be sure which tapes may have trouble and

which will not.

Most tapes start with a nonmagnetic leader to take the strain at the end of fast

winding. The tape operating system allows for this, with seven or eight seconds of

tone before actual recording proper starts, but you may prefer to manually wind for

ward so all recording begins on the magnetic part of tape. Another tip: Rewind

brand-new tapes before recording on them. High-speed manufacturing equipment

stretches tape to some extent; by rewinding the tape first, you relieve the stretch and

make the tape more stable.

Non-Commodore Tape Hardware
You can connect an ordinary tape recorder to your 64, but it is not particularly easy

to do. Commodore claims several advantages for its dedicated tape system: There are

no problems with recording levels, automatic or otherwise, or with tone controls and

other potential incompatibilities; control over motor stop/start makes file handling

possible; and the system is monaural, using a full 1/16-inch of tape rather than the

1/32-inch tape used on stereo recorders.

If building an interface to drive an ordinary tape recorder seems like too much

trouble, you might experiment with connecting the tape write line (next to the right-

hand pin of the cassette port, looking from the 64's back) to the microphone socket,

and the read line (third pin from the right—next to write—looking from the back) to

the earphone socket of an ordinary recorder. Remember to connect the common, or

ground, connection, too.

It's actually possible to interface two (or more) recorders to the 64, with the

possibility of file merges and updates.

Tape Operating Systems
Alternative ROM or RAM operating systems have been designed and are commer

cially available. Rabbit and Arrow are two of them; each is far faster (by about six

times) than the 64's tape system. Each has commands to LOAD, SAVE, and VERIFY,

and each has a BLOCK SAVE command. Syntax is typically something like *S

"PROGRAM" or *S "SCREEN",lE00,2000.

The speed improvement with these systems is enormous; even 8K programs

load in only about 25 seconds. This is not so far removed from disk speeds. But

tapes recorded with these systems aren't compatible with ordinary programs. In spite

of the attractive speed performance, little software is written for them.
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Programming the Recorder

The tape port pinout is diagrammed in Figure 14-1. Pin D is connected to CIA 1.

Pins E and F are connected to the 6510's built-in I/O port. Pin C (power for the mo

tor) is also controlled by the 6510 I/O port.

Figure

Pin

Function

14-1.64

A

Ground

Tape Port

B

+5 Volts Motor

C

On/Off

D

Read

E

Write Cassette

F

Key On/Off

The tape port is programmable. It is controlled by bit 5 of port 1; when this is 0,

the motor is on (9 volts are delivered). There's a complication in that the keyboard

interrupt servicing checks for a cassette keypress; if it finds one, it turns the motor

on and otherwise it turns the motor off. However, this feature can be disabled. In

fact, it has to be, to allow files to work properly.

Provided a cassette key is pressed, POKE 192,1: POKE 1, PEEK(l) OR 32 turns

the motor off, and POKE 1, PEEK(l) AND 31 turns the motor on. When a cassette

key isn't pressed, the interrupt always sets 192 to 0.

The cassette keypress can be detected by testing location 1. If you PEEK(l) AND

16 and the value returned is 0, a key is pressed; if PEEK(l) AND 16=1, a key isn't

pressed. It follows tHat WAIT 1,16 waits until no cassette key is detected, and WAIT
1,16,16 waits for a cassette keypress. In ML programming use JSR $F82E followed

by BNE if you want to detect if a key is pressed.

As Chapter 3 mentions, an accidental POKE can alter location 0, perhaps

reconfiguring the data direction. Bit 3 is the tape write line; if it is set for input,

SAVE won't work. RUN/STOP-RESTORE (or POKE 0,57) returns to normal.

Pin B of the cassette port is sometimes used to power equipment, such as low-

power amplifiers and printers. This is a 5-volt power source.

Advanced Tape Programming
In this section you'll see how programs and files are stored on tape and how you

can manipulate them. You'll see how the headers and their programs or files are

programmable independently, which means that you will be able to write tape pro

grams which can load anywhere.

Storage at Bit Level

The 64's tape system uses three separate square wave frequencies; the actual values

vary internationally. If you call them long, medium, and short (L, M, and S), then

each byte is made of patterns of L, M, and S. Bit value 0 is represented as SSMM; bit

1 as MMSS. An odd-parity bit is added as an internal check (the total of l's is made

odd). LLMM marks the start of a byte. The system also has a standard tone which is

used to allow for differences in tape motors.

Storage off Programs on Tape

Try recording a short program on tape and replaying it through an ordinary recorder.

You will hear several seconds of a constant tone, then about four seconds of header,
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then two seconds of tone, then the program. The header and the program are each

written twice; you'll hear a short pause midway in each. Any program records or

loads in about 15 seconds, plus 15 seconds per K (kilobyte).

Storage of Files on Tape
Data files are stored on tape as a sequence of fixed-length buffers. There are two rea

sons why files are slower than programs: One is the extra time spent writing or read

ing the tones; the other is the extra time spent starting the cassette motor to read

each buffer. If BASIC does the reading or writing, that slows things, too.

Error Correction

As data is read, errors in the first copy of the recording are noted (and corrected, if

possible, by reading the second copy). Only 30 errors are allowed; these are logged

in RAM at $0100-$013D (at the bottom of the stack area). PEEK(159) gives a count

of the errors after a full read; this should be zero. Small ML routines to be put in the

stack area are best started after $013D if tape is to be used.

Headers in Detail
Tape storage relies on headers; if you understand them, you understand most of

what you need to program tape.

There are five types of headers, as diagrammed in Figure 14-2. Only the first 21

bytes are normally used, unless you wish to add ML or program protection.

The tape buffer, which holds headers and file data, normally extends from

$033C to $03FB (828-1019), a total of 192 bytes. You can change the location of the

buffer by POKEing into $B2 and $B3 (178 and 179). As it happens, OPEN 1 accepts

any of these header types, not just files, and provides a simple way to look at

buffers.

Put a 64 program tape in the recorder, type OPEN 1, and press RETURN. Then,

when the header is found, type FOR J=828 TO 850: PRINT PEEK(J);: NEXT. Now,

the first byte is 1-5, the second and third bytes are the start address, the fourth and

fifth are the end address, and the following bytes are the name.

Using SYS 63553 in place of OPEN 1 loads the first 192 bytes of any tape data

into the buffer, so use this if you want a tape directory which allows you to examine

the start of ML or BASIC programs, or read the whole of data files.

Tape Directory
The BASIC program below, Program 14-4, will identify and list programs and files

on tape. It's easily modified if you wish. Note its use of SYS 63553. This is part of
OPEN, but doesn't skip blocks starting with bytes other than 1, 3, 4, or 5. The pro

gram uses PRINT statements to display data on the screen; if the data contains con

trol characters like 147 (clear screen) or 13 (carriage return), the display will be

altered accordingly.
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Figure 14-2. Types of Headers
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Program 14-4. Tape Directory
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

10 SYS 63553:PRINT"{WHT}" :rem 118

20 P=PEEK(828) :rem 7

30 ON P GOTO 100,200,300,400,500 :rem 24

40 PRINT "PROGRAM OR ML BLOCK":GOTO 3000 :rem 40

99 REM TYPE 1 srem 201

100 PRINT "RELOCATABLE PROGRAM "; :rem 211
110 GOSUB 1000:GOSUB 2000:GOTO 4000 :rem 134

199 REM TYPE 2 srem 251

200 PRINT "BUFFER OF DATA ":GOTO 3020 :rem 4

299 REM TYPE 3 :rem 253

300 PRINT "FORCED-LOAD PROGRAM ";:GOTO 110:rem 188
399 REM TYPE 4 :rem 255
400 PRINT "DATA FILE ";:GOSUB 1000:GOTO 4000

srem 140
499 REM TYPE 5 :rem 1

500 PRINT" END-OF-TAPE MARKER";:GOTO 4000 :rem 138
999 REM PRINT NAME FROM HEADER :rem 26

1000 PRINT CHR$(34);:FOR J=833 TO 848:PRINT CHR$(P
EEK(J)); srem 227

1010 NEXT:PRINT CHR$(34):RETURN :rem 155
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1999 REM PRINT START AND END ADDRESSES :rem 35

2000 PRINT "{2 SPACES}START=M PEEK(829) + 256*PEEK

(830) :rem 122

2010 PRINT "{4 SPACES}END=" PEEK(831) + 256*PEEK(8
32) :rem 191

2020 RETURN :rem 164

2999 REM PRINT 192 BYTES OF DATA IF REQUIRED

:rem 16

3000 INPUT "{CYNjVIEW THE PROGRAM";YN$ :rem 112

3010 IF YN$="N" GOTO 4000 :rem 234

3020 PRINT "{WHT}" CHR$(34);: FOR J=828 TO 1019: P

RINT CHR$(PEEK(J));: NEXT :rem 212

3999 REM AWAIT KEYPRESS :rem 174

4000 PRINT: PRINT "{CYN}PRESS G TO CONTINUE11

:rem 211

4010 GET X$:IF X$=MC" THEN RUN :rem 78

4020 GOTO 4010 :rem 196

Another way to inspect header storage is POKE 178,0: POKE 179,4 to move the

start-of-buffer to the start-of-screen. Then, OPEN 1 (for data and programs, SYS

63553) will load 192 bytes directly into the screen. FORJ=55296 TO 55296+192:

POKEJ,1: NEXT will make all the bytes visible in white. Remember to POKE 178,60:

POKE 179,3 or reset with SYS 64738 to return the buffer to normal.

To summarize, executing either a LOAD or an OPEN will cause 192 bytes to be

read from whatever block is next on tape. If the first byte is 1 or 3, a program header

is assumed found; if 2 or 4, a data file; and if 5, an end-of-tape marker. If BASIC or

ML programs happen to start with a byte in the range 1-5, they'll give a spurious

appearance as a header, data file, or end-of-tape marker. This can happen if LOAD

or OPEN misses the header. In fact, this isn't likely to occur, since it's impossible for

normal BASIC'S first byte, which is part of the link address of the first line, to be less

than 7, and the only ML commands in the range 1-5 are uncommon ORAs. Note

that 0 isn't used as a marker because the earliest PETs saved the very first null byte

as part of BASIC, so the headers, to avoid confusion, started with 1.

Consequences of This Method of Storage
Programs can be made to load into any area, even places normally impossible to
load into, if the header is altered. The header itself can be used to store ML pro

grams. However, note that saving ML starting at $033C with a monitor can't work,
because the program will be overwritten by its header before it can be saved.

Since a program's start and end are defined, there's no need for an end-of-
program identifier. However, files are saved as chunks, and the last chunk written
(on CLOSEing the file) has a zero inserted after the data. This zero byte causes
ST=64 to be set if INPUT# reads the file back. The start and end addresses with file
data are simply the start and end addresses of the buffer. Because "2" identifies a
buffer of data, only 191 bytes are actually storable in the buffer.

When files are written or read, there's a pause between blocks; in this short
interval, the VIC-II chip is reenabled and simultaneously the red LED on the re-
corder (if it has one) goes out. This periodic flashing at six-second intervals is typical
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of 64 files. (Programs have a single short screen enable just after the first copy is

written or read.)

Several tricks to make programs harder to copy are explained at the end of this

chapter.

ML Routines to Save, Load, and Run Tape Programs

ML programmers may want to do the equivalent of LOAD and SAVE. Conversely,

programmers might want to decipher LOAD and SAVE instructions in ML programs.

There are too many locations and subroutines for exhaustive listing here, but many

of the most common can be outlined.

LOAD'S ROM entry address is $E168. It uses the Kernal LOAD routine at

$FFD5, which jumps to $F49E. All the parameters are set, and several branches test

for the device number of 1; tape LOAD itself is at $F539. Normally, all programs

have a header, and $F7EA finds a named header, while $F72C finds the next header

of any kind. The routine at $F5D2 reads the program itself from tape into the correct

part of RAM.

A typical loader designed to run an ML program follows:

LDA #$01

TAX

TAY

JSR $FFBA ; File number, device, secondary address all 1

LDA #$00

JSR $FFBD ; Filename irrelevant—load next tape program

JSR $FFD5 ; Forced LOAD to stored address

JMP $1000 ; Or other start address of ML to be loaded

This loads whatever program it finds next on tape with a forced LOAD, then

jumps to address $1000.

SAVE's ROM entry point is $E156; its Kernal routine is $FFD8, which jumps to

$F5DD. Tape saving is handled from $F65F; $F76A writes the header and $F867 the
program.

ML saving might look like this:

LDA #$01

STA $BA ; Device 1 (tape)

STA $B9 ; Secondary address = 1 (forced LOAD in header)
LDX #$00

LDY #$20 ; End address is $2000 here

LDA $FB ; Start address presumed in ($FB)
JSR $F5DD ;Save

All conventional LOAD and SAVE routines use both a header and its sub
sequent program. Before seeing how to operate these separately, however, note the
useful RAM locations in Table 14-3.
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Table 14-3. Useful RAM Locations

$90

$93

$9F

$AB

$AE/AF

$B2/B3

$B7

$B8

$B9

$BA

$BB/BC

ST status

Load/Verify flag (0=load, 1=verify)

Error log

Length of tone written to tape

End address for saving

144

147

159

171

174/175

178/179 Start of tape buffer

183 Length of program name

184 Current file number

185 Secondary address parameter

186 Device number (1=tape)

187/188 Start address of program name

Loading Tape Data Anywhere in RAM

Program 14-5 first loads the header, then loads the remaining program indepen

dently to start at any new address you choose.

Program 14-5. Load Anywhere
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

2 REM LINE 20 CONTROLS NEW START; EXAMPLE IS 1024

:rem 54

10 OPEN 1:REM LOADS HEADER (OR SYS 63276) :rem 247

20 S=1024:REM START ADDRESS IS SCREEN :rem 199

30 L=PEEK(831)-PEEK(829) + 256*(PEEK(832)-PEEK(830

)) :rem 216

40 E=S+L:REM COMPUTE NEW END ADDRESS FROM LENGTH

:rem 168

50 POKE 830,S/256:POKE 829,S-INT(S/256)*256:REM S

{SPACE}IN HEADER :rem 5

60 POKE 832#E/256: POKE 831,E-INT(E/256)*256:REM E
IN HEADER :rem 201

70 POKE 781,3:REM FOR FORCED LOAD :rem 109

80 SYS 62820:REM LOAD REST OF PROGRAM :rem 146

Programmers using ML monitors can use the following ML routine to load a

block into RAM.

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

6RK

#$00

$93

#$20

$C2

#$00

$C1

#$30

#|oo
$AE

$F5A2

;LOAD, not SAVE

;Example start address

;is $2000, and

;example end address

;is $3000

;or $F5A5 omitting the loading message
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Writing Tape Data Anywhere from RAM

This is best done with ML, using a routine like that to load tape blocks. Program 14-

6 uses a good method:

Program 14-6. Save Anywhere
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

100 FOR J=320 TO 356:READ X:POKE J,X:NEXT :rem 51

110 FOR J=828 TO 1018:POKE J,32:NEXT :rem 204

200 PRINT "WRITE HEADER/FILE TO TAPE; OR EXIT"

:rem 201

210 INPUT "(H/F/X)11; YN$ :rem 2

220 IF YN$=MX" THEN END :rem 205

230 IF YN$="F" GOTO 500 :rem 132

299 REM THIS WRITES A HEADER ONLY TO TAPE :rem 151

300 PRINT "ENTER FIRST 5 PARAMETERS OF HEADER"

:rem 209

310 PRINT " EXAMPLE: 3,0,192,0,208 MEAN" :rem 69

320 PRINT " FORCED PROGRAM LOAD FROM C000-D000"

:rem 89

330 INPUT A,B,C,D,E :rem 37

340 POKE 828,A:POKE 829,B:POKE 830,C:POKE 831,D:PO

KE 832,E :rem 174

350 PRINT "PROGRAM NAME TO BE PUT IN HEADER":rem 5

360 INPUT N$ :rem 155

370 FOR J=l TO LEN(N$):POKE 832+J,ASC(MID$(N$,J)):

NEXT :rem 253

380 SYS 320:REM WRITE HEADER TO TAPE :rem 78

390 RUN :rem 145

499 REM THIS WRITES ANY BLOCK OF MEMORY TO TAPE

:rem 46

500 INPUT "START ADDRESS OF BLOCK TO BE SAVED";S

:rem 40

510 INPUT "{2 SPACES}END ADDRESS OF BLOCK TO BE SA
VED";E srem 100

520 POKE 321,20 :rem 234

530 POKE 325,S/256:POKE 329,S-INT(S/256)*256

:rem 129

540 POKE 333,E/256:POKE 337,E-INT(E/256)*256
:rem 86

550 SYS 320:REM WRITE BLOCK TO TAPE :rem 15
560 RUN :rem 144

996 REM FOLLOWING ML IS SET UP FOR HEADER :rem 147
997 REM LINE 1000•S 105 = LENGTH OF TONE; :rem 139
998 REM LINE 1000'S 3 AND 60 SET START=$033C;

:rem 76

999 REM LINE 1010'S 3 AND 252 SET END =$03FC.

:rem 208

1000 DATA 169,105,133,171,169,3,133,194,169,60,133
'193 :rem 103
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1010 DATA 169,3,133,175,169,252,133,174,169,1,133,

184,133 :rem 251

1020 DATA 186,169,0,133,183,169,255,133,185,76,107

,248 :rem 119

The ML routine contains five parameters which control the header tone. Any

user-defined header can be written to tape, for example, to cause a forced LOAD

into a normally difficult area of memory. And any consecutive block of bytes can be

written to tape, allowing great flexibility in program construction.

Copy Protection for Tape
Security is an interesting aspect of tape programs. Before taking it too seriously, it's

worth remembering that it may be possible to copy tapes by audio means; you

should also keep in mind the fact that a number of commercial tape software houses

believe that determined copiers will copy anyway and so don't put in protection.

However, there are opposing views.

This section will survey some methods of complicating copying without arguing

the pros and cons.

Using the Header

Because SAVE erases most of the header, a program which relies on information

stored after 16 bytes of name is less easy to copy. For example, if your BASIC pro

gram is "FRENCH LESSONS", save it as "FRENCH LESSONS [2 spaces]" +

CHR$(96). This puts an extra ML instruction after the name. SYS 849 from within

BASIC returns, but if 96 is missing, the program crashes. However, it is relatively

easy to allow for this by simply POKEing 849 with 96.

This is only a very simple example. The entire header can be filled with ML

routines, which could modify BASIC, load new programs or data, or whatever.

Also at the simple level, the SYS call can be concealed in a line erased by REM,
followed by deletes. It can also be disguised—for example, as SYS 84923—by insert

ing a zero byte after the 9 which won't list. The program's name can include control

characters that clear the screen or change the cursor color, or it could even be some
thing like ?LOAD ERROR. All that's needed is SAVE "NAME" + CHR$(147) +
"ERROR" + CHR$(31) or other analogous strings.

Using the Screen Positions
ML programs are sometimes designed to load into the default screen position set by
the 64. An ML jump to $0400, for instance, makes the program impossible to stop in

the usual way, as it will be corrupted or entirely erased by pressing RUN/STOP-
RESTORE. This type of program can be developed either by moving the screen to a
nonstandard position or by writing the header separately from the program.

Using Headerless Programs
In BASIC or ML, you can load program data without a header. Such data can t be
picked up by a normal LOAD and isn't copyable by a simple LOAD and SAVE. Of
course, it must be written as a single chunk with the help of a tape write routine.
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Programs Which Automatically Run When Loaded

Several techniques can be used to make programs run automatically, but all require

some ML expertise on the part of the programmer. Figure 14-3 shows free RAM and

key locations that are important for tape protection; three techniques can be used.

Figure 14-3. Key Locations for Tape Protection

$100 $200 |$300 $400

Zero

Page
Stack

Input

Buffer

Tape

Buffer

Number of Characters in Keyboard Buffer ($C6)

Keyboard Buffer ($0277-0280)

Tape IRQ SAVE ($029F)

BASIC Start Vector ($0302)

BRK Vector ($0316)

NMI Vector ($0318)

Input Vector ($0324)

Free RAM: 4 bytes $FB-$FE

89 bytes $02A7-$02FF

8 bytes $0334-$033B

4 bytes $03FC-$03FF

RAM (with care): Tape Buffer, 192 bytes, $033C-$03FB

Lower part of stack from $0100 or $013E if cautious about tape reading.

BASIC warm start vector in ($0302). Normally $A483, this can be directed

either into the header or into the loaded program, perhaps spanning $02A7-$0303.

Then ML LOAD and RUN will automatically run the BASIC program that comes

afterward.

Input vector in ($0324). Again, a loader might span $02A7-$0325, so the al

tered input vector might jump to $02A7.

Tape interrupt vector at ($029F). This vector is difficult to use on the 64, since

it is followed by operating system variables.

A BASIC Autoloader

The autoload routine in Program 14-7 will run the BASIC program immediately

following it on tape. All that's required is to enter LOAD. It disables RUN/STOP and

RUN/STOP-RESTORE, and scrambles LIST, to give some program protection.

First, add these few program lines to the program which writes any data to tape.

Run the program, with a rewound tape in the recorder, and prepare to write a

header: the parameters to put in are 3, 167, 2, 4, and 3. (Forced LOAD into

$02A7-$0304. The very last address is unused, so the ML will straddle $02A7
through $0303.)
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Program 14-7. BASIC Autoloader
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

100 FOR J=320 TO 356:READ X:POKE J,X:NEXT :rem 51

110 FOR J=828 TO 1018:POKE J,32:NEXT :rem 204

200 PRINT "WRITE HEADER/FILE TO TAPE; OR EXIT"

:rem 201

210 INPUT "(H/F/X)"; YN$ :rem 2

220 IF YN$="X" THEN END :rem 205

230 IF YN$="F" GOTO 500 :rem 132

299 REM THIS WRITES A HEADER ONLY TO TAPE :rem 151

300 PRINT "ENTER FIRST 5 PARAMETERS OF HEADER"

:rem 209

310 PRINT " EXAMPLE: 3,0,192,0,208 MEAN" :rem 69

320 PRINT " FORCED PROGRAM LOAD FROM C000-D000"

:rem 89

330 INPUT A,B,C,D,E :rem 37

340 POKE 828,A:POKE 829,B:POKE 830,C:POKE 831,D:PO

KE 832,E :rem 174

350 PRINT "PROGRAM NAME TO BE PUT IN HEADER":rem 5

360 INPUT N$ :rem 155

370 FOR J=l TO LEN(N$):POKE 832+J,ASC(MID$(N$,J)):

NEXT :rem 253

380 SYS 320:REM WRITE HEADER TO TAPE :rem 78

390 RUN :rem 145

499 REM THIS WRITES ANY BLOCK OF MEMORY TO TAPE

:rem 46

500 INPUT "START ADDRESS OF BLOCK TO BE SAVED";S

:rem 40

510 INPUT "{2 SPACES}END ADDRESS OF BLOCK TO BE SA

VED";E :rem 100

520 POKE 321,20 :rem 234

530 POKE 325,S/256:POKE 329,S-INT(S/256)*256

:rem 129

540 POKE 333,E/256:POKE 337,E-INT(E/256)*256

:rem 86

545 FOR J=828 TO 854:READ X:POKE J,X:NEXT :rem 80

546 FOR J=855 TO 922:POKE J,PEEK(J-l49):NEXT

:rem 210

547 POKE 919,167:POKE 920,2 :rem 158

550 SYS 320:REM WRITE BLOCK TO TAPE :rem 15

560 RUN :rem 144

996 REM FOLLOWING ML IS SET UP FOR HEADER :rem 147

997 REM LINE 1000'S 105 = LENGTH OF TONE; :rem 139

998 REM LINE 1000'S 3 AND 60 SET START=$033C;

:rem 76

999 REM LINE 1010'S 3 AND 252 SET END =$03FC.

:rem 208

1000 DATA 169,105,133,171,169,3,133,194,169,60,133

,193 :rem 103

1010 DATA 169,3,133,175,169,252,133,174,169,1,133,

184,133 :rem 251
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1020 DATA 186,169,0,133,183,169,255,133,185,76,107

,248 :rem 119

2000 DATA 169,234,141,40,3,169,131,141,2 :rem 159

2010 DATA 3,169,164,141,3,3,169,131,141 :rem 114

2020 DATA 119,2,169,1,133,198,108,0,160 :rem 117

When the header is written, prepare to write data. Use a starting address of 828

and an ending address of 921. A short ML program is put at the start of the buffer,

which will be loaded and run at $02A7. It disables RUN/STOP, restores ($0302) to

normal, puts #$83 (SHIFT-RUN/STOP) into the keyboard buffer, and executes a

JMP ($A000). This is enough to force the next program to load, then run. The final

bytes of the buffer hold the modified address, $02A7, which will be force-loaded

into ($0302) and hence start the whole process.

Many tapes using this sort of copy protection load into the entire area of RAM

from, for example, $0300 up. This makes loading times rather long, as the area from

$0400 to $0FFF is usually wasted.

There is considerable scope for ingenuity in using encoding routines, non-

standard 6510 instructions, programs without headers, and overlays. If the

RUN/STOP and RESTORE keys are disabled, a reset switch leaves most memory in

tact but erases all of RAM from $0000 to $0400 except the stack ($0100-$01FF).

Thus, if key parts of a program are left in this area, the result can be all but
impenetrable.
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Chapter 15

Using Disk Storage

Disk storage is more expensive than tape, but it is also more versatile. It can be used
to store a selection of programs for rapid loading, but it also gives you access to

large amounts of data.
This chapter begins with a discussion of straightforward disk commands and

progresses through more advanced material. By the end of the chapter you'll be able
to handle most disk programming tasks.

Introduction to Disk Storage
The Commodore 64's serial port (next to the video port) is a design unique to Com
modore. It accommodates single-disk 1540 and 1541 disk drives. The earlier 1540
model was designed specifically for the VIC-20; the main difference between it and
the 1541 is a single ROM chip in the 1541 that makes it compatible with both the

VIC and Commodore 64.

The 64's disk units store data on 5-1/4-inch diskettes, and a demonstration

diskette should be packed with each disk drive. The usual advice is to switch on the
disk drive first, then the 64, and then any printer, but the order usually doesn't

matter.

A diskette is inserted label up, with the read/write slot nearest the disk drive.
The drive door, when closed, clamps the disk firmly and permits reading and writing

to take place.
Disks are faster than tape, but the 64's system (with data transferred one bit at a

time) isn't fast by today's standards. Generally, you should allow about 10 seconds
per 4000 bytes, plus about 5 seconds overhead—roughly 25 seconds for an 8K

program.

The non-CBM tape operating systems described in the previous chapter are just

as fast; however, disks allow for random access. The disk lets you, choose from a
whole range of programs or files on a single disk, giving a versatility unavailable

with 64 tape systems.

So-called black boxes are available to allow several 64s to access the same disk
drive. This saves money where a group of people must use the same programs (in
some teaching situations, for example), and the serial connector is reliable over dis

tances up to about 12 meters (approximately 40 feet).
The 64's disk drive is autonomous. In other words, it is largely independent of

the 64. In fact, it has as much ROM as the 64 itself. When the drive receives a com

mand from the 64, that command is stored in the disk drive's RAM and carried out

only when the disk drive decides to do so. Similarly, results are typically stored in a

buffer, waiting for the 64 to read them. This explains how it is possible for the 64 to
print READY, even when the disk drive is still obviously working. It also permits

disk functions to be changed by switching ROMs within the drive.

One side effect of this arrangement is that errors can occur either in the 64 or in

the disk drive. For example, if there's no diskette present, the disk drive can't read

data and an error condition is present in the drive. Commodore has a special chan

nel to allow transfer of information from and to the disk, as you'll see.
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The keyboard is affected by disk operations. For example, while data is being
read from disk, the interrupt is mostly off. This means the keyboard cannot be pro
cessed normally, and keys pressed when the drive is active may not show up when
it stops. If you're using a disk system to store data, bear this in mind. Clear the key
board queue (POKE 198,0) before INPUT or GET to insure that incomplete data isn't
written to disk.

Disk commands are more explicit than tape commands. Unless otherwise in
structed, the 64 assumes that LOAD (or whatever) applies to tape. Thus, disk com
mands always include the device number, which is normally 8. Also, because disks
can store many programs, the bare command LOAD is disallowed. Instead, quotation

marks and names are used. For example, to simply read the disk directory you must
type in LOAD "$",8 then LIST. The DOS 5.1 wedge (on the demo disk) offers lim
ited help with this.

Serious disk drive users, who are using disks to store valuable data and writing
their own programs, too, should take note of a few points to keep from losing data.
First, duplicating disks for security purposes isn't easy with only one disk drive. Sec
ond, there are potential problems when the process of writing to a disk is interrupted
(for example, by a SYNTAX ERROR) because incomplete information is left on the
disk and may corrupt other files. Subsequent parts of this chapter will discuss these
areas in more detail.

Basic Disk Commands
This section will take you through the steps needed to store a program on a new,

blank disk. You will then see how channel 15 allows communication between your
64 and the disk drive.

Formatting a Disk

Switch on the disk drive and the 64, insert a new, blank disk (or one that contains

information you no longer wish to keep) in the drive, and close the drive door.
You're now ready to format the diskette. Formatting gives the diskette a name and a

two-character identifier; it also writes data on the disk to identify it as a 1541-format
disk.

Every time you format a disk, all programs and any data that it contains will be

wiped out. Don't format a disk more than once unless you no longer need its con

tents and prefer an empty disk.

To format a disk, type in the following command and press RETURN:

OPEN 15A15/'NEW0:M4ME/ID":CLOSE 15

The red light on the disk remains on for about a minute and a half; the drive

should first move to the outer track (with some noise), then click gently as it writes

to the disk. After 35 clicks, the drive will stop and the red light will go off.

The disk's name can have up to 16 characters (for example, DISK TESTS 1) and

the identifier up to 2 characters (for example, 00 through 99). Avoid using the sym

bols ?#*,:" or @ in names sent to the disk, since they may be interpreted as

separators or special operators.

The identifier is written to the disk nearly 700 times. It helps to check that data

is in its expected position and that the disk hasn't been inadvertently changed. It's
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thus advisable to give your disks individual IDs; otherwise, swapping disks to load
from one and save to the other may scramble data if the IDs happen to match.

If you want to change the disk's name, you can use a shorter formatting com

mand. Omit ,ID from the formatting command; the name will be changed and the
data apparently will all be deleted, exactly like full formatting, but the ID isn't

changed. This takes about ten seconds.

Inspecting a Disk's Directory
Any disk's directory or catalog is recoverable with the following command:

LOAD "$",8

Type in this command, press RETURN, and then LIST the directory.

A newly formatted diskette's directory has its name and ID in reverse video, fol
lowed by 2A, which shows the type of Commodore disk format. The message 664
BLOCKS FREE shows that 664 blocks of 256 bytes each are available for storage (but
not quite all are usable). The directory is held as BASIC, as you may have inferred
from LIST, and that explains the leading zero at the start of the directory. It is a

dummy line number and can be ignored.
Note that inspecting the disk with LOAD"$",8 will erase any program you have

in memory. Conversely, without NEW, a program typed in after reading the direc
tory may contain odd lines left over from the directory. Subsequent sections give the
full syntax of LOAD"$", allowing parts of the directory to be listed and processed.

Saving a Program
To see how to save a program to disk, first type NEW, press RETURN, and then
type in any short program. Then type in SAVE "PROGRAM",8 and press RETURN
to save the program to disk with the name (up to 16 alphanumeric characters) you

gave it. Don't include ? # * , : or @ in the name. A null name (SAVE "",8) is re

jected with 7MISSING FILE NAME ERROR.
If you wish, you can VERIFY, with either VERIFY "PROGRAM",8 or VERIFY

"*",8. In either case, you should see the following display as the program is com

pared with the version in memory.

SEARCHING FOR PROGRAM

VERIFYING

OK

Disks are generally reliable enough to make this unnecessary. The version with *
uses Commodore's pattern-matching technique, explained below. The same idea al
lows LOAD "*",8 to load the first program it finds, when the drive is turned on.

When using disks, SAVE won't work if a program with the same name already

exists on a given disk. This is a security measure. An error is generated by the disk
drive, and the red light flashes, but no error message is displayed on the screen.

You'll soon see how to read the disk drive's message.

SAVE's syntax has an optional form causing SAVE with replace. It allows a pro

gram to overwrite another program with the same name. The command is SAVE
"@:PROGRAM",8 where the added @: is interpreted by the disk as a command to
overwrite. So, if you modify your program and then enter SAVE "@:PROGRAM",8,

you'll find the newer version present on loading later. It's only fair to note that disk
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errors of the kind caused by unclosed files (corrupted programs and/or data) have

been associated with this command, so if you're the cautious sort, it's better to
scratch the old file before saving.

After saving a program, LOAD and LIST the disk directory. The diskette's name

and ID remain the same, but a program (PRG on the line after the name shows it's a

program) is present. If it's a short program it will probably occupy only one block,
leaving 663 blocks free.

Loading a Program

To load a program, type in LOAD "PROGRAM",8 and press RETURN. The disk

drive will run for a few seconds, and the READY prompt will appear. Then LIST or

RUN your program. LOAD "PR*",8 or LOAD "*",8 will have the same effect, if
PROGRAM is the first name in the directory.

LOAD "filename",8,1 is necessary for a nonrelocatable LOAD. Machine lan

guage, graphics definitions, VIC-II chip registers, and any data which needs to be re
placed at the point from which it was saved uses this syntax.

You can also use LOAD in program mode. LOAD from within a program pro

duces the same chaining effect that you get with tape; however, it is much faster.

The new program, presumed to be BASIC, runs from the start. It retains all the old

variables if the new program is no longer than the old one and if strings and func

tions held within BASIC are redefined. See CHAIN and OLD in Chapter 6 for fur
ther discussion.

