

Programming
the

Raeto Collin West

22Me~!~[E,ublications/lnc .•
Greensboro, North Carolina

Copyright Level Limited, October 1984. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the
United States Copyright Act without the permission of the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-52-3

10 9 8 76 5 4 3 2 1

Published by COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-
9809. COMPUTE! Publications is one of the ABC Publishing Companies and is not associated with any
manufacturer of personal computers. VIC-20 is a trademark of Commodore Electronics Limited.

Contents
Foreword v

Chapter 1
Introduction .. 1

Chapter 2
Getting to Know Your VIC-20 ... 7

Chapter 3
BASIC Reference Guide ... 13

Chapter 4
Effective Programming in BASIC .. 69

Chapter 5
VIC-20 Architecture .. 97

Chapter 6
Beyond VIC-BASIC .. 153

Chapter 7
6502 Machine Language .. 227

Chapter 8
ML Methods Specific to the VIC-20 263

Chapter 9
Mixing BASIC with Machine Language 293

Chapter 10
Vocabulary of the 6502 Chip .. 301

Chapter 11
VIC-20 ROM Guide ... 345

Chapter 12
Graphics ... 371

Chapter 13
Sound ... 453

Chapter 14
Tape .. 467

Chapter 15
Using the Commodore Disk Drive 489

Chapter 16
The Games Port .. 533

Chapter 17
Major Peripherals ... 547

Appendices:
Appendix A
A Beginner's Guide to Typing In Programs 569

Appendix B
How to Type In Programs .. 571

Appendix C
The Automatic Proofreader
Charles Brannon ... 573

Appendix D
Screen Location Table 576

Appendix E
Screen Color Memory Table ... 577

Appendix F
Screen Color Codes ... 578

Appendix G
Usable Graphics and Screen Combinations 578

Appendix H
Screen and Border Colors .. 580

Appendix I
ASCII Codes

Appendix J
Screen Codes

Appendix K

581

585

VIC Chip Registers .. 587

Appendix L
Device Numbers .. 588

Appendix M
Decimal-Hexadecimal Interconversion Table 589

Appendix N
Opcodes in Detail ... 590

Appendix 0
Table of 6502 Opcodes ... 592

Appendix P
6502 Quasi-Opcodes ... 593

Appendix Q
Interconverting VIC-20, Commodore 64, and CBM Programs 595

Index ... 599

Foreword

Programming the VIC picks up where other programming guides leave off. It
covers virtually every aspect of the VIC-20, from simple BASIC commands to com
plex machine language techniques, and every explanation is written with clarity and
style. The result? A comprehensive book, easy to read and understand, that thor
oughly reveals the VIC and demonstrates its capabilities.

BASIC programmers, for example, will make frequent reference to the detailed,
annotated listing of every VIC BASIC command. Machine language enthusiasts will
be especially interested in the ROM maps and in the listings of Kernal routines. Sev
eral simple but worthwhile hardware modification techniques have also been in
cluded for those with the necessary aptitudes and skills, and every VIC user
regardless of experience-will find the numerous program examples both useful and
informative.

This book begins with a brief introduction to VIC-20 BASIC and BASIC
programming. It moves on to discuss more advanced programming, including ma
chine language techniques, and also considers specialized applications in the realm
of sound and graphics. Chapters are also devoted to disk and tape storage, to mem
ory expansion, and to the selection and use of various peripheral devices.

Author Raeto Collin West, one of the world's foremost authorities on Com
modore computers, has distilled years of experience into the pages of Programming
the VIC. Beginners will discover new information on every page, while more ad
vanced VIC users will appreciate the sophisticated programming techniques herein.
This is the first book to thoroughly cover every aspect of VIC programming, and it is
certain to become the definitive work in its field.

v

Chapter 1

Introduction

The VIC-20 is one of the world's most popular microcomputers, and like all best
selling computers, it is both inexpensive and generally easy to use. But many VIC-20
owners have found that the word "simplicity" does not always apply when writing
their own programs. Official manuals and even the VIC chip's descriptive sheets
have errors. Reliable information has been difficult to find-until now.

This book is designed to teach competent programming on the VIC-20 and to
provide a comprehensive reference text for VIC-20 users. It incorporates both BASIC
and machine language, for although most people learn BASIC first, it is often nec
essary to use machine language as well to explain or illustrate particular concepts.

When dealing with computers, it isn't always easy to arrange material so every
thing falls into an apparently natural sequence. But the organization used here
should benefit everyone. This book explains BASIC and machine language by build
ing on easy-to-grasp concepts, and it includes a chapter on combining BASIC with
machine language to produce extremely efficient programs. It also contains much
useful information on the VIC's internal organization and structure, and concludes
with in-depth examinations of topics such as sound, graphics, disk operation, and
printers.

The text contains numerous short routines which demonstrate particular con
cepts or techniques. These examples cover subjects ranging from cassette and disk
operation to graphics and sound. They show you how BASIC commands are used,
how special features (notably of the VIC chip) operate, and what machine language
actually does. They can be used successfully without any knowledge of their internal
operation, but if you refer to them while using this book, they will help you acquire
BASIC and machine language expertise.

Programming the VIC has been written independently of Commodore and con
tains criticisms, comments, hints, and a great deal of useful but previously un
published information. Much of that information I have personally discovered, and I
hope to transmit the excitement of discovery to you. This book isn't introductory;
there's simply not space to cover the fundamentals, which are often better learned at
the keyboard from a friend who knows the machine. But it assumes no prior knowl
edge of Commodore systems, so anyone with intelligence and some microcomputer
experience should be able to grasp the essentials of the VIC fairly easily.

Can the VIC handle graphics without memory expansion? Why do some pro
grams fail to run when memory expansion is used? Can the screen size be expanded,
as the literature seems to promise? How can tunes be played during a program with
out stopping it? Is there any way to get a split screen with the VIC? How do you
program the function keys or get 40-column lettering? This is but a small sample of
the questions which have puzzled many VIC users. All, and more, are comprehen
sively answered here.

This book emphasizes information with the widest possible appeal-graphics
and tape operations, for instance, instead of hardware interfacing and mathematics.
In addition, I've been careful to generalize results rather than to present single facts
in unexplained isolation. I've also included comprehensive information on Com
modore's major utilities-Programmer's Aid, Super Expander, and the VICMON

3

Introduction

machine language monitor-but it has not been possible to detail all commercially
available utilities.

The programs have been tested and should work without difficulty, and the
screen display photos were all taken using ordinary TV sets connected to ordinary
VIC-20s. All effects are obtainable using methods explained in the book. If there are
problems, you may have entered a program incorrectly. Alternatively, one of the
VIC's many pointers, vectors, or special locations may have been unintentionally re
set. The cure in the first case is to carefully check your typing. In the second case,
it's usually easiest to save the program, switch off, reload the program, and try
again, or use a reset switch of the sort described in Chapter 5.

Much time and effort have been spent to provide a complete and accurate ref
erence book for programmers of the VIC-20. All the information in this book has
been carefully checked for accuracy. We cannot, however, accept responsibility for
any damage resulting from the use or misuse of the information presented here.
Readers are advised to save critical programs and remove important diskettes or cas
settes before using this book.

Conventions
BASIC program listings have been made with a program which prints the screen
editing commands, colors, and other special characters as {HOME}, {CYAN}, {F1},
and so on in place of the less readable VIC characters. The VIC (video interface chip)
and VIC-20 (computer) are usually distinguished, although it is generally obvious
which is under discussion. With apologies to people who can spell, we've adopted
Commodore's spelling of "Kernal" for the ROM routines which handle the screen,
keyboard, and input/output devices. We've used ML as an abbreviation for machine
language, and machine code is synonymous with machine language.

When talking about actual memory addresses, we've often used decimal and
hexadecimal forms together, for example, 40960 ($AOOO). This is because the hex
form is often more revealing than the decimal form, as experienced software and
hardware people will appreciate. However, the decimal form is also very important,
because BASIC uses it and many people are happier with it. If you don't understand
hexadecimal notation, refer to Appendix M or simply ignore the extra notation.

Hexadecimal numbers are usually represented with a leading $ sign. In ac
cordance with 6502 convention, the symbol # (which is sometimes printed as £) in
dicates a value and not an address. For example, LOA #$00 is the command to load
the accumulator with zero, while LOA $00 loads the accumulator with the contents
of location zero.

The Automatic Proofreader
As you use this book, you'll notice that many of the listings contain unusual REM
statements at the end of each program line (for example, :rem 123). Those numbers
are to be used with the" Automatic Proofreader," a typing verification routine de
scribed in Appendix C. 00 not type in those rems as you enter the programs in this
book; instead, use them in conjunction with the Automatic Proofreader to be certain
that you have typed each line correctly. This can save you a great deal of debugging
time later on.

4

Introduction

Acknowledgments
I have derived considerable benefit from discussions with members of several
organizations, chiefly ICPUG (Independent Commodore PET User Group) in the UK,
TPUG (Toronto PET User Group) of Canada, and COMPUTE! Publications in the
USA. In addition, examination of published software has often yielded interesting
techniques and shortcuts.

Trademarks and business names include VIC-20, "The Friendly Computer," and
CBM, all trademarks of Commodore Business Machines Limited.

5

Chapter 2

Getting to Know Your VIC-20

This chapter gives you an overview of the VIC's features. It provides both an in
troduction to the machine, for complete novices, and a summary for experienced
programmers who might want a refresher. Chapters 3 and 4 deal with BASIC
programming in depth.

Background
Commodore (CBM) has been making computers since 1977. But it didn't become a
household word until the introduction of the low-priced VIC in early 1981, and the
64 in mid-1982.

Both machines proved remarkably successful, far outselling other CBM com
puters. CBM's earlier experience made it possible for a range of relatively low-priced
peripherals (tape drives, disk drives, printers, modems) to be produced more or less
concurrently.

All Commodore computers have strong resemblances, and straightforward
BASIC programs which run on one CBM machine are likely to run on another, too.
H you change from one CBM machine to another, knowing about the VIC will prove
very helpful.

A Description of the VIC-20
In the following description, the words port and socket are used interchangeably. You
may find labeling some of the ports helpful if your machine is often disconnected
and packed away. As with any electrical equipment, take sensible precautions not to
short-circuit connections or otherwise take risks.

Top. The top of the VIC-20 features the power-on light and the keyboard. The
power-on light tells you when the machine is turned on; the keys will be discussed
in detail in a separate section.