ML and memory dumps can also be loaded successfully. Use 10 X=X+1:IF

X=l THEN LOAD "GRAPHICS",8,1:REM ONLY LOADS FIRST TIME.

Scratching a Program

Scratch is a strange computerese word meaning to remove or erase a program. With

tape, it's simple to rewind and obliterate a program by recording over it. Disks need

a specific command, however, because the disk drive can't know which program to
scratch unless it's told.

SCRATCH has this syntax:

OPEN 15A15/'SCRATCH:///£?«am^':CLOSE 15

Pattern-matching abbreviations are also usable, so OPEN 15,8,15,"SCRATCH:N*":
CLOSE 15 scratches anything beginning with N, while OPEN

15,8,15,"SCRATCH:*": CLOSE 15 scratches everything and leaves the diskette

empty. The number of files scratched is reported in channel 15. You can use S as the

abbreviation for SCRATCH.

Copying Programs from One Disk to Another

Both BASIC and machine language programs can be transferred from disk to disk.

However, BASIC programs are easier to transfer because the system keeps track of

where they start and end.

First, though, it is helpful to look at the disk operation called initialization. With

CBM disks this means forcing the drive to read the current diskette's directory infor

mation into its own memory. This process is often automatic (for example, when a

directory is loaded from disk), but to be on the safe side you can use this command
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to guarantee that the disk to be copied to is correctly set up. INITIALIZE has this

syntax:

OPEN 15,8,15,"INITIALIZE":CLOSE 15

or

OPEN 15,8,15,"I":CLOSE 15

or

OPEN 15,8,15:PRINT#15,"I":CLOSE 15

To actually copy a BASIC program, first acquire two disks. Call them source and

destination. Then follow these steps:

1. LOAD "filename"$ from the source diskette.
2. Remove the source disk, replace it with the destination disk, and close the drive

door.

3. Enter OPEN 15,8,15/T' to initialize the destination disk.

4. SAVE "filename",% to save the program onto the destination diskette.

5. Replace the source diskette, enter PRINT#15/T' to initialize it, and return to step 1.

Repeat the process until you've moved as many programs as you want.

Copying Machine Language and Memory Dumps
To copy machine language or memory dumps, you'll need to know the start and end
address. Finding the end address is simple: Enter LOAD "filename"',8,1 then PRINT
PEEK (45),PEEK (46). The end pointers are thus set, but the beginning is lost. To lo

cate the starting address, you can read the start address as a program file.
Once you've located those addresses, the process is similar to that for BASIC.

Have source and destination diskettes ready. Then follow these steps:

1. LOAD "filename",8,1 from the source diskette.

2. Exchange diskettes. Type NEW.

3. Enter OPEN 15,8,15/T" to initialize the destination diskette.

4. POKE the vector at (43-44) with the low byte and high byte of the starting ad
dress, and POKE the vector at (45-46) with the low byte and high byte of the end

address.

5. SAVE "filename",,8.

6. Exchange diskettes, enter PRINT#15/T', and repeat from step 1.

General Copier for Programs
For straightforward programs, the copying methods above are fine. Where these
methods fail, or if you simply want an easy copying method, use something like Pro
gram 15-1, which reads a program from one disk, storing it above BASIC in RAM,

then writes it back to another disk. Program 15-1 does not work properly, however,

if the program to be copied is written in BASIC and ends with a semicolon. (Speed

can be improved by reading and writing in ML.)
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Program 15-1. General Program Copier
For mistake-proof program entry, be sure to use the "Automatic Proofreader/'Appendix C.

10 POKE 55,0: POKE 56,12: CLR: REM FREE RAM STARTS
$0C00 :rem 204

20 PRINT "NAME OF PROGRAM TO BE COPIED" :rem 223
30 INPUT N$ 2rem 101

40 PRINT "{DOWN}NAME OF PROGRAM AFTER COPYING"

:rem 159

50 INPUT M$ :rem 102

60 OPEN 15,8,15 srem 244

100 PRINT "{DOWN}INSERT DISK HOLDING ORIGINAL PROG
RAM" :rem 229

110 PRINT" THEN PRESS RETURN" srem 255

120 GET X$:IF X$<>CHR$(13) GOTO 120 :rem 48
130 PRINT "{DOWNjOK... READING " N$:PRINT :rem 205
200 OPEN 1,8,2,N$+",P,R" :rem 190

300 FOR J=3072 TO 40960 :rem 115
310 GET#1,X$:IF ST>0 GOTO 400 Srem 27
320 POKE J,ASC(X$+CHR$(0)) :rem 139

330 NEXT:PRINT "TOO LONG":END srem 19
400 CLOSE 1:PRINT "{DOWN}INSERT DESTINATION DISK"

:rem 153

410 PRINT " THEN PRESS RETURN" srem 2
420 GET X$:IF X$<>CHR$(13) GOTO 420 :rem 54
430 PRINT "{DOWNjOK... WRITING " M$ :rem 50
440 PRINT#15,"I" srem 103

500 OPEN 1,8,2,M$+",P,W" :rem 197
600 FOR K=3072 TO J srem 190

610 PRINT#1,CHR$(PEEK(K)); srem 242
620 NEXT :rem 215

700 CLOSE 1:CLOSE 15:PRINT "COPY COMPLETED":rem 55

Quite a number of copy utilities are on the market. Single-drive copiers need
only one drive. There are two basic types: Some copy an entire disk, reading as
much as possible into RAM, then copying an exact image onto a new disk. More
sophisticated versions copy only those parts of the disk on which data is stored. One
disk typically takes 15 minutes and six disk changes. The other type copies individ
ual programs or files, allowing the user to select only those worth copying. This sec
ond type (the program above is like this) is fine when small numbers of programs
are to be copied, but tedious with large numbers of programs, because the disks
typically are changed between each read/write operation.

Two-drive copiers use two daisychained drives. The technique is to switch on
one drive, load and run a disk-device number-change program to reassign it as drive
9 (unless the drive's been changed in hardware—see below), turn the other drive on,
and load the copy program. "COPY/ALL" on the demo disk is this type of program.
Again, disks can be copied in entirety or copied one file at a time by utilities.
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Communicating with the Disk Drive: Using Channel 15
Channel 15 is variously known as the error channel, the command channel, or the

information channel. The number 15 refers to its secondary address, the third

parameter of the OPEN statement. Disk drives use this third parameter to identify

the channel number, and generally it makes sense to use the same number for the
file where possible. To understand this better, enter and run the following one-line

BASIC program:

10 OPEN15,8,15:INPUT#15/E/E$,T/S:PRINT E;E$;T;S:CLOSE15:END

If the disk drive has no current error stored in it, the result will be 0 OK 0 0,

where the first zero is the error number, OK is the message from disk, and the track

and sector of the error (both zero) mean there's no problem. This is a long-winded

way to discover the disk status. It can be tedious to enter and run it just to discover

the reason for a disk error or problem. Note that direct mode can't be used; the line

must be entered as part of a program. Therefore, when developing disk programs, it

makes sense to include this as, say, line 40000 so that RUN 40000 is ready and wait

ing if needed.

Note that reading the channel clears it, so a subsequent read will say OK even if

there's a major problem (like an open disk drive door). The message remains until

either the channel is read or disk activity forces in another message.

You'll see later the circumstances in which the flashing error light, which is apt

to alarm newcomers, can be ignored. First, though, deliberately generate some errors

and watch the effect of running line 10 above:

1. Enter LOAD //o/o",8. This program doesn't exist on disk. RUN gives:

62 FILE NOT FOUND 0 0

2. Enter LOAD "1:HELLO",8. It tries to load a program from a nonexistent drive.

Your drive is drive 0; since it's a single drive, there's no drive 1. The message is:

74 DRIVE NOT READY 0 0

3. Enter SAVE "PROGRAM",8. (Assuming PROGRAM is still present on the disk.)

RUN yields:

63 FILE EXISTS 0 0

4. Enter OPEN 15,8,15,"S:PROGRAM":CLOSE 15. This scratches PROGRAM from

the disk. (The initial is sufficient.) Now RUN yields:

1 FILES SCRATCHED 1 0

which, translated, means that message 1 (which always deals with scratched files)

reports that just one file was scratched by the command. More than one file may

be scratched if pattern matching (with "S:*") is used.

5. Turn the disk drive off. Open the disk drive door if there's a disk present; this in

sures that no magnetic glitch can occur on the disk. Turn on the disk drive and

immediately enter RUN. Your message is something like this:

73 CBM DOS V2.6 1541 0 0

which tells you what type of ROM your disk unit has.

If you want to experiment more, try the DOS 5.1 wedge from the demo disk,

which modifies BASIC so that just pressing @ prints the message.
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Sending Messages to the Disk Drive

You've seen how to read channel 15, but how are messages sent to the disk? The

syntax has two forms, both based on the syntax of OPEN:

OPEN 15fi,l5,"command"

or

FRlNT#15,"command" (assuming OPEN 15,8,15 has been carried out).

Formatting a disk and scratching a file are two examples we've seen so far. A sub

sequent section includes a comprehensive list of eight disk commands that use this

channel.

Handling Disk Files with BASIC
Files on disk are more complicated, and thus more difficult to understand, than tape

files. If you're a newcomer to disks, you may find the concept of a file hard to grasp.

However, after working through the examples which follow, it should become clear.

There are two essential aspects of any computer filing system. One is that an ex

ternal storage device (like a disk drive) must be able to store and retrieve data in a

reliable way; the other is that the computer must have commands available to

handle the output and input of that data. To illustrate the second condition, consider

the fact that the 64's disk drives can be programmed to store data almost anywhere

on the disk surface. Although this can be a very useful feature, it does not provide a

file in the true sense, because specially written commands have to be used to process
the data.

Disk files, unlike tape files, aren't always exclusively read or write files. The

versatility of disks enables files to be open for writing and reading at the same time.

Another example of disk versatility is that several disk files can be open at once.

For example, a sequential file—identical to a tape file—can be read, updated, and

then written to a second sequential file. This is not possible with the 64's tape unit.

The tape system can use only a single track of tape, whereas a disk uses a multitrack

system.

Types of File Organization

The 64's disk system supports four types of files, shown on the directory as PRG,

SEQ, REL, and USR (program files, sequential files, relative files, and user files). A

user file allows programmers to build their own type of file by writing data directly

to the disk and the directory, but all the work of arranging the data on disk and

reading it back must be done by the programmers. The subsequent section on disk

storage explains how this is done; meanwhile, USR can be ignored, since it is not a

true file system.

Program Files

These are simply programs or memory dumps which can be loaded and run (if

they're programs) in the usual way. However, the disk system also allows them to be

read from and written to, and that makes several nice programming techniques

possible.
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Sequential Files
Next to program files, sequential files are the easiest to understand. Data is written

to them from a buffer, in sequence, without restriction on the type of data or its

length. Thus, the file can be of any length, regardless of the computer's RAM. Be

cause sequential file data isn't ordered, it is usually read back in sequence starting at

the beginning. As a result, long sequential files can be slow to handle.
In practice, 64 sequential files—whether on tape or disk—aren't usually quite so

free from structure. This is because it's easiest to use PRINT# to write data to a file
and INPUT# to read it back, and both of those commands have certain restrictions

on length and type of character that they can handle.

Relative Files
Relative files do not have to be read from the beginning. Any record in the file can

be read by number; thus, random access is a name sometimes given to such files.
With the 64, this is made possible by defining a record length when the file is ini

tially opened, and diskette space is assigned as it's needed. For example, if record

number 200 is to be written to a new relative file, the disk's operating system allo

cates space on the diskette for 200 records of the desired length before writing the

data of record number 200.

Relative filing is more ordered than sequential filing; later, you'll see exactly

how that is accomplished. For the moment, note that the records are the same

length. This wastes disk space if some records are far longer than others. Obviously,

a shorter maximum record length allows more records to be filed.

Note also that accessing records by number may not be what you really want.

For instance, you may find yourself using extra files, or arrays, to convert JONES

into number 93. Nevertheless, this is the most advanced form of filing offered by

most microcomputers.

Direct access files may also be used. Commodore's manuals refer to the system

of storing data at certain sectors on the diskette as random access, which is explained

in the section on data storage. More usually, direct access filing refers to a system

allowing access to records by a single key. This is a fascinating system of file

organization, easily implemented on the 64.

To take an actual example: You want to be able to read from disk, as fast as pos

sible, information on any one person out of a group of 400 by entering the person's

name. The 64's relative file system requires a number between 1 and 400, and the

idea of direct access is to convert the name into a number within that range. This

could be done by converting some of the name's characters into ASCII, then generat

ing a key from 0 to 1 and using RND(— key)H00+l to generate a repeatable value

in the required range. A good algorithm will, of course, evenly spread the coded val

ues of the keys. With this kind of organization, records are held in the file in a jumbled

sequence, but can be recovered by applying the coding algorithm to the key.

Direct access has several drawbacks, however. First, there's no easy way to print

a sequential list of the records. In other words, it's difficult to check what's on file.
Second, many keys will inevitably generate the same record number, so it's nec

essary when writing to the file to check that the record number isn't used (if it is, try

the next one). It's also necessary, when reading, to read until the correct record is
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found. For that reason, the file has to be longer than the number of records by at

least 30 percent. In this case, about 35 percent of the records are synonyms, but this

drops to 25 percent if all keys are tested first and all synonyms are stored in the file

in a second pass. If the most frequently used records are entered first, efficiency im

proves again.

Inverted files are used in data base programming, where there are huge

amounts of data in a main file, and where you want a list of items conforming to

several stringent criteria.

Instead of reading the entire file, a large number of smaller files are established,

with each holding keys to a subset of the original data. As a result, fewer files have

to be read, but only at the expense of extra file space being taken up and extra work

being required to add new records to a number of files. For example, 26 subsidiary

files for initials A-Z plus a full-length relative file works well in some applications.

Writing and Reading Disk Files

OPEN. You can OPEN a disk file by using this syntax:

OPEN file number, device number, disk channel, command string

For example, OPEN 2,8,2,"0:ORDINARY FILE,S,W" opens file 2 to disk drive 8, and

uses channel 2 in the disk drive. (This is relevant with random access storage and

with relative files.) The command string begins with 0:, which is a construction from

Commodore drives which have two disk drives, instead of only one. The other drive

used the prefix 1:. This chapter ignores 0:, but it is often suggested that the prefix

should be used. Regardless, readers with access to PET/CBM machines should keep

this syntax in mind.

The other part of the command string uses commas as separators and causes a

sequential (S) file, called ORDINARY FILE, to be set up for writing (W). PRINT#2

will now write to this file, and CLOSE 2 safely completes all the housekeeping.

You'll see further examples shortly in the demonstration programs on file handling.

Note that the file number cannot be 0. Ordinarily, use any number from 1

through 127. File numbers 128 through 255 should usually be avoided, because

PRINT# to them sends linefeed (CHR$(10)) with carriage return. This is useful with

some printers, but not generally helpful with disk files.

The device number is 8 unless changed by hardware or software. It's possible to

connect two drives at once, one with device number 8 and the other with device

number 9, and open several files to each (OPEN 3,9,3,"ORDINARY FILE,S,R"),

allowing reading from 9 and writing back to 8.

The channel number should generally not be 0, 1, or 15. This is because 0 and 1

are related to the directory, and 15 is the command channel. The command string

syntax varies with the type of file. See the demonstration programs.

PRINT* is one of three BASIC commands (the others are INPUT# and GET#)

that let you send output to a file and read it back, either as a batch of characters (IN-

PUT#) or as individual characters (GET#). PRINT# outputs string and number ex

pressions to the file in just the same way that output is sent to the screen. The

organization of relative files is identical to that of sequential files, as far as the stored

data is concerned. PRINT# treats a colon or end-of-BASIC line as requiring a

carriage-return character. The semicolon causes PRINT# to print no extra characters.

496



Using Disk Storage

The comma outputs ten spaces (in effect, tabulating across). Numbers appear in the

file with a leading minus or space, and with a trailing space, too.

The effect of OPEN 2,8,2,"TEST,S,W" followed by PRINT#2,"HELLO";12345;

"HELLO","HI" is shown in Figure 15-1.

Figure 15-1. Using PRINT#

|H|E|L|L|O| H2j3|4|5| |h|e|l|l|o| | | | | | | | I I |H|Tiq

PRINT# can output individual characters for GET# to read back later. In this

case, there are no restrictions on character types. The two program lines,

PRINT#2,CHR$(N); and GET#1,X$: N=ASC(X$+CHR$(O)), are exact mirror im

ages. One writes a single character (the semicolon prevents unwanted RETURNs)

and the other reads the character back, also converting it back into its ASCII value,

allowing for the null-character bug in the 64's ASC command.

If you're reading data with INPUT#, remember not to write strings longer than

88 characters. INPUT# generates 7STRING TOO LONG if this happens. If long strings

appear to be unavoidable, it's always possible (though slower) to evade this problem

by replacing INPUT# with something like X$="": FOR J=l TO 100: GET#1,Y$:

X$=X$+Y$: NEXT.

Remember to include RETURN when estimating the lengths of records. Relative

files in particular need a RETURN character if data is read back by INPUT#, and this

adds 1 to the maximum record length.

INPUT#. Using INPUT# is the most convenient way to fetch information from

files. The point to understand is that PRINT# and INPUT# are largely mirror images

of each other. PRINT#1,X$:PRINT#1,Y writes a string, then a numeral, to a file;

INPUT#1,X$,Y will interpret this correctly, reconstructing X$ and Y. If the variable

types match, there should be few problems.

There are several small complications, all of which have been mentioned al

ready, but they are worth going over again.

INPUT# cannot input a string more than 88 characters long.

INPUT# looks for a separator, normally a RETURN or a comma. Thus,

PRINT#1,X$;Y cannot be read back properly by INPUT#, because the semicolon

causes the two variables to be output with no break. It's easiest to separate the vari

ables by a RETURN (CHR$(13)), but PRINT#1,X$//,"Y works just as well.

INPUT# cannot input a null string. PRINT#1,X$: PRINT#1,Y$ then

INPUT#1,X$,Y$ ordinarily works, but if Y$ is nothing, PRINT# puts two consecutive

RETURNS on file, and INPUT# behaves as though RETURN were pressed on IN

PUT at the keyboard and goes on to the next item.

GET#. This reads individual characters from a file, with no exceptions. It will

fetch null characters written as CHR$(0), quotation marks (ASCII 34), RETURNS

(ASCII 13), plus any punctuation and screen-editing characters. If you are interested

in the entire contents of a file, use this command; if not, the intelligence of INPUT#,

which assigns all your variables for you, makes a better command.

CLOSE. Closing a file is simple:

CLOSE file number
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CLOSE operates on one file only; you need CLOSE 2: CLOSE 15 if files 2 and 15 are

open. Unclosed files can cause problems. See the section "When to Ignore the Red

Warning Light" below for a full discussion.

ST <Status}> and Disk Errors and Messages

ST has several applications in disk file handling. When INPUT# reads to the end of

a file, ST is set to 64. ST can be tested for this condition if the file length is un

certain. After 64, ST becomes 66, which means the device isn't responding.

Two other possibilities are ST= -128 (usually accompanied by 7DEVICE NOT

PRESENT) and ST=1 (if writing is slow). The other four bits of ST don't apply to

disk. ST isn't usually important, because an end-of-file marker makes ST=64 super

fluous, and the other errors are generally obvious. However, a command like IF

ST>0 THEN GOTO EXIT provides an easy exit mechanism when testing files. If you

do this, remember that ST is reset after every input or output, so put the test im

mediately after the relevant command.

Disk messages nearly always indicate that a program can't run. The exceptions

are message 1, the number of files scratched, and message 50, RECORD NOT

PRESENT, which always occurs when a relative file is set up. The error may not be

serious—for example, a syntax error in a command string—but it's good practice to

follow each disk command with a subroutine call to read channel 15 and exit if the

message number is 20 or more. The subroutine should print the message number

and its message, and close all open files, as the following example shows:

10000 INPUT#15,E,E$,T,S: IF E<20 THEN RETURN

10010 CLOSE 2: CLOSE 15: PRINT E;E$;T;S

Note that this subroutine slows processing (especially after GET# statements) and

can be ignored in ordinary, noncritical programming.

When to Ignore the Red Warning Light
Newcomers to Commodore disks are often concerned with the red warning light.

Usually, it does not mean that something horrible has happenecl to the disk.

The red light combines several informative functions. A steady light means that

a file is open. Try, for instance, OPEN 2,8,2//TEST,W" in direct mode. The drive will

start, and a write file will be opened to the disk. When the disk stops (the motor

runs on for a few seconds to reduce delays when there are repeated disk accesses),

the light remains on. Enter PRINT#2,"HEIXO" then CLOSE 2. As with a tape file,

the data is stored in a buffer; it's written only when the file is closed. A directory of

the diskette shows FILE with type SEQ, occupying one sector only because there's

such a small amount of data.

Any read/write activity causes the light to turn on, mainly as a warning not to

interrupt the process by opening the drive door. However, this is important only if

there's a file tvriting to the disk.

A flashing light indicates an error message (scratching files generates message 1,

but in that case the light doesn't flash). In fact, the number of flashes varies with the

type of error, though not in a very useful way. The message can be read (by RUN

1000 with 1000 INPUT#15,E,E$,T,S: PRINT E;E$;T;S: END); once it is read, the light

goes off and the message buffer is cleared.
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You can ignore the flashing red light if you are reading from disk. Suppose

you've typed LOAD "PROGARM",8 in error; the red light flashes, and the message

is ?FILE NOT FOUND. Type the correct version, LOAD "PROGRAM",8, and loading

will proceed normally with no problems. The same sort of thing applies in a pro

gram: 10 OPEN 2/8,2//FIEL,S,R" might generate an error, but if the line is edited

and the program rerun, no harm will result.

Take the red light seriously if you are writing to disk and a write file is still

open. An unclosed file can cause problems with storage to disk, because the normal

system of chaining between sectors is disturbed; other programs and files can become

corrupted. This isn't likely to be a major problem. However, if you are using a file

system for a serious purpose, you should be aware of this possibility, since there will

almost inevitably be program crashes during testing. When programs are finally com

pleted, it is good practice to transfer them to new disks to avoid any chance of error.

The steps to take and danger signs to watch for are listed in the next section's notes.

Handling Program Files

Program files are marked PRG in the directory. They are used for storing BASIC pro

grams in tokenized form tfnd $AL or graphics as simple consecutive bytes. There's no
way of telling from the directory whether PRG is BASIC or not; if LOAD "NAME",8

and RUN works, then it is BASIC, at least in part. ML programs usually need a SYS

call to run.

PRG files can be opened for read or write. If such a file is read, the first two

bytes are invariably the LOAD address, and the rest is the data. LOAD "NAME",8,1

always loads into this LOAD address, but LOAD "NAME",8 allows relocation (and

also relinks the program, assuming it to be BASIC). There's no way to force a pro

gram file to load where you want with LOAD "NAME",8.

OPEN 2,8/2,//NAME,PRG,WRITE" opens a program file for write, while OPEN

2,8,2,//NAME,PRG,READ" opens the same file for read. There are, of course, vari

ations on this. For instance, the file numbers and channel numbers needn't be 2; the

device number may not be 8; and the command string can be made up of string ex

pressions. In addition, the command string can be abbreviated such as ,P,W for

,PRG,WRITE.

Program 15-2 is a short program that reads any program byte by byte, printing

out the results in ASCII.

Program 15-2. Reading Programs Byte by Byte

1 OPEN 15,8,15,"I":REM INITIALIZE DISKETTE

2 OPEN 2,8,2,"PROGRAM FILE DEMO,P,R":REM OPEN PRG

{SPACE}FILE FOR READ
3 GET#2,X$:REM GET A FILE CHARACTER

4 IF ST>0 THEN CLOSE 2:END

5 PRINT ASC(X$+CHR$(0));:REM PRINT ASCII VALUE

6 GOTO 3

Line 2 must include the name of the program to be examined. Alternative forms

of the command string such as OPEN 2,8/2//NAME,PROGRAM/READ// or OPEN

2,8,2^$+",P,R" are perfectly acceptable.
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Run this with a BASIC program as its PRG file, and you'll get BASIC in its

tokenized form. For instance, if you save a one-line program (10 PRINT'HELLO")

and then look at it using this program, you'll get something like Figure 15-2.

Figure 15-2. Tokenized BASIC

LOAD

Address

1 8

Link

Address

14 8

Line

Number

10 0 153

Tokenized Line

PRINT "HELLO"

34 72 69 76 76 79 34 0

End of

Program

0 0

Uses for Program File Processing

Analyzing BASIC. Provided allowance is made for link addresses, line numbers,

and the tokenized form of keywords, BASIC programs can be read, perhaps to see if

they're identical. Hidden code can be searched for. Appending, deleting, and similar

manipulations are possible. The link address need not be correct, since LOAD will

relink it.

It's possible to write BASIC directly to a PRG file, by opening a program file for

write, printing any two bytes as the start address (they'll be overridden when the

program loads), and printing a further series of CHR$(n) commands to make up the

program. This can be useful in some antilisting techniques, and BASIC lines longer

than 88 characters can be written in this way, too.

Finding ML or memory dump LOAD addresses. This can't be done in direct
mode. Instead, you may use Program 15-3.

Program 15-3. Finding ML or Memory Dump LOAD Addresses

10 INPUT "PROGRAM NAME";N$

20 OPEN 2,8,2,N$+",P,R"

30 GET#2,X$,Y$

40 PRINT ASC(X$+CHR$(0))+256*ASC(Y$+CHR$(0))
50 CLOSE 2

^.Analyzing ML programs. You've seen how to read the two LOAD address
bytes. If you wish to load ML into a different area, you can change the LOAD ad

dress by rewriting the two leading bytes using the routine in Program 15-4.

Program 15-4. Changing the LOAD Address

10 OPEN 2,8,2,"ML FILE1,P,R"

20 OPEN 3,8,3,"ML FILE2,P,W"

30 GET#2,X$,X$

40 PRINT#3,CHR$(0)CHR$(192);

50 GET#2,X$:IF X$="" THEN X$=CHR$(0)

60 S=ST:PRINT#3,X$;

70 IF S=0 GOTO 50

80 CLOSE 2:CLOSE 3
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Lines 50 through 70 transfer the entire file, except for the first two bytes. The

old LOAD address is thrown away; the new is set at $C000. Note in line 50 how a

character which GET# regards as null must be converted into CHR$(0); otherwise,

zero bytes will be lost. Line 60 preserves ST, which is reset by the PRINT# com

mand, for the end-of-file test in line 70.

If you change disks, you may need to initialize the new disk (or add line 0

OPEN 15,8,15/T': CLOSE 15 to the program).

PET/CBM programs load at $0401, so 64 programs can be made to load into

these machines with this program. Occasionally, you may even want to use the pro

gram to restore LOAD addresses to programs which have lost them through incorrect

copying.

Writing machine code or graphics definitions directly onto disk. As with

BASIC, there's no problem in opening a program file, writing a two-byte LOAD ad

dress, and following this with bytes. For example, where RAM is already occupied

by machine language or BASIC, or in tricky areas like zero page or the screen, this

technique allows any area of RAM to be saved to disk. An autorun routine, analo

gous to those used for tape, provides an illustration.

Autorunning program. This is trickier with disk than with tape. If the start of

BASIC is fixed, extra ML can be added to the start of the program to cause it to run

automatically after loading. Alternatively, and for greater versatility, you can use a

loader which calls the program by name, and so allows for variations in starting

address.

Program 15-5 autoruns ML programs, which therefore need no SYS call. The

forced LOAD address is $02A7. The autorun feature is caused by changing the vector

at $0302-$0303 to $02A7, where the ML program is loaded by name (in effect, with

LOAD "ML",8,1) and then jumped to.

To use this program, you need a BASIC program on disk, Program 15-5 (below)

in memory, a new name for the program, plus a two-line message. When run, the

program adds ML from $02A7 to the start of BASIC. In other words, LOAD

"NEWNAME",8,1 puts BASIC into its normal position, but prefaced by about five

blocks of ML which autoruns. It also straddles the screen, so the message which is

input appears before the program runs (it's timed to stay for about five seconds and

appears black-on-white). RUN/STOP and RUN/STOP-RESTORE are automatically

disabled. Some of the ML simulates plug-in ROM at $8000, which means that even

a hardware reset cannot break into the program as it runs.

Autorun assumes BASIC starts at $0801, as it normally does; VIC-20 is more

awkward to autorun than the 64 is, because its starting position varies with memory

expansion. Test the new program, then delete the pure BASIC version from the disk;

now you have an autorunning BASIC program.

Program 15-5. ML Autorun
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

20 REM DATA MARKED WITH ASTERISKS PROTECTS AGAINST

:rem 132

21 REM HARDWARE RESET; IF THIS ISN'T REQUIRED,

:rem 12

22 REM OMIT THE DATA. ALSO OMIT IF BASIC USES

:rem 67
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23 REM RAM AFTER $8000. :rem 181

24 REM irem 74

100 PRINT "MESSAGE, STATEMENT, OR TITLE" :rem 151

110 INPUT M$ :rem 147

120 INPUT "PRESENT PROGRAM NAME";N$ :rem 110

130 INPUT "AUTORUN PROGRAM NAME";P$ :rem 126

140 PRINT "{CLR}{2 DOWN}": PRINT M$ :rem 83

200 OPEN 15,8,15,"I" :rem 217

210 OPEN 1,8,3,N$+",P,R" :rem 192

220 OPEN 2,8,4,P$+",P,W" :rem 202

230 FOR J=679-2 TO 9999 :rem 143

240 READ X: IF X<0 THEN 300 :rem 89

250 PRINT#2,CHR$(X);:NEXT :rem 3

300 FOR K=J TO 2048 :rem 189

310 IF K=770 THEN PRINT#2,CHR$(167);rNEXT :rem 42

320 IF K=771 THEN PRINT#2,CHR$(2);:NEXT :rem 192

330 IF K=808 THEN PRINT#2,CHR$(234);:NEXT :rem 41

340 PRINT#2,CHR$(PEEK(K));:NEXT :rem 108

400 GET#1,X$,X$ :rem 24

410 GET#1,X$:IF ST=64 THEN CLOSE 1:CLOSE 2:CLOSE 1

5:END :rem 103

420 PRINT#2,CHR$(ASC(X$+CHR$(0)));:GOTO 410

:rem 138

500 DATA 167,2,169,131,141,2,3,169,164,141 :rem 12

510 DATA 3,3,169,1,133,43,169,8,133,44,169 :rem 20

520 DATA 0,168,153,0,216,136,208,250,169 :rem 173

530 DATA 1,141,33,208,133,162,165,162,208,252

:rem 157

540 DATA 162,5,189,15,253,157,3,128,221,3: REM ***

* :rem 168

550 DATA 128,208,251,202,208,242,169,2,141: REM **

** :rem 213

560 DATA 1,128,169,254,141,3,128,169,245,141,0: RE

M **** :rem 159

570 DATA 128,169,188,141,2,128,169,128,133,56: REM

**** :rem 132

580 DATA 169,234,141,40,3,32,89,166,76,174,167,-1

:rem 121

PRG files occupy 254-byte sectors on the disk; the first two bytes are the LOAD

address. Thus, 252 bytes go into the first sector, while 254 bytes go into the remain

ing sectors. An 8K program (8192 bytes) therefore occupies approximately 32 lA sec

tors, which appear as 33 sectors on the directory. The number of sectors taken up by

any program or memory dump can be similarly calculated.

Handling Sequential Files

Sequential files are marked SEQ in the directory. They are easy to use and can store

large quantities of data. The records are free from length restrictions, subject to the

88-character limit if INPUT# is used for reading, so there's no space overhead apart

from separators like RETURN characters. In sequential files, records are likely to be
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stored in similar sets—for instance, name followed by four address lines and a

phone number—so there are no problems in interpreting data when it is read back
from the file.

Sequential files, once written, aren't readily changed, but new records can easily

be added onto the end. The disk operating system (DOS) has a built-in Append

command. Files can be updated only by reading, correcting records as they are read,

then writing back the edited version (with old records removed and new ones in

serted) as a new file with a different name. This process, which is impossible on 64
tape, is easy with disks.

The DOS has another command, Copy, which copies a sequential file onto the
same disk and optionally concatenates another file on the end. This is more useful
with CBM's double-disk units, but still has a few uses with the 64.

Use OPEN 2,8,2,'7i7enflme,SEQ,WRITE" to open a sequential file for write op

erations. OPEN 2/8,2,/y*7ename,SEQ,READ// opens the same file for read; OPEN

2,8,2,7*7ename,SEQ,APPEND" opens an existing file for Append.

The file and channel numbers need not be 2, and the device number does not
have to be 8; there are alternative, similar forms. Sequential files are assumed by de
fault, so if SEQ, or the shorter S, is omitted from any of these commands, it makes

no difference. READ is a further default, so OPEN 2,8,2,"filename" assumes a

sequential file will be read and reports an error if the file isn't found.

A sequential file can be opened for write only once. Thereafter, data can be ap

pended, but an attempt to open it again for write using the same file number will

cause a FILE EXISTS error message within the disk drive. However, using a different

file number erases the file and starts over.

Copy has the following syntax:

OPEN 15,S,lS,"CO?\:new name=old name"

or

PRINT#15,"COPY:/H?a; name=old name" (after OPEN 15,8,15 has been carried out)

This command writes another copy of the file, under a different name (or you'll get

FILE EXISTS), to the same disk.

OPEN 15,8,15,"COPY:j!ac; name=first file,second file"

The above combines two or more named files into another; again, the combined file

must have a new name.

Program 15-6 is a simple example of a program that reads a sequential file and

displays its contents onscreen. Note that ST in line 60 tests for the end-of-file con

dition. If that line is omitted, nothing very terrible happens; however, line 40 will

then repeatedly fetch a meaningless character.