Back panel. The back of the VIC-20 features a number of different sockets and
connectors. From left to right, they are the expansion (or cartridge) socket, the
video/audio socket, the CBM serial port, the cassette port, and the user port.

The expansion socket allows cartridges or memory expanders to be plugged in
(only those designed for the VIC-20 will work). See Chapter 5.

The video/audio socket connects to a video monitor or, using the modulator sup
plied with the VIC, to a TV.

The CBM serial port is used by CBM disk drives and printers. The serial signal
format is unique to CBM, a modified version of the IEEE format used in the older
Commodore PETs, and should not be confused with RS-232 type serial communica
tions. See Chapter 15 for information on disk storage and Chapter 17 for information
on printers.

The cassette port is specially designed to power and control CBM's Datassette
tape drive. Other devices may also draw power from this socket. Chapter 14 has full
details.

The user port is designed to let your VIC communicate with the outside world. It
is most often used with a CBM modem, but can also be used, where hardware
expertise permits, to control electronic devices for such purposes as process control.

9

Getting to Know Your VIC-20

Chapter 4 has hardware information; Chapter 17 deals with modems.
Side panel. The side panel of your VIC has these features, again from left to

right:
The control port, which is mainly used to connect a joystick but will also accept

a light pen, game paddles, or a mouse. The joystick connector is standard. Chapter
16 has full programming information.

On-off switch.
The power input jack, which connects the VIC to its external power supply trans

former. On older VICs, this connector is a two-pin socket for a single 9-volt AC in
put. On newer VICs, some of the voltage regulation circuitry has been moved from
the computer circuit board into the external power supply. In these units, the two
pin connector has been replaced by a seven-pin DIN socket like that on the Com
modore 64's power input.

The Keyboard
Chapter 6 discusses the keyboard and screen in depth. At this point, a brief over
view is sufficient.

Alphabetic, numeric, and symbol keys appear just as the key top legend im
plies.

SHIFT selects uppercase lettering or the graphics set shown on the right of the
key fronts.

The Commodore key selects the graphics set shown on the left of the key
fronts, or where this doesn't apply, acts like SHIFT.

The Commodore key and SHIFT can be used together to change the display
from uppercase with the full graphics set, to upper- and lowercase lettering plus the
left-hand graphics set.

Function keys display nothing; their operation is explained in Chapter 6.
CTRL (Control) acts with the number keys to change the display to black

through yellow or from reversed to unreversed. CTRL also slows screen scrolling;
this is useful with the LIST command, since it allows a program to be examined
more easily.

STOP interrupts BASIC programs. The command CONT allows resumption of
BASIC, subject to certain conditions.

Left-SHIFT and STOP, used together, load and then run the next BASIC pro
gram on tape.

Right-SHIFT and STOP, used together, cause a BREAK ERROR. This lets you
get out of a program's INPUT statement. Chapter 3 explains INPUT in detail.

RESTORE and STOP, used together, provide a panic button that returns the
system to its normal state, retaining BASIC in memory. Chapter 6 explains both
RESTORE and STOP.

CLR (Clear Screen)jHOME, used alone, leaves the cursor at the top left of the
screen. SHIFT and CLR/HOME, used together, erases the screen and leaves it blank.

CRSR (Cursor) keys move the flashing cursor in the directions shown on the
key tops. To save time, these keys automatically repeat. Moving the cursor down the
screen eventually causes upward scrolling of the display.

INST JOEL (Insert and Delete) are part of the screen editing system, which
allows any part of the screen to be altered. Both keys repeat, although INSERT

10

Getting to Know Your VIC-20

(SHIFT and INST jDEL) has no effect if it isn't followed by characters on its BASIC
line. The VIC's screen editing system is powerful and easy to use, despite a few
small anomalies when in quotes mode. Those are discussed below.

The space bar autorepeats. Chapter 6 gives full information.
Double quotes ("). This key is very important in BASIC. Double quotes mark

the start (or end) of a string, which is a set of characters stored for future use. Cursor
moves, color characters, function keys, and several other special characters are dis
played in a distinctive way, as reversed characters, when preceded by double quotes.
When active, the system is said to be in quote mode. See SHIFT-RETURN below.

RETURN. This key is used by VIC BASIC to signal that information on the
screen is ready for processing by the VIC. For example, if you type PRINT
"HELLO", pressing RETURN causes HELLO to appear. The steps you went through
to put PRINT "HELLO" onscreen are irrelevant. Similarly, RETURN signals that
data typed at the keyboard in response to an INPUT statement is ready for the VIC
to process.

SHIFT-RETURN moves the cursor to the next BASIC line (as opposed to the
next screen line), but without causing the VIC to take in the information. For ex
ample, if you begin to correct a line of BASIC but then realize that your correction is
not needed, SHIFT -RETURN leaves the program as it was.

VIC BASIC
Everything entered into the VIC is treated as BASIC, unless some other special lan
guage is present (for example, machine language from the VTCMON machine lan
guage cartridge).

BASIC can be used in either the direct or the program mode.
Direct mode. You have seen how PRINT "HELLO" is interpreted as an instruc

tion to print the word HELLO. Because of the instant response to the command, this
is called direct or immediate mode.

Program mode. Type 10 PRINT "HELLO" followed by RETURN. Nothing hap
pens. In fact, the line is stored in VIC's memory as a line of a BASIC program; any
thing preceded by a number (up to 63999) is interpreted as a program line, and
stored. This is called program mode or (because the commands aren't carried out im
mediately) deferred mode. LIST displays any BASIC in memory; RUN executes it.
Thus, RUN in this case prints HELLO onscreen, just like the direct-mode version.

Quote mode. Applies to any BASIC, whether in a program or intended for di
rect execution. It is important because, in quote mode, VIC's special characters are
kept for future use. Quote mode allows VIC's screen control features to be used from
within programs.

Notes on line length. The VIC normally has 23 screen lines, each with 22
characters. However, BASIC can link together two, three, or four screen lines into
one program line. Thus there is a distinction between screen lines and BASIC (or
program) lines. Try PRINT "**********", typing asterisks over several lines. You'll
find that the fifth and any subsequent lines aren't linked.

11

Getting to Know Your VIC-20

Introduction to BASIC
BASIC is one of many computer languages. It has many powerful features, all of
which exist in other computer languages too.

Variables. Variables are an algebraic concept, a symbol that can take on a range
of values. FOR X = 1 TO 10: PRINT X: NEXT prints ten different values of X, show
ing how the variable named X can store numbers and allow them to be manipulated.
The next chapter discusses variables more fully.

Keywords. These are the commands recognized by BASIC; PRINT is an ex
ample. All VIC BASIC keywords are listed, with examples, in the next chapter.

Note that most keywords can be entered in a shortened form. PRINT can be
typed in as ?, for example, so 10 ? is read as 10 PRINT.

Screen. The VIC's screen can display up to 256 different characters; these are
listed in the appendices. The numerical (or ASCII) value of these characters differs
from the value actually present in screen memory, and this point is a little confusing
at first.

Screen memory is stored in two separate areas. One holds the characters; the
other holds their colors. Chapter 12 explains VIC graphics in detail. Programmers
wanting to learn machine language will find examples which use the screen in
Chapter 7.

External communication. The VIC communicates with external hardware de
vices by assigning them device numbers (an appendix lists these; tape, for example,
is device 1). LOADing programs from or SAVEing programs to these devices requires
commands like LOAD "PROGRAM",8 (which loads PROGRAM from disk), and
SAVE "PR" (which saves the BASIC program currently in memory onto tape). Tape
is the default device, meaning that tape is assumed if no other device is specifically
requested.

Data can also be written to or read from other devices. For example, you can
read from and write to tape, but you can :.mly write to a printer. The necessary com
mands aren't particularly friendly, however; they involve, in addition to the device
number, a number for reference called::. file number or logical file number. For de
tails, see OPEN and CWSE in the next chapter's reference section. Full information
on tape, disks, printers, and modems is in Chapters 14, IS, and 17.

Error messages. BASIC has built-in error messages which help with debugging
(removing mistakes from) your programs. The final section of Chapter 3 lists them
alphabetically, along with explanations.

12

Chapter 3

BASIC Reference Guide

This chapter explains the main features of BASIC, including the component parts
and the way they fit together in a program. It is divided into three sections:

BASIC syntax. A summary of the BASIC syntax used on the VIC.
Alphabetical list of keywords. This section includes examples which beginners

should try; experienced programmers will find it a useful reference.
Error messages. An annotated listing of error messages.

BASIC Syntax
BASIC is unquestionably the most popular computer language. It's far easier to
write, test, and adjust than any other language, and simple programs can be written
by people with very little experience.

BASIC is sometimes described as "like English," but the resemblance is tenuous.
At any level beyond the simplest, it has to be learned like any other skill. In addi
tion, it is a rather ad hoc language, so that some expressions work differently on dif
ferent machines. What follows applies to VIC BASIC.

Numerals and Literals
These are actual numbers and strings, not variables. Examples of the first are 0,
2.3E-7, 1234.75, and -744; examples of the second are "hello", "ABC123", and
"%!# /" where the quote symbols are delimiters (not part of the literal).

Numerals. The rules which determine the validity of these forms are complex.
Generally, numbers are valid if they contain 0-9, +, -, E and. in certain combina
tions. For instance, 1.23 is valid, but 1.2.3 is not (since only one decimal point may
be used). Similarly, 2E3 is valid, but 2EE3 is not (since only one E is permitted).
Both DE and the lone decimal point are accepted as O.

Exponential notation (using E) may be unfamiliar, but it is not hard to master.
The number following E is the power of 10 that is multiplied by the number to the
left of the E. In other words, it tells you how many places to move the decimal point
left or right to produce an ordinary number. For example, 1.7E3 means "1 point 7
times 10 to the power 3," or 1.7"'1000, which is 1700. Similarly, 9.45E-2 means
"9.45 times 10 to the power -2," or 9.45"'1/100 (which is .0945). SHIFT-E is not ac
cepted. Values outside the ranges .01 to 999999999 and - .01 to -999999999 are
output in exponential form.

Strings. Strings can contain any VIC ASCII characters. Tricky characters can be
incorporated with the CHR$ function, including the double quotes character
(CHR$(34» and RETURN (CHR$(13». The maximum length of any string is 255
characters.

Variables
A variable is an algebraic idea. It can be thought of as a named symbol that is used
to stand for a quantity or string of characters. X, X%, and X$, respectively, are a
number variable (with a minimum value of ± 2.93873588E-39 and a maximum
value of ± 1.70141183E38), an integer variable (some whole number between

15

BASIC Reference Guide

-32768 and 32767), and a string of characters (containing from 0 to 255 characters).
If the variables haven't been assigned values, numeric variables default to O. Strings
default to the null character, a string of zero length.

A variable, as the name implies, can be changed at will, as X = 1: PRINT X:
X = 2: PRINT X shows.

Variable names are subject to these rules and considerations:

1. The first character must be alphabetic.
2. The next character may be alphanumeric.
3. Any further alphanumerics are valid but will not be considered part of the name.
4. The next character may be % or $, denoting an integer or string variable,

respectively.
5. The next character may be C denoting a subscripted variable.
6. A name cannot include reserved words, since the translator will treat them as

keywords and tokenize them. Note that reserved variables (II and ST) can be
incorporated in names, since they are not keywords. However, this is best avoided
because it can lead to confusion. For example, a variable like START will be the
same as ST.

Each of these rules serves to remove ambiguity and make storage convenient
and fast. To appreciate their value, imagine a variable named 1A. If 1A were a valid
variable name, 100 1A = 1 would require special syntactical treatment to distinguish
it from 1001 A = 1. And if symbols other than alphanumerics were permitted, so that
B= were a valid name, still other problems could appear.

Interconversion between variable types is automatic as far as numerals are con
cerned. However, string-to-numeric and vice versa require special functions. For in
stance, L % = L/256 automatically rounds L/256 and checks that the result is in the
range from -32768 to 32767. Similarly, L$=STR$(L) and L=VAL(L$) or
L % = VAL(L$) converts numerals to strings and vice versa, subject to certain rules.
Two other interconversion functions are CHR$ and ASC, which operate on single
bytes and enable expressions which would otherwise be treated as special cases.

Operators (Also Called Connectives)
Binary operators combine two items of the same type, creating a single new item of
the same type. Unary operators modify a single item, generating a new one of the
same type. The numeric operators supported by VIC BASIC are completely standard
and are identical in type and priority to those of FORTRAN. The string operators
and logical operators are rather less standard.

When a string expression or arithmetic expression is evaluated, the result de
pends on the priority assigned to each operator and the presence of parentheses.

Parentheses, in either string or arithmetic calculations, guarantee that the entire
expression within parentheses is evaluated as a unit. In the absence of parentheses,
priority is assigned to operators in this order (the highest priority operator is listed
first):

16

BASIC Reference Guide

i
+
* /
+-
<=>
NOT
AND
OR

Exponentiation (power)
Unary plus and minus sign
Multiply and divide
Binary plus and minus (addition and subtraction)
Comparisons (less than, equal to, greater than)
Logical NOT, unary operator
Logical AND, binary operator
Logical OR, binary operator

Logical operators are also called Boolean operators. In an expression like A + B,
A and B are called operands, and arithmetic operators are generally straightforward.

Comparisons, too, are straightforward with numbers. However, the rules of
comparison are more complex for strings. Strings are compared on a character-by
character basis until the end of the shorter string is reached. If the characters in both
strings are identical to the end of the shorter string, then the shorter one is con
sidered the lesser. Characters later in the CBM ASCII sequence are considered
greater than those earlier in the series. Thus, even though the string "1" is less than
the string "10", the string "5" is greater than the string "449".

Functions
Some BASIC keywords, called functions, are valid only when followed by an ex
pression in parentheses. They may be used either to the right of assignment state
ments or within expressions and will return a value dependent on the expression in
paren th eses.

Numeric functions return numeric values and include SQR, LOG, and EXP.
String functions return string values and include LEFT$, MID$, RIGHT$, and CHR$.
(The last character of all string functions is a $, like that of string variable names.)
PEEK, though not a function in the mathematical sense, has the syntax of a numeric
function and is considered one.

Certain functions (for instance, FRE) use a so-called dummy parameter. This is
an expression required by the interpreter's syntax-checking routine; however, it is
ignored by the code which evaluates the function. Typically, dummy parameters are
given a value of 0, as in PRINT FRE(O).

Expressions
Expressions may be numeric, string, or logical.

Numeric expressions are a valid arrangement of one or more numerals, nu
meric functions, real and integer variables, operators, or parentheses. Logical ex
pressions may also be included. Numeric expressions can replace numbers in many
BASIC constructions; for example, the right-hand portion of the assignment state
ment X = SQR(M) + PEEK(SCREEN + J).

String expressions are valid arrangements of one or more of: literals, string
functions, string variables, the string operator +, and parentheses. String expressions
can replace literals in many BASIC constructions; for example, in X$ = MID$("HI" +
NAME$,l,L)+CHR$(13), which assigns X$ something like "HI BOH" with a RE
TURN character added.

17

BASIC Reference Guide

Logical (or Boolean) expressions evaluate whether a relationship is true or false
(-1 or 0, respectively, in VIC BASIC) and usually contain one or more relational op
erators «, =, or », logical operators, parentheses, numeric, or string expressions.
Their main use is in IF statements. For example, IF X$ = "Y" OR X$ = "N" GOTO
100 is a logical expression.

VIC BASIC doesn't draw sharp distinctions between logical and arithmetic ex
pressions; they are evaluated together and can be mixed. This allows constructions
like IF INT(YRj4)*4=YR AND MN=2 THEN PRINT "29 DAYS" or DAYS = 31 +
2*(M=2) + (M=4 OR M=6 OR M=9 OR M=l1), where the value -1 generated
by a true statement is used in the calculation of days in a month. Such expressions
may evaluate differently on other machines (Apple has true = 1), so purists should
avoid them.

Another aspect of logical expressions is that it's easy to program them in
correctly. Mistyping may be undetected by BASIC (for instance, if AND is typed
aND, the example above interprets the expression as IF INT(YRj4)*4 THEN PRINT
"29 DAYS" which is a valid expression but gives the wrong result). In addition, logi
cal expressions have low priority. That means that they're executed last and can have
wide but unexpected influence. For example, the expression IF PEEK(X)=O AND
PEEK(X + 1)=0 THEN END looks for two zero bytes, but IF PEEK(X) AND
PEEK(X+1)=0 ends whenever PEEK(X) is nonzero and PEEK(X+1)=O.

"True" and "false" are actually two-byte expressions like integer variables. A
value of -1 means all bits are 1; a value of 0 (false) means all bits are O. Chapter 5
explains this in greater detail.

Evaluation
Every intermediate result in an expression must be valid. Numerals must be in the
floating point range, strings must be no longer than 255 characters, and logical ex
pressions must be within the same integer range.

Statements
A statement is a syntactically correct portion of BASIC separated from other state
ments by an end-of-line marker or a colon. All statements begin with a BASIC
keyword or (where LET has been omitted) with a variable. There are several types of
statements; they are listed below.

Assignment statement (LET variable = expression). LET is optional, but its
presence often makes the intention much clearer. Languages like Pascal indicate
assignments with the symbol ":=", read as "becomes."

Conditional statement (IF [logical expression] THEN [statement]). These
statements evaluate the IF expression; if it is true, they invoke the THEN expression.

Statements altering flow of control. These include GOTO, GOSUB, RETURN,
and STOP.

Input statement. Such statements get data from a device or a DATA statement;
examples are INPUT, GET, INPUT#, GET#, and READ.

Statements governing repetition of blocks of code. For example, FOR-NEXT
loops.

18

BASIC Reference Guide

Output statements. These statements (PRINT, PRINT#) send data to screen,
disk, cassette, or some other device.

REM statements. REM statements allow the programmer to include comments
for documentation. The interpreter detects the REM statement and ignores the
remainder of the line when the program runs. Program lines which are included for
information or as markers, but which never run, can be included in this category.

Type conversion statement. Converts between string variables and literals, real
variables and numerals, or integers and numerals, using such functions as ASC,
CHR$, INT, STR$, VAL.

AlphabetiC Reference to BASIC Keywords
BASIC programs are made up of numbered program lines. Each line is made up of
statements, separated by a colon where lines are shared. Spaces generally are
ignored; so are multiple colons.

This section lists every VIC BASIC keyword, with explanations and examples, in
a uniform format. It will be useful whenever questions arise in the course of program
writing. For easier use, error messages are collected in an alphabetic list following
this section.

Notes on syntax. Each command's correct syntax is given in a standard way.
Parameters are usually either variables or numeric or string expressions, and these
are always carefully distinguished. For example, ABS (numeric expression) means
that any valid numeric expression is usable with ABS and in turn implies that ABS
can be used with variables, as in ABS(X). This allows you to check, for example,
whether OPEN N,N is legitimate.

Square brackets denote optional parameters; where they are omitted, a default
value is assumed by the system.

Notes on errors. For several reasons, most errors occur in numerical functions.
First, there's a chance of a simple syntax error, perhaps an arithmetically incorrect
construction or an omitted parenthesis. Second, number parameters have a variety of
legitimate ranges: Byte values must be 0-255; memory addresses must be 0-65535;
integer and logical expressions must be between -32768 and 32767; no floating
point number can be outside about -lE38 and + lE38; zero denominators are not
valid; square roots cannot exist for negative numbers; and so on. These errors are
relatively easy to correct, so they are mentioned only when, as in DATA, some note
worthy feature exists.

Notes on machine language. Chapter 11 is a guide to VIC's ROMs and includes
detailed information on the workings of keywords. However, where it helps elucidate
some aspect of BASIC, such information is included in this chapter. Tokens are listed
for programmers looking into BASIC storage in memory.

19

BASIC Reference Guide

AIS
Type: Numeric function
Syntax: ABS (numeric expression)
Modes: Direct and program modes are both valid.
Token: $B6 (182)
Abbreviated entry: A SHIFT-B
Purpose: Returns the absolute value of the numeric expression in parentheses. In
other words, ABS makes a negative number or expression positive.
Examples:
1. 50 IF ABS (TARGET- X)<.Ol THEN PRINT "DONE": END

This shows how to test for approximate equality. When TARGET is 6, the
program ends if X is between 5.99 and 6.01. This kind of test is typically used in
iterative computations in which a calculated value is to converge on a given value.

2. 100 IF ABS(X1 - X2)<3 AND ABS (Y1 - Y2)<3 GOTO 90
Seen in game programs, this recalculates starting positions on the screen for

two players if randomly generated starting positions are too close.