Program 15-6. Reading and Displaying a Sequential File

10 PRINT "NAME OF SEQ FILE TO BE DISPLAYED"

20 INPUT N$

30 OPEN 1,8,2,N$:REM OPEN SEQ FILE (DEFAULT= READ)

40 GET#1,X$

50 PRINT X$;

503



Using Disk Storage

60 IF ST>0 THEN CLOSE l:END:REM STOP AT END OF FIL

E

70 GET X$sIF X$=MM THEN 70

80 GOTO 40

You may find that the disk warning light flashes if you misspell the file's name

or try to read a program rather than a sequential file. However, incorporating a test

for these messages is straightforward. First, add the following line:

5 OPEN 15,8,15

It is good practice to close file 15 last; if it is closed during a program, other disk

files will close, too. Then add this subroutine:

10000 INPUT#15,E,E$,T,S: IF E<20 THEN RETURN

10010 PRINT "***DISK WARNING": PRINT E;E$;T;S: CLOSE 15

Whenever the disk is accessed, a call to this subroutine will test that all's well.

Add 35 GOSUB 10000 to check that the file was opened properly; add 45 GOSUB

10000 to check each read from the file. This slows processing, of course.

The program is now almost ready, but one further subtlety is possible. ST is

changed by the new line 45 to reflect the status of input from the command file

rather than the sequential file, so you can add another line (42 S=ST) and change

ST in line 60 to S; the program then tests for all error conditions.

After making the above changes, the program will look as follows:

5 OPEN 15,8,15

10 PRINT "NAME OF SEQ FILE TO BE DISPLAYED"

20 INPUT N$

30 OPEN 1,8,2,N$:REM OPEN SEQ FILE (DEFAULT= READ)

35 GOSUB 10000

40 GET#1,X$

42 S=ST

45 GOSUB 10000

50 PRINT X$;

60 IF S>0 THEN CLOSE 1:END:REM STOP AT END OF FILE

70 GET X$:IF X$="" THEN 70

80 GOTO 40

10000 INPUT#15,E,E$,T,S:IF E<20 THEN RETURN

10010 PRINT "***DISK WARNING":PRINT E;E$;T;S:CLOSE

1

If the warning light flashes, it can be ignored with this program since no files
are being written.

If you prefer to see every file character (for example, RETURN showing as 13),

replace X$ in line 50 by ASC(X$+CHR$(0)).

Writing Sequential Files

Writing a sequential file is straightforward. It's similar to reading, except that

PRINT# is used and the file must be opened with the W parameter. You can see

how this works by typing in OPEN 2,8,2,//SEQ TEST,W" in direct mode. On RE

TURN, assuming the file doesn't already exist, the disk shows activity; when it stops,
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the red light remains on because a file is open. Enter PRINT#1,"HELLO" and note

the absence of activity. CLOSE 2 writes this data to disk and closes the file. The pre

vious program will read back the five letters of HELLO plus a final RETURN

character.

Repeating the same command causes a FILE EXISTS disk error. If the file isn't

important, OPEN 2,8,2/"@:SEQ TEST,W" will open a new file with the same name.

Appending Sequential Files

Appending means adding new data onto an already existing file. To append to a

sequential file, use OPEN 2,8,2//SEQ TEST,A" which reopens the file, leaving the

red light on. PRINT#1, "GOODBYE":CLOSE 1 writes an extra record; again this can

be checked by reading.

Sample Uses for Sequential File Processing

Storing records. If a file is to be written once only, open it for write, use INPUT

from the keyboard, then PRINT# to write to the file and CLOSE the file. Where a

file is to have records added from time to time, but none removed or altered, it's

easiest to set up the file first, then open it for Append whenever it's needed, INPUT

the new data, and PRINT# to the file.

Where a file is to be pHitpH/ hnwpypr; use two files—perhaps "NAME"+

STR$(N) followed by "NAME"+STR$(N+1). With this scheme, there will always be

a file called something like "NAMES/PHONES 33" on disk. The file-editing pro

gram will ask for the update number (33 in this case) and open the earlier version

for read and the later version for write. Alternatively, you may prefer to rename the

existing file OLD and write to NEW.

The file OPEN commands have the following form:

OPEN 2,8,2,"OLD":OPEN 3,8,3,"NEW,W"

INPUT#2 takes data from OLD, while PRINT#3 writes it to NEW.

For security, add a channel-reading subroutine which closes files if an error is

detected.

Dealing with BASIC. There's a close connection between SEQ and PRG files.

Commands to Append, Concatenate, and Copy all work with program files, al

though the results don't always appear similar because BASIC uses three zero bytes

as terminators. Thus, appending like this can work only if two of these bytes are

thrown away. BASIC can be written as a sequential file by opening a write file (for
instance, file 1) and using CMD 1: LIST, followed by CLOSE 1, to print the program

to the file. BASIC stored in this way is not tokenized and is generally longer than its
normal equivalent. But this storage method allows for fairly easy program analysis.
Cross-reference tables of variables by line numbers are a typical application.

As you'll see, the directory track can be read as a file, and this gives a lot of
information about the way files are stored. Using SAVE "PROGRAM,S,W",8 it's

even possible to save programs as SEQ files.
Copying files. SEQ files can be copied for security either with a CBM 4040 disk

drive or by reading the data, storing it in RAM, and writing it back onto a new disk.
If the file is long, of course, this method is impossible; in such a case the best com
promise is to write to a tape file, which obviously has no space restrictions, then

read back and write to the new disk.
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SEQ files occupy 254-byte sectors. Add together the lengths of all the strings of

data, including RETURNS, divide by 254, and round up to estimate the storage

requirement of any SEQ file.

Handling Relative Files
Because of their highly structured format, relative filgs (REL in the directory) allow

bothreading and writing in the same openlile.lijyery record is assigned a set lengtK,
which cannot be exceeded! Shorter records are automaticalljrgaddedjvitii nulT

characterslThus, whgSi^g^SL^1^0101^^ ** *s importsj£*j? wr*te kack~the entire
j-gcord, or the finaTpart will Beie^segXPor^an^pI^WlLLlOMS must be printed

back as WILLIAMS, not as an A at the sixth position.

Relative files are referred to by number. The DOS uses a P parameter to transfer

the record number to disk.

Whenever a record is written beyond the present end of file, message 50,

RECORD NOT PRESENT, is generated. The first time around, this can be ignored.

You've seen already that it's a good idea to format the entire file right at the start,

assuming the number of records needed in the complete file is known. This sets up

each record as CHR$(255), so reading back an empty file lists each record as a *

symbol.

A relative file's data is stored like a sequential file (with ASCII characters sepa

rated by RETURNs), but has an extra file of pointers. A maximum of three disk reads

is needed to read a record with this system, which is therefore often slower than a

sequential file, which never uses pointers. Of course, for random access, relative files

are faster than any but the shortest sequential files. Records are stored in a disk

buffer, so reading or writing adjacent numbered records often requires no disk access

time.

Use OPEN 2,9>,2l"filename,U" + CHR$(L) to open a relative file. As usual, the

file number and channel may take a range of values, and the device7number may

not be_8. Using L is compulsory when the file is set up for the first time; it is fol

lowed by the record length, which must allow for a RETURN character. For example,

use £BR&(21) if the longest record has length 20,

The record Tength parameter is stored on the diskette. If you attempt to reopen

the file with a different record length, error 50, RECORD NOT PRESENT, shows. The

maximum record length is 254. Anything beyond this gives error 51, OVERFLOW IN
RECORD.

Once the file has been opened, the L and parameter are optional and a simple
OPEN statement with the name is sufficient. It makes sense to use the full version,
though, in case you forget the record length.

Obviously, the number of the record which is about to be read or written must
be sent to disk. The syntax is tricky: PRINT#15/P" + CHR$(channel) + CHR$(/ow;
byte) + CHR$(high byte) + CHR$(position) assuming OPEN 15,8,15. The channel
parameter is identical to the channel used in OPEN, 2 in the example above. The

low/high byte format is familiar. Thus, record number 200 needs PRINT#15,
"P"+CHR$(2)+CHR$(200)+CHR$(0)+CHR$(l).

The final parameter is a pointer, with 1 representing the start of the record. It al
lows writing or reading to take place a set distance within a record. Obviously, it
shouldn't exceed the record length. It is usually 1. Don't omit it.
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The pointer allows records to be subdivided, so that a 200-byte record might

have several fields (for instance, starting at 1, 40, and 100). In practice, each field can

be written within its record sequentially, without bothering with this, because

PRINT#, INPUT#, and GET# each advance the pointer as they write or read into

the file buffer. In any case, writing to such a record requires that everything up to

the final record be written. If only the field starting at 40 were written, the field

starting at 100 would be erased.

Program 15-7 is an example of relative file handling. It asks for record numbers,

then for the data to be input, and writes the record to disk. It does not include a

read of the error channel. To end the program, enter a record number of 99999.

Program 15-7. Handling Relative Files

10 OPEN 15,8,15

20 PRINT "REL. FILENAME":INPUT N$

30 PRINT "RECORD LENGTH":INPUT L

40 OPEN 1,8,2,N$+",L,"+CHR$(L+1)

50 INPUT "RECORD#";R

60 IF R=99999 THEN CLOSE 1:END

70 RH%=R/256:RL=R-RH%*256

v-80 PRINT "RECORD":INPUT R$

^90 R$=LEFT$(R$,L)
100 PRINT#15,"P"+CHR$(2)+CHR$(RL)+CHR$(RH%)+CHR$(1

)
110 PRINT#1,R$

120 GOTO 50

Line 40 opens a relative file, named by the user, and assigns a record length one
greater than the value entered (to allow tor a RETURNjinhe end). Line 60 allows ^
record number 99999 to act as an indicator that no more data is to be entered. Lines

80 and 90 take in the material to be written to disk and check that it isn't too long.

Line 100 sets the record number parameters from the channel number and record

number. Line 110 finally puts the record onto disk. This is the simplest case, where

the record starts at the beginning of its allotted space.

Channel 15 can be read as usual. A subroutine call in a new line 45 could check

the OPEN, and lines 105 and 115 can also be added to test the command and the

print.

Remember that message 50 signals that the file is being extended, and therefore

it should be expected when the file is being set up.

Reading the file. The easiest way to read the file you've just created is to mod

ify the write program, delete lines 80 and 90, and alter 110 to INPUT#1,R$: PRINT

R$. Line 30 can be removed, and 40 OPEN 1,8,2,N$ is sufficient.
The same file is usable for either reading or writing. Typically, a program will

have a menu allowing either mode to be selected.

Copying. Use OPEN 15,8,15,"C:new name=old name" to copy this type of file

onto the same disk with a new name. This provides some security. Apart from direct

disk copying, or putting data into RAM (where there may not be enough available
room), copying records to tape by reading them in sequence, then writing them back

to a different diskette, is the easiest method.
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Storage. The total file length is the L parameter multiplied by the largest record

number, plus one (since record 0 exists). One thousand records of length 21 occupy

21,000 bytes; these are stored in 254-byte sectors, so the data occupies 83 sectors.

(Commodore 64 disks have 664 free sectors.) Additionally, the side sectors contain

ing the pointers occupy from 1 to 6 sectors, depending on the file length. The actual

number is the file length in sectors divided by 120; so our example file needs 1 side

sector only, and the entire file takes 84 sectors.

A relative file which fills the entire diskette takes about five minutes to set up

when first written.

Note that some versions of CBM DOS aren't reliable in validating disks with rel

ative files; however, 1540/1541 DOS apparently does not have this fault.

Summary of Disk Commands and Messages
The following list summarizes the 64 disk drive's file and program commands. All

the syntax examples are illustrations only; modifying them to your own requirements

where necessary isn't much work.

Append. Used mainly for sequential files, Append opens an already existing

sequential file for write. New records are added to the end of the existing file. The

syntax is OPEN 2,8,2,7/tettame,A" then PRINT#2 and CLOSE 2.

Copy and Concatenate. Used mainly for sequential files, these commands create

a new file with a new name, consisting of a copy of just one file or of several con

catenated files. OPEN 15,8,15,"C:NEW=FIRST,SECOND,THIRD" combines three

files in sequence in the new sequential file called NEW.

Directory. This command lists any diskette's contents. Its form is LOAD "$",8

then LIST. Getting a directory in this way will destroy any BASIC program in mem

ory, so during program development, never read the directory unless you've saved

the current version. The DOS wedge program on the demo disk reads the directory

directly into the screen and can therefore be used during program development.

Initialize. Usually automatic, this command reads the present diskette's storage

details into disk RAM. If diskettes are changed, it's always safest to initialize the disk

drive with OPEN 15,8,15/T':CLOSE 15. The command is necessary in some pro

grams reading directly from the diskette and provides a means to get the drive work

ing again in occasional anomalous situations. The 64's RAM is unaffected.

New. New, used to format all new disks, has been explained earlier. The syntax

is OPEN 15,8,15/'N:name,ID" for a brand-new diskette. Be careful with this

command.

OPEN, CLOSE. OPEN and CLOSE were discussed in the sections on program,

sequential, and relative files, and in the discussion of channel 15. Typical BASIC is

as follows:

OPEN 15,8,15,"COMMAND STRING" to the command channel

OPEN 2,8,2,"SEQFILE,S,W" to open SEQFILE for write

OPEN 3,8A"@:PROGRAM,P,W" to scratch and reopen PROGRAM for write

OPEN 4,8,4,"RELFILE,L,"+CHR$(101) to open RELFILE

CLOSE 2: CLOSE 15 to close two files.

Record#. For relative files only, this sets the record number and position within

the record from which write or read will take place. Typical syntax is
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PRINT#15/T//+CHR$(4)+CHR$(LO)+CHR$(HI)+CHR$(l) where OPEN 15,8,15

is assumed and the relative file uses channel 4.

Rename. Rename changes the name of any type of file. It has the syntax OPEN

15,8,15/'R:NEW=OLD//:CLOSE 15 where the file previously called OLD is now

called NEW. Only the name is changed; a duplicate file is not created.

Scratch. Scratch deletes any type of file by name, using pattern matching. Typi

cally, it uses the form OPEN 15,8,15//S:///enflme":CLOSE 15.

Validate. This command checks disk integrity. It tests and collects together all

the disk sectors' chaining. This is safe with any type of closed file but will erase un

closed files; its syntax is OPEN 15,8,15,"V":CLOSE 15.

Use Validate whenever disk writes have been interrupted, for example, by a syn

tax error in BASIC. However, if you have an incomplete file you wish to save, first

follow the instructions below. Validate is also useful for cleaning up a heavily used

disk. If you have scratched and resaved programs many times (for example, during

program development), the disk may contain more free blocks than are shown by

LISTing the directory. Validate will reorganize such a disk and free up all of the un

used blocks.

Pattern Matching

Disk commands involving loading or opening for reading generally can be abbre

viated using * and ? as pattern-matching symbols. For example, LOAD "A*",8 loads

the first PRG-type file in the directory which begins with A. However, LOAD"*",8

and VERIFY "*",8 assume the last loaded program applies, unless no program has

been loaded, in which case the first program loads. Similarly, OPEN 2,8,2,"S:X*":

CLOSE 2 scratches all files beginning with X.

The question mark (?) allows wild-card matching, but the exact positions have to

match; LOAD "????BON*",8 loads TROMBONE, but not BONZO.

Because of the possibility of sending spurious disk commands, you should not

include symbols like * ? # : , in filenames.

Problems with Disk Drives

Unresponsive drive. Sometimes you'll get ?FILE NOT FOUND, even with LOAD

"$",8. Try again. If that doesn't work, open the disk door and close it, then try

again.

You may also get 7DEVICE NOT PRESENT when the disk is switched on and

ready. Try initializing, or if the red light is lit, OPEN 15,8,15: CLOSE 15. Sometimes

a printer causes this hang-up. Try turning your printer off.

See Table 15-1 for a summary of the messages generated by the disk drive.

File problems. Unclosed files are signaled with an asterisk in the directory entry

(for example, *SEQ). However, some aborted files don't have this. You may have a

situation where a program occupies two sectors, even though its file is reported as

occupying only one, and there are only 618 blocks free instead of 661 as expected. In

each case it's ultimately best to validate, but you could either leave the disk alone,

using it only for reading, or recover some of the file data, using OPEN

2,%,2,"fHename,M" which enables unclosed files of all types to be read as far as

possible.
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To avoid this sort of problem, simply make a point of closing write files if a pro

gram crashes before they are closed properly. Enter CLOSE 2 in direct mode, for ex

ample, and include a CLOSE statement for channel 15.

OPEN 15,8,15:CLOSE 15 will generally close all disk files successfully.

Program problems. Sometimes the final sector of programs becomes corrupted;

on LOAD the program loads, but READY never appears. The best solution is to press

RUN/STOP-RESTORE, then POKE zeros into memory after the end of the program,

using BASIC'S pointers at locations 45 and 46 to locate the end.

Commodore Utility Programs
Commodore's demo disks contain a number of programs. Those listed below are

typical of what you will find.

CHECK DISK

Tests a diskette by writing to and reading from every sector.

COPY/ALL

A BASIC program, written by Jim Butterfield, to copy an entire disk from one drive

to another. Two drives are necessary. One drive can be reassigned device number 9

with DISK ADDR CHANGE.

DIR

Reads the directory of device 8 from BASIC. No advantage over ordinary directories.

DISK ADDR CHANGE

Writes a new device number through the command channel, usually 9, to permit

interdrive copying.

DISPLAY T&S

Displays any track and sector on the diskette. Very useful for examining the disk's

entire storage system or (in extreme cases) for reading programs or files directly.

DOS 5.1
The 64 wedge. Use this to make direct mode disk commands simpler. The wedge

will not coexist with some other utilities. It adds these direct mode commands:

@ alone reads the disk status and prints it,

@$ reads and displays the directory, without affecting BASIC,

/PROGRAM loads PROGRAM.

Some versions allow a LOAD and RUN option, and an abbreviated SAVE command.

All versions allow > (a wedge) as an alternative to (5).

PERFORMANCE TEST
Formats a disk, writes, and reads, but doesn't exhaustively test either diskette or

drive.
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PRINTER TEST

For CBM printers only.

VIC-20 WEDGE

This program simplifies disk commands for the VIC-20, as DOS 5.1 does for the 64.

VIEW BAM

Prints a diagram of the Block Availability Map.

Hardware Notes
1540/1541 Disk Drive Units

These drives contain a transformer to supply power, a printed circuit board contain

ing the ROM, RAM, and interface chips which hold the disk operating system, and a

drive unit, which is positioned away from the heat-generating components. Some

models have metal shielding over the printed circuit board to reduce radio frequency

emission. Both the shielding and the top half of the outer casing are easily removed

(for example, to exchange a 1540 ROM for a 1541 ROM or to change the device

number from 8). The design is similar to earlier Commodore disk drives, the 2031

single disk and 4040 double disk.

The device number can be set to any number from 8 to 15. At least four drives

can be daisychained together, so in principle, a four-drive system would be feasible.

Given the right hardware, a single 64 can also share a disk drive with other 64s.

The read/write head faces up, so the underside of the diskette is the active side.

Closing the door brings a pressure pad down on the head, keeping it in close contact

with the diskette. During read/write operations, the diskette is rotated by the spindle

motor at about 300 revolutions per minute, and centrifugal force gives the diskette

some rigidity. The head itself is mounted on rails and can move, along with the

pressure pad, a maximum of about one inch. Movement is handled by a stepper

motor. Each step moves the head about 1/30 inch.

These drives use 35 tracks. The actual magnetized zones are about 1/60 inch

wide; the clutch mechanism which grips the diskette has to position it within that
tolerance.

Head alignment problems sometimes occur, in which diskettes work on one disk

drive but not on another, because the heads aren't quite in the same place relative to

the disk center. Special alignment diskettes, having very slightly elliptical tracks,

allow a disk drive head to be accurately repositioned. Realigning disk drive heads is
specialized work.

Diskettes

1540/1541 disk drives use 5-1/4-inch floppy disks. Any good-quality, single-sided,
single-density diskettes are fine. Soft-sectored diskettes are generally used, but hard-
sectored disks will also work well, as their index hole isn't used by the drives.

Write-protection is readily implemented with 1540/1541 drives. An adhesive tab
over the notch prevents writing to the disk. Attempting to write to such a disk re
turns 26 WRITE PROTECT ON.
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Figure 15-3. A Typical Diskette

Stress-Reducing Notches

4, *,

Read/Write

Slot

Index

Hole

—>

-Track 1

-Directory Track

-Track 35

Write

r-Protect

Notch

Label.

Diskettes are inserted label up, read/write slot foremost. Diskette labels are

deliberately positioned away from the slot, to reduce the chance of fingerprint dam
age and to allow the label to be read when the diskette is in its dust cover. Writing

on the label with a sharp implement—for instance, a ballpoint pen—may damage

the diskette surface below. Always write on the label before putting it on the disk.
It is good practice to open the drive door when drives are turned on or off.

There's some small chance of magnetic "glitch" damage to a diskette that's left in a

drive with the door closed when power is turned on.
It's easy to modify diskettes so that both sides are usable. The index hole isn't a

factor; all that's needed is to cut a notch in the diskette opposite the write-protect
notch. The diskette then works on either side. However, that may not be desirable.
The standard argument against this practice is that small particles of dust, smoke,
and other debris, which become trapped by the self-cleaning wiper which lines the
diskette, may be dislodged when the direction of rotation is reversed. In addition,
some single-sided diskettes have defects on the back side. Nonetheless, quite a num

ber of people do this successfully.
Diskette life is typically quoted as several million passes per track. At 300 rpm

this represents about a week's continuous running.

Track and Sector Storage System
All 1540/1541 units use 35 tracks, defined by the head positions. Track 18 is exactly
midway between the edge and center of the disk, and it stores all the directory infor
mation, thus minimizing delays due to head movement. When a disk is formatted,
the head moves to the outer track (track 1) end stop, then counts in, one track at a
time, to 35. The same head movement to track 1 (making a rapid clicking sound)
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happens whenever there is a read error. This occurs because the head counts in until

it arrives at its correct track, then tries reading again in case its position was wrong

before.

A track is not a solid block of data. Instead, it is broken into 256-byte blocks

called sectors. Any program or file is stored in sectors, and the first two bytes are al

ways pointers to the next sector.

Sector storage tolerates some, but not much, variation in disk rotation speed. If

the disk spins too fast, sectors will overlap and data will be lost. Typically, there's at

least a one-second delay between starting the disk motor and writing or reading

data. For this reason, the motor is left on for some time after an access, so if another

access follows shortly, no time is lost waiting for the speed to build up.

Commodore's system uses more sectors on the outer tracks than the inner. This

takes advantage of the fact that the outer circumference is greater than the inner, in

the same way that other recording media usually give better resolution at the edge

than near the middle. However, because the angular speed is constant, outer tracks

must be written and read more rapidly than inner tracks, so hard sectoring is

impossible.

Sectors are not written in sequence around the disk. If an entire track is filled

with data from a single file or program, it's more efficient to chain sectors which are

far apart on the disk, so that only half a revolution (rather than a whole revolution)

is lost between reads or writes. A typical sequence on the outer tracks is 8, 18, 6, 16,
4, 14, 2, 12, 0, 10, 20, 9, 19, 7, 17, 5, 15, 3, 13, 1, and finally 11.

Sectors are stored with a short header, followed by data. Each part begins with a
so-called sync field and ends with a checksum. The header contains 08, a two-byte
ID, and the track and sector number. The data is preceded by 07. Messages 20-29

from the disk may indicate that some aspect of this elaborate error-checking system
has failed. For example, if a magnet is held near the edge of a diskette, the outer sec
tors become unreadable. This technique can be used to protect disks from being
copied.

The conversion of bytes into magnetic patterns on disk, and vice versa, is an an
alog hardware function, relying on cross-over detectors, amplifiers, and pulse
shapers.

Changing the Disk Device Number from 8
Device number 8 is set by hardware, and many programs using disk assume drive 8.
Therefore, it is generally better to use software to alter the device number, even
though the process has to be repeated whenever the drive is turned off. The excep
tional case, where hardware change is desirable, occurs with a fairly permanent
setup with two drives. In such a case, the change can be made permanent, or the
disk unit can be fitted with a switch to select its device number.

Software conversion is easily done using CHANGE DISK ADDR on the demo
disk. This program, which works with any Commodore disk, writes the new device
number into two disk RAM locations. Commodore disks vary a great deal internally,
so the program also has to work out the type of disk drive. With the 64, use OPEN'

15,8,15:PRINT#15/'M-W"CHR$(119)CHR$(0)CHR$(2)CHR$(32+9)CHR$(64+9):
CLOSE 15 to convert from 8 to 9; the analogous statement will work for any other
conversions within the range 8-15.
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When two drives are used, they must be turned on separately. Typically, one

drive is turned on, then the 64 is turned on, then the live disk's number is changed,

and the second drive is turned on. In that way the system isn't confused. LOAD

"$",8 and LOAD "$",9 load directories from the respective drives.

Hardware conversion involves cutting jumpers. These jumpers are not wires, but

round spots of solder on the circuit board, separated into halves, with a thin strand

of solder connecting each half. You cut the jumpers by scraping away, or breaking,

the connecting strand with a sharp knife.

The actual board layouts vary. The jumpers in the 1540 and early 1541 disk

drives are located on the left side of the circuit board as you face the front of the

disk drive. On the newer 1541 drives, the jumpers are in the center of the board.

The early 1541 drives can be identified by their white cases, while the newer 1541

drives have brown cases. In both versions, jumper number 1 is nearest the front, and

just behind it is jumper 2. Figure 15-4 shows the layout.

Figure 15-4. Changing Drive Numbers by Hardware Modification

Jumper 2

Jumper 1

Front of drive

I

Cutting only jumper 1 changes the device number to 9. Cutting only jumper 2

changes it to 10. Cutting both jumpers changes it to 11. Note that opening the drive

case to do this will probably void your warranty. To avoid severe electrical shock, do

not attempt any such operation until you have turned the drive off and unplugged

every connector. If you're not sure what's involved, get help from someone who

understands electronics.

Disk ROM
Commodore disk drives have internal ROM from $C000 to $FFFF and RAM from $0
to $07FF. It's easy to disassemble disk ROM, because disk memory can be read with

the following command:

PRINT#15/'M-R//CHR$(/ow;)CHR$^W:GET#15/X$:X=ASC(X$+CHR$(0))

That assumes, of course, that OPEN 15,8,15 has been performed. The value X is the
result of using GET#, which in this case is equivalent to PEEKing the disk's memory.
The low and high bytes of the location should be used in place of low and high. You
can disassemble the ROM by replacing PEEK in a BASIC disassembler with this

routine.
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Disk ROM has the conventional 6502 features, including NMI, Reset, and IRQ

vectors at the top of memory. It also has tables of error messages and tables of com

mands, some of which are undocumented.

Minimizing Errors

To minimize errors, the general rules are simple: Keep the disk drive free of dust,

smoke, and other contaminants; store and treat the diskettes properly; keep copies of

programs and data; and so on. It's worth having a standby system if your 64 is used
for any serious purpose.

Hardware errors are rare; one bad bit in 1011 is typical of quoted figures. Errors

caused by unclosed files are far more likely. With some systems, programs to vali

date data may be used. Such systems can be written to minimize disk use, favoring

RAM where possible to minimize the probability of a mistake.

Disk Data Storage
As stated earlier, Commodore disks have 35 tracks. Of those tracks, 17 have 21 sec

tors each, 7 have 19 sectors each, 6 have 18 sectors each, and 5 have 17 sectors

each. That gives a total of 683 sectors. Track 18 holds the directory information.

Subtracting 19 for the directory gives 664 blocks free, as reported by the directory
for an empty disk. And 664 blocks of 254 bytes (excluding the track and sector

pointers) gives 168,656 usable bytes. Relative files, as you've seen, require slightly

more space; an entire diskette filled with a single relative file can occupy 658 blocks

(167,132 bytes at most). Table 15-2 shows how the sectors are arranged on a disk.

Table 15-2. Number of Sectors per Traok

Track Number

1-17

18-24

25-30

31-35

Sectors

0-20

0-18

0-17

0-16

The directory track, track 18, is diagrammed in Figure 15-5 and has 19 sectors.
Sector 0 holds the disk name, as well as a bitmap of every sector on the disk, show
ing whether the sector is used or not. Sectors 1-18 store file type, filename, and
pointers to the actual data. Each of these sectors can store eight filenames, giving a
maximum of 144 directory entries.

Figure 15-5. Traok 18, the Directory Traok

| Sector 0 | Sectors 1 through 18 |

t
Disk Name ** Directory Entries (up to 144) ►
and BAM
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Each time a file is written, the BAM (Block Availability Map) is updated, so the

system knows which sectors are free for subsequent recording. VIEW BAM on the

demo disk prints a diagram of this map. To see how this works, load DISPLAY T&S

and inspect track 18, sector 0. Its layout is described in Table 15-3.

Table 15-3. Track 18, Sector 0 (BAM)

Byte Numbers

0,1

2,3

4-143

144-159

162-163

165-166

Track 18, Sector 0 (Directory Track)

Pointer to directory entries—track 18, sector 1

Disk format A

BAM (Block Availability Map):

35 sets of 4 bytes each

Diskette Name (16 characters maximum)

Diskette ID

2A (version of disk operating system)

(Omitted bytes are SHIFT-spaces, $A0, or spaces, $20. Remember, DISPLAY T&S prints values in hex.)

BAM
Each of the 35 tracks is represented by four bytes in the BAM, as shown in Table 15-4.

Table 15-4. BAM Organization

First Byte

Number of sectors

free in this track

[From 0 to 21]

Second Byte

Bits for sectors

7,6,5,4,3, 2, 1, 0

[0=used, 1=free]

Third Byte

Bits for sectors

15,14,13,12,11,10,9, 8

[0=used, 1=free]

Fourth Byte

Bits for sectors

X, X, X, 20,19,18,17,16

[0=used or unavailable, 1=free]

For example, the first track may appear as:

04: 15 FF FF IF

The value of the first byte is 21 ($15), which means that all 21 sectors of track 1 are
free. The hex value in the second and third bytes is $FF (bit pattern 11111111),

showing that sectors 0-7 and 8-15 are all free. The hex value of the fourth byte is

$1F (bit pattern 0001 1111), meaning sectors 16 through 20 are unused as well.
VIEW BAM picks through and displays these bit patterns. Note the way information
is preferentially stored near the middle track to minimize head movement time.

Directory Entries
Directory entries are fairly straightforward. Use DISPLAY T&S on track 18, sector 1;
you'll find it split into eight sets of 32 bytes each. Except for the first 2 bytes of the
sector, which serve as a link to the next directory entry, the interpretation is shown

in Table 15-5.
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Table 15-5. Contents of a Directory Entry

BYTES

0-1

2

3-4

5-20

21-22

23

24-27

28-29

30-31

Contents of a Directory Entry

Track and sector pointer in first entry. Otherwise unused.

File Type. $ 0=Scratched/Not yet used

$80=DELeted

$81=SEQuentialfile

$82=PRG, program file

$83=USR, user file

$84=RELative file

$l-$4 signals an unclosed file. Such files are removed by Validate.
$80 is a scratched unclosed file, a type to be avoided.

Track and sector pointer to first block of file

Filename + shifted spaces ($A0 characters)

Track and sector pointer to relative file's first side sector

Record size of relative file (i.e., parameter following L on opening file)

Unused

Replacement track and sector pointer for OPEN®

Low and high byte of no. of blocks in file, as shown on the directory

The first directory entry in track 18, sector 1 is as follows:

00: 12 04 82 11 Track 18, sector 4 next entry. File is PRG. It starts track 17
04: 00 48 4F 57 Sector 0. Name is: HOW

08: 20 54 4F 20 TO

0C: 55 53 45 A0 USE

10: A0 A0 A0 A0 Name padded with SHIFT-space characters to length 16
14: A0 00 00 00

18: 00 00 00 00

1C: 00 00 0D 00 Occupies 13 sectors

Relative files have slightly more detail than other file types because of their in
dex system. A track and sector pointer points to the first side sector (of a possible
six), which is linked like any other file and treated as a separate file by the operating
system. The record length parameter is also stored here. If you've forgotten it this is
the place to look.

The side sectors have the structure shown in Table 15-6.

Table 15-6. Side Sectors in Relative Files

Bytes

0-1

2

3

4-15

16-255

Contents

Track and sector pointer to next side sector
Side sector number, 0-5

Record length of relative file

6 pairs of pointers to every side sector

120 pairs of pointers to consecutive sectors of data
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Up to 120 sectors can be stored in one of these blocks. The system calculates the

effect of the record it is asked to read or write, by multiplying record length by
record number, then calculates which sector the start of the record must appear in.

In the worst case, a new side sector has to be loaded, a track and sector looked up in
it, then finally the correct track and sector read. (If a record straddles two blocks, a

fourth disk movement occurs.)

Six side sectors can cover 720 blocks; this, of course, is enough for a file cover
ing the whole diskette. However, in this case an extra channel (for a total of three)

needs to be kept open within the disk: one for a side sector, one for a data sector,

and a third for the data itself. A sequential file needs only two, one for the current
sector and one for the correct data. Since 1541 disk drives allow five channels, two

sequential files or one relative file or one of each type can be open at the same time.

File and Program Storage
DISPLAY T&S allows any file or program to be examined byte by byte. First, the
directory entry must be found in track'18. Bytes 3 and 4, immediately after the file
type indicator and before the filename, show the track and sector of the first block.
DISPLAY T&S outputs hex numbers and has been modified from earlier versions to

automatically read chained blocks when desired.
Program files (type $82) can be either BASIC or ML dumps. The first two bytes

are the LOAD address (for example, 01 08, $0801, for 64 BASIC). BASIC includes to
kens, link addresses, and line numbers in coded form; though it looks rather strange,
the messages are legible. ML, however, generally needs disassembly since it appears

as a collection of seemingly random characters.