AND
Type: Binary logical operator
Syntax: Logical or numeric expression AND logical or numeric expression
Modes: Direct and program modes are both valid.
Token: $AF (175)
Abbreviated entry: A SHIFT-N
Purpose: Applies the logical AND operator to two expressions. Each of the 16 bits in
the first operand is ANDed with the corresponding bit in the second operand, result
ing in a 16-bit, 2-byte integer. The four possible combinations of single bits are as
follows:
o AND 0 = 0
OANDl=O
1 AND 0 = 0
1 AND 1 = 1

Note that the value is 1 only if both bits are 1.
AND has two distinct uses in BASIC. First, it allows the truth value of several

logical expressions to be calculated together, as in IF X>2 AND X<3, where X must
be between 2 and 3 for the condition to be true. Second, AND turns off selected bits
in 16-bit numeric expressions, as in POKE 36879, PEEK(36879) AND 8, which turns
the screen black.

AND behaves identically in each example. A logical expression is treated as false
when zero and true when -lor nonzero, and this is responsible for the different
interpretations of logical and numeric expressions.

20

BASIC Reference Guide

Examples:
1. 100 IF PEEK(J) AND 128=128 GOTO 200

Line 200 will be executed if bit 7 of the PEEKed location is set; the other bit
values are ignored.

2. X=X AND 248
Converts X into X less its remainder on division by 8, so 0-7 become a, 8-15

become 8, and so on. This is significantly faster than X = INT(Xj8)*8. It works (for
X up to 256) because 248 = %1111 1000. Thus, X AND 248 sets the three final
bits to zero.

3. OK=YR>84 AND YR<90 AND MN>O AND MN<13 AND OK
Part of a date validation routine, this uses OK as a variable to validate mul

tiple inputs over several lines of BASIC. If not OK, then branches for re-input
when data was unacceptable.

Ase
Type: Numeric function of string expression
Syntax: ASC (string expression). The string must be at least one character long.
Modes: Direct and program modes are both valid.
Token: $C6 (198)
Abbreviated entry: A SHIFT-S
Purpose: This function returns a number in the range 0-255 corresponding to the
VIC ASCII value of the first character in the string expression. It is generally used
when this number is easier to handle than the character itself. See appendices for a
table of VIC ASCII.

Note that the converse function to ASC is CHR$, so ASC(CHR$(N)) has the
value N, and CHR$(ASq"P")) is "P". All keys except STOP, SHIFT, CTRL, Com
modore key, and RESTORE can be detected with GET and ASC.
Examples:
1. X=ASC(X$+CHR$(O»

Calculates the ASCII value of any character X$, including the null character,
which otherwise gives ?ILLEGAL QUANTITY ERROR.

2. X=ASC(X$)-192
Converts uppercase A-Z to 1-26. Useful when computing check digits,

where each letter has to be converted to a number.
3.1000 IF PEEK(L) = ASC(I/*,,) THEN PRINT "FOUND AT"iL

Shows how readability can be improved with ASC; the example is part of a
routine to search memory for an asterisk.

21

BASIC Reference Guide

ATN
Type: Numeric function
Syntax: ATN (numeric expression)
Modes: Direct and program modes are both valid.
Token: $C1 (193)
Abbreviated entry: A SHIFT -T
Purpose: The arctangent function. This function returns, in radians in the range
- 7f /2 to + 7f /2, the angle whose tangent is the numeric expression. This may take
any value within the valid range for floating-point numbers, or approximately
± 1.7E38.

To convert radians to degrees, multiply by 180/ 7f. This changes the range of
values of ATN from - 7f /2 through 7f /2 to -90 through 90 degrees. (The 7f
character is available on the VIC keyboard by typing SHIFT and i [up arrow]. Used
in expressions, this character acts as a constant with the value of pi. For example,
A= 180/7f :PRINT A will give 57.2957795.)

ATN(X) can be a useful transformation, since it condenses almost the entire
number range into a finite set ranging from about -1.57 to + 1.57.
Examples:
1. R+ATN«E2-El)/(N2-Nl»

From a program for surveyors, this computes a bearing from distances east
and north.

2. DEF FN AS(X)=ATN(XjSQR(1-X*X»
DEF FN AC(X)=7f j2-ATN(X/SQR(1-X*X»

These function definitions evaluate arc sine and arc cos respectively. Remem
ber that arctangent can never be exactly 90 degrees; if necessary, test for this ex
treme value to avoid errors.

CHR$
Type: String function of numeric expression
Syntax: CHR$ (numeric expression)
Modes: Direct and program modes are both valid.
Token: $C7 (199)
Abbreviated entry: C SHIFT-H (this includes the $)
Purpose: Converts a numeric expression, which must evaluate and round down to
an integer in the range 0-255, to a string of length 1 containing the corresponding
VIC ASCII character. It is useful for manipulating special characters like RETURN
and ", which are CHR$(13) and CHR$(34) respectively. The appendices have a table
of VIC ASCII. Note that ASC is the converse function of CHR$.
Examples:
1. A$=CHR$(18)+NAME$+CHR$(146)

22

Adds {RVS} and {OFF} around NAME$, so PRINTA$ prints NAME$ in
reverse.

BASIC Reference Guide

2. FOR J=833 TO 848: PRINT CHR$(PEEK(J))i: NEXT
Prints the name of the last-loaded tape program, by reading the characters

from the tape buffer.
3. PRINT#4, CHR$(27) ''E08''

Sends the ASCII ESCAPE character, plus a command, to a printer. Special
printer features are often controlled in this way.

4. OPEN 2,2,O,CHR$(38)+CHR$(60)
Opens a file to a modem. The two CHR$ parameters are required in this for

mat by BASIC.
5. CHR$(O)

This represents the null character. However, unlike "", it has a length of one
and can be added to strings. See ASC for an application. Embedded null charac
ters (as in Y$="12"+CHR$(0)+"34") cause various anomalies.

CLOSE
Type: Input/output statement
Syntax: CLOSE numeric expression. The numeric expression is treated as a logical
file number; it must evaluate to 0-255. No error message is given if the file is not
open. Actually, CLOSE shares OPEN's syntax checking, so four parameters are valid
after CLOSE. However, only the first is used.
Modes: Direct and program modes are both valid.
Token: $AO (160)
Abbreviated entry: CL SHIFT-O
Purpose: Completes the processing of the specified file and deletes its file number,
device number, and secondary address from the file tables. Note that files open for
read need not be CLOSED, but files writing to tape or disk should always be
CLOSED. Otherwise, tape files will lose the last buffer of data and disks may be cor
rupted. OPEN 15,8,15: CLOSE 15 is an easy way to correctly close disk files, per
haps after a program stops with ?SYNTAX ERROR while writing to disk. Chapters
14 and 15 have details.

Note, too, that CLOSE is a straightforward command which is made unneces
sarily complicated by the behavior of CMD, which needs a final PRINT# to unlisten
the serial bus and switch output back to the screen.
Example:
OPEN 4,4: PRINT#4, "HELLO": CLOSE 4

Closes a file to a printer after sending it a message.

CLR
Type: Statement
Syntax: CLR
Modes: Direct and program modes are both valid.

23

BASIC Reference Guide

Token: $9C (156)
Abbreviated entry: C SHIFT-L
Purpose: Appears to erase all BASIC variables currently in memory, leaving the
BASIC program, if there is one, unchanged. Any machine language routines in RAM
are left unaltered.
Notes:
1. CLR is actually part of NEW. It does most of the things NEW does, while keeping

the current program intact. CLR operates by resetting pointers. It doesn't actually
erase variables, so in principle they could be recovered.

2. CLR sets string pointers to the top of memory and sets end-of-variables and end
of-array pointers to the end of BASIC. All variables and arrays are thus effectively
lost.

3. CLR resets the stack pointer but retains the previous address. Therefore, all FOR
NEXT and COSUB-RETURN references are lost. Also, if CLR executes within a
program, that program continues at the same place.

4. CLR sets the DATA pointer to the start of DATA statements, as if a RESTORE had
been executed.

5. CLR aborts input/output activity and aborts (but does not close) files. Keyboard
and screen become the input/output devices.

Examples:
1. POKE 55,0: POKE 56,28:CLR

Sets the top of BASIC to 28*256=$lCOO; typically to reserve space for
graphics.

2. 1000 CLR: GOTO 10
This is useful in some simulation programs; variables are erased and re

calculated. RUN 10 has a similar effect.

CMD
Type: Output statement
Syntax: CMD numeric expression [, any expression(s)]. The numeric expression, a file
number, must evaluate to 1-255. The optional expressions are output (like PRINT) to
the specified file.
Modes: Direct and program modes are both valid.
Token: $9D (157)
Abbreviated entry: C SHIFT-M
Purpose: CMD is identical to PRINT#, except that the output device is left listening.
Therefore, CMD followed by PRINT directs output from the screen to (typically) a
printer. The effect usually lasts until PRINT# unlistens the device.
Notes:
1. CMD is a convenient way to cause a program with many PRINT statements to di

vert its output to a printer. This is easier than altering PRINTs to PRINT#s. How
ever, CMD has bugs; CET and sometimes COSUB will redirect output to the
screen. The preferred method is PRINT#.

24

BASIC Reference Guide

2. CMD is essential to LIST programs to printers.
Examples:
1. OPEN 4,4: CMD 4, "TITLE": LIST

Lists a BASIC program to a printer. Then PRINT#4: CLOSE4 returns output
to the screen.

2. 100 INPUT "DEVICE NUMBER";D: OPEN D,D: CMD D
Allows PRINT to direct output either to device 3 (screen), device 4 (printer),

or elsewhere.

CONT
Type: Command
Syntax: CONT
Modes: Direct mode only. (In program mode CONT enters an infinite loop.)
Token: $9A (154)
Abbreviated entry: C SHIFT-O
Purpose: Resumes execution of a BASIC program interrupted by a STOP or END
statement, or by the STOP key. For debugging purposes, STOP instructions may be
inserted at strategic points in the program, and variables may be printed and modi
fied after the program has stopped. CONT will cause the program to continue, pro
vided you make no error.

Because STOP aborts files, CONT may be accepted but may not actually con
tinue execution as before. For example, in such a case, output which ought to go to a
printer may be displayed on the screen.
Example:
10 PRINT J: J=J+1: GOTO 10

Run this, then press STOP. CONT will cause execution to continue. You can
change J, with J=10000, say, and CONT will resume with the new value.

cos
Type: Numeric function
Syntax: COS (numeric expression)
Modes: Direct and program modes are both valid.
Token: $BE (190)
Abbreviated entry: None
Purpose: Returns the cosine of the numeric expression, which is assumed to be an
angle in radians.
Examples:
1. PRINT COS(45* 'If /180)

Prints the cosine of 45 degrees. Conversion from degrees to radians is per
formed by multiplying by 'If/180.