Relative files are stored like sequential files, with the addition of side sectors,
which are largely a list of track/sector combinations allotted to the relative file and

noted in BAM as allocated.
This may appear complex at first. However, DISPLAY T&S and other, more

sophisticated disk examination programs will allow you to explore, and the system

concepts will soon be easier to understand.

The Disk Directory
Both the entire disk directory track and the directory program can be read from
BASIC. The information here will help you examine or modify disk programs, files,

or directory entries by writing directly onto the disk.
LOAD"$",8 doesn't load a conventional file. Instead, it processes the directory

track, taking the diskette name, ID, and DOS version from sector 1, and taking file
type, filename, and file length from the directory entries in the sequence they are re
corded. Because of this processing, diskettes with many files are slower than fairly
empty diskettes. It is not possible to write to a file called $.

The number of blocks free is calculated from the individual directory entries. If
file storage has gone awry, the computed figure may include files which don't ap
pear in the directory; in such a case, validation is desirable. The blocks-free figure
sometimes differs from the total calculable from the BAM entries.
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Extending the Simple Directory

The $ directory has its own pattern-matching rules.

LOAD "$:64*",8 lists all programs and files beginning with 64.

LOAD "$:??ML*",8 lists all programs and files with ML at third and fourth positions
LOAD "$:*=S",8 lists only sequential files.

LOAD "$:MUS*=P",8 lists only programs beginning MUS.
LOAD "$:NAME" lists only NAME'S entry.

Reading the Directory Within BASIC

The directory can be read from within a BASIC program without overwriting the

program by using OPEN 1,8,0,"$". Use of the zero channel is essential. GET#1 then
fetches two bytes (the LOAD address), then four bytes (link pointers and line num
bers) followed by a directory line and terminated by a null byte, and so on, until a
link pointer of 0 is found. Program 15-8 shows how this works:

Program 15-8. Reading the Directory

10 OPEN 1,8,0,"$"

20 GET#1,X$,X$

30 GET#1,X$,X$,X$,X$

40 IF ST THEN CLOSE 1:END

50 GET#1,X$: IF X$=H" THEN PRINT:GOTO 30

60 IF X$=CHR$(34) THEN Q=NOT Q

70 IF Q THEN PRINT X$;

80 GOTO 50

Sorted Directory

Program 15-9 prints a directory in the usual format, except that the names are sorted
alphabetically. That makes it particularly useful if you have lots of programs. It can
be modified for use with a printer and can process any number of disks, one after
another.

Program 15-9. Sorted Directory
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

0 DATA 32,115,0,133,97,169,128,133,98,32,115,0,240
,7,9,128,133,98,32,115 :rem 213

1 DATA 0,165,47,133,99,165,48,133,100,160,0,165,97
,209,99,208,7,200,165,98 •rem 79

2 DATA 209,99,240,20,24,160,2,177,99,101,99,72,200
,177,99,101,100,133 :rem 71

3 DATA 100,104,133,99,144,221,160,5,177,99,133,102
,200,177,99,133,101,208 :rem 3

4 DATA 2,198,102,198,101,24,165,99,105,7,133,99,16
5,100,105,0,133,100,165,101 :rem 192

5 DATA 208,2,198,102,198,101,208,4,165,102,240,18,
133,105,162,0,134,103,134 :rem 82

6 DATA 104,165,99,133,106,165,100,133,107,240,224,
240,114,24,165,106,105 :rem 198
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7 DATA 3,133,106,165,107,105,0,133,107,230,103,208

,2,230,104,160,2,177,106 :rem 17
8 DATA 153,109,0,136,16,248,160,5,177,106,153,109,

0,136,192,2,208,246,170 :rem 7
9 DATA 56,229,109,144,2,166,109,160,(2 SPACES}5,23

2,200,202,208,8,165,112,197,109 :rem 169

10 DATA 144,10,176,34,177,113,209,110,240,238,16,2

6,160,2,185,112,0,145 :rem 142

11 DATA 106,136,16,248,160,5,185,106,0,145,106,136

,192,2,208,246,169,0,133 :rem 49

12 DATA 105,165,101,197,103,208,152,165,102,197,10

4,208,146,165,105,240,138,96 :rem 1

15 REM *** SORT DIRECTORY *** (SEE LINE 40000 FOR

{SPACE}OUTPUT)(2 SPACES}*** :rem 227

20 POKE 56, PEEK(56)-1: CLR :rem 130

30 T = PEEK(55) + 256*PEEK(56) :rem 167

100 FOR J=T TO T+242: READ X: POKE J,X: NEXT

:rem 107

1000 PRINT "INSERT DISK; PRESS(5 SPACES}RETURN"
:rem 58

1002 GET X$: IF ASC(X$+CHR$(0))<>13 GOTO 1002

srem 19

1004 OPEN 15,8,15,"10": OPEN 1,8,0,"$0" :rem 93

1006 PRINT "OK" srem 50

1008 N=2: GOSUB 10000 :rem 49

1010 N=32: GOSUB 10000: IF ST=0 THEN D=D+l: GOTO 1

010 . srem 191

1012 CLOSE 1: DIM D$(D) :rem 124

1014 T = PEEK(55) + 256*PEEK(56) :rem 10

1100 OPEN 1,8,0,"$0" srem 169

1110 N=6: GOSUB 10000 srem 47

1120 FOR J=l TO 25s GET#l,X$s D$(0)=D$(0)+X$s NEXT

srem 236

2000 N=3s GOSUB 10000: K=K+1s GET#l,Nl$s GET#1,N2$

s IF ST>0 GOTO 20000 srem 24

2010 D$(K) = STR$(ASC(N1$+CHR$(0)) + 256*ASC((N2$)

+CHR$(0))) + " " srem 21

2020 FOR J=l TO 27s GET#1,X$ srem 133

2030 D$(K)=D$(K)+X$s NEXT srem 42

2040 GOTO 2000 srem 193

10000 FOR J=l TO Ns GET#l,X$s NEXTs RETURN srem 42

20000 CLOSE Is CLOSE 15 srem 175

30000 SYSTsD srem 196

40000 OPEN 4,3s REM OR OPEN 4,4 TO DISPLAY TO PRIN

TER srem 190

40005 PRINT#4,CHR$(147) srem 247

40010 FOR J=0 TO K-ls PRINT#4,"{10 SPACES}" D$(J)s
NEXT srem 233

40020 FOR J=l TO 10s PRINT#4s NEXT srem 48

40030 CLOSE 4 srem 161

40040 CLRs GOTO 1000 srem 13
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Counting Blocks Free Within BASIC

Program 15-10 prints the number of blocks free, as reported by the directory.

Program 15-10. Number of Blocks Free

20000 OPEN 100,8,0,"$:U=U"

20010 FOR J=l TO 35:GET#100,X$:NEXT

20020 GET#100,Y$:CLOSE 100

20030 BF=ASC(X$+CHR$(0)) + 256*ASC(Y$+CHR$(0))
20040 PRINT BF"BLOCKS FREE"

Reading BAM and the Directory Entries

The command OPEN 2,8,2/'$" (channel is nonzero) allows the BAM track and direc
tory entries to be read directly. In other words, the whole of track 18 is read as

though it were a file, and 254 characters (not including the track and sector num
bers) from each block can be read with GET#. This is a convenient way to look at
the directory's internal information.

Program 15-11. Reading the BAM

10 Z$=CHR$(0):OPEN 2,8,2,"$"
20 GET#2,X$,X?

30 FOR J=l TO 35:GET#2,A$,B$,C$,D$

40 PRINTJ ASC(A$+Z$) ASC(B$+Z$) ASC(C$+Z$) ASC(D$+
Z$)

50 NEXT:CLOSE 2:END

Program 15-11 prints all 35 tracks of BAM information, arranged in sets of four,
preceded by the track number. For example, 35 17 255 255 1 means that track 35
has 17 free sectors, and all bits 0-16 are on. The number of free blocks can be cal
culated from BAM; this number is usually the same as the directory's blocks-free
figure.

Knowing that, you can write a directory to use information from the directory
entries, for example, the first track and sector. Program 15-12 reads the directory
track and reports the LOAD address of every PRG type file; this is often helpful if
you're trying to remember whether a program is BASIC or ML, or where a memory
dump belongs in RAM.

Program 15-12. Reading the Directory Track
For mistake-proof program entry, be sure to use the "Automatic Proofreader/'Appendix C.

10 DIM X$(30) jrem 107
20 OPEN 15,8,15,"I" :rem 169

30 OPEN 3,8,3,"#" :rem 30

40 OPEN 2,8,2,"$" :rem 30

50 FOR J=l TO 254:GET#2,X$:NEXT :rem 210
100 FOR J=l TO 8 srem 11

110 FOR K=l TO 30:GET#2,X$(K):NEXT :rem 100
120 IF X$(1)<>CHR$(130) GOTO 200 :rem 75
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130 FOR K=4 TO 19:PRINT X$(K);:NEXT :rem 215
140 PRINT#15#"U1:I1;3;07ASC(X$(2)+CHR$(0));ASC(X$(3

)+CHR$(0)) srem 211

150 GET#3,X$,X$,L$,H$ :rem 80

160 PRINT ASC(L$+CHR$(0)) + 256*ASC(H$+CHR$(0))"
{LEFT}" :rem 125

200 IF J<8 THEN GET#2,X$,X$ :rem 147

210 NEXT J srem 28

220 IF ST=0 GOTO 100 :rem 1

300 CLOSE 2:CLOSE 3:CLOSE 15:END :rem 69

Line 50 skips the BAM sector, and line 110 loops through each sector in track
18. That is necessary because, although most entries have 32 bytes, the first in each
block has only 30. Line 120 tests for PRG type. If this is found, its name is printed
(line 130) and its track and sector pointers are used to read the block holding the
start of the program. The command Ul is explained after the next section. Line 150

rejects the track and sector links but reads the low and high bytes of the start

address.

Direct Access Commands
Direct access commands are the commands that give the 64 direct control of the disk
drive. There are three types of direct access commands: those that read or write on
individual disk sectors, those that read disk drive memory or store programs in
disk's RAM, and those that jump to and run programs within the disk drive memory
(either in RAM or ROM). Most users need not bother with direct access, except on

rare occasions, since normal disk commands can do almost as much and do it more
easily. Moreover, there may be obscure bugs in these little-used commands.

The most common uses of these commands are in programs like DISPLAY T&S
and VIEW BAM that rely on reading full 256-byte sectors. Disassembly of disk ROM
uses a memory-read command. Generally, the write commands (apart from sector
write) require some knowledge of the disk ROM, which Commodore does not pub

lish. In any case, disk RAM is limited.
It is risky to use individual sectors to store data (unless they are linked in a USR

file), because validating the disk reallocates them in the BAM and leaves them at risk

of being overwritten.
Direct access commands are powerful; some of them can garble an entire disk if

misused. If you want to experiment with them, use an unimportant disk until you

have gained some experience.

The U Commands
These commands, summarized in Table 15-7, work via channel 15. For example,
OPEN 15,8,15"UJ" resets the drive by turning off the light, setting the device num
ber to 8, and generally behaving as though the disk were just turned on. Ul and U2
are versions of block read (B-R) and block write (B-W); they operate correctly on en
tire sectors, including track and sector numbers of links at the start. Thus, you

should generally use Ul and U2 instead of B-R and B-W.
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Table 15-7. U Commands

Command

Ul or UA

U2 or UB

U3 or UC

U4 or UD

U5orUE

U6 or UF

U7 or UG

U8 or UH

U9 or UI

ui-

UI+

U: orUJ

Function

Block Read

Block Write

Jump to $0500

Jump to $0503

Jump to $0506

Jump to $0509

Jump to $050C

Jump to $050F

Jump to ($FFFA)

Set 1541 for VIC

Set 1541 for 64

Jump to ($FFFC)

Block Commands

Block read and block write (unlike all other commands) need an extra channel in
which to store their data. OPEN 1,8,2,"#" opens a buffer, which BASIC refers to by
its channel number (2) and file number (1). An alternative system is typically OPEN
1,8,2,"#3" where, if the channel isn't available, error 70 (NO CHANNEL) is returned.
You can use this to experiment with channels.

For this discussion, assume OPEN 15,8,15 has been entered. Remember: If you
are writing data, be sure to close these files so that the final buffer is written. The
syntax for block read is PRINT#15,'Vl'';channel;0;track;sector.

Program 15-13 is an example of how block read works. It follows a chain of sec
tors. Try inputting track 18, sector 0 at the start. Note the use of two files, the com

mand channel to load sectors in line 40, and the file to input characters in line 50.
The program ends when a sector has a link set to track 0.

Program 15-13. Using Block Read

10 OPEN 15,8,15:OPEN 1,8,2,H#"

20 INPUT "STARTING T & SM;T,S

30 PRINT "TRACK11 T ",SECTOR" S

40 PRINT#15,"U1";2;0;T;S

50 GET#1,T$,S$: IF T$="" THEN CLOSE 1:CLOSE 15:END

60 T=ASC(T$):S=ASC(S$+CHR$(0)):GOTO 30

Program 15-14 demonstrates block write. It reads, alters, and writes back the

first directory entry block, on track 18, sector 1. Note the use of block pointer, or B-
P, in line 30, which is analogous to the P parameter used with relative files.

Program 15-14. Using Block Write

10 OPEN 15,8,15:OPEN 1,8,2,"#"

20 PRINT#15,IIU1";2;0;18;1
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30 PRINT#15,MB-P";2;2

40 PRINT#1,CHR$(130+64);

50 PRINT#15,"U2";2;0;18;1

60 CLOSE 1:CLOSE 15:END

This program assumes the directory has a PRG file first; by setting bit 6 to 1, the

file is locked and cannot be scratched. It appears as file type PRG<. Making line 30

PRINT#15/'B-P";2;34 selects the second file in the directory, and so on, adding 32

to the second parameter for each subsequent file. If line 20 is omitted, the directory

will never be read into the buffer; as a result, garbage in the buffer gets written to

the directory and corrupts it.

Another example is a diskette test program. DATA statements hold the highest

sector numbers (from 20 to 16) for all 35 tracks; a loop (FOR T=l TO 35:READ MS:
FOR S=0 TO MS: write 255-character string and return: NEXT S: NEXT T) writes

the same data to every sector. A similar loop reads each sector back to check.

Block Execute

Block execute, or B-E, has syntax OPEN 15,8,15/'B-E";channel;0;track;sector, exactly

like the two previous commands. It loads the requested sector into disk memory,

then jumps to the start of the same buffer, thus executing the ML program. RTS or

the equivalent returns to BASIC. This could be used as the basis of a diskette copy

protection device. Obviously, ML knowledge is necessary.

Memory Commands
Like the U commands, each of the following commands acts on disk memory rather

than on sectors.

B-A (Block Allocate). Block allocate sets a bit in the BAM low, to show that a

sector is in use. A bit value of 1 means it's free. Use the following form:

1000 PRINT#15,"B-A";0;T;S

1010 INPUT#15,E,E$,ET,ES

1020 IF E<>65 THEN END :REM T,S OK

1030 T=ET:S=ES:IF T=18 THEN T=19

1040 GOTO 1000

If block allocate fails (that is, if T and S in line 1000 are already used), error 65,

NO BLOCK, causes the program to calculate the next block, which is returned in

channel 15. In this way, the BAM can accurately reflect blocks written to disk by

Block Write.

B-F (Block Free). The block free command sets a bit in the BAM high,
corresponding to one sector. The syntax is identical to that for B-A. Obviously, the

input message isn't needed.

B-P (Block Pointer). Block pointer, as you've seen on U2, sets the point within a
sector where read or write will start. Its syntax is PRINT#15,"B-P"; channel; position
1-255. For example, PRINT#15/'B-P; 2; 32*F-31, where F is 1-8 with the directory

entries in track 18, can be used to read from or write to any of the eight file entries

in any of the sectors.

M-E (Memory Execute). The memory execute command jumps to ML in disk,

exactly like B-E, except that no sector is loaded and the starting address can be any-
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where. Its syntax is PRINT#15,"M-E"; CHR$(low byte); CHR$(high byte). The ML

can be a routine in ROM, or a routine in RAM written (with M-W) by the

programmer.

M-R (Memory Read). This command sends an address to disk, and returns the

value at that location along channel 15. Its syntax is PRINT#15,"M-R"; CHR$(/ow;

byte); CHR$(high byte): GET#15,M$.

To disassemble disk ROM, use a BASIC disassembler and add the following sub

routine, replacing X=PEEK(P) in the disassembler.

10000 PRINT#15//M-R";CHR$(P-256*INT(P/256));CHR$(P/256)

10010 GET#15,X$:X=ASC(X$+CHR$(0)):RETURN

M-W (Memory Write). Memory write puts data into disk RAM or interface

chips. Each M-W command can write 35 bytes at most. The syntax is PRINT#15,"M-

W"; CHR$(/ou; byte) CHR$(high byte) CHR$(length) X$, where X$ is a string of not

more than 35 bytes and the other parameters are the starting address in RAM and

the number of bytes.

Machine Language Disk Programming
LOAD and SAVE

BLOCK LOAD and SAVE are discussed in Chapter 6. These work from within a pro

gram without disturbing its sequence of operations.

The autorunning loader in the section on program files uses Kernal subroutines,

as shown below. Note that a name is necessary with disks, even if it's only "*".

LDA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

LDA

STA

JSR

JMP

#$01

#$08

#$00

$FFBA

#LENGTH

#LOW

#HIGH

$FFBD

#$00

$0A

$FFD5 -^

START

;FILE NUMBER

;DEVICE NUMBER

SECONDARY ADDRESS

;SETLFS

;NAME LENGTH

;START OF NAME

;SETNAM

;LOAD/VERIFY FLAG 0$
;LOAD £

SAVE is similar, except that ISR $FFD8 is SAVE, and the start and end addresses
must be specified. The X and Y registers hold the low and high bytes of the final ad

dress + 1. The accumulator holds the zero page address of a pointer to the start ad
dress. In addition, the setup for the Kernal routine SETLFS is slightly different. The
parameters for SETLFS are summarized in Table 15-8.

File Handling

OPEN and CLOSE can be done in ML, though it's often easier to OPEN files in

BASIC and save the hassle of setting up a name or command string in RAM.

As an example, consider the process of copying sequential or program files in

order to change a program's LOAD address. That can be done in BASIC with OPEN
1,8,2 "ORIGINAL,P,R" and OPEN 2,8,3//NEW,P,W" followed by
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GET#1,X$:PRINT#2,X$; with any necessary alterations. However, the ML equivalent

of GET#1 and PRINT#1 is as follows:

LOOP LDX

ISR

JSR

PHA

LDY

LDX

JSR

PLA

JSR

CPY

BEQ

LDA

JSR
LDA

JSR

JSR

RTS

#$01

$FFC6

$FFCF

$90

#$02

$FFC9

$FFD2

#$00

LOOP

#$01

$FFC3

#$02

$FFC3

$FFCC

;OPEN FILE 1 FOR INPUT

;INPUT A BYTE (LIKE GET#)

;STOREIT

;LOAD ST

;OPEN FILE 2 FOR OUTPUT

;RECOVER BYTE

;OUTPUT IT (LIKE PRINT*)

;CONTINUE IF ST IS 0

;CLOSE 1

;CLOSE 2

;BACK TO NORMAL—

;RETURN

The demonstration uses CHKIN and CHKOUT (from the Kernal) to signal file

numbers, rind CHRIN and CHROUT to get and print a character. CLOSE is easy to

use, as the example shows. CLRCHN ($FFCC) returns I/O to normal operation.

Program 15-15 gives another, shorter example. It is POKEd from BASIC, so try

it if you're inexperienced in ML. It displays 256 bytes from an open file 1 on a Com

modore 64. Try OPEN 1,8,2,"*,P,R": SYS 828 which will open the first file on disk

(assumed to be a program) and display 256 bytes in black. More SYS 828 commands

read further, and the end is marked by RETURN characters, appearing as m. Enter

CLOSE 1 to finish. You can also use this technique to examine sequential files, with

OPEN 1,8,2,"filename": SYS 828.

Table 15-8. SETLFS Summary

LOAD "NAME",8

A = 0

X = 8

Y = 0

SAVE "NAME",8

A = 0

X = 8

Y = 1

LOAD "NAME",8,1

A = 1

X = 8

Y = 0

SAVE "NAME",8,1

Secondary Address Irrelevant
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Program 15-15. ML File Reader

10 FOR J=828 TO 851:READ X:POKE J,X:NEXT

100 DATA 162,1,32,198,255,160,0,32

110 DATA 207,255,153,0,4,169,1,153,0

120 DATA 216,200,208,242,76,204,255

OPEN and CLOSE in ML

OPEN uses SETLFS to set the parameters for logical, first, and secondary addresses,

typified by 1, 8, and 2 in OPEN \,%,2"filename". These three parameters are often

referred to as file number, device number, and channel number, respectively. Use the

following:

LDA # file number

LDX #S

LDY # channel number

JSR $FFBA

The Kernal SETNAM routine at $FFBD uses the name, or command string,

pointers, and length exactly like LOAD or SAVE. The Kernal OPEN routine is at

$FFC0.

The Kernal CLOSE routine is easier. The file number is stored in the accu

mulator, then JSR $FFC3 closes the file.

Channel 15 and ML

OPEN 15,8,15 is just a special case of OPEN. Messages from channel 15 consist of

ASCII numbers and the message separated by commas and terminated by return.

Thus, message 0 is this string:

48 48 44 32 79 75 44 48 48 44 48 48 13

00, OK,00,00 RETURN

Thus, to check channel 15 from disk, open file 15, input two bytes, and check

that each is 48. If not, the message can be printed by inputting further characters

and outputting them, using $FFD2, in a loop until RETURN is received.

The following routine performs the equivalent of OPEN 15,8,15:

INPUT#15,E,E$,T,S: PRINT E,E$,T,S: CLOSE 15:
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;OPEN 15,8,15

LDA #$0F

LDX #$08

LDY #$0F

JSR $FFBA

LDA #$00

JSR $FFBD

JSR $FFC0

LDX #$0F

JSR $FFC6

LOOP JSR $FFCF

CMP #$0D

BEQ EXIT

JSR $FFD2

BNE LOOP

EXIT LDA #$0F

JSR $FFC3

JSR $FF^C
RTS

This routine can be used from BASIC or ML. In ML programming, as well as in

BASIC, it is often useful to keep file 15 open while the program runs. Use the seg

ment marked OPEN 15,8,15 to open. To test the error number, input two bytes using

the portion marked INPUT#15 2nd check that both equal $30 (decimal 48).

It's almost as easy to send a command to channel 15. Simply open the channel

for output (with $FFC9) and send bytes, finishing with RETURN. CLOSE will not

work immediately after this; use JSR $FFCC (CLRCHN) or make the disk unlisten.

For example, LDA #$49, JSR $FFD2, LDA #$0D, JSR $FFD2, JSR $FFCC initializes

the disk, if channel 15 is OPEN for output, by sending I then RETURN (exactly like

PRINT#15,"I").

;SET 15,8,15

;SET LENGTH OF NAME^O

POINTERS IRRELEVANT

;OPEN 15,8,15

;OPEN 15 FOR INPUT

;INPUT#15

;GET A BYTE

;EXIT IF RETURN

;PRINT TO SCREEN

;CLOSE 15

;CLOSE 15

;FILES NORMAL
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Chapter 16

The Control Ports

This chapter explains how to program controllers which fit the 64's control ports.

Fast ML routines are supplied which can be used to write more efficient programs.

Joysticks
The 64 has two control ports, commonly called joystick ports, each with the stan

dard nine-pin D-connector. Joysticks are the most popular external controller, and

the 64 can use two. The four- or eight-direction control plus fire button is fine for
games, but less suitable for complicated inputs like graphics and words. However,

the 64 keyboard can be used along with joysticks, subject to a few restrictions. Com
modore joysticks are interchangeable with those for Atari, Coleco, and several mod
els of videogame machines.

Joysticks are based on a simple principle. The central stick is connected to elec
trical ground, so moving it makes contact with the sensors positioned up, down, left,
or right. The button grounds another wire when pressed. So, the cable to the 64 conr

tains six lines, one of them ground and the other five normally high but capable of
being grounded. The 64 tests for one or more wires being grounded. Most joysticks
are designed so that intermediate positions (northeast or up and right, and so on)

ground two wires at once. Thus, the 64 may detect up to three wires of either joy

stick low simultaneously, counting the fire button. Some combinations aren't nor

mally possible, of course, like north and south at the same time.

Internally, the most common arrangement is a grounded metal ring and

pressure-sensitive, dimpled-metal switches which give way and make contact when

the stick moves. Heavy-duty models have other arrangements; some even use

microswitches. Some models have two fire buttons, and/or a button on top of the

stick, so they can be used in either hand (converting some types for left-hand opera

tion isn't hard). Joysticks tend to break down easily, often because the cable contains

the thinnest possible strands of wire, which may break just inside the casing. To test

a joystick, try it with one of my programs to verify that all eight directions can be lo

cated easily.

Programming Information

Two locations are relevant when programming the control ports for use with joy

sticks. Programming is easy if you know how to manipulate bits with AND and OR.

JOY1 (front)

JOY2 (rear)

Keyboard Row:

$DC01 (56321)

Keyboard Column:

$DC00 (56320)

Bit #: 7 6 5 4

Fire

Fire

3

East

East

2

West

West

1

South

South

0

North

North

PEEKing locations 56320 and 56321 reads the joysticks. Nothing else is needed.

Bits 0-4 are normally set to 1. The joystick's grounding action sets them to 0. The

order of the registers is reversed from what might seem natural. Joystick 1 is read
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from a register with a higher address than joystick 2. It's easy to incorrectly assume

53260 is joystick 1.

Keyboard interference. The control ports are wired to the keyboard circuitry,

which is an economical arrangement. Generally, the keyboard won't be used with a

joystick. But if it is, there are a few side effects to watch for.

The keyboard scan routine sets the column (a bit in location 56320), then reads

the row (location 56321); so joystick 1 causes spurious characters to appear on the

screen occasionally because it mimics a row. In fact, the 1 key, back arrow, CTRL, 2

key, and space bar are interchangeable with S, N, W, E, and fire for joystick 1. Thus,

if you press joystick 1 in the east direction, it outputs a 2; if you press it to the west,

it slows screen scrolling, like the CTRL key does. Actually, locations 53261 and 145

($91) can be interchanged in joystick programming, because 145 holds a copy of the

default row, for testing the RUN/STOP key.

Joystick 2 doesn't generate spurious characters and is usually the better one to

use with programs requiring only one joystick. But it does alter the keyscan. Pressing

joystick 2 west while typing the X key has the same effect as SHIFT-RUN/STOP,

for example.

Hardware. Looking at the 64, pins 1-5 are on top and 6-9 underneath, in left-

to-right order. Joysticks use pins 1 (north), 2 (south), 3 (west), 4 (east), 6 (fire), and 8

(ground). It's easy to experiment with these ports, but be careful with pin 7, which

carries 5 volts.

Using WAIT. WAIT loops until a bit or bits at some location change, so this

command is useful for starting or restarting games. For example, WAIT 56320,16,16

waits until joystick 2's fire button is pressed, and WAIT 56321,16 waits until joystick

l's button is not pressed.

Program Examples

BASIC routines to handle joysticks tend to be long, which is hard to avoid since all

possible directions must be separated out for processing. Program 16-1 demonstrates

the method of combining bits into one value.

Program 16-1. BASIC Joystick Routine

1 REM RETURNS P=-41 TO +41

10000 PP=PEEK(56320)

10010 P=((PPAND4)=0) - ((PPAND8)=0) + 40*((PPAND1)

=0) - 40*((PPAND2)=0)

10020 RETURN

Add a line 100015 PRINT P:GOTO 10000 to change the subroutine to a

demonstration you can simply run. Program 16-1 checks only joystick 2 and doesn't
check the fire button.

Using ML speeds joystick reading greatly, but the results often still need to be

PEEKed by BASIC. The following ML routine reads both sticks; if either is active, ST
is set to a nonzero value. Program 16-2 returns the joystick information in locations
2 and 3.

534



The Control Ports

Program 16-2. ML Joystick Routine

1 REM ML JOYSTICK READER FOR THE 64

2 REM

3 REM USE SYS 828. ST<>0 MEANS JOY PRESSED

4 REM PEEK(2) RETURNS 1,2,4,8,16 (OR MIX)

5 REM FOR N,S,W,E,FIRE OF JOY 1

6 REM PEEK(3) SAME FOR JOY 2

7 REM

10 FOR J=828 TO 848:READ XrPOKE J,X:NEXT

20 DATA 173,0,220,41,31,73,31,133,3,173

30 DATA 1,220,73,255,133,2,5,3,133,144,96
40 SYS 828:PRINT ST PEEK(2) PEEK(3):GOTO 40

Where all eight directions are needed, they can be combined together by a rou
tine similar to the following, which uses the ML routine above. Delete line 40 in

Program 16-2 and add the lines shown in Program 16-3. Replace the FIREBUTTON

in line 1010 and the direction indicators in line 1020 with the line numbers of the
routines in your program that process those joystick operations. Program 16-3 will not

run properly unless you replace these with valid line numbers.

Program 16-3. ML Joystick Interpreter

1000 SYS 828:IF ST=0 GOTO 1000

1010 IF (PEEK(3) AND 16)>0 THEN FIREBUTTON

1020 ON PEEK(3) GOTO N,S,,W,NW,SW,,E,NE,SE

Other machine language techniques include using interrupts to read joysticks

and process the results. For example, it is possible to retain a previous value even

when the joystick is back in the neutral position, or to allow optional keyboard or

joystick operation.

Paddles and Other Analog Devices
Game paddles are less popular than joysticks, because, for many purposes the

simple style of joystick movement is easier to use than the rotating knobs on the

paddles. Commodore's paddles consist of two separate handheld units, each with a

knob and fire button, which plug together into the same control port. Since the 64

has two game ports, two pairs of paddles could be used between four people, but

this is relatively unusual. This discussion deals mainly with using one pair of

paddles.

Counterclockwise rotation of the paddle knob increases the value read by the

64, and vice versa. It may be worth labeling the paddles since one (the X paddle) is

read by SID chip location $D419 (54297), while the other (the Y paddle) is read at

$D41A (54298). These registers are each eight bits wide, so there's maximum resolu

tion of 1 in 256.
If both ports are used, POKEs into bits 6 and 7 of location 56320 ($DC00) select

whether port 1 or port 2 is to be read. Obviously, something like this is necessary to

enable both ports (four paddles) to be used, since the SID chip has only two analog-

to-digital conversion registers.

535



The Control Ports

Paddles are analog devices: they sweep through a continuous range of values.

Differences between devices may cause slight compatibility problems because of this,

unlike joysticks, where grounding is a simple on-or-off alternative. Pin 7 of each

control port is connected to the 5-volt power supply. Pins 5 (Y) and 9 (X) are con

nected to this, via the paddles. Rotating the paddles alters the resistance of the in

ternal potentiometers (variable resistors), each connected to the knob so that, as it

turns, the resistance changes. The SID chip's POT X and POT Y registers measure

the changing voltage levels produced by this changing resistance, performing an

analog-to-digital (A/D) conversion which relates the voltage level (0-5 volts) to a

number 0-255.

It's simple to use the same principle with other resistances. Commodore paddles

are rated at 470K ohms (the K stands for thousand), and their minimum resistance is

a few hundred ohms. They are approximately linear, changing in even steps of about

1000 ohms, so the overall range is large. To avoid damaging the SID chip while
experimenting, keep minimum resistances of several hundred ohms between the 5-

volt line and the POT inputs of the SID chip. Commodore documentation suggests

hardware smoothing with a lOOOpF capacitor between the POT inputs and ground,

but this is already built in on the 64. Commodore paddles have a fire button on each

unit, wired to pins 3 and 4 of the controller port for the X and Y paddles, respec

tively, which is connected to ground (pin 8) when pressed, just like joystick contacts

for the west and east directions.

Atari paddles can also be used with a Commodore 64, but since the maximum

resistance of the potentiometers in the Atari unit is about twice that of Commodore

paddles—1M (1 million ohms) versus 470K ohms—the Atari paddles are very sen

sitive. A half turn of an Atari paddle is approximately equal to a full turn of a Com

modore paddle.

Programming Information

Paddles can be read in BASIC or ML. The following locations are important:

POTX

POTY

Port 1 Buttons

Port 2 Buttons

$D419 (54297)

$D41A (54298)

$DC01 (56321)

$DC00 (56320)

Bit #: 7 6 5 4 3 2 1 0

All Bits

All Bits

Y

Y

X

X

Note that the same location reads the paddle potentiometer values irrespective

of the port, but the fire button locations vary, and there's no hardware switch be

tween them. Note also that the default is port 1, so if you want to use the simplest

approach, use this port and simply PEEK the POT X and POT Y registers.

Program 16-4 selects and reads the paddle connected to port 2. Add a line 80

PRINT X,Y,FB to see the values on the screen.
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Program 16-4. Reading Paddle 2

10 POKE 56333,127:REM IRQS OFF

20 POKE 56322,192:REM SET PINS 6,7 FOR OUTPUT

30 POKE 56320,128:REM SELECT PORT 2 (64=PORT 1)

40 X=PEEK(54297)

50 Y=PEEK(54298):FB=PEEK(56320)AND 12:REM USE 5632
1 FOR PORT 1

60 POKE 56322,255:POKE 56333,129

100 RUN

The program selects port 2 in line 30. Interrupts have to be turned off to prevent

the keyscan routine from altering values. After reading the registers, line 60 restores

normal keyboard operation. If you don't need the keyboard, line 60 can be omitted.

Paddle buttons generate spurious characters when connected to port 1. Pressing

the button on paddle X is equivalent to pressing the CTRL key, which slows process

ing. In port 2, the keyscan is altered (try X with fire button). As noted, port 2 cannot

be read at the same time as the keyboard because of the conflict over the use of

$DC00. This means that, with paddles in port 1, PEEKing values is easy, but the fire
buttons will have to be avoided in some circumstances.

ML programming is fast enough to disable the keyboard without noticeable ef

fect. Program 16-5 allows four paddles and four buttons to be read with virtually no

problems. The fire buttons register in the status variable ST, so IF ST>0 is a simple

test for a button press.

Program 16-5. ML Paddle Reader

10 DATA 120,162,2,169,192,141,2,220,41,128,141,0

11 DATA 220,160,208,136,208,253,173,25,212,149,2

12 DATA 173,26,212,149,3,169,64,202,202,16,232,173

13 DATA 1,220,74,74,9,252,133,144,173,0,220,9,243

14 DATA 37,144,73,255,133,144,169,255,141,2,220,96

15 FOR J=49152 TO 49211:READ X:POKE J,X:NEXT

To activate the routine, use SYS 49152. The results will be left in the following

locations:

Port

Port

1

2

Paddle X

PEEK(2)

PEEK(4)

Paddle Y

PEEK(3)

PEEK(5)

FireX

ST Bit 0 Set

ST Bit 2 Set

Fire

STBit

STBit

Y

1 Set

3 Set

The POT registers are usually updated about every 500 processor cycles. Extra

time is necessary when the ports are shifted, so in ML it's best to allow a loop like
LDX #$D0 : LOOP DEX : BNE LOOP before reading from the SID paddle registers.

Accuracy. The 64's A/D conversion is better than the VIC-20's. There's less

crosstalk and no need to correct for the other paddle's value. With paddles, resolu
tion is limited, and you may find intermediate values can't be read. Occasionally,
values returned are actually very different from other recent values. Generally, don't
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try to aim for accuracy beyond the eight-bit limit imposed by the SID chip. It's pos

sible to smooth values, but use a moving average method, taking a running total at

regular intervals. With devices other than paddles, smoothing isn't suitable: graphics

pads, where a stylus can jump from point to point at will, need a good estimate of

each point's coordinate, not an average value between unrelated points.

Other Analog Devices
Other devices that make use of variable resistances may be interfaced to the 64

through the paddle inputs. One of the most common is the graphics tablet. Contact

of a stylus on a carbon film pad reduces resistance in both the X and Y direction.

Well-designed graphics tablets should return X and Y values which reflect the

position of the stylus on the pad accurately. Programming is identical to that for

paddles. Generally, these are used to draw on the screen or to select from a menu by

positioning a cursor at some option and pressing a button.

Light Pens
A light pen is a pen-shaped device, fitted with a cable, which plugs into control port

1. The line carrying the light pen's signal is tied to the keyboard, so keys B, C, M, Z,

fl, the left SHIFT key, and period won't work while a light pen is plugged in, unless

the light pen has a switch on it. Watch for this if you want to input from the key

board and use a light pen simultaneously.

The internal electronics include a light-sensitive component, usually a photo-

transistor, which allows current to pass only when exposed to light. Light pens use

the 5-volt and ground lines, plus a line into the VIC-II chip. When fairly intense

light—such as the electron beam that creates the video display in a television or

monitor—is detected, this line is grounded and two VIC chip registers are frozen, or

latched, and remain unaltered until the next exposure to light. The two registers hold

the horizontal and vertical positions of the pen inferred from the distance of the

electron beam from its starting position.

Whenever a range of alternatives is to be selected from a screen display, a light

pen may be useful. Selecting alternative answers to multiple-choice questions and

selecting options from a menu are examples. Also, games like chess can make good

use of light pens. Numbers can be input with a numeric 0-9 pad on the screen, and

a light pen can help sketch on a screen.

The drawbacks to using light pen input are the limited accuracy of the pens,

computer limitations, and the fact that more people own joysticks than light pens.

The glass in front of the TV tube and general lack of precision make accuracy and

repeatability not as good as with analog devices like graphics tablets. Another diffi
culty is that some colors, such as black, won't trigger the pen.

The light pen programming registers are read-only (they cannot be POKEd):

$D013 (53267) is the horizontal position register and $D014 (53268) is the vertical
position register. The following one-line program displays both registers:

10 PRINT PEEK(53267): PRINT PEEK(53268): PRINT "{CLR}": GOTO 10

As you move the pen across the screen, the first value varies, increasing as you

move the pen from left to right. As you move it down, the second reading increases.
The readings are taken from the VIC chip as it monitors and controls the TV. Values
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across vary from about 30 to 190, ignoring the border area, and values down range

from about 50 to 250 (on U.S. televisions). The monitor scans each picture twice,

interlacing the pictures, which is why there are only 200 separately distinguished

raster lines. To convert these ranges into 0-39 and 0-24 for column and row equiva

lents is easy. Just subract 30, then divide by 4, to get the horizontal position, and

subtract 50 and divide by 8 for the vertical. Resolution is in principle two dots hori
zontally and one dot vertically.

Program 16-6. BASIC Light Pen Program

20 X=PEEK(53267)

30 Y=PEEK(53268)

40 X=(X-30)/l60*40

50 Y=(Y-50)/200*25

60 PRINT M{HOME}":FOR J=l TO X.-PRINT " {RIGHT}" ; :NE
XT

70 FOR J=l TO Y:PRINT "{DOWN}"; :NEXT:PRINT "QM;:GO
TO 20 ~~

This simple program will draw a small ball on the screen when it detects a light
pen reading. You'll probably find your pen's readings show quite a bit of jitter, even
when held still, removing any chance of serious high-resolution work.

Program 16-7 uses an ML subroutine to read the pen and convert its readings to
a screen position. It POKEs a character into the screen, then loops back for more. As

you'll see, this is much faster than BASIC. Color change and character change
demonstrations are included, and you can modify these to suit your requirements.

Program 16-7. ML Light Pen Draw
For mistake-proof program entry, be sure to use the "Automatic Proofreader/' Appendix C.

2 REM SYS 49152 READS, PLOTS UNTIL KEYPRESS:rem 73

3 REM DEMO SETS WHITE BALL; USES KEYS :rem 206

4 REM 1-8 AND SHIFT 1-8 TO CHANGE COLOR :rem 93

5 REM & F7 TO SWITCH TO PLOTTING BLOCKS :rem 3

6 REM (CHAR IS IN 49215, COLOR IN 49230) :rem 5

10 FOR J=49152 TO 49236:READ X:POKEJ,X:NEXT

:rem 221

20 PRINT "{CLR}11 :rem 198

100 SYS 49152 :rem 149

110 A=PEEK(780):REM PEEK (197) ALSO OK :rem 35

120 A$=CHR$(A) :rem 200

130 IF CHR$(A)>=M1M AND CHR$(A)<=M8" THEN POKE 492

30,A-49 :rem 104

140 IF CHR$(A)>=M1M AND CHR$(A)<="(" THEN POKE 492

30,A-25 :rem 67

150 IF CHR$(A)="{F7}" THEN POKE 49215,160 :rem 231

160 GOTO 100 :rem 97

500 DATA 32,228,255,240,1,96,173,19,208,56,233,32

:rem 109

501 DATA 144,242,201,160,176,238,170,173,20,208,23

3 :rem 197
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502 DATA 48,144,230,201,200,176,226,41,248,168,169

:rem 162

503 DATA 0,133,3,132,2,6,2,38,3,6,2,38,3,152,101

:rem 18

504 DATA 2,133,2,169,4,101,3,133,3,138,74,74,168

:rem 50

505 DATA 169,81,145,2,165,2,133,4,165,3,24,105,212

:rem 146

506 DATA 133,5,169,1,145,4,208,173,240,171 :rem 16

The ML checks to see that the light pen values are in range. If so, it calculates

the position of the screen character, and plots. You may prefer to read the screen

and detect a character as the pen points to it. Modify Program 16-7 as follows. Re

place each of the first six numbers in line 500 with 234, then replace line 505 with
505 DATA 169,81,177,2,96, and delete line 506. RUN and PRINT J to find the cor

rect upper limit to use after TO in the FOR-NEXT loop in line 10, and replace line

100 with 100 SYS 49152: PRINT "{HOME}" PEEK(780): GOTO 100. Now the

screen PEEK value (32 for space, 1 for A, 2 for B, etc.) of the character selected by

the light pen appears in the top left. The program's calculations are unaltered, but

the screen is no longer POKEd. Values 32, 160, 48, and 200 in the DATA check the

limits, subtracting 32 and checking to see that the result doesn't exceed 160 hori

zontally; these can be fine-tuned.

Light pens and other devices which ground the appropriate line can be pro

grammed to generate interrupts (the end of Chapter 12 explains how). This has the

advantage of signaling every activation of the device, but otherwise isn't very useful.

The Control Port Socket
Figure 16-1 shows the assignments of the nine pins of the control port sockets of the

64. The two ports are identical, except that the light pen input (shown at pin 6) is

available only for port 1. Remember that control port devices will affect each other

just as they affect the keyboard. A light pen program may not work if paddles are

connected, for example.

Figure 16-1. Typical Control Port Plnout
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Chapter 17

Major Peripherals

This chapter covers printers, plotters, modems, and the 64's interfaces. Simple pro

gram examples are included for quick reference.

Printers
Simple Commands

Commodore printers designed for the 64 plug into the serial port, the round port at

the back of the 64 next to the video output, or at the back of the disk unit when

daisychaining. At the simplest level, printers are controlled with OPEN 4,4 (which

opens file number 4 to the printer), PRINT#4,"HELLO" (which prints a message to

file 4), and CLOSE 4 (which closes the file). Any number of PRINT#4 statements

can be issued. PRINT statements can still be used to send output to the screen.

The 64 has no LIST#4 statement. To LIST programs to the printer, use OPEN

4,4: CMD 4: LIST (which opens file 4, directs output to that file instead of to the

screen, and lists). Follow this with PRINT#4: CLOSE 4 (which disengages CMD and

closes the file). The PRINT#4 is needed to close the file properly, so get in the habit

of using it before CLOSE whenever you use CMD.

With machine language monitors, all output can be sent to a printer with OPEN

4,4: CMD 4: followed by a SYS to the entry point of the monitor. Then enter M

1000 1200, for example, and output for the desired memory dump will be made to

the printer. The commands may have to be typed in blind, since they may not echo

to the screen, but this isn't a big problem. Enter X or E to exit the monitor, then

PRINT#4: CLOSE 4 to redirect output to the screen.

Non-Commodore Printers
For most applications, many non-Commodore printers use commands identical to

those for Commodore printers. Also, many interfaces are available which emulate

Commodore printer features in addition to allowing you to use the special features

of the non-Commodore printer. Printers which use the RS-232 port at the back left

of the 64, usually with an RS-232 converter cartridge, use device number 2, instead

of 4. To use such a device, the following sequence is typical:

OPEN 2,2,0,CHR$(6):PRINT#2,"HELLO"

This opens file 2 with baud rate 300, then sends HELLO to the device. PRINT#2:

CLOSE 2 closes the file. OPEN 2,2,0: CMD 2: LIST will list to such a printer. See

the notes later in this chapter for more on RS-232 printers, which may not always

work with the 64.

Easy Printing
PRINT# statements are similar to ordinary PRINT statements, but there is a distinc

tion between the carriage-return character, CHR$(13), and the linefeed character,

CHR$(10), which advances the paper in the printer. Commodore printers are de
signed to treat PRINT# followed by a semicolon as an instruction to remain on the

same line. PRINT# followed by a colon or end-of-line marker is treated as a com
bined carriage return and linefeed, so PRINT# behaves just like PRINT to the screen.
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Not all printers have an automatic linefeed. If your non-Commodore printer over

prints lines on top of each other, use a file number of 128 or greater (OPEN 128,4,

for example, with PRINT#128,//HELLO//) to cause the 64 to output the linefeed.

Control characters to the printer (to print reversed text, lowercase, and so on)

are sent as special characters which the printer recognizes, typically as PRINT#4,

CHR$(27) or as PRINT#4,A$ (where A$ is a string of CHR$ values). Printer pro

grams are likely to contain a number of PRINT# statements which are meaningful

only with reference to the printer in use.

Choosing and Using Printers

A printer is simply a device to convert a stream of bytes into text or graphics. Unlike

other Commodore devices, non-Commodore printers can often substitute for Com

modore equipment. This is worthwhile where special faster or higher quality print is

required (it is best to see the product in action), or where a user needs to be able to

print in foreign languages. In all these cases, some sort of interface will be necessary,

because neither of the 64's printer ports is standard.

Commodore printers for the 64 include the 1515, the 1525, the MPS-801 (which

is quite similar to the 1525 except that it uses cartridge ribbon instead of a reel), and

the more versatile 1526. Their features are summarized in Table 17-1. The 1515,

1525, and MPS-801 are designed to be compatible with both the VIC and the 64; the

1526 is designed specifically for the 64 and is not completely compatible with the

VIC. They are made by Seikosha. (Commodore doesn't make any of its own

printers.)

Table 17-1. Selected Commodore Printers for the 64

Dot Resolution

of Characters

Characters per Inch

Paper Widths (inches)

True Descenders

ong,j,p,q,y?

Approx. Speed,

Characters per Sec.

Separation Between

Lines

Programmable

Formatting of Output?

Programmable Top-of-

Form Feed?

Ribbon Type

1515

7 up X 6 across

12

Up to 8

No

30

2 dots

No

No

Cloth

1525

7X6

10

Up to 10

No

30

2 dots

No

No

Cloth

1526

8X8

11

Up to 10

Partly

60

Programmable

Yes

Yes

Carbon Film
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Each of these printers has the complete range of ROM graphics, although none

prints characters that are identical to the 64's characters. The 1515's reverse charac

ters, for example, lack the solid underline of the screen characters. In addition,

lowercase letters like g lack true descenders, so they seem to float up on the line.

The printers have built-in ROM to process incoming commands and store graphics

patterns, as well as RAM to act as a buffer, storing data while the printer deals

with it.

ROMs may be changed by Commodore without warning, so there's no guar

antee that one model won't differ from others. Commodore's printers haven't consis

tently used identical commands in the past, either. These commands are discussed

further in the next section.

Each printer allows 80 normal-width characters to the line (except that the 1515

uses a smaller typeface and nonstandard 8-inch-wide paper). It is possible to use 8-

1/2-inch paper on the 1515 by loosening the paper guide, removing the lid and the

guide, and taking out the bar so that only the paper holders touch the paper. How

ever, the result is a very noisy printer.

The number of lines per page has to be counted with the earlier printers.

Usually, a total of 66 lines, including linefeeds, has to be arranged per page if neat

output is desired. Six lines per inch is standard.

In addition to the standard Commodore 64 graphics characters, the 1515, 1525,

and MPS-801 printers have a graphic mode in which individual columns of dots can

be programmed. This is demonstrated in the manuals by reproducing the Com

modore symbol. A page of graphics can be printed continually redefining the dot

pattern. This makes it easy to print high-resolution graphics. The 1526 lacks a

graphic mode, but a similar effect can be achieved using this printer's single user-

defined character. However, only one redefined character is allowed per line printed,

so multiple overprints must be made to reproduce a complete line of graphics. Thus,

the 1526 is less suitable for high-resolution graphics printing than the other models.

Most software assumes device 4 for a printer. However, that can be switched to

device 5, so two printers can be used simultaneously, with PRINT#4 selecting one

printer and PRINT#5 selecting the other.

The Commodore printers have a self-testing facility, a loop in internal ROM

which outputs the character set (except for reverse characters, which may cause

overheating if used excessively). They also have a power-on sequence. The older

1515 can jam and appear completely dead when turned on, because the cam driving

the ribbon stuck. If this happens, lightly flick the pivoting part of the cam to loosen it.

Other Commodore printers include a series of printers for the earlier PET/CBM

machines. All PET/CBM printers require an IEEE interface connected to the 64's

normal printer port to operate. The 4022 is the main PET/CBM printer; it has a

considerable number of features, including ten secondary addresses. A heavy-duty

German printer and a very slow modified Olympia daisywheel are sometimes en

countered, too.

Other Printers
Most printers have a Centronics interface, which is a parallel interface using
multiwire flat-ribbon cable. RS-232 serial interfaces are also common. IEEE interfaces
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are rarer, and current loop interfaces are another relatively uncommon type. All of

these can be connected to the 64, with the proper interfacing.

It is always advisable to test the compatibility of equipment before purchasing,

particularly if packaged software is to be used. Most good word processors make

allowances for printer type, but other programs may not work correctly with all

printers, particularly with features like margin and tab.

Printer Types

Several different kinds of printers are now available for the 64. They are described

below.

Teletypes. These are old-fashioned terminals, uppercase only, which commu

nicate with computers via RS-232. Since they have been replaced by video terminals

in industry, they can sometimes be found very cheaply. Of course, they may cost

you more in the long run, and are severely limited in their capability.

Modified typewriters. Many typewriter manufacturers are now including inter

face sockets on their machines, so daisywheel machines with this dual function are

likely to become popular. Ball typewriters with interfaces are slower, though the im

pression is often slightly better.

Thermal and spark printers. These printers make up characters from columns

of dots, like dot-matrix printers, but use methods that are less demanding mechani

cally. Thermal printers use short bursts of high temperature, while spark printers use

short bursts of high voltage. These printers are inexpensive, but the paper they use is

relatively costly and generally not the best quality.

Dot-matrix printers. These are by far the most widely used computer printers.

The print head typically has seven to nine wires arranged vertically, and each wire is

separately controlled by its own solenoid which drives the wire briefly into contact

with ribbon and paper. Higher quality machines have more dots, so the image qual

ity is better, although the delicacy of serifs and other features of typefaces are lost.

An advantage of this method is that any characters within the limits imposed by the

dot resolution can be generated, so dot-matrix printers often have internal switches

for assorted international alphabets, as well as the ability to print graphics. Some

dot-matrix printers have double strike, emphasized, and correspondence-quality

modes, and are able to print in several type widths.

Daisywheel printers. A daisywheel has approximately 100 radial spokes, each

of which holds a character at the tip. The wheels have low rotational inertia so they

can be spun rapidly, and common letters are clustered together to reduce search

time. A solenoid drives the letter against ribbon and paper. Commonly used spokes

will eventually wear and the wheel will need replacing. Wheels and ribbons aren't

standardized to any extent. These printers are usually more expensive than dot-

matrix units and are often slower, but the print quality is very good. Some

daisywheel printers offer double strike, proportional, and shadow printing.

General Remarks

Printers normally use continuous fanfold paper. Letterhead stationery is available in

continuous fanfold paper. Pin feed or sprocket feed usually implies that the printer

feed mechanism has fixed sprockets. Tractor feed often implies that variable-width
paper is usable. Friction feed indicates that rolls or sheets of unperforated paper are
accepted.
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Most printers use endless-loop cartridge ribbons or, for higher quality, fixed-

length carbon film ribbons. Ribbon cartridges are not standardized, so be sure that
you have access to a reliable supplier. Some of these printers use standard typewriter

ribbons (like the popular Gemini printers), which makes the ribbon less costly to

replace.

External switches can range from simple paper control (linefeed, formfeed, and

online buttons) up to complete control over baud rate, parity, horizontal and vertical
spacing, and so on. Some printers, like Epson's RX-80, have an automatic linefeed

switch inside the machine. The switch is inaccessible without removing the lid and

can be a liability if a printer is shared between computers.

Maintenance generally requires return of the machine to the manufacturer, often

via a dealer. Fortunately, most printers are quite reliable. But it is still a good idea to

be sure that some maintenance is possible and that it is not too costly.
The speed of a printer is usually quoted in characters per second or lines per

minute, neither of which is a very satisfactory description. A lot depends on the den

sity of the text to be output. Moreover, the figures quoted are often inaccurate. As

usual it is best to test the printer in the conditions you plan to use it before you buy.
Commodore 64 compatibility is difficult with regard to graphics and upper/

lowercase switching. Few printers offer the entire 64 character set, and interfaces

may not handle the 64 upper/lowercase switch. However, in some cases, the inter

faces themselves are programmable to allow for this or contain their own ROM

character definitions for the Commodore graphics and reverse-field characters.

Programming for Printers

The following discussion is not intended to replace printer manuals, since there are

too many possible variations to cover each one completely. Instead, it offers sugges

tions and hints on using printers correctly.

Commodore printers are controlled in two ways, by the secondary address or by

special characters with an ASCII value usually below 32. The table of ASCII codes in

Appendix G shows the conventional meanings of codes 0-31, most of which are

more relevant to Teletypes than to printers. The ESCape code, CHR$(27), is widely

used with non-Commodore printers. Anything following ESCape is treated by a spe

cial routine independent of the rest and can be used to set the features of the printer.

In that respect, it works much like channel 15 of Commodore disk drives. Com

modore printers could have used this method rather than secondary addresses.

Some 64 control characters, like {CLR} and {DEL}, mean nothing to Commodore

printers and may cause them to hang up. A number of the ASCII control characters

are irrelevant. The special characters controlling 64 printers therefore are chosen

from those characters. The characters and their functions are given in Table 17-2.

Table 17-2. Common Printer Control Characters

CHR$(10) Linefeed

CHR$(13) Return

CHR$(17) Lowercase

CHR$(18) Reverse characters

CHR$(145) Uppercase

CHR$(146) Normal characters
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All other controls have varied among different models of Commodore printers,
and it is risky to assume they will remain the same as they are on your model. For

example, the user-definable single character is CHR$(8), but in the past has been

CHR$(254). Secondary addresses have varied as well: the 1515 uses OPEN 4,4,7 to
set lowercase mode; earlier models used this for uppercase.

To avoid such problems, you should let the 64 do the work of formatting and so
on as much as possible. Otherwise, if you give your program to another user or

change printers for some reason, you may be faced with the irritating job of rewrit
ing PRINT# statements.

PRINT# and CMD

These two commands often cause confusion, since they have almost identical effects.
For example, after OPEN 4,4, the commands PRINT#4/'HELLO" and CMD4:

PRINT "HELLO" each print HELLO to file 4. The difference is that CMD leaves the

printer in a listening mode, so future PRINT statements are output to the printer.

However, CMD isn't really implemented properly. Although it works well with

LIST (OPEN 4,4: CMD4: LIST), if CMD 4 is followed by a program with PRINT

statements, it isn't reliable. GET, for example, makes the printing revert to the

screen. Thus, it's usually best to use PRINT#. If you wish to divert some output to

the screen, use something like the routine shown below.

10 PRINT "OUTPUT TO PRINTER OR SCREEN (P/S)";: INPUT X$

20 IF X$="P" THEN D=4

30 IF X$ ="S" THEN D=3 :REM SCREEN IS DEVICE 3

40 OPEN D,D :REM NOW USE PRINT#D

The same method can select device 5 rather than device 4, if appropriate, and

OPEN 128+D,D with PRINT#128+D can add an extra linefeed which some print
ers may require.

As noted above, you should use PRINT#4 after CMD4 to "unlisten" the printer,

and return everything to normal, followed by CLOSE4. Note that CMD4; and

PRINT#4; each output nothing and can be used if it is important not to linefeed
when these commands are executed.

Upper- and Lowercase

CBM printers don't generally behave like VIC and 64 printers, since they remain in

either uppercase or lowercase mode until changed. The CBM models revert to upper

case unless specifically told otherwise. After a RETURN, the lowercase mode is can

celed. Therefore, PRINT#4,CHR$(17); has to precede lowercase material, and

PRINT#4,CHR$(145); must precede uppercase, if the two are mixed on a line (for
example, lowercase letters mixed with graphics).

Formerly, LISTing a program in lowercase was difficult, but secondary address 7

allows this with some printers—use OPEN 4,4,7:CMD4,"TITLE": LIST.

Formatting

PRINT USING in Chapter 6 can format numbers, inserting leading spaces and trail

ing zeros (as in 100.00). Alternatively, in BASIC, it's best to use something like

SP$ = "{10 SPACES}": PRINT#4,RIGHT$(SP$+X$,10) instead of TAB. This right
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justifies a string (or numeral held as a string) by padding with spaces, then selecting

a fixed length.

The simplest way to truncate numerals is to use an expression like PRINT#4,

INT(X*100 + .5)/100 which rounds to the nearest hundredth. Some CBM printers

have formatting, typically allowing one format at a time to be defined (for instance,

OPEN 2,4,2: PRINT#2,"S$$$$$9.99" and OPEN 1,4,1). PRINT#1 then prints in a

format defined by secondary address 2, so that 123.456 prints as +$123.45.

User-Defined Graphics/Screen Dump

The 1525 and MPS-801 use CHR$(8) to enter graphic mode, in which the dot pat

tern of the printed character can be defined. Since these printers form characters in a

6X7 matrix, six columns of seven dots have to be defined. It's also necessary to

add 128 to the value for each column. All that's needed is PRINT#4, CHR$(8) fol

lowed by the bytes which define the columns. You can use CHR$ to define the bytes

for the column values—for example, PRINT#4,CHR$(8) CHR$(150) CHR$(182)

CHR$(224) CHR$(224) CHR$(182) CHR$(150). You can also use PRINT#4,X$ where

X$ is built from values in a DATA statement, starting with 8. Remember to PRINT#4,

CHR$(15) after graphic printing to return the printer to normal text mode.

The 1526 has a single definable character, CHR$(254), specified as eight col

umns of eight dots by opening a file to the printer with a secondary address of 5.

Thus the 1526 equivalent for the example above would be OPEN 5,4,5: PRINT#5,

CHR$(0) CHR$(22) CHR$(54) CHR$(96) CHR$(96) CHR$(54) CHR$(22) CHR$(0):

CLOSE 5 to define the character, followed by OPEN 4,4:PRINT#4,CHR$(254):

CLOSE 4 to print it.

An interesting use for this definable character capability is to dump a high-

resolution screen to the printer. Multicolor mode is not as easy, since the printer

can't distinguish the four colors. Program 17-1 slowly dumps a bitmap screen start

ing at 8192 ($2000). It will not work with all printers, due to differences in the

printer commands and features. (It cannot be used with the 1526 printer.)

Program 17-1. Graphics Screen Dump
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

100 BA=8192:REM BASE ADDRESS MAY DIFFER :rem 251

105 OPEN 4,4 :rem 92

110 FOR J=0 TO 7:P(j)=2fJ:NEXT :rem 191

115 FOR X=0 TO 319 STEP 7 :rem 246

120 X$=IMI :rem 144

125 FOR Y=199 TO 0 STEP-1:V=0 :rem 34

130 FOR BT=0 TO 6 :rem 87

140 X1=X+BT:X2=X1 AND 7:IF BT AND X2 THEN 150

:rem 137

145 BY=BA + (Y AND 248)*40 + (XI AND 504) + (Y AND

7) :rem 25

150 V=V + P(BT)*SGN(PEEK(BY) AND P(7-X2)) :rem 183

155 NEXT :rem 218

160 PRINT V; :rem 181

165 X$=X$ + CHR$(V+128) :rem 106

170 NEXT :rem 215

175 PRINT#4,CHR$(8)X$ :rem 179

180 NEXT:CLOSE4 :rem 188
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Printing a copy of a normal text screen is considerably less complicated than

reproducing graphics. Program 17-2 is an ML screen dump which works with most

printers, as long as the screen display uses only the ordinary ASCII characters with

no 64 graphics. It includes tests for the screen start position, and for lower- or upper

case mode. Use OPEN 4,4: CMD 4: SYS 830: PRINT#4: CLOSE 4 to activate the

routine.

Program 17-2. ML Character Screen Dump
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

1 REM 64 SCREEN DUMP :rem 117

2 REM USE OPEN 4,4:CMD4:SYS 830:PRINT#4:CLOSE4

:rem 225

3 REM ALLOWS FOR U/L CASE & SCREEN POSN :rem 226
4 REM :rem 24

5 FOR J=830 TO 932:READ X:POKE J,X:NEXT :rem 221

10 DATA 169,0,133,3,133,4,133,5,173,136,2,133,6,16
9 :rem 188

11 DATA 64,133,2,230,3,165,3,201,41,208,15,230,4

:rem 23

12 DATA 165,4,201,24,240,67,169,1,133,3,32,215,170

:rem 137

13 DATA 162,0,161,5,41,127,36,2,208,6,36,129,240

srem 41

14 DATA 1*,208,33,36,129,208,9,72,169,2,44,24,208

jrem 116

15 DATA 208,13,104,169,35,208,16,72,169,2,44,24,20
8 :rem 207

16 DATA 208,5,104,9,64,208,3,104,9,96,32,210,255
:rem 54

17 DATA 230,5,208,177,230,6,208,173,76,215,170

:rem 218

The above routine substitutes the dummy character # for any graphics found in

the screen display. Alter the 35 in line 15 to change the dummy character to some
other symbol.

Repeat

Some printers allow repetition of characters, notably of a single column of dots to

build up a horizontal bar. A command like PRINT#4, CHR$(8) CHR$(26) CHR$(X)

CHR$(255) CHR$(15); turns graphics on, turns repeat mode on, specifies the number
of repetitions (X, which must be in the range 1-255), specifies character definition
(255 gives a solid column of dots), and returns to normal graphics.

Printer Presence

Some programmers find this useful as a reminder to users to switch on the printer.
In its simplest form, the command is OPEN 4,4: POKE 154,4: SYS 65490: POKE

154,3: CLOSE 4: S=ST. When the printer is on, ST should be 0; when off, ST is

-128, corresponding to 7DEVICE NOT PRESENT. SYS 65490 is the output routine
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at $FFD2, and the above routine in effect tries to output to file 4, but avoids crashing

in the way that PRINT#4 does.

Spooling

The idea of spooling is that a file can be read from disk and printed while the 64 is

left free to run programs normally, except that accessing the serial bus is prohibited.

In principle this seems easy, since the disk can talk and the printer can listen, but

there is no simple way to accomplish it. Some printers and some interfaces include a

printer buffer, which accepts data from the computer and holds it until the printer

can process it. Once all the data has been sent to the buffer, the computer returns to

other operations.

Plotters
Plotters are most commonly used commercially for technical drawings. Plotters have

two stepper motors controlling pen or paper movement (or both) vertically and hori

zontally, with a mechanism to lift the pen off the paper. Typically, eight directions of

motion can be selected. Small step sizes make for finer drawings, if the pen itself is

fine enough, but tend to be slow. The fastest rate of plotting with inexpensive plot

ters is roughly three inches per second, so be prepared for long delays, particularly if

the interface is slow and if commands are sent with BASIC.

Commodore's 1520 plotter uses 4-1/2-inch-wide unsprocketed paper and has

four pens (typically black, red, blue, and green). It has built-in alphanumerics which

can be scaled to four sizes; the smallest draws 22 characters per inch. The pens

move across the paper, and vertical motion is provided by a roller that moves the

paper itself. It connects to the serial port as device 6.

These plotters can be used to draw perspective pictures, including color-

separation pairs in red and green, and can also draw geometrical patterns. Yellow,
magenta, and cyan pens could give an imitation of color-separation printing.

Lines
Program 17-3 is a plotter drawing subroutine that assumes a line, having a slope be

tween zero and one, is to be drawn from left to right. (Other slopes, including verti

cal lines, are treated by analogous routines.) XD and YD are the distances to be
plotted in the X and Y directions, M is the slope, and XP and YP keep track of the
current X and Y positions relative to the start of the plot. Line 120 plots northeast

whenever that gives a better approximation than east.

Program 17-3. Line Plotter
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

100 M=YD/XD:YP=0:REM M IS THE GRADIENT. Y-POSITION

STARTS 0. :rem 113
110 FOR XP=1 TO XD: PRINT#N,EAST: REM EXACT FORM V

ARIES WITH PLOTTER srem 86
120 IF M*XP>YP THEN PRINT#N,NORTHEAST: YP=YP+1:XP=

XP+1:IF XP<XD GOTO 120 srem 150
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130 NEXT :rem 211

140 IF YP-KYD THEN PRINT#N,NORTHEAST: YP=YP+1:GOT

0 140:REM FINISH :rem 33

Circles

There are several methods to plot circles. One useful circle plotting routine is eiven
in Program 17-4. a

Program 17-4. Circle Plotter
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

500 REM Q=DEGREES SUBTENDED BY EACH STRAIGHT LINE

{SPACE}SEGMENT. •rem 31
505 REM Q=10 PLOTS A 36-SIDED FIGURE :rem 1

510 G=R:H=0: REM R=RADIUS. G AND H ARE INTERMEDIAT

E VALUES :rem 131

520 N=360/Q: REM N=NUMBER OF SIDES=NUMBER OF REPET
ITIONS OF LOOP :rem 122

530 F=COS(Q*_t/l80): I=SIN(Q*t/l80) :REM TRIG PARAME
TERS :rem 24

540. FOR J=0 TO N rrem 40

550 C=G*F-H*I:A=G*I+H*F: REM THESE ARE THE X AND Y

COORDINATES OF THE NEXT PT. :rem 164

560 REM DRAW THE STRAIGHT LINE SEGMENT TO THE POIN

T X=C,Y=A :rem 24

570 G=C:H=A .rem 99
580 NEXT J :rem 38

Program 17-5 demonstrates the Commodore 1520 plotter's ability to draw
graphs.