25

BASIC Reference Guide

2. FOR J=O TO 1000 STEP 7f/10: PRINT COS(J):NEXT
Shows the cyclical nature of COS. Large values of the argument don't in

troduce significant error, because COS uses only the remainder in the range 0 to
2 7f.

DATA
Type: Data marker statement
Syntax: Data list of data constants separated by commas
Modes: Program mode only
Token: $83 (131)
Abbreviated entry: D SHIFT-A
Purpose: Enables numeric or string data to be stored in a program. READ retrieves
DATA in the same order it's stored in the program.
Notes:
1. DATA statements to store ML can be generated automatically (see Chapter 9).
2. ?SYNTAX ERROR, in a valid DATA statement, means READ and DATA don't

match properly.
3. Unnoticed commas can introduce baffling bugs: DATA R,O,Y,G"B,P, contains

eight data items, two of them null characters.
4. Because DATA statements are handled in sequence (RESTORE restarts the se

quence), be careful when adding data by appending a subroutine, in case data
from a wrong routine is READ.

Examples:
1. 100 DATA "7975, LAZY RIVER ROAD"

Shows how double quotes enable commas, colons, and leading spaces to be
included in strings.

2. 1000 DATA CU,COPPER,136.2, FE,IRON,35.1
Shows how sets of data can be stored. Typically, a loop with READ

A$,M$,W might be used to READ each set of three items.
3. 10000 DATA SUB1

Might be used to insure that the correct data is being READ-use 1000
READX$: IF X$<> "SUBl" GOTO 1000 to locate SUB1.

DEF FN
Type: Statement
Syntax: DEF FN variable (variable)=arithmetic expression
Modes: Program mode only
Token: DEF: $96 (ISO), FN: $A5 (165)
Abbreviated entry: DEF: D SHIFT-E (FN has no abbreviated form)
Purpose: Sets up a numeric (not string) function, with one dependent variable,
which can be called by FN. Function definitions help save space where an expression

26

BASIC Reference Guide

needs to be evaluated often. However, their main advantage is improving BASICs
readability.
Notes:
1. Direct mode is forbidden (but without good reason, since function definitions are

stored along wth ordinary variables). See Chapter 6 on storage. Defined functions
can be called by FN in direct mode.

2. UNDEF'D FUNCTION ERROR results if DEF FN hasn't been executed before FN
is used. A ?SYNTAX ERROR caused by an invalid definition refers to the line us
ing FN, even when the line where FN is used is valid.

3. After loading a new program from BASIC, redefine any functions or they'll prob
ably not work. Chapter 6 explains why.

4. Function definitions work by calling a routine to evaluate expressions. Therefore,
each definition must fit into one line of BASIC. The IF statement is not allowed,
so logical expressions may be necessary. Calling another function definition is
valid, however.

5. The dependent variable need not be used in the definition; if not, it is called a
dummy variable.

Examples:
1. 100 DEF FN DEEK(X) = PEEK(X) + 256*PEEK(X + 1)

PRINT FN DEEK(50) prints the double byte stored in 50 and 51.
2. DEF FN MIN (X) = -(A>B)*B-(B>A)*A

Returns the smaller of A and B. Note the dummy variable X; any other vari
able could be used. The awkward form of the expression is necessary to fit it into
a single statement.

3. DEF FN PV(I) = 100/(l + 1/100)
Sets up a present value function, where I is an annual interest rate.

4.1000 DEF FN E(X) = 1+ X+X*X/2+X*X*X/6+FN El(X)
1010 DEF FN El(X)=X*X*X*X/24 + X*X*X*X*X/120

Shows how a very long expression can be spread out.

DIM
Type: Statement
Syntax: DIM variable name [, variable name ...]
Modes: Direct and program modes are both valid.
Token: $86 (134)
Abbreviated entry: D SHIFT-I
Purpose: Sets up variable(s) in memory in the order they are listed in the DIM state
ment. This command is implicitly carried out when a variable is first used. Using a
subscripted variable such as X(3) causes the equivalent of DIM X(10), so DIM is gen
erally used only when arrays which require more than ten elements are to be used,
or when you wish to specify less than ten elements to conserve memory.

All variables and elements of arrays set up by DIM are set to zero (if numeric)
or null (if strings).

27

BASIC Reference Guide

Notes:
1. Arrays can use numeric expressions in their DIM statements, so their size can be

determined by some input value. They don't have to be of fixed size. Arrays start
with the zeroth element, so DIM X(4) sets up a numeric array with five storage
locations, X(O) through X(4). One-dimensional arrays can have a maximum of
32767 elements, and not more than 255 subscripts may be used in multi
dimensional arrays. In practice, ?OUT OF MEMORY ERRORs will result long
before these limits.

2. Arrays are stored after variables. Chapter 6 explains the consequences of this.
Briefly, new variables, used after an array has been set up, cause a delay, and
arrays can be deleted with POKE 49,PEEK(47): POKE 50,PEEK(48), so if inter
mediate results are computed with a large array, this array can be deleted when it
is no longer needed.

3. RAM space occupied by arrays is explained in Chapter 6. Briefly, integer arrays
are efficient, but string arrays are very dependent on the lengths of the strings.
PRINT FRE(O) gives a quick indication of spare RAM at any time.

4. Large string arrays are vulnerable to so-called garbage collection delays, also ex
plained in Chapter 6. The total number of separate strings, not their lengths, is the
significant factor.

Examples:
1. 100 INPUT "NUMBER OF ITEMS";N: DIM IT$(N)

Might be used in a sorting program, where any number of items may be
sorted.

2. DIM X,Y,J,L,P$:REM SET ORDER OF VARIABLES
Helps speed BASIC by ordering variables, most-used first.

3.100 DIM A(20): FOR J=l TO 20: INPUT A(J): A(O)=A(O)+A(J):NEXT
Uses zeroth element to keep a running total.

4. DIM X%(10,10,10)
Sets up an array of 1331 integers, perhaps to store the results of three 10-

point questionnaires.

END
Type: Statement
Syntax: END
Modes: Direct and program modes are both valid.
Token: $80 (128)
Abbreviated entry: E SHIFT-N
Purpose: Causes a program to exit to immediate mode with READY. This command
may be used to set breakpoints; CONT causes a program to continue at the instruc
tion after END.

VIC BASIC doesn't always need END. A program can simply run out of lines,
but END is needed if the program is to finish midway. END leaves the BASIC pro-

28

BASIC Reference Guide

gram available for LISTing; you may prefer to prevent this with NEW or SYS 64802
in place of END.
Examples:
1. 10000 IF ABS(BEST- V)<.OOI THEN PRINT BEST: END

Exits when a repeating process has found a good enough solution to a
problem.

2.100 GOSUB 1000: END: GOSUB 2000: END: GOSUB 3000: END
From a program under development, this shows a use of END to set break

points. CONT resumes the program after each subroutine is tested.

EXP
Type: Numeric function
Syntax: EXP (numeric expression)
Modes: Direct and program modes are both valid.
Token: $BD (189)
Abbreviated entry: E SHIFT-X
Purpose: Calculates e (2.7182818 ...) to any power within the range -88 to +88
approximately. The result is always positive, approaching zero with negative powers
and becoming large with positive powers. EXP(O) is 1.
Notes:
1. EXP is the converse of LOG. Sometimes the logarithms of very large numbers are

used in calculations in place of the numbers themselves. This insures that the re
sult of the calculations will not be a larger number than the computer can handle.
EXP transforms the result back to normal. EXP(Q) could be replaced by
2.7182818iQ, but the EXP form is more readable.

2. EXP is important for its special property that it equals its own rate of growth; it
tends to turn up in scientific calculations.

Examples:
1. PRINT EXP(LOG(N))

Prints N, possibly with rounding error, showing EXP and LOG are
converses.

2.100 P(N)=MiN*EXP(-M)/FACT(N)
This is a statistical formula for the probability of exactly N rare events

happening (for example, misprints) when the average rate of occurrence is M.
FACT(N) holds N! for a suitable range of values.

FOR ... TO ... (STEP)
Type: Loop control statement
Syntax: FOR simple numeric variable = numeric expression TO numeric expression
[STEP numeric expression]
Modes: Direct and program modes are both valid.

29

BASIC Reference Guide

Tokens: FOR: $81 (129), TO: $A4 (164), STEP: $A9 (169)
Abbreviated entry: FOR: F SHIFT-O, TO: None, STEP: ST SHIFT-E
Purpose: Provides method to count the number of times a portion of BASIC is
executed.
Notes:
1. Processing of FOR-NEXT. The syntax after FOR is checked. Then the stack is

tested to see if FOR with the present variable exists. If it does, the previous loop is
deleted, so FOR X=l TO 10: FOR X=l TO 10 is treated as a single FOR state
ment. Next, 18 bytes are put on the stack, if there's room. Once there, they won't
change, so FOR X = 1 TO N has its limit set according to the value of N at the
time the statement is executed. Once the loop begins, a change in the value of N
will not affect the number of times the loop is executed. 10 FOR X = 489 TO 506:
PRINT PEEK(X): NEXT lists 18 bytes; these are FOR token, address of loop vari
able, step size in floating point format, sign of step, value of exit, FOR's line num
ber, and the address after FOR. The step size defaults to 1 if no STEP is specified.

Because NEXT determines whether the loop will continue, every FOR-NEXT
loop is executed at least once, even FOR J = 1 TO 0: NEXT. NEXT also checks the
loop variable, so NEXT X,Y helps insure correct nesting of loops. It must be pre
ceded by FOR Y and FOR X statements. NEXT adds the step size to the variable
value; if the result exceeds the stored limit (or is less than the stored limit in the
case of negative step size), processing continues after NEXT. There's no way the
system can detect a missing NEXT; if a set of loops is unexpectedly fast, this may
be the reason.

When the step size is held exactly, there is no loss of accuracy in using
loops. For example, FOR J = 1 to 10000 STEP .5 is exact, as is the default step size
of 1. But FOR M=l TO 1000 STEP 1/3: PRINT M: NEXT has errors. Chapter 6
explores this in greater detail, but this description should help you to pinpoint
bugs in loops.

2. When fine-tuning a long program for speed, pay special attention to loops. Obvi
ously, any inefficiencies are magnified in proportion to the loop's size. Take un
necessary work out of loops, and also perhaps DIM variables in decreasing order
of importance.

3. It is best to exit a loop from only one point (the final NEXT). Changing the loop
variable allows this; for example:

5 FOR J=1 TO 9000: GET X$: IF X$="A" THEN J=9000
10 NEXT

finishes early if A is pressed. Note, however, that the loop variable can be
changed in error by a subroutine using the same variable.

4. Other loops. The DO WHILE loop, common in some other programming lan
guages, can be simulated with FOR J= -1 TO O: ... :J=CONDITION:NEXT.
Processing continues until J is false. Obviously other types of loops may be
constructed.

Examples:
1. PRINT "{CLR}": FOR J=1 TO 500: PRINT "*";: NEXT

Prints 500 asterisks.

30

BASIC Reference Guide

2. K=O: FOR J=7680 TO 7680+255: POKE J,K: K=K+1: NEXT
POKEs characters 0 to 255 into screen memory. K counts along with J.

3. FOR J=4096 TO 9E9: IF PEEK(J) <> 123 THEN NEXT
PEEKs memory from 4096 searching for a byte equal to 123. When the loop

ends, PRINT J gives the location.
4.5 FOR J=l TO 12:IF M$<>MID$ ("JANFEBMARAPRMAYJUNJULAUGSEP

OCTNOVDEC", 3*J - 2,3) THEN NEXT
Matches a month, input as M$, giving J = 1 to 12 accordingly, or 13 if no

match was found. M$ must be the three-letter abbreviation for the month.

FRE
Type: Numeric function
Syntax: FRE (expression)
Modes: Direct and program modes are both valid.
Token: $B8 (184)
Abbreviated entry: F SHIFT-R
Purpose: FRE computes the number of bytes available to BASIC. This is useful with
strings, which take up variable space in RAM and are a potential source of ?OUT OF
MEMORY ERRORs. FRE first collects any garbage (see Chapter 6) before returning
its value. Any expression after FRE is accepted; FRE(O) is usual.
Examples:
1. 1000 IF FRE(0)<100 THEN PRINT "SHORT OF RAM"

Prints message when fewer than 100 bytes remain available.
2. F = FRE(O): DIM X$(50): PRINT F - FRE(O)

Prints the number of bytes used up when DIM X$(SO) is run.

GET
Type: Input statement
Syntax: GET variable name [,variable name ... J
Modes: Program mode only
Token: $A1 (161)
Abbreviated entry: G SHIFT-E
Purpose: Reads a single character from the current input device, usually the key
board, and assigns it to the named variable. If the keyboard buffer is empty, string
variables are assigned null and numeric variables are assigned O. GET (unlike
INPUT, or Apple's GET) doesn't wait for a keypress, so BASIC can test for a key and
continue if there isn't one.

GET X$ is more robust than GET X (which crashes on any nonnumeric key), so
GET X$ is nearly always used. GET fetches any ASCII character; see the appendices

31

BASIC Reference Guide

for a table. STOP, Commodore key, SHIFT, CTRL, and RESTORE aren't detected by
GET.

Chapter 6 explains the keyboard buffer and associated keyboard features in
depth. Chapter 4 explains how GET may be used to write extremely reliable INPUT
like routines.
Examples:
1. 5 GET X$: IF X$="" GOTO 5: REM AWAIT KEY

10 PRINT "{CLR}";X$;ASC(X$): GOTO 5
This short program prints a key, and its ASCII value, at the top of the

screen. You'll see how RETURN is read, plus all the normal keys. Chapter 4
extends this.

2.100 DIM IN$(200): FOR }=1 TO 200: GET IN$(J): NEXT
Gets 200 characters into an array; most of them will be nulls.

3. 200 GET A$,B$,C$
This is syntactically valid, but it is more appropriate with GET#. Like GET X,

which tends to crash (or give ?EXTRA IGNORED with comma, colon, +, E, etc.),
the syntax is accepted because GET, GET#, INPUT, and READ generally use the
same Kernal routines. It's not worth removing the relatively useless alternatives.

GET#
Type: Input statement
Syntax: GET# numeric expression, variable name [, variable name ... J
Modes: Program mode only
Token: $A1 (161) then $23 (35) (This is GET then #; GET# has no token of its own.)
Abbreviated entry: G SHIFT-E #
Purpose: Reads a single character from the specified file, which must be open to an
input device. Unlike INPUT#, GET# can read characters like colons and double
quotes and RETURNs. It can also read files character by character in a way impos
sible with INPUT# (and without the limitation to 88 characters per string).
Notes:
1. GET# can read from screen or keyboard; however, there's usually no real advan

tage in this.
2. GET# from tape sets status variable ST=64 at end of file, so ST=64 can test for

the end of data if no special marker was used. ST is immediately reset, so the test
is needed after each GET#. Chapter 14 has full details.

3. GET# from disk sets ST=64 at end of file; from then on, ST is set to 66 (end of
file plus device not responding). Chapter 15 has full details.

Examples:
1. 1000 IN$ = ''''

1010 GET#l,X$: IF ASC(X$)=13 GOTO 2000: REM RETURN FOUND
1020 IN$=IN$+X$: GOTO 1010 :REM BUILD STRING

32

BASIC Reference Guide

This routine reads in a string from tape or disk, character by character, building
IN$ from each character and exiting to the next part of the program when RETURN
indicates the end of a string.
2.100 GET#8,X$: IF ST=64 GOTO 1000: REM END OF DATA

Shows how ST detects that there's no more data on file.

GO
Type: Dummy statement
Syntax: Always part of CO TO
Token: $CB (203)
Purpose: Sole function is to allow CO TO as a valid form of COTO. Occasionally
gives problems; some renumbering routines ignore it, and some early CBM machines
don't have it. Chapter 8 shows how CO may be modified for your own purposes.

GOSUB
Type: Statement
Syntax: COSUB line number
Modes: Direct and program modes are both valid.
Token: $80 (141)
Abbreviated entry: CO SHIFT-S
Purpose: COSUB jumps to its specified BASIC line. It saves its original address so
RETURN can transfer control back to the statement immediately after COSUB. This
means a subroutine can be called from anywhere in BASIC while keeping normal
program flow. IF or ON allows conditional calls to be made to subroutines.
Notes:
1. Subroutines can be tested in direct mode. For example, L= 1234:COSUB 500 tests

the decimal/hex converter in PRINT USINC in Chapter 6.
2. Processing COSUB. Line numbers following COSUB are scanned by a routine

similar to VAL; numerals are input until some other type of character is found. For
example, COSUB and COSUB NEW and COSUB OXX are treated as COSUB O.
This allows ON-COSUB to work, since it can then skip commas. After this,
COSUB puts five bytes on the stack.

The following program prints five bytes, which are a COSUB token (141),
COSUB's line number, and a pointer to the COSUB statement:

10 GOSUB 20
20 FOR }=500 TO 504: PRINT PEEK(J);: NEXT

The line number is used in the error message if the destination line doesn't exist.
It's slightly faster to collect subroutines at the start of BASIC, to reduce the time
spent searching for them, and it's also slightly faster to number lines with the
smallest possible numbers to cut down time spent processing line numbers.

33

BASIC Reference Guide

Note that COSUBs without RETURNs can fill the stack (see the reference to
?OUT OF MEMORY). 100 COSUB 100 shows the effect.

3. Miscellaneous. Chapter 6 describes a computed COSUB, as well as a POP to
delete COSUBs without RETURN. COSUB 500: RETURN is identical to
COTO 500. Structured programming makes a lot of use of subroutines;
collecting BASIC needing multiple IFs or other complex constructions into
subroutines helps make programs clearer, at least when the subroutines are
commented. Recursion is a technique in which a subroutine calls itself, and
has an exit routine (otherwise, the stack would fill), but this is irrelevant to
BASIC.

Examples:
1. 20000 PRINT "{HOME}{RVS}*** ERROR ";EM$;/I{OFF}"

20010 FOR J=l TO 2000: NEXT: RETURN
A simplified error-message subroutine, this prints an error (EM$ must be set

before COSUB 20000) in reverse at the top of the screen.
2. 500 GOSUB 510

510 REM PLAY A NOTE
Shows how a subroutine can have several entry points. Here, COSUB 510

plays a note (the actual playing routine is omitted); COSUB 500 plays it twice.

GOTO; GO TO
Type: Statement
Syntax: COTO line number or CO TO line number
Modes: Direct and program modes are both valid.
Token: $89 (137) (Separate CO and TO tokens are also accepted.)
Abbreviated entry: C SHIFT-O
Purpose: COTO jumps to the specified BASIC line. IF or ON allows conditional
COTOs.
Notes:
1. COTO is usable in direct mode. Direct mode COTO continues to execute the pro

gram in memory without executing CLR, so the program variables are retained.
This is similar to CONT, except that any line can be selected from which to con
tinue. Variables can be changed, but these will be lost if BASIC is edited.

2. Line numbers are read by the same routine that handles COSUB's line numbers,
and similar comments apply.

Examples:
1. TI$=/l235910": GOTO 1000

This is a direct-mode example; the clock is set just short of 24 hours, then
the program is run from line 1000, retaining this value of TI$.

2. 100 GET A$: IF A$=/I" GOTO 100
This is a simple loop, awaiting a keypress.

34

BASIC Reference Guide

IF
Type: Conditional command
Syntax: IF logical expression THEN line number. IF logical expression GOTO line
number. IF logical expression THEN [:] statement [: statement] ...
Modes: Direct and program modes are both valid.
Token: IF: $8B (139), THEN: $A7 (167)
Abbreviated entry: IF: None, THEN: T SHIFT-H
Purpose: Allows conditional branch to any program line or conditional execution of
rest of line after IF.

The expression after IF is treated as Boolean (if it equals zero then it is false; if
it does not equal zero, then it is true). If true, the statement after THEN is per
formed; if false, the remainder of the line is ignored and processing continues with
the next line.

If the expression is a string, the effect depends on the last calculation to use the
floating-point accumulator. Thus, IF X$ THEN may be true or false.
Examples:
1. 1000 LC=LC+1: IF LC=60 THEN LC=O: GOSUB 5000

Increments LC; if it is 60, resets it to 0 and calls the routine at 5000 before
continuing.