Program 17-5. Plotter Demo
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C

10 OPEN 4,6 rrem 41
20 OPEN 6,6,1 :rem 137

30 PRINT#6,"H" srem i

40 FOR X=20 TO 460 STEP 2 .rem 237

50 Y=SIN((X-20)*4*J7440) :rem 188

60 Y=Y+(l/3)*SIN((X-20)*4*3*T/440) 2rem 172
70 Y=Y+(l/5)*SIN((X-20)*4*5*T/440) -rem 177
80 PRINT#6,"D\X,Y*70 " srem 156
90 NEXT .rem 16Q

100 PRINT#6,"M",479,0 \rem 96
110 PRINT#6,"D",0,0 :rem 228

120 PRINT#6,"D",0,110 .rem 71

130 PRINT#6,"M",0,0 :;em 239
140 PRINT#6,"R",0,-100 srem 131

150 PRINT#4,"WAVEFORM WITH 2 ODD HARMONICS ADDED"

160 PRINT#4:CLOSE 4:PRINT#6:CLOSE 6 irem 101
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Modems
Most 64 modem users have either the model 1600 VICModem or the 1650

Automodem. Both are designed for the U.S. phone system. The 1650 plugs into the

base of the phone, while VICModem requires that you use a phone with a modular

plug handset in order to connect correctly.

When the 64 is used to communicate with another computer, the users must de

cide which computer will originate the communication and which will answer. For

example, when a bulletin board system like CompuServe is to be accessed, the 64 is

always set to originate while talking to the system.

To use a modem, first connect the modem to the computer with the 64 turned

off. Plug the Commodore modem into the user port (and connect it to the phone, if

it is a direct-connect model like the 1650), then load and run the terminal software.

Terminal software is the program that facilitates computer-to-computer talking via

the modems. It may be on cartridge, tape, or disk. For the VICModem, you may use

64 Term and for the Automodem, use Term 64, provided with the modem package.

You may want to use your own terminal software. BASIC, although slow, is

about as fast as the modem, so this is often a useful thing to do, notably when talk

ing to computers with slightly unusual characteristics or when trying out unusual

maneuvers like transferring files of data.

Once the software has been loaded and run, dial the number (either by dialing

yourself or by inputting the number into the 64 and allowing the 1650 to dial for

you). Wait for the carrier signal (a high-pitched tone). You may of course get a

wrong number, outdated number, no reply, or a reply from a system operator

(sysop). With some modems, you'll need to set the voice/data switch.

Now, wait for the carrier-detected indicator (red light) to come on. Your soft

ware may print something like 64 CONNECTED. Either signifies that your modem

has recognized the incoming frequency. Again, the actual procedure varies between

modems; it's automatic with the Automodem, but acoustic modems require you to

put the handset into the cups of the modem and switch to data (online) mode.
Wait for the system's first welcome frame to appear. Public systems often ask

for a password. This allows them to charge for access to the system. Use the menu
to select an item from what's available. CompuServe and other systems provide a

large directory to help you with this: GO CBM 310 is a shortcut command with

CompuServe.

Notes on Modems
It's helpful to know something about how modems work before looking at program
ming. Modems and their software are designed around phone systems. This has sev
eral consequences. Data must be transmitted serially, as bits rather than as bytes, so
each end of the line needs a way to convert between parallel and serial transmission.

In addition, the system needs some means of identifying the start of a byte; it also
needs timing conventions so that it can reliably detect individual bits.

Certain technical parameters are also important. Phone companies maintain con
trol over certain technical details of their lines. They do not permit excessive voltages
to get to exchanges, and some tones and signals are reserved for diagnostic use.
Such standards vary internationally. As a result, modems in different countries are
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likely to be incompatible. It may, in fact, be illegal to attach modems made in one

country to phone lines in some other country.

Usually, this isn't a problem. Direct-connect modems are designed to be isolated

from the phone line so high voltages cannot pass either way. Acoustic modems,

which generate and receive sounds and communicate them through telephone hand

sets, also present no voltage problems but face international compatibility problems.

The most common American modem convention is the Bell 103, which is used

by Commodore modems and by many computers. However, this is slow, as charac

ters are generally transmitted at 300 bits per second. In practice, this amounts to 30

characters per second at most. If the phone connection is weak, the transmission rate

drops, since characters have to be retransmitted. Even 30 characters a second takes

half a minute to fill a 40-column screen, and some characters are likely to be used

for information on color, screen format, and so on. Still, this is faster than many

people can read or talk.

Bell 103 uses a system called frequency shift keying. It means that an on bit is

transmitted with one frequency tone, while an off bit is transmitted with a tone of

another frequency. The tone of the signal carries information. In order that both

ends of the line can talk, Bell 103 uses four tones altogether, which means messages

can be simultaneously sent both ways.

The receiving equipment at either end has the job of sorting out which fre

quency is being received. All frequencies are relatively high pitched, in order to carry

as much information as possible while still being within the frequency range

handled by the phone system. The frequencies in originate mode are 1270 Hz to

transmit a mark signal, 1070 Hz to transmit space, 2225 Hz to receive mark, and

2025 Hz to receive space. In answer mode, the frequencies are the other way

around. Note that the mark signal is the idle or carrier signal, present when nothing
is happening, but the system is ready and waiting.

When a modem is in operation, these tones are exchanged and deciphered.

Conversion of bits into tones is called modulation, and the reverse process is called

demodulation. The term modem is thus an abbreviation of the words modulator and
demodulator.

At 300 baud (or, more properly, 300 bits per second), the 64's modem receives
300 tones of 2225 or 2025 Hz every second. The VICModem handles all of this with
a single chip, using some other components to filter the four frequencies, and draws
its power from the user port. (Note that the 64's tape system is practically a modem.
However, it sends square waves, not sine waves, which aren't suited to phone lines.
But digital-to-analog converters make it feasible to run a modem from the cassette
port.)

Bytes or words can be formatted in different ways, and every pair of commu
nicating modems must be set to the same convention. Standard RS-232 has one start
bit, seven data bits, one even-parity bit, and one stop bit—a total of ten bits per byte
sent. Even parity means that the eighth bit is set to 0 or 1 to make the sum of the
individual bit values even. For example, the ASCII pattern for lowercase a is
1100001 (97 in decimal). For even parity, a parity bit of 1 is added, so the resulting
pattern, 11100001, has an even number of l's. (Bits are transmitted from the low bit
first, so the parity bit is calculated and sent last.)
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This is a security measure. Any received byte that doesn't conform to this pat

tern must be wrong and is retransmitted. Note that some seven-bit codes always

send the same parity bit, either a space or mark, ignoring the security aspect. The

start and stop bits are both signaled by transmitting a space (rather than a mark), so

synchronization is always okay. OPENing an RS-232 file allows these variables to be

controlled by the programmer, within limits.

Note that since Commodore 64 characters use eight bits, standard ASCII isn't

enough. In fact, much software simply ignores parity bits, using other error-checking

methods instead. Getting the baud rate, the number of bits per word, and the num

ber of start and stop bits right is necessary to successful modem communication.

Converting bytes into bits and sending them, and the converse process of

assembling bits into bytes, can be performed in software (as the 64's RS-232

handling does) or by chips like the UART (Universal Asynchronous Receiver-

Transmitter—asynchronous means it can process data by watching for a start bit).

Error checking is a complex process, which basically uses hash totals sent after

data as a check. With any system there must be some chance of completely random

data conforming to the check, and such events constitute undetected errors. Gen

erally, note that data is sent in batches (called records) of 256 bytes each. Records

with errors are retransmitted, and the overhead spent on this process can be as much

as 50 percent of the ideal error-free transmission time, depending on the quality of

the phone link. Error correction may be automatic, or software may use a recall fea

ture if a frame is unacceptable.

Bell 103 modems use full duplex, which means that either terminal can commu

nicate at any time. Half duplex is analogous to radio communication, where either

direction is available, but normally only one at a time. The half-duplex switch turns

off the echo-plexing feature, a verification system which returns characters when

they're received. Thus, if characters appear double, use this switch or software which

verifies the echoed characters. True half duplex requires a line like RS-232's second

ary channel to be able to interrupt unwanted messages.

Smart terminal software can download programs (load them and either run

them or store them on disk or tape). Data files are more difficult to handle, because

they don't transfer as simply as programs, having RETURN characters and so on

embedded in them. They are also liable to exceed RAM storage. Downloading files,

therefore, generally refers to programs and frames from data bases.

The two other common modem standards are the Bell 202 and 212A, which are

faster than the 103 standard. The 212A can work with the 103, but the 202 and

212A are currently less popular than the 103, mainly because the faster modems are

significantly more expensive. Incidentally, the 103 system can operate at 600 bits per

second, which may be worth trying.

One problem with acoustic modems may be getting the two cups which are sup

posed to fit the handset into place. A few modems forgo the rigid body in favor of a
pair of cups on leads, so they can fit many phone styles. Incidentally, over short dis
tances it's not necessary to use a modem—two VICs or 64s can be connected by
three lines between their user ports, or with RS-232 adapters. As always, leave this
work to someone with sufficient technical experience.
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Programming Modems

Programs for use with modems must allow for two things. First, the RS-232 file must

be opened properly. Second, transmissions both to and from the 64 must be allowed

for. Both are fairly straightforward, though they may appear difficult.

Opening an RS-232 file. Only one RS-232 file can be opened at any one time,

and the syntax is typically OPEN 2,2,0,CHR$(6). The device number must be 2, so

file number 2 is simplest, allowing PRINT#2 and GET#2 for output and input via

the modem. The secondary address is irrelevant.

The filename consists of one or two characters in a string; the example is

equivalent to CHR$(6)+CHR$(0). These parameters are explained fully in the next

section. The value shown assigns eight bits of data per word, with one stop bit (and

a start bit, implicit in the whole process), 300 baud transmission, no parity, and full

duplex. Three-line handshaking is assumed.

This is the most common combination. Use OPEN 2,2,0,CHR$(38)CHR$(96) to

assign a seven-bit word and even parity instead.

Transmitting and receiving characters. All that's needed is a loop to get

characters from the keyboard and send them through the modem using PRINT#2,

and to get characters from the modem (using GET#2). BASIC may need delay loops

in its output to avoid sending characters too fast. For most purposes, some characters

have to be converted, and BASIC provides an adaptable and quite easy means to do

this. One reason for the conversion is that 64 ASCII is slightly different from true

ASCII, so unless you're happy with strange-looking lettering, conversion is nec

essary. The other reason is that it's useful to define some keys so that they perform

modem-specific functions.

Program 17-6 is a good example of a program for use with a modem.

Program 17-6. 64 Terminal Program
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

100 OPEN 2,2,0,CHR$(6):REM OPENS FILE 2; 300 BAUD,

8 BIT, NO PARITY * :rem 39
101 REM OPEN 2,2,0,CHR$(38)+CHR$(96) FOR ASCII 7 B

ITS + EVEN PARITY :rem 84

200 DIM F%(255),T%(255) :rem 86

210 FOR J=32 TO 64:T%(J)=J:NEXT :rem 193

220 FOR J=65 TO 90:T%(J)=J+32:NEXT:REM LOWER-CASE

:rem 71

230 FOR J=91 TO 95:T%(J)=J:NEXT :rem 204

240 FOR J=193 TO 218:T%(J)=J-128:NEXT:REM VIC UPPE

R-CASE srem 202

250 T%(133)=27:T%(134)=127:T%(135)=3:T%(136)=17
:rem 97

251 REM THESE ARE TRUE ASCII:I.E. ESC,DEL,CTRL-C B
REAK,CTRL-Q .rem 139

260 T%(137)=17:T%(138)=144 :rem 24
300 FOR J=0 TO 255 .rem 112
310 IF T%(J)>0 THEN F%(T%(j))=J srem 43
320 NEXT srem 212

400 PRINT CHR$(147) CHR$(14):REM CLEAR; LOWER-CASE

:rem 88
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500 IF PEEK(669)<PEEK(670) THEN 500 :rem 82

501 REM IF (PEEK(37151) AND 64)=64 THEN 501
:rem 122

510 GET OUT$:IF OUT$>"" THEN PRINT#2,CHR$(T%(ASC(O

UT$)));:PRINT OUT$; :rem 239

520 GET#2,IN$:IF IN$>M" THEN PRINT CHR$(F%(ASC(IN$

))); :rem 161

521 REM IN$=IN$ AND 127 FOR 7 BIT CODE, :rem 226

530 GOTO 500 :rem 102

Line 100 opens the file, while line 101 shows an alternative OPEN statement.

Lines 200-260 allow for conversion between input and output characters. An alter

native way to do this is to use several IF-THEN range comparisons; however, arrays

are faster, since the correct value can simply be looked up. Integer arrays save space.

Lines 300-320 convert the from array into the inverse of the to array. Line 500 veri

fies that output data has actually been sent.

The status byte, ST, can also be tested. The variable IN$ comes from the

modem; OUT$ is actually fetched from the keyboard but is called OUT$ because it is

to be sent to the other computer. Remember that the 64 keyboard allows control

characters to be typed without special programming.

ML conversion to true ASCII. ML programmers may need this routine, which

converts a 64 ASCII character into true ASCII. It interchanges upper- with lowercase:

CMP #$41

BCC END

CMP #$5B

BCS LABEL

ORA #$20

BCC END

LABEL CMP #$61

BCC END

CMP #$7B

BCS END

AND #$DF

END continue...

The RS-232 Interface
RS-232-C is a communications standard established by the Electronic Industries

Association. Its voltage convention is as follows: A negative voltage indicates a mark

(bit value 1), while a positive voltage indicates a space (bit value 0). The standard

also establishes a 25-pin connector to be* used in RS-232 equipment. (This connector

is not used by the 64, which provides RS-232 communication through the user port.)

Pin numbering is from 1 to 13 (top) and 14 to 25 (bottom). It is sometimes helpful to

know the standard functions of the pins, which are listed in Table 17-3.
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Table 17-3. RS-232 Pin Functions

Pin Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

GND

TX

RX

RTS

CTS

DSR

GND

CD

CL+

CL-

DTR

Description

Protective Ground

Transmitted Data

Received Data

Request to Send

Clear to Send

Data Set Ready

Signal Ground (Common Return)

Carrier Detector

Direct Current Loop (+)

Direct Current Loop (-)

Unassigned

Sec. Rec'd. Line Sig. Detector

Sec. Clear to Send

Secondary Transmitted Data

Transmission Signal Element Timing (DCE Source)

Secondary Received Data

Receiver Signal Element Timing (DCE Source)

Unassigned

Secondary Request to Send

Data Terminal Ready

Signal Quality Detector

Ring Indicator

Data Signal Rate Selector (DTE/DCE Source)

Transmit Signal Element Timing (DTE Source)

Unassigned

In the 64's RS-232 system, an OPEN to the RS-232 device initializes a number

of RAM locations and prepares for NMI interrupts, which are used with RS-232.

These interrupts disturb disk and tape timing, which is one reason neither the disk
drive nor the Datassette can be used during transmission.

RS-232's OPEN routine (at $F409 in the 64) sets the parameters indicated in

Table 17-4. If you OPEN and then PEEK, you'll see some of them. Most are reason
ably straightforward. Two points are worth noting: OPEN to RS-232 lowers the top

of memory by 512 bytes, making room for two 256-byte FIFO (first-in, first-out)
buffers. BASIC pointers are altered to clear variables (equivalent to a CLR state
ment), so it's best to OPEN the RS-232 file early in the program to avoid losing vari
able values. The baud rate is controlled by reference to tables in ROM, which in 64
has ten usable values.

ML programmers may want to alter the NMI vector into RAM so that the tables
can be changed. Alter the first tabled value to generate the new baud rate. After
OPEN, remember to POKE the vector at ($299) with twice that value, plus 200. To
convert ROM values into equivalent baud rates, use 50*EXP(9.23308 —
LOG(VALUE + 100)).
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Table 17-4. Locations Set by OPEN to RS-232 Channel

Location

$A7

$A8

$A9

$AA

$AB

$B4

$B5

$B6

$F7/F8

$F9/FA

$0293

$0294

$0295/0296

$0297

$0298

$0299/029A

$029B

$029C

$029D

$029E

167

168

169

170

171

180

181

182

247/248

249/250

659

660

661/662

663

664

665/666

667

668

669

670

Explanation

Receive bit storage

RX bit count

RX start bit flag

RX byte shifts in here

RX parity bit

TX bit count

Next bit for TX

TX byte shifts out from here

Pointer to start of input buffer

Pointer to start of output buffer

Control Register (e.g., 6)

Command Register (e.g., 0)

Two other unused parameters

ST value for RS-232

9, 8, 7, or 6 bits in word +1

2*timer value+200

End of Receive FIFO Buffer

Start of Receive Buffer

Start of Transmit Buffer

End of Transmit Buffer

Control Register and Command Register

Values in these registers control the way RS-232 is configured. There are six param

eters involved. As stated earlier, OPEN 2,2,2,CHR$(6)+CHR$(0) assumes one stop

bit, eight bits per word, 300 baud, no parity bit, full duplex, and the usual three-line

handshake. The control register is set by the first CHR$ value, and the command

register is set by the second. Figures 17-1 and 17-2 give details on the control reg

ister and command register.
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Finally, six bits of location 663 ($297) report conditions resulting from RS-232

use. If bit 0 is set, there is a parity-bit error. Bit 1 being set indicates an error in the

structure of received bits, perhaps due to noise. Bit 2 is set when the receiver buffer

is full (that is, when data is coming in too fast). Bit 3 is set to indicate when the re

ceiver buffer is empty. Bit 4 is set when the clear-to-send signal is off (when the re

mote terminal is not ready to receive). Bit 5 is unused, and bit 6 is set when the

data-set-ready signal is missing (the remote terminal is not ready to send). When bit

7 is set, a break has been detected.

The Serial Port
The 64's serial port, adapted from the IEEE-488 standard interface of PET/CBM ma

chines, is peculiar to Commodore. The 64 uses a simplified, nonstandard version,

which carries serial (as opposed to parallel) data and is comparatively slow. Figure

17-3 shows the port's six connections as they appear looking at the 64 from the back
(the serial port is next to the cassette port).

Figure 17-3. 64 Serial Port

Pin 1 SRQ in FLAG of CIA 1

Pin 2 Ground

Pin 3 ATN in Pin 9 of user port

Pin3 ATN out PA3 of CIA 2

Pin4 CLKin PA6 of CIA 2

Pin4 CLKout PA4 of CIA 2

Pin5 Data in PA7 of CIA 2

Pin5 Data out PA5 of CIA 2

Pin 6 RESET Connected to 64 reset line

Pin 6 is connected to the 64's reset line, which is why the disk drive and printer

reset when the 64 is switched on. Data is transferred in and out through pin 5. Pin

1, the service request line, allows devices to request service from the 64. CLK is a

clock signal and ATN (attention) is described below.

Both CIAs are used in processing. The part of ROM handling this can be in

spected in detail by looking at the places where bit 7 of $DD00 (CIA 2's Port A) is

used; this line inputs data bits. Data is transmitted from bit 5 of CIA 2 Port B, so

$DD00 also controls data output. Other important functions of that location are bits

4 and 6, which provide input and output clock signals.

Briefly, the serial bus is controlled by the 64. Devices on the bus are talkers, lis

teners, or both. For example, printers listen and disk drives both talk and listen. The

Kernal has routines to make devices talk, listen, untalk, and unlisten, meaning in ef

fect that they're on or off. BASIC handles all this itself, apart from a few special

effects.

Commands are sent to devices when ATN is low (the bit value is 0). When ATN

is set high again, all the bytes sent are interpreted as data. When ATN is low, typi

cally a single byte is sent as a command; that byte is interpreted by the device as fol

lows: If it is in the range $20-$3E, it means listen; if it's $3F, it means unlisten; $40-

$5E mean talk; $5F means untalk; and $60-$7F indicate secondary addresses. This is
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why secondary addresses are stored in the 64 with 96 decimal added, and why the

Kernal LISTEN and TALK routines begin with ORA #$20 and ORA #$40.

A printer can be made to print, without opening a file, by setting the device

number to 4, calling Kernal LISTEN, setting ATN out high, sending characters with

CHROUT, and finally unlistening with CLRCHN. Whenever files are open to a de

vice, the device is first made a talker or a listener. Then the secondary address is

sent (the Kernal has two routines for this purpose), so the device knows which file to

address.
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Appendix A

A Beginner's Guide to Typing In

Programs

What Is a Program?

A computer cannot perform any task by itself. Like a car without gas, a computer

has potential. But without a program, it isn't going anywhere. Most of the programs

published in this book are written in a computer language called BASIC. BASIC is

easy to learn and is built into all Commodore 64s.

BASIC Programs

Computers can be picky. Unlike the English language, which is full of ambiguities,

BASIC usually has only one right way of stating something. Every letter, character,

or number is significant. Common mistakes are substituting the letter O for the nu

meral 0, a lowercase 1 for the numeral 1, or an uppercase B for the numeral 8. Also,

be sure to enter all punctuation, such as colons and commas, just as they appear in

the book. Spacing can be important. To be safe, type in the listings exactly as they

appear.

Braces and Special Characters

The exception to this typing rule is when you see something inside braces, such as

{DOWN}. Anything within a set of braces is a special character, or characters, that

cannot easily be listed on a printer. When you come across such a special statement,

refer to Appendix B, "How to Type In Programs."

About DATA Statements

Some programs contain a section, or sections, of DATA statements. These lines pro

vide information needed by the program. Some DATA statements contain programs

in machine language, while others contain graphics codes. These lines are especially

sensitive to errors.

If a single number in any one DATA statement is mistyped, your machine could

lock up, or crash. If this happens, the keyboard and RUN/STOP key may seem dead

and the screen may go blank.

But don't panic; no damage has been done. To regain control, you have to turn

off your computer, then turn it back on. This will erase whatever program was in

memory, so always save a copy of your program before you run it If your computer

crashes, you can reload the program and look for your mistake.

Sometimes a mistyped DATA statement will cause an error message when the .

program is run. The error message may refer to the program line that reads the data.

However, the error may still be in the DATA statements.

Get to Know Your Machine
You should familiarize yourself with your computer before attempting to type in a

program. Learn the statements you use to store and retrieve programs from tape or

disk. You'll want to save a copy of your program so that you won't have to type it in
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every time you want to use it. Learn to use your machine's editing functions. How

do you change a line if you make a mistake? You can always retype the line, but at

least you need to know how to backspace. Do you know how to enter reverse video,

lowercase, and control characters? It's all explained in your 64's manual.

A Quick Review

1. Type in the program, a line at a time, in order. Press RETURN at the end of each

line. Use the INST/DEL and cursor keys to correct mistakes.

2. Check the line you've typed against the line in the book. You can check the entire

program again if you get an error when you run the program.

3. Make sure you've entered statements in braces using the appropriate control key

(see Appendix B, "How to Type In Programs").
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How to Type In Programs

Many of the programs in this book contain special control characters (cursor control,
color keys, reverse characters, and so on). To make it easy to know exactly what to

type when entering one of these programs into your computer, we have established
the following listing conventions.

Generally, Commodore 64 program listings contain words within braces which
spell out any special characters: {DOWN} means to press the cursor-down key, while
{5 SPACES} tells you to press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT key while press
ing the other key), the key would be underlined in our listings. For example, S
would mean to type the S key while holding down the SHIFT key. This would ap
pear on your screen as a heart symbol. If you find an underlined key enclosed in

braces (for example, {10 N}), you should type the key as many times as indicated. In
this case, you would enter ten SHIFTed NTs. One exception to this is that {SHIFT-
SPACE} means to hold down the SHIFT key and type the space bar.

If a key is enclosed in special brackets, f< >\, you should hold down the Com
modore key while pressing the key inside the special brackets. (The Commodore key
is the key in the lower-left corner of the keyboard.) Again, if the key is preceded by a
number, you should press the key as many times as necessary.

Occasionally, you will see a single character within braces. These characters are
entered by pressing CTRL while typing the letter indicated. For example, {A} is en
tered by pressing CTRL-A.

About the quote mode: You know that you can move the cursor around the
screen with the CRSR keys. Sometimes a programmer will want to move the cursor

under program control. That's why you see all the {LEFT}'s, {HOME}'s, and

{BLU}'s in our programs. The only way the computer can tell the difference between
direct and programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you are in the quote

mode. For instance, if you type quote followed by a few characters, then try to

change it by moving the cursor left, you'll only get a bunch of reverse-video charac

ters. These are the symbols for cursor left. The only editing key that isn't pro

grammable is the INST/DEL key, so you can still use INST/DEL to back up and edit

the line. Once you type another quote, you are out of quote mode.

You also go into quote mode when you use INST/DEL to insert spaces into a

line. In any case, the easiest way to get out of quote mode is simply to press RE

TURN. You'll then be out of quote mode and can cursor up to the mistyped line and

fix it.

Use the following table when entering cursor and color control keys:
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When You

Read:

{CLR}

{HOME}

{UP}

{DOWN}

{LEFT}

{RIGHT}

{RVS}

{OFF}

{BLK}

{WHT}

{RED}

{CYN}

{PUR}

{GRN}

{BLU}

{YEL}

Press:

SHIFT | CLR/HOME

CLR/HOME

SHIFT | | f CRSR 1

shift]

| CRSR i

<•—CRSR-*

♦-CRSR—*

| CTRL | [ 9 |

| CTRL | | 0 |

| CTRL | | 1 |

| CTRL] 1 2 ]

| CTRL | | 3 |

| CTRL | [ 4 |

| CTRL | | 5 |

| CTRL | | 6 |

|ctrlJ 1 7 |

| CTRL || 8 |

See:

When You

Read:

i 2 g

§53

Press: See:

{Fl }

{ R}

{F3 }

! W }.

{F5}

! F6 }

{F7}

{ F8 }

A

T
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The Automatic Proofreader
Charles Brannon

"The Automatic Proofreader" will help you type in program listings without typing

mistakes. It is a short error-checking program that hides itself in memory. When ac

tivated, it lets you know if you have made a mistake immediately after typing a line

from a program listing.

Preparing the Proofreader

Please read these instructions carefully before typing in any programs in this book.

1. Using the listing below, type in the Proofreader. Be very careful when entering the

DATA statements—don't type an 1 instead of a 1, an O instead of a 0, extra com

mas, etc.

2. Save the Proofreader on tape or disk at least twice before running it for the first

time. This is very important because the Proofreader erases part of itself when you

first type RUN.

3. After the Proofreader is saved, type RUN. It will check itself for typing errors in

the DATA statements and warn you if there's a mistake. Correct any errors and

save the corrected version. Keep a copy in a safe place. You'll need it again and

again, when entering a BASIC program from this book, COMPUTERS Gazette, or

COMPUTE! magazine.

4. When a correct version of the Proofreader is run, it activates itself and you are

then ready to enter a program listing. If you press RUN/STOP-RESTORE, the

Proofreader is disabled. To reactivate it, just type the command SYS 886 and press

RETURN.

Using the Proofreader

Many listings in this book have a checksum number appended to the end of each line,

for example, :rem 123. Don't enter this statement when typing in a program. It is just

for your information. The rem makes the number harmless if someone does type it

in. It will, however, use up memory if you enter it, and it will confuse the Proof

reader, even if you entered the rest of the line correctly.

When you type in a line from a program listing and press RETURN, the Proof

reader displays a number at the top of your screen. This checksum number must match

the checksum number in the printed listing. If it doesn't, it means you typed the line

differently from the way it is listed. Immediately recheck your typing. Remember,

don't type the rem statement with the checksum number; it is published only so you

can check it against the number which appears on your screen.

The Proofreader is not picky with spaces. It will not notice extra spaces or miss

ing ones. This is for your convenience, since spacing is generally not important. But

since proper spacing occasionally is important, be extra careful with spaces.
One sort of error that the Proofreader will not catch is transposition. If you type

PIRNT in a program line instead of PRINT, the Proofreader will not detect the error

because all the proper characters are present (even if they are in the wrong order). If
a program fails to work even though the Proofreader says all the lines are correct,

look for an error of this type.
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Here's another thing to watch out for: If you enter the line by using abbrevi

ations for commands, the checksum will not match up. But there is a way to make

the Proofreader check it. After entering the line, LIST it. This eliminates the abbrevi

ations. Then move the cursor up to the line and press RETURN. It should now

match the checksum. You can check whole groups of lines this way.

Special Tape SAVE Instructions

When you're through typing a listing, you must disable the Proofreader before sav

ing the program on tape. Disable the Proofreader by pressing RUN/STOP-RESTORE

(hold down the RUN/STOP key and sharply tap the RESTORE key). This procedure

is not necessary for disk SAVEs, but you must disable the Proofreader this way before a

tape SAVE.

SAVE to tape erases the Proofreader from memory, so you'll have to load and

run it again if you want to type another listing. SAVE to disk does not erase the

Proofreader.

Hidden Perils

The Proofreader's home in the 64 is not a very safe haven. Since the cassette buffer

is wiped out during tape operations, you need to disable the Proofreader with RUN/

STOP-RESTORE before you save your program. This applies only to tape use. Disk

users have nothing to worry about.

Not so for 64 owners with tape drives. What if you type in a program in several

sittings? The next day, you come to your computer, load and run the Proofreader,

then try to load the partially completed program so you can add to it. But since the

Proofreader is trying to hide in the cassette buffer, it is wiped out.

What you need is a way to load the Proofreader after you've loaded the partial

program. The problem is that a tape LOAD to the buffer destroys what it's supposed

to load.

After you've typed in and run the Proofreader, enter the following three lines in

direct mode (without line numbers) exactly as shown:

A$="PROOFREADER•T":B$="{10 SPACES}":FOR X = 1 TO 4
: A$=A$+B$: NEXT X

FOR X = 886 TO 1018: A$=A$+CHR$(PEEK(X)): NEXT X

OPEN 1,1,1,A$:CLOSE 1

After you enter the last line, you will be asked to press RECORD and PLAY on

your cassette recorder. Put this program at the beginning of a new tape; this gives

you a new way to load the Proofreader. Anytime you want to bring the Proofreader

into memory without disturbing anything else, put the cassette in the tape drive, re

wind, enter OPEN1:CLOSE1, and press PLAY on the recorder. You'll get the mes

sage FOUND PROOFREADER, but not the familiar LOADING. Don't worry; the
Proofreader is now in memory. You can then start the Proofreader by typing SYS

886. To test this, type in PRINT PEEK (886). It should return the number 173. If it
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does not, repeat the steps above, making sure that A$ contains 13 characters

(PROOFREADER.!) and that B$ contains ten spaces.

You can now reload the Proofreader into memory whenever LOAD or SAVE de

stroys it, restoring your personal typing helper.

Automatic Proofreader for Commodore 64 and VIC

100 PRINT"{CLR}PLEASE WAIT...":FORI=886TO1018:READ
A:CK=CK+A:POKEI,A:NEXT

110 IF CK<>17539 THEN PRINT"{DOWN}YOU MADE AN ERRO

R":PRINT"IN DATA STATEMENTS.":END

120 SYS886:PRINT"{CLR}{2 DOWN}PROOFREADER ACTIVATE
D.":NEW

886 DATA 173,036,003,201,150,208

892 DATA 001,096,141,151,003,173

898 DATA 037,003,141,152,003,169

904 DATA 150,141,036,003,169,003

910 DATA 141,037,003,169,000,133

916 DATA 254,096,032,087,241,133

922 DATA 251,134,252,132,253,008

928 DATA 201,013,240,017,201,032

934 DATA 240,005,024,101,254,133

940 DATA 254,165,251,166,252,164

946 DATA 253,040,096,169,013,032

952 DATA 210,255,165,214,141,251

958 DATA 003,206,251,003,169,000

964 DATA 133,216,169,019,032,210

970 DATA 255,169,018,032,210,255

976 DATA 169,058,032,210,255,166

982 DATA 254,169,000,133,254,172

988 DATA 151,003,192,087,208,006

994 DATA 032,205,189,076,235,003

1000 DATA 032,205,221,169,032,032

1006 DATA 210,255,032,210,255,173

1012 DATA 251,003,133,214,076,173

1018 DATA 003
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Screen Location Table

Row

0 1024
1064

1104

1144

1184

D 1224

1264

1304

1344

10 1424
1464

1504

1544

15 1624
1664

1704

1744

20 S
1864

1904

_ . 1944

24 1984

-

-

•

•

•

•

10 15 20

Column

25 30 35 39
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Screen Color Memory Table

Row

0 55296
55336

55376

55416

55456

5 55496
55536

55576

55616

^ 55656

10 55696
55736

55776

55816

15 55896
55936

55976

56016

56056

2U 56096
56136

56176

o/t 5621624 56256

10 15 20

Column

25 30 35 39
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Screen Color Codes

Color:

Code:

Black

0

White

1

Red

2

Cyan

3

Purple

4

Green

5

Blue

6

Yellow

7

Color:

Code:

Orange

8

Brown

9

Light

Red

10

Dark

Gray

11

Medium

Gray

12

Light
Green

13

Light

Blue

14

light
Gray

15
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ASCII Codes

Dec Hex Meaning

0 00 NUL - Null character

1 01 SOH - Start heading

2 02 STX - Start text

3 03 ETX -End text

4 04 EOT - End transmission

5 05 ENQ - Enquiry

6 06 ACK -Acknowledge

7 07 BEL -Ring bell

8 08 BS - Backspace

9 09 HT - Horizontal tabulation

10 0A LF -Linefeed

11 0B VT - Vertical tabulation

12 0C FF -Formfeed

13 0D CR - Carriage return

14 0E SO - Shift out

15 OF SI -Shift in

16 10 DLE - Data link escape

17 11 DC1 - Device control 1

18 12 DC2 - Device control 2

19 13 DC3 - Device control 3

20 14 DC4 - Device control 4

21 15 NAK - Negative acknowledge

22 16 SYN - Synchronous idle

23 17 ETB - End transmission block

24 18 CAN -Cancel

25 19 EM - End medium

26 1A SUB -Substitute

27 IB ESC -Escape

28 1C FS - File separator

29 ID GS - Group separator

30 IE RS - Record separator

31 IF US - Unit separator

Dec Hex Meaning Dec Hex Meaning Dec Hex Meaning

32 20 SPACE

33 21 !

34 22 "

35 23 #

36 24 $

37 25 %

38 26 &

39 27 '

40 28 (

41 29 )

42 2A *

43 2B +

44 2C ,

45 2D -

46 2E .