2.700 IF X=l THEN IF A=4 AND B=9 THEN PRINT "*,,
A composite IF statement, identical in effect to IF X = 1 AND A = 4 AND

B=9 THEN ... but probably a little faster.
3.500 IF X THEN PRINT "NONZERO"

IF X THEN is the same as IF X <>0 THEN.

INPUT
Type: Input statement
Syntax: INPUT [string literal in quotes;] variable name [,variable name ...]
Modes: Program mode only
Token: $85 (133)
Abbreviated entry: None
Purpose: Accepts data and assigns it to the specified variable. The data is also ech
oed on the screen. A RETURN is required to end the INPUT.
Notes:
1. INPUT's prompts. INPUT N$ and INPUT "NAME";N$ illustrate the two forms of

INPUT. Both print a query followed by a flashing cursor, but the second version
also prints NAME, giving NAME? as a prompt. Constructions like INPUT X$,Y$
will print ?? if the first string is input without the second (typing FIRST, SECOND
assigns both strings, with no further prompt).

These examples show how the prompt string can be used:

35

BASIC Reference Guide

100 INPUT I/{CLR}{DOWN}{RIGHT}{RIGHT}l/iX$

Clears the screen and prints? near the top of the screen.
100 INPUT 1/ --{LEFT} {LEFT} {LEFT} {LEFT}"iX$

Offers underlining or some other indication of the required length of the input
data. There should be two spaces after the opening quotes, and two more lefts
than hyphens.

100 INPUT I/NAME {RED}{RVS}";N$

Prints the prompt in red and reverse video.
Long prompt strings may cause a bug: If the line wraps around, then the

prompt may be added to the input. To avoid this, PRINT "PROMPT";:INPUT X$
is desirable.

Another approach is to POKE the keyboard buffer; in this way? can be
eliminated. Try 100 POKE 198,1: POKE 631,34: INPUT X$. This inserts a quote in
the keyboard buffer, effectively pressing quote just after INPUT is run to allow
strings like "LDA $AOOO,X" to be input despite the fact that they contain commas
or colons. Chapter 6 discusses this in more detail.

If CMD is in force, the prompt may appear on the printer, not the screen.
?FILE DATA ERROR signals that INPUT is trying to read an output device.

2. How input data is handled. When RETURN is pressed, the line is put into the in
put buffer for processing. Chapter 6 covers this in more detail; however, note here
that one effect is the prohibition of direct-mode INPUT.

Chapter 7 explains how machine language can do the same work. The data
in the buffer is matched with the list of variables after INPUT. ?EXTRA IGNORED
means too many separate items were entered; ?? means too few were and asks you
for the rest of them. ?REDO FROM START tells you that the variable types didn't
match the data.

Thus, 100 INPUT X expects numeric input; it will accept 123.4 or 1E4 but
not HELLO. 100 INPUT X$,Y$ expects two strings; it will accept HELLO,THERE
but HELLO,THERE,VIC will lose VIC with ?EXTRA IGNORED.

Generally, these aren't serious problems unless a program is intended to be
foolproof. In that case GET is essential (see Chapter 4). If INPUT were chosen,
users could type HOME, CTRL-WHT, SHIFT-STOP, or double quotes (to name a
few), and INPUT would be wrecked.

Examples:
1. INPUT "ENTER NAME";N$: PRINT "HELLO,"N$

This is a straightforward string input of N$.
2. FOR J=l TO 10: INPUT XU): NEXT

Inputs ten numbers into an array.

INPUT#
Type: Input statement
Syntax: INPUT# numeric expression, variable name [,variable name ...]. The numeric

36

BASIC Reference Guide

expression is taken to be a file number, and must evaluate after rounding down to
1-255.
Modes: Program mode only
Token: $84 (132)
Abbreviated entry: I SHIFT -N (this includes #)
Purpose: INPUT# provides an easy way to read variables from a file, usually on
tape or disk. The format is consistent with PRINT# (that is, it has VIC ASCII charac
ters separated by RETURNs). So as long as INPUT# matches PRINT#, this com
mand should be trouble-free.
Notes: INPUT# is very similar to INPUT. Differences are outlined below:
1. No prompt is printed; obviously, the device can't use it.
2. Some characters aren't recognized (for example, spaces without text, and screen

editing characters that are not preceded by quotes). Similarly, PRINT#l,
"HELLO:THERE" is read by INPUT# as two strings. Usually, PRINT# with
straightforward variables will avoid these bugs.

3. INPUT# can't take in a string longer than 88 characters; ?STRING TOO LONG
ERROR appears. Screen input doesn't have this problem, since parts of an exces
sively long string are simply ignored.

4. ST signals end of file, as with GET#.
Example:
10 OPEN 1 :REM READ TAPE FILE
20 DIM 0$(100): FOR }=1 TO 100: INPUT#I,D$(J): NEXT

Reads 100 strings from a previously written tape file into an array.

INT
Type: Numeric function
Syntax: INT (numeric expression)
Modes: Direct and program modes are both valid.
Token: $B5 (181)
Abbreviated entry: None
Purpose: Converts the numeric expression into the nearest integer less than or equal
to the expression. INT(10.4) is 10; INT (-2.2) is -3. The expression is assumed to
be within the full range for numerals, between about -1.7E38 and +1.7E38 for
floating-point numbers, or between -32768 and +32767 for integer numbers. Thus,
L = INT(123456. 7) is valid. But L % = INT(123456. 7) gives an error, since the result is
too large for an integer variable.
Examples:
1. 100 PRINT INT(X + .5) :REM ROUND TO NEAREST

This rounds any number, including negative numbers, to the nearest whole
number.

2. 100 PRICE = INT(.5 + P*(1 + MARKUP /100»
Calculates price to the nearest cent from percentage markup and purchase

price.

37

BASIC Reference Guide

LEFT$
Type: String function
Syntax: LEFT$ (string expression, numeric expression)
Modes: Direct and program modes are both valid.
Token: $C8 (200)
Abbreviated entry: LE SHIFT-F (this includes $)
Purpose: Returns a substring made up from the leftmost characters of the original
string expression. The numeric expression (must evaluate to 0-255) is compared with
the length of the string argument; the smaller of the two determines the substring's
length.
Examples:
1. FOR J=O TO 20: PRINT LEFT$("HELLO THERE",}): NEXT

Prints 20 strings, "", "H", "HE", "HEL", and so on.
2. PRINT LEFT$(X$ + "--------------------",20)

Pads X$ to exactly 20 characters with hyphens.
3. PRINT LEFT$ ("--------------------",20-LEN(X$»; X$

Right justifies X$, preceding it with hyphens; X$ is assumed not to be longer
than 20. Other characters, notably spaces, are also usable in this manner to format
output.

LEN
Type: Numeric function of string expression
Syntax: LEN (string expression)
Modes: Direct and program modes are both valid.
Token: $C3 (195)
Abbreviated entry: None
Purpose: Determines the length of a string expression. The result is always in the
range 0-255. Chapter 6 explains where LEN is taken from.
Examples:
1. 10 PRINT SPC(l1 - LEN(MSG$)/2) MSG$

Centers any (short) message onscreen, by adding leading spaces.
2.50 IF LEN(IN$)<>L THEN PRINT "MUST BE" L "DIGITS": GOTO 40

Rejects an input string of the wrong length.
3. 100 FOR J=1 TO LEN(W$): IF L$=MID$(W$,J,l) GOTO 200

110 NEXT: PRINT "NOT FOUND"
A simplified form of a word game, W$ is tested for the presence of letter L$.

The use of LEN(W$) generalizes for any W$.

38

BASIC Reference Guide

LET
Type: Assignment statement
Syntax: [LET] Numeric variable = numeric or logical expression. [LET] Integer vari
able = numeric expression in range -32768-32767, or logical expression [LET]
String variable = string expression
Modes: Direct and program modes are both valid.
Token: $88 (136)
Abbreviated entry: L SHIFT-E
Purpose: Assigns a value or string to a variable. LET is usually ignored; VIC assumes
LET by default. Variables can be simple or array. If a variable doesn't already exist,
LET sets it up, including arrays, which unless DIMensioned have default dimen
sion(s) of 10.
Notes:
1. Chapter 6 has full details on variables' storage; it also has a routine, VARPTR,

showing how LET can be used from machine language. Since LET is rarely used,
it can be modified by the user. Chapter 7 has examples of how this is done.

2. Variables can be reassigned with total freedom, so be careful not to use a variable
for two purposes simultaneously. This is often a bug with subroutines, because
they are typically somewhere else, out of sight.

Examples:
1. X = 123456 LET X = 123456

Both set X to 123456.
2. Q%=Q/100

Sets Q% equal to the hundreds part of Q, so if Q= 1234, Q% = 12.
3. LET QH%=Q/256: LET QL%=Q-QH%*256

Sets QH% and QL% equal to the high and low bytes of Q.

LIST
Type: Command
Syntax: LIST [linenumber] [-[linenumberlJ
Modes: Direct and program modes are both valid.
Token: $9B (155)
Abbreviated entry: L SHIFT-I
Purpose: Displays part or all of BASIC in memory to the screen or (with CMD) to
disk, tape, or modem.
Notes:
1. Line numbers must be ASCII characters, not variables.
2. LIST uses many RAM locations, so it always exits to READY mode if used within

a program.
3. LOAD errors and other errors show up in LIST. For example, 43690

+ + + + + + + + + + + + + is caused by $AAs in memory, which lists as + and
is treated as a line number (43690 = 170*256 + 170).

39

BASIC Reference Guide

4. Chapter 6 lists BASIC tokens and has examples of BASIC storage in memory and
has programs to modify LIST in useful ways. (Chapter 8 shows how it's done.)
REM has notes on the way LIST interprets screen-editing and other characters.
TRACE is a modified LIST which works while a program runs. UNLIST shows
ways to protect your programs.

Examples:
1. LIST 2000-2999

Displays all BASIC program lines currently in memory which have line
numbers equal to or greater than 2000 and less than or equal to 2999.

2. LOAD "$",8 :LIST
Displays a disk directory, which is stored as though it were BASIC.

3. 1000 LIST -10
Lists all lines in the current BASIC program which have line numbers of 10

or less; useful in printing a program description on the screen. However, execution
of this line will stop the program, and CONT will not restart it.

4. LIST 1100-
Lists all lines in the current BASIC program with line numbers of 1100 or

greater. If there is no line 1100 in the current program, the listing begins with the
first existing line greater than 1100.