47 2F /

48 30 0

49 31 1

50 32 2 -

51 33 3

52 34 4

53 35 5

54 36 6 '

55 37 7

56 38 8

57 39 9

58 3A :

59 3B ;

60 3C <

61 3D =

62 3E >

63 3F ?

64 40

65 41

66 42

67 43

68 44

69 45

70 46

71 47

72 48

73 49

74 4A

75 4B

76 4C

77 4D

78 4E

79 4F

80 50

81 51

82 52

83 53

84 54

85 55

86 56

87 57

88 58

89 59

90 5A

91 5B

92 5C

93 5D ]

94 5E *

95 5F -

@
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

Z

[
\

96

97

98

99

60

61

62

63

100 64

101 65

102 66

103 67

104 68

105 69

106 6A

107 6B

108 6C

109 6D

110 6E

111 ££

112 70

113 71

114 72

115 73

116 74

117 75

118 76

119 77

120 78

121 79

122 7A

123 7B

124 7C

125 7D

126 7E

127 7F

a

b

c

d

e

f

g

h

i

i
k

1

m

n

o

P

q
r

s

t

u

v

w

X

y

AJ

DEL

ASCII (American Standard Code for Information Interchange) is largely followed by

the 64—more closely than in earlier CBM equipment; alphabetic characters, numer

als, and punctuation are generally similar, although the 64 has uppercase and lower

case letters switched with respect to standard ASCII. Standard ASCII, however, has a

parity bit (bit 7) set to make the number of l's in the byte even. This is why ASCII

has only 128 characters.
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Commodore ASCII Codes

Hex

05

08

09

0D

0E

11

12

13

14

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

Dec

5

8

9

13

14

17

18

19

20

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Character

WHITE

DISABLE

SHIFT-COMMODORE

ENABLE

SHIFT-COMMODORE

RETURN

LOWERCASE

CURSOR DOWN

REVERSE VIDEO ON

HOME

DELETE

RED

CURSOR RIGHT

GREEN

BLUE

SPACE

i

#

$ ■

%

&

(

)
*

+

—

/

0

1

2

3

4

5

6

Hex

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

Dec

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Character

7

8

9

;

<

=

>

7

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

[

f
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Hex Dec Character

]

I

B

B

□
D
D
a
□

□
D
S
0

n
H
P

a

m

H
ORANGE

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

81

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

129

lex

85

86

87

88

89

8A

8B

8C

8D

8E

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

Al

A2

A3

A4

A5

A6

A7

A8

A9

Dec

133

134

135

136

137

138

139

140

141

142

143

145

146

UZ.
148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

Appendix H

Character

fl

f3

f5

i7

(2

f4

f6

f8
SHIFT-RETURN

UPPERCASE

BLACK

CURSOR UP

REVERSE VIDEO OFF

CLEAR SCREEN

INSERT

BROWN

LIGHT RED

GRAY1

GRAY 2

LIGHT GREEN

LIGHT BLUE

GRAY 3

PURPLE

CURSOR LEFT

YELLOW

CYAN

SHIFT-SPACE

1

u
□
□
□

a

E
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Hex Dec

AA

AB

AC

AD

AE

AF

BO

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

Cl

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

Character

□

m
a
E
B
y

H
H

ffl
□

□
a
u

a
■

H
H

B
H
m
B
B
□
B
D

a

□

D
S
0

Hex Dec

CF

DO

Dl

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

El

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

FO

Fl

F2

F3

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

Character

□
□

Q

D
□

m

H
SPACE

E

n
D

D

n

B
□

m
a

u

B
H
H
ffl
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Hex

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

Dec

244

245

246

247

248

249

250

251

252

253

254

255

Character

D
C
[]

n

D
El

H

5]

1. 0-4, 6-7, 10-12, 15-16, 21-27, 128, 130-132, and 143 have no effect.

2. 192-223 same as 96-127, 224-254 same as 160-190, 255 same as 126.
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Screen Character Codes

Hex Dec Uppercase and Lower- and

Full Graphics Set Uppercase

a

b

c

d

e

f

g
h

00

01

02

03

04

05

06

07

08

09

0A

OB

OC

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

@

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

z

[
£

]

t

m

n

o

P

q
r

s

t

u

V

w

X

y

z

Hex Dec Uppercase and Lower- and

Full Graphics Set Uppercase

-space-

!

#

$

&

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

—

i

»

#

$

°/c

&
'

(

)

•

+

_

/

0

1

2

3

4

5

6

7

8

9

<

_

0

1

2

3

4

5

6

7

8

9
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Hex Dec Uppercase and Lower- and

Full Graphics Set Uppercase

Hex Dec Uppercase and Lower- and

Full Graphics Set Uppercase

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

5D 93

5E 94

B
a

B
B
□
□
D
O
□

□

D
S
0
□
□

□

D
Q

a
0

c
m

B
A

B

C

D

E

F

G

H

I

]
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

z

5F

60

61

62

63

64

65

66

67

68

69

95

96

97

98

99

100

101

102

103

104

105

6A 106

6B 107

6C 108

6D 109

6E

6F

70

71

72

73

74

75

76

77

78

79

110

111

112

113

114

115

116

117

118

119

120

121

7A 122

7B 123

7C 124

7D 125

7E 126

7F 127

- -space- -

I II
U H

□ □
D D
□ O

a
s
B
a

E
Q
B
H
a

B
H

H

D
C
a

□
n
□

a
D
H
H
E
B

a

a

E
a

a

B
H

H
ffl
□

C
a

n
n
a

H

128-255 are reverse video of 0-127.
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0
0

H
e
x

A
d
d
r
e
s
s

D
0
0
0

D
0
0
1

D
0
0
2

D
0
0
3

D
0
0
4

D
0
0
5

D
0
0
6

D
0
0
7

D
0
0
8

D
0
0
9

D
O
O
A

D
O
O
B

D
O
O
C

D
O
O
D

D
O
O
E

D
O
O
F

D
0
1
0

D
0
1
1

D
0
1
2

D
0
1
3

D
0
1
4

D
0
1
5

D
0
1
6

D
e
c
i
m
a
l

A
d
d
r
e
s
s

5
3
2
4
8

5
3
2
4
9

5
3
2
5
0

5
3
2
5
1

5
3
2
5
2

5
3
2
5
3

5
3
2
5
4

5
3
2
5
5

5
3
2
5
6

5
3
2
5
7

5
3
2
5
8

5
3
2
5
9

5
3
2
6
0

5
3
2
6
1

5
3
2
6
2

5
3
2
6
3

5
3
2
6
4

5
3
2
6
5

5
3
2
6
6

5
3
2
6
7

5
3
2
6
8

5
3
2
6
9

5
3
2
7
0

O
f
f
s
e
t

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

F
u
n
c
t
i
o
n

S
p
r
i
t
e
0
X
-
P
o
s
i
t
i
o
n
(
l
o
w
8

bi
ts
)

S
p
r
i
t
e
0
Y
-
P
o
s
i
t
i
o
n

S
p
r
i
t
e

1
X
-
P
o
s
i
t
i
o
n
(
l
o
w
)

S
p
r
i
t
e

1
Y
-
P
o
s
i
t
i
o
n

S
p
r
i
t
e
2
X
-
P
o
s
i
t
i
o
n
(
l
o
w
)

S
p
r
i
t
e
2
Y
-
P
o
s
i
t
i
o
n

S
p
r
i
t
e
3
X
-
p
o
s
i
t
i
o
n
(
l
o
w
)

S
p
r
i
t
e
3
Y
-
P
o
s
i
t
i
o
n

S
p
r
i
t
e
4
X
-
P
o
s
i
t
i
o
n
(
l
o
w
)

S
p
r
i
t
e
4
Y
-
P
o
s
i
t
i
o
n

S
p
r
i
t
e
5
X
-
P
o
s
i
t
i
o
n
(
l
o
w
)

S
p
r
i
t
e
5
Y
-
P
o
s
i
t
i
o
n

S
p
r
i
t
e
6
X
-
P
o
s
i
t
i
o
n
(
l
o
w
)

S
p
r
i
t
e
6
Y
-
P
o
s
i
t
i
o
n

S
p
r
i
t
e
7
X
-
P
o
s
i
t
i
o
n
(
l
o
w
)

S
p
r
i
t
e
7
Y
-
P
o
s
i
t
i
o
n

H
i
g
h

B
i
t
o
f
S
p
r
i
t
e
X
-
P
o
s
i
t
i
o
n

Sp
ri
te

7
|

Sp
ri
te

6

E
x
t
e
n
d
e
d

C
o
l
o
r
m
o
d
e

Bi
t
8

|
1
=

on

R
a
s
t
e
r
S
c
a
n
l
i
n
e
a
n
d
W
r
i
t
e
R
e
g

Bi
t
7

|
Bi
t
6

is
te

l
i
g
h
t
P
e
n
H
o
r
i
z
o
n
t
a
l
P
o
s
i
t
i
o
n

l
i
g
h
t
P
e
n

V
e
r
t
i
c
a
l
P
o
s
i
t
i
o
n

E
n
a
b
l
e
S
p
r
i
t
e
s

(1
=

o
n
,
0
=

of
i

Sp
ri
te

7
|

Sp
ri
te

6

1
1

1

f>

0

S
p
r
i
t
e
5

B
i
t
m
a
p

m
o
d
e

1
—

o
n

r
f
o
r
R
a
s
t
e
r

I

B
i
t
5

S
p
r
i
t
e
5

C
h
i
p

R
e
s
e
t

=
N
o
r
m
a
l

S
p
r
i
t
e
4

S
c
r
e
e
n

B
l
a
n
k
i
n
g

0
=
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Appendix L

Device Numbers

Table of second parameter in OPEN. Example: OPEN 5,4 opens file 5 to printer.

0 Keyboard

1 Tape (not used in SX-64 models)

2 RS-232, usually modem

3 Screen

4 Printer

5 Printer—alternative setting

6 Plotter

8 Disk Drive

9 Disk Drive—alternative

10 Disk Drive—alternative

11 Disk Drive—alternative

586
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Appendix N

Opcodes in Detail

Opcode Description Flags

N V B D I Z C

ADC Add memory with carry to accumulator N V 2 C
AND Logical AND memory with accumulator N Z

ASL Shift memory or accumulator one bit left N Z C
BCC Branch if carry bit clear ^

BCS Branch if carry bit set ~~~~

BEQ Branch if zero bit set

BIT AND with A, storing Z and bits 6 and 7 M7M6 Z

BMI Branch if N (negative) flag set

BNE Branch if zero bit clear ~~

BPL Branch if N bit is not set

BRK Force break to IRQ 11

BVC Branch on internal overflow bit clear

BVS Branch on internal overflow bit set

CLC Clear the carry bit 0

CLD Clear decimal flag (for hex arithmetic) 0

CLI Clear interrupt disable flag 0

CLV Clear internal overflow flag 0

CMP Compare memory to accumulator N Z C

CPX Compare memory to X register N Z C

CPY Compare memory to Y register ^__ N Z C

DEC Decrement memory location N 2

DEX Decrement X register N Z

DEY Decrement Y register N Z

EOR Logical exclusive OR memory with A N Z

INC Increment memory location ' N 2

I NX Increment X register N Z

INY Increment Y register N Z

JMP Jump to new address

JSR Jump to new address, saving return

LDA Load accumulator from memory N Z

LDX Load X register from memory N Z

LDY Load Y register from memory N Z

LSR Shift memory or accumulator one bit right 0 Z C~

NOP No operation

ORA Logical inclusive OR memory with A N Z

PHA Push accumulator onto stack

PHP Push processor status flags onto stack

PLA Pull stack into accumulator N Z

PLP Pull stack into processor status flags N V B D I Z C

ROL Rotate memory or A one bit left, inc. C N Z C

ROR Rotate memory or A^one bit right, inc. C N Z C

RTI Return from interrupt N V B D I Z C

RTS Return from subroutine called by JSR

SBC Subtract memory and C-complement from A N V Z C

5EC Set the carry bit f
SED Set the decimal flag (for BCD arithmetic) 1

SEI Set the interrupt disable flag 1

STA Store accumulator into memory

STX Store X into memory

STY Store Y into memory

TAX Transfer accumulator to X register N Z

TAY Transfer accumulator to Y register N Z

TSX Transfer stack pointer to X register N Z

TXA Transfer X register to A N Z

TXS Transfer X register to stack pointer

TYA Transfer Y register to A N Z
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6D 4

2D 4

OE 6

2C 4

CD 4

EC 4

CC 4

CE 6

4D 4

EE 6

4C 3

20 6

AD 4

AE 4

AC 4

4E 6

OD 4

2E 6

6E 6

ED 4

8D 4

* .

2

7D*4

3D* 4

1E 7

DD*4

DE 7

5D*4

FE 7

BD*4

BC*4

5E 7

1D*4

3E 7

7E 7

FD*4

9D 5

rt if i

+1 if b

hI mor

79*4

39*4

D9*4

59*4

B9*4

BE*4

19*4

F9*4

99 5

ndex c

ranch

e if p

65 3

25 3

06 5

24 3

C5 3

E4 3

C4 3

C6 5

45 3

E6 5

A5 3

A6 3

A4 3

46 5

05 3

26 5

66 5

E5 3

85 3

86 3

84 3

:rosses

is tak

age cr

75 4

35 4

16 6

D5 4

D6 6

55 4

F6 6

B5 4

B4 4

56 6

15 4

36 6

76 6

F5 4

95 4

94 4

page

en,

ossed

B6 4

96 4

00 7

B8 2

CA 2

88 2

EA 2

48 3

08 3

68 4

28 4

40 6

60 6

38 2

F8 2

78 2

AA 2

A8 2

BA 2

8A 2

9A 2

98 2

69 2

29 2

C9 2

EO 2

CO 2

49 2

A9 2

A2 2

AO 2

09 2

E9 2

9022

BO2 2

F022

3022

DO2 2

1022

5022

7022

OA 2

4A 2

2A 2

6A 2

61 6

21 6

Cl 6

41 6

A1 6

01 6

El 6

81 6

71*5

31*5

D1*5

51*5

B1*5

1 1 5

F1*5

91 6

6C 5

ADC

AND

ASL

BCC

BCS

BEQ

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

1 NC

INX

INY

JMP

JSR

LDA

LDX

LDY

LSR

NOP

ORA

PHA

PHP

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA
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Appendix P

6502/6510 Quasi-Opcodes

Instruction

ASO (ASL,ORA)

RLA (ROL,AND)

LSE (LSR,EOR)

RRA (ROR,ADC)

AXS (STX,STA)

LAX (LDX,LDA)

DCM (DECCMP)

INS (INQSBC)

ALR (LSR,EOR)

ARR (ROR,ADC)

OAL (TAX,LDA)

SAX (DEX,CMP)

NOP

SKB

SKW

Abs

OF

2F

4F

6F

8F

AF

CF

EF

1A,

80,

0C,

Abs,X

IF

3F

5F

7F

DF

FF

3A, 5A,

Abs,Y

IB

3B

5B

7B

BF

DB

FB

7A, DA,

B2, C2, E2, 04,14,

1C, 3C,

Zer

07

27

47

67

87

A7

C7

E7

FA

34,44,

5C, 7C, DC, FC

Zer,X Zer,Y

17

37

57

77

97

B7

D7

F7

54, 64, 74, D4, F4

(Ind,X)

03

23

43

63

83

A3

C3

E3

(Ind),Y

13

33

53

73

B3

D3

F3

Imm

0B

2B

4B

6B

AB

CB

ASO ASL then ORA the result with the accumulator

RLA ROL then AND the result with the accumulator

LSE LSR then EOR the result with the accumulator

RRA ROR then ADC the result from the accumulator

AXS Store the result of A AND X

LAX LDA and LDX with the same data

DCM DEC memory and CMP the result with the accumulator

INS INC memory then SBC the result with the accumulator

ALR AND the accumulator with data and LSR the result

ARR AND the accumulator with data and ROR the result
OAL ORA the accumulator with #$EE, AND the result with data, then TAX

SAX SBC data from A AND X and store result in X

NOP No operation

SKB Skip byte (that is, branch of +1)

SKW Skip word of two bytes (that is, branch of +2)

A number of bit patterns which do not appear in Appendices N and O will still
be interpreted by the 6502/6510 as opcodes. These commands are not part of the
6502/6510's specification. Types X3, X7, XB, and XF (and most of X2) aren't defined.
Generally, these quasi-opcodes arise from the processor attempting to execute two

instructions simultaneously.
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There are many regularities in these results. Codes ending in bits 11 execute two

standard instructions ending with bits 01 and 10, simultaneously; if the addressing

modes of the instructions don't match, the higher may be executed first. Those

quasi-opcodes shown in the table in boldface seem likely to be more reliable than

the others.

While there are no guarantees that these opcodes will continue to work with all

revisions of the 6502/6510, it is a fact that some published software containing these

codes has given no problems. All 6502/6510s seem to be produced from the same

masks, as is shown by the well-known bug in indirect JMP, where JMP ($01FF) takes

its two-byte address from $01FF and $0100.

Besides providing some programming shortcuts, quasi-opcodes allow some mea

sure of concealment from disassembly, as no standard disassembler program will be

able to interpret them. For example:

033C ASO $0342 ;Shift Left contents of $0324

033F DCM $0345 ;Decrement contents of $0345

0342 ML program

shows on a monitor as:

033C OF 42 03 CF 45

0341 03 XX ?? ?? YY

where XX, ??, and YY are parts of the ML program. Disassembly starting at 033C

will produce at least ten bytes of garbage. However, the program will run properly,

but only once. You must compensate for the first two instructions, which halve the

contents of $0345 and decrement the contents of $0345. If you set up a loop to

change some other portion of the ML—for example, by EORing it with some set val

ues—the whole of a large section of RAM ML can be made hard to decipher.
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Converting Commodore 64, VIC-

20, and CBM Programs

Conversion is a deceptively simple word, hiding the reality that one machine's pro

grams must often be rewritten for use on another. First, you'll see how to transfer

programs between machines. Then you'll see how to convert them to run in their

new environments. Generally, these remarks apply only to BASIC; ML programs

usually have to be rewritten.

LOADing Other Programs into the Commodore 64

VIC-20 programs. VIC-20 disk programs should load without difficulty into the

Commodore 64. However, tape programs may give problems, since recording speeds

differ even though the format is the same. If loading is unsuccessful, try saving the

original as a file with OPEN1,1: CMD1: LIST: PRINT#1: CLOSE1 and using a

MERGE to read it into the computer. This writes the program in smaller chunks, so

loading is easier. If this fails, loading into a CBM/PET first (see below), and then

into the 64, is likely to work. Alternatively, the program could even be transferred by

modem.

PET/CBM programs. PET/CBM disk programs should load into the 64, but

only if formatted with CBM's 4040 disk drive. Tape should be trouble-free; if there

are LOAD errors, try using the same recorder with both CBM and 64 to be sure the

head alignment isn't a factor.

Note that the earliest (tiny keyboard) PETs don't operate in quite the same man

ner; they have an extra zero byte at the start which usually scrambles the first line

after loading into the 64 (the rest of the program is fine).

To load a program from one of these very early PETs into the 64, add a redun

dant first line to the PET program and delete the meaningless line number at the

start when it's loaded into VIC. You can also load the program into a newer CBM

and save it, giving a 64-loadable program.

Loading 64 Programs into Other Computers
Loading 64 programs into the VIC-20. This is no problem with disks. However,

tape may be unsuccessful, because of timing differences. Use the same cures as you

would when loading VIC programs into the 64.
Loading 64 programs into PET/CBMs. This is slightly tricky; the 64's screen is

usually at the place PET/CBM BASIC starts. First move the screen, then move the
start of BASIC down with POKE 44,4: POKE 1024,0: NEW; now load the 64 pro

gram and save to tape or disk. The result will load successfully into PET/CBM

machines.

Alternatively, change the LOAD address to $0401 on disk or tape, by reading
and writing back the program file (disk) or overwriting the header (tape is trickier!).

Other methods are possible, too. The following program, "Simulate CBM/PET,"

modifies the 64 to resemble a CBM/PET.
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Simulate CBM/PET

10 SIMPLE PET/CBM SIMULATOR

20 POKE 792,193:POKE 646,5:POKE 53281,0:POKE 53280

,0
30 POKE 56576,5:POKE 53272,4:POKE 648,128

40 POKE 1024,0:POKE 43,1:POKE 44,4:POKE 55,0:POKE

{SPACE}56,128:PRINT"{CLR}":NEW

Program Conversion

Programs which are pure BASIC, even for non-CBM computers, can often be con

verted to run on the 64. Difficulties are likely, though, particularly if disk or tape ac

cess is needed. The 64 can perform any Commodore disk operation, although CBM

BASIC 4.0 requires translation into the lower level version, since it includes disk

commands not available on the VIC or 64. Other computers' disk operations may

well be rewritten to operate with the 64.

There are often other subtle differences between computers, too. For instance,

some interpret logical true as 1, rather than —1 as with CBM, so logical operations

may work incorrectly. And some commands (like PRINT USING) are simply missing

from CBM BASIC.

CBM BASICs are all more or less transportable between machines. However, the

earliest PETs and latest CBMs are a bit different from the 64 in several small ways—

GO TO isn't allowed as one word in the oldest PETs, for example, and DS is a re

served variable in the most recent models. Pure BASIC (without SYS, PEEK, POKE,

WAIT, or USR) is compatible to a very large extent; screen problems can occur, with

related features like the bug in INPUT "LONG PROMPT";X$, differences with POS,

SPC, and TAB, and cursor movements which may scroll the screen.

You can expect that calculation programs and programs which print out results

will work with little change; so will programs written without PEEKs or POKEs.

With luck, programs which use the built-in graphics set may convert easily. A check

ers program, with complicated logic and a simple board display, may need work on

the display but can be expected to run properly if the graphics are right.

POKE, PEEK, SYS, WAIT, and USR. These are the problem areas when

converting programs; very little ML is transportable between machines. Some ML

has an exact equivalent in each CBM machine, for example, screen POKEs and

POKEs into the keyboard buffer. But other ML is machine-specific. For example,

sprites in the 64 have no equivalent in other CBM machines.

If you're lucky and the BASIC program has many REMarks, conversion can be a
simple matter of looking up the location in one memory map and finding the

equivalent in another. Disabling the RUN/STOP key and manipulating the keyboard
buffer are examples. You may be able to delete some commands; disabling
RUN/STOP isn't very important. In addition, you may be able to replace some

PEEKs amd POKEs. For instance, the 64's POKE 198,0 has a BASIC equivalent, FOR
J=l TO 10: GET X$: NEXT, which clears a ten-character keyboard buffer. CBM's
POKE 59468,14 to switch to lowercase is replaceable by PRINT CHR$(14) on the
VIC and 64.

Generally, POKEs, PEEKs, and WAITs involving locations 140-250 are likely to
apply to the screen or keyboard. Low memory values often alter BASIC pointers.
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Most low RAM locations have the same sort of effect with VIC and the 64. CBM is

rather different, though as a rule BASIC 2.0's usage of locations up to 120 or so are

just three addresses less than VIC/64 values (a POKE to location 41 in a PET/CBM

has the same effect as a POKE to location 44 on a VIC or 64).

SYS commands can be converted only if you have ML knowledge. A routine

may call some Kernal addresses and be usable unchanged; more likely, disassembly

will show up a few addresses which have to be changed. Without ML knowledge

you can't be sure what ML POKEd to RAM does.

POKE commands are usually the most difficult to convert, because they can

change the whole program configuration. Screen POKEs and the color RAM, graph

ics definitions and sound, interface chip manipulations, and uses of multicolor mode

illustrate this sort of thing. PEEKs (to read joysticks, for example) can be tricky as

well, but they can be routinized more easily in view of the narrower purposes they

serve.

The following table gives relevant POKE and PEEK locations for a variety of

functions. It should help you identify the purpose of a few of those mysterious

POKEs in other people's programs.

Equivalent Memory Locations

Screen Memory

Color Memory

Character ROM

Registers to Control

Character Set Location

Sound Registers

Joystick Registers

light Pen Registers

Paddle Registers

Interface Chip

Registers

Start-of-BASIC Pointer

Top-of-BASIC Pointer

VIC-20

7680-8185

(unexpanded)

4096-4591

(with 8K or more

expansion)

37888-38393

(unexpanded)

38400-38905

(with 8K or more

expansion)

32768-36863

36866, 36867, 36869

36874-36878

37151, 37152

36870, 36871

36872, 36873

VIA1 37136-37151

VIA2 37152-37167

43,44

55,56

64

1024-2023

55296-56295

53248-57343

53272

54272-54300

56320, 56321

53267, 53268

54297, 54298

CIA1 56320-56335

CIA2 56576-56591

43,44

55,56

CBM BASIC 2 & 4

32768-33767

(40-column)

32768-34767

(80-column)

—

—

—

59464, 59466

—

—

—

PIA1 59408-59411

PIA2 59424-59427

VIA 59456-59471

40,41

52,53
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Supermon 64

Supermon is a relatively short monitor for the 64. It is a public domain program, so it

is free. It can be loaded like BASIC and run, and this puts it into the top of BASIC

memory, leaving RAM from $C000 free for ML programs. Chapter 8 explains its op

eration. This version prints your input in white, and the monitor's output in cyan, for

good readability.

SYS 38910 reenters Supermon after .X has been used to exit to BASIC, assuming

Supermon is in its usual position in RAM and hasn't been disconnected by

RUN/STOP-RESTORE. SYS to an address containing zero (SYS 13, for example)

will reenable the monitor as well.

The following instructions tell you how to enter and save Supermon. The first

step is to switch on the 64 and type in the entire program (not necessarily all at

once) and save "Supermon Data" to tape or disk. Note that complete accuracy is re

quired in entering the data. For security, a simple checksum is included. It's often

most efficient to have a friend call out the numbers as you type in programs.

Next, turn the computer off, then on again, and type in:

POKE 43,1: POKE 44,18: POKE 18*256,0: NEW

to move BASIC up out of the way. After this, LOAD "SUPERMON DATA",8 (or ,1
for tape). Run the Supermon Data program (which takes about 25 seconds), then

SAVE "SUPERMON 64",8 (or ,1 for tape). Now, "Supermon 64" becomes the pri
mary version of Supermon; just load and run it.

Supermon Data
For mistake-proof program entry, be sure to use the "Automatic Proofreader," Appendix C.

10 FOR J=2048 TO 4587: READ X: POKE J,X: T=T+X: NE

XT srem 24

20 IF TO283295 THEN PRINT "CHECKSUM ERROR": END

:rem 234

30 POKE 43,1: POKE 44,8: POKE 45,235: POKE 46,17:

{SPACE}CLR: LIST :rem 27

400 DATA 0,26,8,100,0,153,34,147,18,29,29,29,29,83
,85,80,69,82,32 :rem 134

401 DATA 54,52,45,77,79,78,0,49,8,110,0,153,34,17,
32,32,32,32,32 :rem 69

402 DATA 32,32,32,32,32,32,32,32,32,32,0,75,8,120,
0,153,34,17,32 srem 30

403 DATA 46,46,74,73,77,32,66,85,84,84,69,82,70,73
,69,76,68,0,102 srem 173

404 DATA 8,130,0,158,40,194,40,52,51,41,170,50,53,
54,172,194,40 srem 14

405 DATA 52,52,41,170,49,50,55,41,0,0,0,170,170,17
0,170,170,170 srem 255

406 DATA 170,170,170,170,170,170,170,170,170,170,1
70,170,170,170 srem 64

407 DATA 170,170,170,170,165,45,133,34,165,46,133,
35,165,55,133 srem 34
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408 DATA 36,165,56,133,37,160,0,165,34,208,2,198,3

5,198,34,177,34 :rem 150
409 DATA 208,60,165,34,208,2,198,35,198,34,177,34,

240,33,133,38 :rem 49

410 DATA 165,34,208,2,198,35,198,34,177,34,24,101,

36,170,165,38 :rem 43

411 DATA 101,37,72,165,55,208,2,198,56,198,55,104,

145,55,138,72 :rem 50

412 DATA 165,55,208,2,198,56,198,55,104,145,55,24,

144,182,201,79 :rem 102
413 DATA 208,237,165,55,133,51,165,56,133,52,108,5

5,0,79,79,79,79 :rem 163

414 DATA 173,230,255,0,141,22,3,173,231,255,0,141,

23,3,169,128,32 :rem 103

415 DATA 144,255,0,0,216,104,141,62,2,104,141,61,2

,104,141,60,2 :rem 238

416 DATA 104,141,59,2,104,170,104,168,56,138,233,2

,141,58,2,152 :rem 19

417 DATA 233,0,0,141,57,2,186,142,63,2,32,87,253,0

,162,66,169,42 :rem 72

418 DATA 32,87,250,0,169,82,208,52,230,193,208,6,2

$0,194,208,2,230 :rem 179

419 DATA 38,96,32,207,255,201,13,208,248,104,104,1

69,159,32,210 :rem 36

420 DATA 255,169,0,0,133,38,162,13,169,46,32,87,25

0,0,169,5,32,210 :rem 169

421 DATA 255,32,62,248,0,201,46,240,249,201,32,240

,245,162,14,221 :rem 106

422 DATA 183,255,0,208,12,138,10,170,189,199,255,0

,72,189,198,255 :rem 154

423 DATA 0,72,96,202,16,236,76,237,250,0,165,193,1

41,58,2,165,194 :rem 137

424 DATA 141,57,2,96,169,8,133,29,160,0,0,32,84,25

3,0,177,193,32 :rem 80

425 DATA 72,250,0,32,51,248,0,198,29,208,241,96,32

,136,250,0,144 :rem 74

426 DATA 11,162,0,0,129,193,193,193,240,3,76,237,2

50,0,32,51,248 ;rem 70

427 DATA 0,198,29,96,169,59,133,193,169,2,133,194,

169,5,96,152,72 :rem 177

428 DATA 32,87,253,0,104,162,46,76,87,250,0,169,15

9,32,210,255,162 :rem 189
429 DATA 0,0,189,234,255,0,32,210,255,232,224,22,2

08,245,160,59 :rem 21
430 DATA 32,194,248,0,173,57,2,32,72,250,0,173,58,

2,32,72,250,0 :rem 11
431 DATA 32,183,248,0,32,141,248,0,240,92,32,62,24

8,0,32,121,250 :rem 54
432 DATA 0,144,51,32,105,250,0,32,62,248,0,32,121,

250,0,144,40,32 :rem 77
433 DATA 105,250,0,169,159,32,210,255,32,225,255,2

40,60,166,38,208 srem 176
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434 DATA 56,165,195,197,193,165,196,229,194,144,46

,160,58,32,194 :rem 130

435 DATA 248,0,32,65,250,0,32,139,248,0,240,224,76

,237,250,0,32 :rem 14

436 DATA 121,250,0,144,3,32,128,248,0,32,183,248,0

,208,7,32,121 :rem 5

437 DATA 250,0,144,235,169,8,133,29,32,62,248,0,32

,161,248,0,208 :rem 76

438 DATA 248,76,71,248,0,32,207,255,201,13,240,12,

201,32,208,209 :rem 69

439 DATA 32,121,250,0,144,3,32,128,248,0,169,159,3

2,210,255,174 :rem 23

440 DATA 63,2,154,120,173,57,2,72,173,58,2,72,173,

59,2,72,173,60 :rem 80

441 DATA 2,174,61,2,172,62,2,64,169,159,32,210,255

,174,63,2,154 :rem 28

442 DATA 108,2,160,160,1,132,186,132,185,136,132,1
83,132,144,132 :rem 64

443 DATA 147,169,64,133,187,169,2,133,188,32,207,2
55,201,32,240 :rem 44

444 DATA 249,201,13,240,56,201,34,208,20,32,207,25
5,201,34,240,16 :rem 104

445 DATA 201,13,240,41,145,187,230,183,200,192,16,
208,236,76,237 :rem 79

446 DATA 250,0,32,207,255,201,13,240,22,201,44,208
,220,32,136,250 :rem 93

447 DATA 0,41,15,240,233,201,3,240,229,133,186,32,
207,255,201,13 srem 54

448 DATA 96,108,48,3,108,50,3,32,150,249,0,208,212
,169,159,32,210 srem 130

449 DATA 255,169,0,0,32,239,249,0,165,144,41,16,20
8,196,76,71,248 :rem 151

450 DATA 0,32,150,249,0,201,44,208,186,32,121,250,
0,32,105,250,0 srem 35

451 DATA 32,207,255,201,44,208,173,32,121,250,0,16
5,193,133,174 .rem 18

452 DATA 165,194,133,175,32,105,250,0,32,207,255,2

01,13,208,152 :rem 16

453 DATA 169,159,32,210,255,32,242,249,0,76,71,248
,0,165,194,32 :rem 43

454 DATA 72,250,0,165,193,72,74,74,74,74,32,96,250
,0,170,104,41 srem 34

455 DATA 15,32,96,250,0,72,138,32,210,255,104,76,2
10,255,9,48,201 srem 123

456 DATA 58,144,2,105,6,96,162,2,181,192,72,181,19
4,149,192,104 :rem 49

457 DATA 149,194,202,208,243,96,32,136,250,0,144,2
,133,194,32,136 :rem 133

458 DATA 250,0,144,2,133,193,96,169,0,0,133,42,32,
62,248,0,201,32 srem 108

459 DATA 208,9,32,62,248,0,201,32,208,14,24,96,32,
175,250,0,10,10 :rem 10'9
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460 DATA 10,10,133,42,32,62,248,0,32,175,250,0,5,4

2,56,96,201,58 srem 56
461 DATA 144,2,105,8,41,15,96,162,2,44,162,0,0,180

,193,208,8,180 srem 65
462 DATA 194,208,2,230,38,214,194,214,193,96,32,62

,248,0,201,32 :rem 31
463 DATA 240,249,96,169,0,0,141,0,0,1,32,204,250,0

,32,143,250,0 :rem 244
464 DATA 32,124,250,0,144,9,96,32,62,248,0,32,121,

250,0,176,222 :rem 11
465 DATA 174,63,2,154,169,159,32,210,255,169,63,32

,210,255,76,71 :rem 99
466 DATA 248,0,32,84,253,0,202,208,250,96,230,195,

208,2,230,196 : rem 32
467 DATA 96,162,2,181,192,72,181,39,149,192,104,14

9,39,202,208,243 :rem 206
468 DATA 96,165,195,164,196,56,233,2,176,14,136,14

4,11,165,40,164 :rem 157

469 DATA 41,76,51,251,0,165,195,164,196,56,229,193

,133,30,152,229 :rem 155

470 DATA 194,168,5,30,96,32,212,250,0,32,105,250,0

,32,229,250,0 :rem 5

471 DATA 32,12,251,0,32,229,250,0,32,47,251,0,32,1

05,250,0,144,21 :rem 81
472 DATA 166,38,208,100,32,40,251,0,144,95,161,193

,129,195,32,5 :rem 32
473 DATA 251,0,32,51,248,0,208,235,32,40,251,0,24,

165,30,101,195 :rem 52

474 DATA 133,195,152,101,196,133,196,32,12,251,0,1

66,38,208,61,161 :rem 181

475 DATA 193,129,195,32,40,251,0,176,52,32,184,250

,0,32,187,250 :rem 33
476 DATA 0,76,125,251,0,32,212,250,0,32,105,250,0,

32,229,250,0,32 :rem 85

477 DATA 105,250,0,32,62,248,0,32,136,250,0,144,20

,133,29,166,38 :rem 63

478 DATA 208,17,32,47,251,0,144,12,165,29,129,193,

32,51,248,0,208 :rem 134
479 DATA 238,76,237,250,0,76,71,248,0,32,212,250,0

,32,105,250,0 :rem 17
480 DATA 32,229,250,0,32,105,250,0,32,62,248,0,162

,0,0,32,62,248 :rem 44
481 DATA 0,201,39,208,20,32,62,248,0,157,16,2,232,

32,207,255,201 :rem 55
482 DATA 13,240,34,224,32,208,241,240,28,142,0,0,1

,32,143,250,0 :rem 243
483 DATA 144,198,157,16,2,232,32,207,255,201,13,24

0,9,32,136,250 :rem 75
484 DATA 0,144,182,224,32,208,236,134,28,169,144,3

2,210,255,32,87 :rem 135
485 DATA 253,0,162,0,0,160,0,0,177,193,221,16,2,20

8,12,200,232,228 :rem 141
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486 DATA 28,208,243,32,65,250,0,32,84,253,0,32,51,
248,0,166,38,208 :rem 178

487 DATA 141,32,47,251,0,176,221,76,71,248,0,32,21
2,250,0,133,32 :rem 62

488 DATA 165,194,133,33,162,0,0,134,40,169,147,32,
210,255,169,159 :rem 141

489 DATA 32,210,255,169,22,133,29,32,106,252,0,32,
202,252,0,133 srem 11

490 DATA 193,132,194,198,29,208,242,169,145,32,210
,255,76,71,248 :rem 112

491 DATA 0,160,44,32,194,248,0,32,84,253,0,32,65,2
50,0,32,84,253 :rem 65

492 DATA 0,162,0,0,161,193,32,217,252,0,72,32,31,2
53,0,104,32,53 srem 41

493 DATA 253,0,162,6,224,3,208,18,164,31,240,14,16
5,42,201,232,177 srem 166

494 DATA 193,176,28,32,194,252,0,136,208,242,6,42,
144,14,189,42 srem 46

495 DATA 255,0,32,165,253,0,189,48,255,0,240,3,32,
165,253,0,202 srem 21

496 DATA 208,213,96,32,205,252,0,170,232,208,1,200
,152,32,194,252 srem 117

497 DATA 0,138,134,28,32,72,250,0,166,28,96,165,31
,56,164,194,170 srem 147

498 DATA 16,1,136,101,193,144,1,200,96,168,74,144,
11,74,176,23,201 srem 177

499 DATA 34,240,19,41,7,9,128,74,170,189,217,254,0
,176,4,74,74,74 srem 160

500 DATA 74,41,15,208,4,160,128,169,0,0,170,189,29
,255,0,133,42 srem 19

501 DATA 41,3,133,31,152,41,143,170,152,160,3,224,
138,240,11,74 srem 253

502 DATA 144,8,74,74,9,32,136,208,250,200,136,208,
242,96,177,193 srem 94

503 DATA 32,194,252,0,162,1,32,254,250,0,196,31,20
0,144,241,162 srem 2

504 DATA 3,192,4,144,242,96,168,185,55,255,0,133,4
0,185,119,255 srem 45

505 DATA 0,133,41,169,0,0,160,5,6,41,38,40,42,136,
208,248,105,63 srem 57

506 DATA 32,210,255,202,208,236,169,32,44,169,13,7
6,210,255,32,212 srem 173

507 DATA 250,0,32,105,250,0,32,229,250,0,32,105,25
0,0,162,0,0,134 :rem 71

508 DATA 40,169,159,32,210,255,32,87,253,0,32,114,
252,0,32,202,252 2rem 162

509 DATA 0.133,193,132,194,32,225,255,240,5,32,47,
251,0,176,233 :rem 23

510 DATA 76,71,248,0,32,212,250,0,169,3,133,29,32,
62,248,0,32,161 :rem 109
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511 DATA 248,0,208,248,165,32,133,193,165,33,133,1

94,76,70,252,0 :rem 84

512 DATA 197,40,240,3,32,210,255,96,32,212,250,0,3

2,105,250,0,142 :rem 93

513 DATA 17,2,162,3,32,204,250,0,72,202,208,249,16

2,3,104,56,233 :rem 53

514 DATA 63,160,5,74,110,17,2,110,16,2,136,208,246

,202,208,237,162 :rem 158

515 DATA 2,32,207,255,201,13,240,30,201,32,240,245

,32,208,254,0 :rem 248

516 DATA 176,15,32,156,250,0,164,193,132,194,133,1

93,169,48,157 :rem 51

517 DATA 16,2,232,157,16,2,232,208,219,134,40,162,

0,0,134,38,240 :rem 56

518 DATA 4,230,38,240,117,162,0,0,134,29,165,38,32

,217,252,0,166 :rem 67

519 DATA 42,134,41,170,188,55,255,0,189,119,255,0,

32,185,254,0,208 zrem 188

520 DATA 227,162,6,224,3,208,25,164,31,240,21,165,

42,201,232,169 :rem 63

521 DATA 48,176,33,32,191,254,0,208,204,32,193,254

,0,208,199,136 :rem 85

522 DATA 208,235,6,42,144,11,188,48,255,0,189,42,2

55,0,32,185,254 :rem 137

523 DATA 0,208,181,202,208,209,240,10,32,184,254,0

,208,171,32,184 :rem 110

524 DATA 254,0,208,166,165,40,197,29,208,160,32,10

5,250,0,164,31 zrem 73

525 DATA 240,40,165,41,201,157,208,26,32,28,251,0,

144,10,152,208 irem 58

526 DATA 4,165,30,16,10,76,237,250,0,200,208,250,1

65,30,16,246,164 :rem 162

527 DATA 31,208,3,185,194,0,0,145,193,136,208,248,

165,38,145,193 :rem 96

528 DATA 32,202,252,0,133,193,132,194,169,159,32,2

10,255,160,65 :rem 32

529 DATA 32,194,248,0,32,84,253,0,32,65,250,0,32,8

4,253,0,169,5 :rem 25

530 DATA 32,210,255,76,176,253,0,168,32,191,254,0,

208,17,152,240 :rem 73

531 DATA 14,134,28,166,29,221,16,2,8,232,134,29,16

6,28,40,96,201 srem 79

532 DATA 48,144,3,201,71,96,56,96,64,2,69,3,208,8,

64,9,48,34,69 :rem 61

533 DATA 51,208,8,64,9,64,2,69,51,208,8,64,9,64,2,

69,179,208,8,64 :rem 162

534 DATA 9,0,0,34,68,51,208,140,68,0,0,17,34,68,51

,208,140,68,154 :rem 121

535 DATA 16,34,68,51,208,8,64,9,16,34,68,51,208,8,

64,9,98,19,120 :rem 107
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536 DATA 169,0,0,33,129,130,0,0,0,0,89,77,145,146,

134,74,133,157 srem 69

537 DATA 44,41,44,35,40,36,89,0,0,88,36,36,0,0,28,
138,28,35,93,139 :rem 187

538 DATA 27,161,157,138,29,35,157,139,29,161,0,0,4

1,25,174,105,168 :rem 193

539 DATA 25,35,36,83,27,35,36,83,25,161,0,0,26,91,

91,165,105,36 srem 37

540 DATA 36,174,174,168,173,41,0,0,124,0,0,21,156,
109,156,165,105 srem 113

541 DATA 41,83,132,19,52,17,165,105,35,160,216,98,
90,72,38,98,148 srem 153

542 DATA 136,84,68,200,84,104,68,232,148,0,0,180,8
,132,116,180,40 srem 122

543 DATA 110,116,244,204,74,114,242,164,138,0,0,17
0,162,162,116 srem 10

544 DATA 116,116,114,68,104,178,50,178,0,0,34,0,0,

26,26,38,38,114 srem 116

545 DATA 114,136,200,196,202,38,72,68,68,162,200,5
8,59,82,77,71 srem 56

546 DATA 88,76,83,84,70,72,68,80,44,65,66,249,0,53
,249,0,204,248 srem 120

547 DATA 0,247,248,0,86,249,0,137,249,0,244,249,0,
12,250,0,62,251 srem 123

548 DATA 0,146,251,0,192,251,0,56,252,0,91,253,0,1
38,253,0,172,253 srem 160

549 DATA 0,70,248,0,255,247,0,237,247,0,13,32,32,3
2,80,67,32,32 srem 17

550 DATA 83,82,32,65,67,32,88,82,32,89,82,32,83,80
'0 :rem 21
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A (Assemble) Monitor command 203, 229-30

ABS function 19

accumulators 110

ADC instruction 288

address bus 108

addressing modes, 6510 chip 208-10

"ADSR Plotter" program 441

algorithm 81

AND instruction 221-22, 289-90

AND operator 20

animation 421-23

"animation" program 421

answer mode (modem) 553

APPEND BASIC extension 168

appending sequential files 505

arrays 97-98

Arrow tape operating system 473

ASC function 16, 21, 87

ASCII code 15, 93, 575

ASL instruction 221, 290-91

assemblers 233-38

attack (sound) 433-34

ATN function 21-22

audio-video socket 9, 118

AUTO BASIC extension 168

"Auto" program 169

"Automatic Proofreader, The" 569-71

autostart cartridges 131-33

BAM 517, 522

bank selection 109

bank switching 388

"BASIC Autoloader" program 482-84

BASIC joystick routine 534

"BASIC Light Pen Program" 539

"BASIC Line Peeker" program 141

"BASIC list" program 179-80

BASIC ROM routines 250-51

"BASIC Wedge Demonstration" program

264-65

BASIC programming language 3, 105

advanced 137-200

effective programming 77-101

error messages 68-73

extensions 167-200

graphics and 359-60

mixing ML with 277-84

modifying in RAM 257-58

modifying through vectors and wedges

262-69

moving into RAM 257, 260

reference guide 15-73

BCC instruction 291

BCS instruction 292

Bell 103 standard 554

BEQ instruction 292-93

binary notation 105-6

binary search 95

bit instruction 293-94

"Bitmap Draw Routine" program 400

"Bitmap Drawing with a Joystick" program

402-3

bitmapped graphics 383-84, 396-405

block commands, disk 524-25

BLOCK LOAD BASIC extension 169-70

BLOCK SAVE BASIC extension 169-70

BMI instruction 294-95

BNE instruction 295-96

Boolean expression. See logical expression

BRK opcode 203, 207, 213

vector 269

"BASIC Screen" program 142

BPL instruction 296

BRK instruction 297

buffer 110, 154-56

BVC instruction 298

BVS instruction 299

C (Compare Memory) Monitor command 230

calculations, ML and 251-56

cartridge 114-17, 131-33, 437

cartridge socket 9, 118-20

cassette port 9, 120

CBM MON monitor 226, 227-28

CHAIN BASIC extension 171

"Change Color Ram" program 371

"Change Vertical Position" program 381

"Changing the LOAD Address" program

500-501

channel fifteen 493-94, 528-29

"Character Editor" program 392-95

character ROM 359, 389-90

characters 359-62

characters, ML and 248

CHECK DISK Commodore disk utility

program 511

CHR$ function 16, 17, 22

CHRGET Kernal routine 263, 264
CHROUT Kernal routine 247-48, 365

CIA (Complex Interface Adapter) 109, 121-29,

259, 269

"Circle Plotter" program 552

CLOSE statement 12, 22-23, 87

tape 469, 470

disk 497-98

ML 526-29

CLC instruction 299

CLD instruction 300

CLI instruction 300

CLR statement 23-24
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CLV instruction 301

CMD statement 24, 543, 548

CMP instruction 301-2

COLOR BASIC extension 171

color RAM 93, 375-79, 396

changing with ML 370-71

"Color Ram Motion7' program 371

"Combine lines" program 198-99

commas, INPUT and 155-56

commercial software 131-34

Commodore 64, different models of 113

Commodore ASCII codes 576-79

Commodore 64 105-36

"Compare ROM" program 258-59

comparisons, ML 207-8

COMPILE BASIC extension 171-72

CompuServe 553

COMPUTE's Machine Language Routines for

the Commodore 64 167

COMPUTE'S Second Book of Machine Language

237

"Computed GOTO and GOSUB" program

173

CONT command 25

control port 9-10, 120, 533-40

controllers 137

copy protection, tape 481-82

COPY/ALL Commodore disk utility 511

COS function 25

CPX instruction 303

CPY instruction 304

CRUNCH BASIC extension 173

cursor 248

D (Disassemble) Monitor command 203, 230

daisywheel printers 546

data files, tape 468-70

"Data Maker" program 278

DATA statement 26, 97, 278, 565

data structures 97-99

Datassette 465-66, 471-73

troubleshooting 472

"Date Validator" program 99-100

"Day of the Week Calculator" program 100

"Days Between Two Dates" program 100

debugging BASIC programs 87

DEC instruction 304-5

decay (sound) 433-34

decimal arithmetic 224

"Decimal Input" program 88-89

decimal notation 106-8

DEEK BASIC extension 174

DEF FN statement 26-27

"Delete" program 174

DEX instruction 305-6

DEY instruction 306

device number 12, 166, 514-15, 586

"Dice" program 97

diet calculator 990-91

DIM statement 27-28, 101, 147

DIR Commodore disk utility 511

direct access commands, disk 523-26

direct access files, disk 495-96

direct mode 11, 151

disk 3, 487-529

command summary 508-9

copying 490-92

device number, changing 514-15

directory 489, 517-18, 51-23

error channel 493-94

errors, 498

file handling, ML 526-29

formatting 488-89

hardware notes 512

ID 488-89

loading program 490

message summary 510

scratching file 490

saving program 489-90

troubleshooting 509-11

ROM 515-16

DISK ADDR CHANGE Commodore disk

utility 511

"Disk Merge" program 181

disk utility programs, Commodore 511-12

diskette storage 513-14

diskettes, physical characteristics of 512-13

disk, commercial software and 133

DISPLAY T&S Commodore disk utility 511

DOKE BASIC extension 174

DOS 5.1 Commodore disk utility 511

dot-matrix printers 546

"Double Density" program 369-70

"Drawing Lines" program 400-02

DUMP BASIC extension 174-76

editing BASIC 11-12

editor/assemblers 238

END statement 2-29

end-of-tape marker 466

envelope, SID 433-35, 437

EOR instruction 221-22, 307

EPROM (erasable programmable read only

memory) 109, 135,36

"Equation Solver" program 91-92

error message subroutine 85

error messages, BASIC 69-73

errors, in ML programming 224-25

EXP function 17, 29

expansion boards 135

exponential notation 15

expressions, BASIC 17-18

extended background color mode 379-80

"Extended Background Color Mode" program

380

"Fast Step" program 165
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1540 model disk drive 487

1541 model disk drive 487

files 12, 468-70, 494, 495-96, 499, 500,

502-8, 509, 518-19, 526-29

filters, sound 435-36

"Finding ML or Memory Dump LOAD

Address" program 500

flags 110

floating point accumulator 333

flow chart 80-81

FOR-NEXT structure 29-31, 87

forced-load address 466-67

"Fraction Maker" program 92

FRE function 17, 31-32

"Froggie Graphics" program 363

full duplex communication 555

function keys 157-59

"Function Keys" program 157-58

functions, BASIC 17, 146

G (Go) Monitor command 203, 230

game paddles 535-38

gate bit 440

"General Program Copier" 492

GET statement 32, 89

GET# statement 32-33, 470, 497

GETIN Kernal routine 248

GOSUB statement 34-35, 84

GOSUB-RETURN structure 87

GO dummy statement 33

GOTO statement 35, 84

graphics 3, 359-423

cross-reference 368-69

double-density 369-70

"Graphics Screen Dump" program 549-50

H (Hunt Memory) Monitor command 231

half duplex communication 555

"Handling Relative Files" program 507

hardware schematic 112-13

hardware vectors 356

header, tape 481-82

hex-to-decimal conversion subroutine 84

hex-to-decimal conversion, ML 253-54

hexadecimal notation 5,107-8

"Histogram Demo" program 367

"Horizontal Motion" program 423

hybrid programs 279-80

I (Interpret Memory) Monitor command 231

IEEE communication 134-35

IF-THEN statement 35-36

index 205-6

INC instruction 308

input buffer 154-55

INPUT statement 36-38

INPUT# statement 38, 87, 470, 497

INT function 39

integer variables 16

intercepting keys 162-63

interfaces 134-35

interrupt register, VIC II 415-16

interrupts 127, 269-73, 415-21

"Investigating the CIA" program 126-27

INX instruction 206, 309

INY instruction 309

IOINIT Kernal routine 260

IRQ interrupt 415, 466

"IRQ Polling" program 415

IRQ vector 213-14, 269

"Jesu Joy" program 450-51

jiffy clock 156

JMP instruction 310

joystick 9, 127, 402, 533-35

joystick port. See control port

JSR instruction 213, 311

"Kaleidoscope" program 363

Kernal ROM 333

Kernal routines 241-49, 354-56

I/O errors 241-42

new languages and 259-61

keyboard 10-11, 159-65, 457, 248

decoding 160-61

redefinition 164

reading 159-60

repeat keys 164

keyboard buffer 155, 159

keys 10-11

intercepting 162-63

keywords, BASIC 11-12, 16, 19-73

L (Load ML) Monitor command 231

labels 235

LADS assembler 237

languages, new 259-61

LDA instruction 312

LDX instruction 313

LDY instruction 313-14

LEFT$ function 17, 39, 92

"Legible list" program 177-78

LEN function 40

LET statement 40-41

"LET Vector Demo" program 267

light pen 10, 127, 417, 538-40

"Line Plotter" program 551-52

linked lines, BASIC 140-41

linking devices 135

LIST BASIC extension 176-80

LIST statement 41

LIST Kernal routine 262

listing conventions 4-5

literals 15

"Load Anywhere" program 479

LOAD command 42-43, 465-68

loading 151-52

LOG function 17, 43-44

logical expression 17

logical file number 12
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logical line 12

loops, ML 219-21, 206-7

LSR instruction 221, 314-15

M (Memory Display) Monitor command 203,

231

machine language. See ML

"Machine Language Sort for String Arrays"

program 193-94

MAE editor/assembler 238

making BASIC run faster 100-101

"Maze Demo" program 365

memory commands, disk 525-26

memory configuration 114-18

memory locations, equivalent 595

memory map 109-11, 333-56

bitmap merge BASIC extension 180

MOD BASIC extension 181

MICROMON-64" monitor 226, 228

"MicroScope" program 111

MID$ function 17, 44, 92, 93

ML 3, 105, 203-38

graphics and 365-75

relocating 280-83

tape routines 470-71, 478-81

techniques 216-21

"ML Autorun" program 501-2

"ML Character Screen Dump" program 550

"ML Clock" program 128-29

"ML File Reader" program 528

ML joystick interpreter 535

ML joystick routine 535

"ML light Pen Draw" program 539-40

"ML Paddle Reader" program 537

"ML Read-Only" program 447-48

"ML Relocator" program 283

"ML Reverse" program 366-67

modems 137, 553-57

monitors 112, 203-8, 226-33, 234, 543

command dictionary 229-33

"Mosaic" program 391

"Multicolor Bitmap Draw Routine" program
404-5

multicolor mode 376-79

"Multicolor Mode" program 378-79

"Music Program" 451-47

music theory 448-49

N (Number Adjuster) Monitor command 232
NEW command 44-45

NEXT statement 45

NMI (Non-Maskable Interrupt) 124, 213-14,
269-73, 415

"NMI Demo" program 271
noise 431-32

NOP instruction 315

NOT operator 45-46

"Number Guessing Game" program 81-82
"Number of Blocks Free" program 522

number storage, tape and 470

numbers 15, 152-54

numeric expression 17

object code 233-34

"Oh, Zeros" program 93

"OLD" program 181-82

ON statement 46-47

ONERR BASIC extension 182

opcode, 6510 chip 235, 287-329, 588-90

OPEN statement 12, 47-48

control register 559-60

disk 496

ML 526-29

printers 543

RS-232 channel and 559

tape 469, 470

operand 235

operators 16

OR operator 48-49

ORA instruction 221-22, 315-16

"Organ Keyboard" program 457-49

originate mode (modem) 553

P (Printer Disassembly) Monitor command 232

"Packing Numbers" program 93

paddles 10

pattern matching, filename 509

PAUSE BASIC extension 182-83

"Payroll Analyser" program 91

PEEK function 18, 49

PERFORMANCE TEST Commodore disk

utility 511-12

PET 64 computer 4

"Pet Your 64" program 260-61

PHA instruction 213, 316-17

PHP instruction 317

physical line 12

PLA (programmed logic array) 109, 113

PLA instruction 213, 318

PLOT Kernal routine 248

"Plotter Demo" program 552

plotters 551-52

plotting 367-69

PLP instruction 318-19

pointers 110

POKE statement 50

BASIC graphics and 364-65

"POKEing BASIC to the Screen" program 142

POP BASIC extension 183

"POP" program 183-84

POS function 50-51

PRINT statement 51-52, 87, 360-63

PRINT BASIC extension 184

PRINT USING BASIC extension 184-87
"PRINT USING Demo" program 186

"PRINT USING" program 184-85

PRINT# statement 52-53, 87, 470, 496-97,
543-45, 548
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printers 109, 543-51

Commodore 543-45

control characters 547-48

non-Commodore 545-7

presence 550-51

spooling 551

program chaining 151-52, 467

program conversion 593-95

program counter 213

program files, disk 494, 499, 500

program mode 11, 151

program recovery 129-31

programming aids, music 462

programming standards 83-86

"Programming Sprites with User-Defined

Characters" program 41-11

programs (ROM) 110

PROM (Programmable Read Only Memory)

109

pseudo-opcode 234, 235

pulse wave 430-31

quasi-opcodes 591-92

"Queens" program 96-97

R (Register Display) Monitor command 232

Rabbit tape operating system 473

RAM 108, 109

free areas 165-66

in disk drive 487-88

ML manipulation 256-59

RAM data storage 99

BASIC and 277

RAMTAS Kernal routine 260

randomizing 96-97

ML and 254-55

range of byte, testing 219

raster interrupt 417-19

"Reading and Displaying a Sequential File"

program 503-4

READ statement 53-54

"Reading Bytes from Tape" program 471

"Reading Paddle 2" program 537

"Reading Programs Byte by Byte" program

499

"Reading the Bam" program 522

"Reading the Directory Track" program

522-23

RECONFIGURE BASIC extension 187-88

"Reconfigure" program 187-88

register 333

registers, SID 438-41

control 440-^1

envelope shape 441, 442

filter 443

frequency control 439

pulse width 439

read-only 444

voice 438

volume 443

relative files, disk 495-96, 506-8, 518-19

release (sound) 434

"Relocating Program Generator", program

283-84

REM BASIC extension 188-89

REM statement 54, 84, 101

ML and 278

RENUMBER BASIC extension 19-91

"Renumber" program 190

RESET BASIC extension 191

reset vector 213-14

resetting the computer 129-31

reset, hardware 130-31

RESTORE statement 55

RETURN statement 55-56

RF modulator output jack 9

"Rhythm Box" program 459-61

RIGHTS function 17, 56, 92

ring modulation 432-33, 440

RND function 56-57

ROL instruction 221, 319

ROM 108-9

ML manipulation 257-59

upgrading 258-59

ROM cartridge 109

"ROM RAM" program 257

ROM upgrade" program 259

ROR instruction 221, 320

"Rounding" program 89-90

RS-232 interface 557-61

OPEN and 559

pin functions 558

RS-232 processing 9, 124, 134, 545-46

RTI instruction 213, 320-21

RTS instruction 203, 321-22

RUN command 57-58

RUN/STOP 129-30

RUN/STOP and RUN/STOP-RESTORE,

disabling 156-57

RUN/STOP-RESTORE 129-30

RUN/STOP-RESTORE, RAM BASIC and 260

S (Save ML) Monitor command 232

"Save Anywhere" program 480-81

SAVE command. 58-59, 465-68

saving 151-52

sawtooth wave 430

SBC instruction 322-23

screen 166-67, 247-48

screen character codes 580-81

screen color codes 574

screen color memory table 573

"Screen Dump" program 175

screen location table 572

screen RAM 396

"Screen Save and Load" program 170-71

"Scroll Down" program 372
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"Scroll Left" program 373

"Scroll Right" program 373

"Scroll Up" program 372

scrolling 372-75

smooth 380-82

search algorithm, relative files 495

"Search" program 191-92

searching 95

SEC instruction 323

secondary address 12

sector 513-14, 516-17

SED instruction 324

SEI instruction 324-25

sequential files, disk 495, 496, 502-6

serial port 9, 120, 487, 561-62

series calculations 256

SET BASIC extension 192

SETLFS Kernal routine 527

SGN function 59

"Shell-Metzner Sort" program 192

shift and rotate instructions 221

"Shuffler" program 95-96

shuffling 95-96

SID chip 3, 109, 112, 259, 427-35, 437-48,

535, 585

side sectors 518-19

"Simple Design" program 362

"Simple Menu" program 86

"Simple ML Output" program 366

"Simple POKE" program 364

"Simple PRINT Demo" program 362

"Simple SIDMON" program 444-46

"Simpler Shuffler" program 96

SIN function 59-60

sine waves 427-29

"Single-Key Keyword Entry" program 163-64

1650 model AUTOMODEM 553

1600 model VICMODEM 553

6502 chip 108

6510 chip 108, 287-329

"64 Terminal Program" 556-57

"Smooth Scroll" program 382

"Sorted Directory" program 520-21

sorting 95, 192-95

sound 3, 427-62

source code 233

SPC( output function 60

speech synthesis 437

"sprite collision" program 409

"Sprite Editor" program 412-15

"Sprite-Data Collision" program 416-17
sprites 405-15

collision 409

defining 406

disabling 406

enabling 406

expansion 408

interrupts and 416-20

mapping 409-11

modes 407-8

positioning 406-7

priority 408-9

SQR function 17, 60-61

square wave. See pulse wave

ST reserved variable 16, 61, 470, 498

STA instruction 325

stack 110-11, 213

statements 18

status register 211-13

STOP statement 62

storage in memory, BASIC 139-51

accuracy of numbers 152-54

arrays 146-48

BASIC bytes 143

calculating 139-40, 150-51

floating-point 153

garbage collection and 148-50

string 148-49

variables 144-46

STR$ function 16, 62-63

"String and Integer Input" program 88

string expression 17

string handling 92-94

string variables 16, 145-46

STX instruction 326

STY instruction 326

subroutines, ML 207-8

"SUPERMON" monitor 203, 226-28, 596-602

sustain (sound) 434

SX-64 computer 4

SYS statement 63

systems 11, 79, 82-83

T (Transfer Memory) Monitor command 232

TAB( function 64

tables (ROM) 110

TAN function 64

tape 3, 127, 465-84

commercial software and 133-34

headers 475-77

type to purchase 472-73

tape buffer 156

"Tape Directory" program 476-77

tape recorders, non-Commodore 473

tape recorder, programming 474-76

TAX instruction 326-27, 205

TAY instruction 327

Teletype printers 546

terminal software 553

thermal and spark printers 546

"Thirty-Two Sprites" program 419-21

TI reserved variable 16, 64-65

TI$ reserved variable 64-65

timers 127-28

timing 215-16
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'Tournament Sort" program 192-93

"Trace" program 195-96

track 513-14, 516-17

triangle wave 429

TSX instruction 327-28

tunes 437

turnkey systems 118

TV 111-12

two-byte operations 217-19

twos complement arithmetic 222-23

TXA instruction 328

TXS instruction 328-29

TYA instruction 329

typewriters, modified 546

typing in programs 565-68

U commands, disk 523-24

unclosed files 509

UNCRUNCH BASIC extension 173

UNLIST BASIC extension 196-99

user port 9, 105, 120

user-definable characters 376-77, 383-95, 421

"Using a Quote Before Input" program 155

"Using Block Read" program 524

"Using Block Write" program 524-25

"Using Files" program 470

"Using the Input Buffer" program 155

"USR Demonstration" program 252-53

USR function 66, 251-53

V (Verify) Monitor command 232

VAL function 16, 66

"Variable Dump" program 175-76

variables, BASIC 11, 15-16, 101, 144-46, 157

"VARPTR" program 199-200, 250

vectors 110, 262-69

VERIFY command 66-67, 467

"Vertical Motion" program 422

VIC II chip 3, 4, 100, 109, 112, 113-14, 259,

375, 383, 384-87, 391, 397, 405, 538,

582-84

VIEW BAM Commodore disk utility 512

voices, SID 438, 448

wait statement 67-68, 534

warm start 260

warning light, disk 498-99

wedges 263-65

"Window List" program 176-77

"Wordscore" program 94

"Writing Bytes to Tape" program 471

X (Exit to BASIC) Monitor command 233

x register 205, 206-7

zero flag 207

zero page 209, 213,
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To order your copy of Programming The Commodore 64

Disk, call our toll-free US order line: 1-800-334-0868 (in NC

call 919-275-9809) or send your prepaid order to:

Programming The Commodore 64 Disk

COMPUTE! Publications

P.O. Box 5058

Greensboro, NC 27403

All orders must be prepaid (check, charge, or money order). NC

residents add 4.5% sales tax.

Send copies of Programming The Commodore 64 Disk at
$12.95 per copy.

Subtotal $_

Shipping & Handling: $2.00/disk $_

Sales tax (if applicable) $_

Total payment enclosed $_

All payments must be in U.S. funds.

□ Payment enclosed

Charge a Visa □ MasterCard □ American Express

Acct. No. Exp. Date
(Required)

Signature

Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

4595073





If you've enjoyed the articles in this book, you'll find

the same style and quality in every monthly issue of
COMPUTEI's Gazette for Commodore.

For Fastest Service

Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTED Gazette
P.O. Box 5058

Greensboro, NC 27403

My computer is:

□ Commodore 64 □ VIC-20 □ Other.

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada
□ $65 Air Mail Delivery

□ $30 International Surface Mail

Name

Address

City

Country

State Zip

Payment must be in US funds drawn on a US bank, international

money order, or charge card. Your subscription will begin with the

next available issue. Please allow 4-6 weeks for delivery of first issue.

Subscription prices subject to change at any time.

□ Payment Enclosed □ Visa

□ MasterCard □ American Express

Acct. No. Expires /
(Required)

The COMPUTEI's Gazette subscriber list is made available to carefully screened

organizations with a product or service which may be of interest to our readers. If you

prefer not to receive such mailings, please check this box a

759199





COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order

directly from COMPUTE!.

Call toll free (fh US) 800-334-0868 (in NC 919-275-9809)
or write COMPUTE! Books, P.O. Box 5058, Greensboro, NC

27403.

Quantity Title Price* Total

SpeedScript: The Word Processor for the

Commodore 64 and VIC-20 (94-9) $ 9.95

Commodore SpeedScript Book Disk $12.95

COMPUTEI's Commodore 64/128 Collection (97-3) $12.95

All About the Commodore 64, Volume Two (45-0) $16.95

All About the Commodore 64 Volume One (40-X) $12.95

Programming the Commodore 64:

The Definitive Guide (50-7) $24.95

COMPUTEI's Data File Handler for the

Commodore 64 (86-8) $ 12.95

Kids and the Commodore 64 (77-9) $12.95

COMPUTEI's Commodore Collection, Volume 1 (55-8) $12.95

COMPUTEI's Commodore Collection, Volume 2 (70-1) $12.95

COMPUTEI's VIC-20 and Commodore 64
Tool Kit: BASIC (32-9) $16.95

COMPUTED VIC-20 and Commodore 64
Tool Kit: Kernal (33-7) $16.95

COMPUTEI's Telecomputing on the

Commodore 64 (009) $ 12.95

COMPUTEI's VIC-20 Collection (007) $12.95

Programming the VIC (52-3) $24.95

VIC Games for Kids (35-3) $12.95

COMPUTEI's First Book of VIC (07-8) $12.95

COMPUTED Second Book of VIC (16-7) $12.95

COMPUTEI's Third Book of VIC (43-4) $12.95

Mapping the VIC (24-8) $14.95

COMPUTED VIC-20 Collection (007) $12.95

•Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 4.5% sales tax

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date—
(Required)

Name_

Addres

City

•Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

State. Zip-

4595073
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