LOAD
Type: Command
Syntax:

Tape: LOAD [string expression[,numeric expression [, numeric expression]]]. All
parameters are optional. The first numeric expression must evaluate to 1 (device
number). The second normally evaluates to 0 (BASIC load) or 1 (forced load). Chap
ter 14 has full details.

Disk: LOAD string expression, numeric expression [, numeric expression]. Disk
LOAD requires a name and a numeric expression, typically 8, the device number.
The second numerical parameter has the same meaning as in tape LOAD. Chapter
15 has full details.

Modem: LOAD is not implemented. An attempt to load from device number 2
gives an error message.
Modes: Direct and program modes are both valid.
Token: $93 (147)
Abbreviated entry: L SHIFT-O
Purpose: Loads memory with a BASIC program or with machine language, graphics,
etc., from tape or disk storage. In its simplest form, LOAD then RUN loads BASIC
from tape and runs it. (SHIFT-STOP does this too.)
Notes:
1. LOAD is followed by a standard set of messages, like PRESS PLAY ON TAPE, OK

when the cassette starts, and so on. These are listed in the tape and disk chapters.
Program-mode LOADs don't have these messages (apart from PRESS PLAY ON

40

BASIC Reference Guide

TAPE, which can't be avoided), so the screen layout can be kept neat.
2. Loading BASIC nearly always requires that LOAD's third parameter be 0. This al

lows LOAD to relink BASIC, so that any start-of-BASIC position is acceptable. For
example, LOAD "BASIC PROG" loads that program from tape into a VIC with
any memory configuration, and prepares it for RUN. In fact, POKE 43,LO:POKE
44,HI:POKE HI"'26+ LO,O:NEW:LOAD can put BASIC anywhere you choose, if
there's room for it.

3. Loading graphics definitions and the like in ML is generally trickier than in
BASIC. It needs something like LOAD "CHARSET",1,1 to insure it's put back
where it came from. VICMON's .L load command in effect does this. Chapter 6's
BLOCK LOAD explains how blocks of bytes can be loaded without disturbing BA
SICs running.

4. Program-mode LOADs generally chain BASIC; see CHAIN in Chapter 6. You may
also want to look at OLD, which explains how to chain a long program from a
shorter one.

Examples:
1. LOAD or LOAD "",1

These are tape loads, having identical effects. Either loads the first BASIC
program from tape.

2. LOAD "PROG"
Loads the program with the filename PROG from tape. Actually, because of

the filename checking scheme used, the command will load the first program en
countered on tape having PROG as the first four letters of its filename. Thus, this
command would also load PROGRAM, PROGDEMO, etc.

3. LOAD "PROG",8
Loads PROG from disk, and nothing else. The disk drive will indicate an er

ror if PROG is not found on the disk.
4. LOAD "PAC"''',8

Typical disk pattern-matching, this loads the first program found on disk
with a filename beginning with PAC, for example: PAC MAN, PACKER, etc.

5. 10000 PRINT "PLEASE WAIT": LOAD "PART2"
Loads, then runs, the tape program PART2 (or PART20, etc.), from within

BASIC. If the key on the tape deck is pressed, no message appears on the screen.
6.0 IF X=O THEN X=l: :LOAD "GRAPHICS",l,l

Loads graphics into a fixed area of memory, then reruns this program from
the start. The maneuver with X prevents repeated LOADs.

LOG
Type: Numeric function
Syntax: LOG (numeric expression)
Modes: Direct and program modes are both valid.
Token: $BC (188)
Abbreviated entry: None

41

BASIC Reference Guide

Purpose: Returns the natural logarithm (log to the base e) of a positive arithmetic ex
pression. This function is the converse of EXP. Logarithms transform multiplication
and division into addition and subtraction; for example, LOG(l) is 0 since multiplica
tion by 1 has no effect. Logarithms are mainly used in scientific work; their liability
to rounding errors makes them less suitable for commercial work.
Examples:
l. PRINT LOG(X)/LOG(10)

PRINT LOG(X)/LOG(2)
PRINT EXP(LOG(A) + LOG(B»

:REM LOG TO BASE 10
:REM LOG TO BASE 2
:REM PRINTS A *B

These are all standard results.
2. LF=(N + .5)*(LOG(N)-1) + 1.41894+ 1/(12*N)

Defines LF, an approximation to LOG(N!), so that EXP(LF) approximately
equals NL Shows LOG helping handle very large numbers.

MID$
Type: String function
Syntax: MID$ (string expression, numeric expression [,numeric expression])
Modes: Direct and program modes are both valid.
Token: $CA (202)
Abbreviated entry: M SHIFT -I (this includes $)
Purpose: Extracts any required substring from a string expression. The first numeric
parameter is the starting point (1 represents the first character of the original string,
2 the second, and so on). The final parameter is the length of the substring. If this
isn't used, the substring extends to the end of the original string.
Example:
10 INPUT X$: L=LEN(X$)
20 FOR J=l TO L: PRINT MID$(X$,L-J+1,1);: NEXT

Inputs a string, then prints the characters of the string in reverse order, one
character at a time.

NEW
Type: Command
Syntax: NEW
Modes: Direct and program modes are both valid.
Token: $A2 (162)
Abbreviated entry: None
Purpose: Allows a new BASIC program to be entered.
Notes:
1. Any previous program in memory is not erased, although it will appear to have

been. Actually, most of BASIC and all ML routines and data are unaltered. NEW

42

BASIC Reference Guide

puts zero bytes at the start of BASIC, resets pointers, and CLRs, which erases vari
ables and aborts files (among other things). The program OLD in Chapter 6 will
recover BASIC programs after an accidental NEW (or after resetting by Chapter
5's method), provided new program lines haven't been entered.

2. NEW may generate ?SYNTAX ERROR. See the error message notes.
Examples:
1. NEW

In direct mode, readies VIC for a new program. (Without NEW, any program
lines typed in will be simply added as extra lines to the program already in
memory.)

2. 20000 NEW: REM PROGRAM NO LONGER WANTED
This ends program execution and exits to READY mode. The program won't

LIST and appears erased.

NEXT
Type: Loop control statement
Syntax: NEXT [numeric variable][,numeric variable ... J
Modes: Direct and program modes are both valid.
Token: $82 (130)
Abbreviated entry: N SHIFT-E
Purpose: Marks the end of a FOR-NEXT loop. See FOR, which has a detailed
account of loop processing.
Examples:
1. FOR 1=1 TO 10: FOR J=1 TO 10: PRINT I*J;:NEXT J: PRINT: NEXT

Prints an (unformatted) la-times table. Note that NEXT:PRINT:NEXT works
too; in fact, it's a little faster. NEXT J: NEXT I can be replaced with NEXT J,I.
Once a program is debugged, the variables can generally be removed; however,
they do improve readability.

2.80 FOR J=l TO 2000: GET X$: IF X$="" THEN NEXT
81 FOR J=O TO 0: NEXT

This delays 10 seconds, unless a key is pressed; if it is, line 81 gets rid of the
still-live J loop.

3. NEXT can appear anywhere, allowing clumsy constructions like this one:

10 FOR J=1 TO 3: GOTO 40
20 NEXT K
30 NEXT J: END
40 FOR K=1 TO 2: GOTO 20

43

BASIC Reference Guide

NOT
Type: Unary logical operator
Syntax: NOT logical or numeric expression. Numeric expressions must evaluate after
rounding down to -32768 to 32767.
Modes: Direct and program modes are both valid.
Token: $A8 (168)
Abbreviated entry: N SHIFT-O
Purpose: Computes the logical NOT of an expression. Logical expressions are con
verted from false to true, and vice versa. Numeric expressions are converted to 16-bit
form, and each bit is inverted. The result, like the original, is always in the range
-32768 to 32767, and always equals -1 minus the original value. Thus, NOT of
arithmetic expressions does not necessarily convert true to false.
Note:
NOT has precedence over AND and OR, so NOT A AND B is identical to (NOT A)
AND B. The usual rules of logic apply to NOT, AND, and OR.
Examples:
1. 55 IF X$=CHR$(34) THEN Q=NOT Q

Flips a flag, denoting quote mode on or off.
2. IF NOT OK THEN GOSUB 20000: REM ERROR MESSAGE

Uses the result of variable OK, set in earlier tests, to test for errors.

ON
Type: Conditional statement
Syntax: ON numeric expression COTO line number [,line number ... J. ON numeric
expression COSUB line number [,line number ... J

The numeric expression must evaluate and round down to 0-255.
Modes: Direct and program modes are both valid.
Token: $91 (145)
Purpose: Allows a conditional branch to one of the listed line numbers, depending
on the value after ON. If L the first line number is used; if 2, the second, and so on.
If the value is zero or is larger than the number of line numbers in the list, process
ing continues with the next statement. This provides a readable method of program
ming multiple IFs, provided a variable takes consecutive values.
Examples:
1. ON SGN(X)+2 GOTO 100,200,300

Branches to one of three lines, depending on X being negative, zero, or
positive.

2. 90 ON ASC(IN$)-64 GOTO 100,200,300,400
Jumps to one of the lines, depending on whether IN$ is A, B, C, or D.

3. 30 ON 6*RND(1)+1 GOSUB 100,200,300,400,500,600
Selects one of six subroutines at random in a game.

44

BASIC Reference Guide

4. 100 ON X GOTO 400,410,420,430,440,450
101 ON X -6 GOTO 460,470,480

Shows how the options can be spread over several lines (provided X isn't 0).

OPEN
Type: Input/output statement
Syntax:

Tape: OPEN numeric expression [,numeric expression [,numeric expression
[,string expression]]]. The first numeric expression (file number) must evaluate to
1-255; the second is the device number 1; the third sets read or write type; and the
optional string expression is the filename. Chapter 14 has full details.

Disk: OPEN numeric expression, numeric expression, numeric expression, [,string
expression]. Here, the first expression (file number) must be in the range 1-255, the
second expression (device number) is usually 8, and the third (secondary address) is
usually 2-14. The string expression is generally a command like "SEQ FILE,W"
which is processed by the disk drive itself. Chapter 15 has full details.

Modem or other RS-232 device: The same as for disk, except that the device num
ber is 2 and the string expression is a pair of bytes which set transmit/receive fea
tures. Chapter 17 has full details.

Printer and other write-only devices: File and device numbers are essential. The
third parameter mayor may not matter. The string is irrelevant. See Chapter 17.
Modes: Direct and program modes are both valid.
Token: $9F (159)
Abbreviated entry: 0 SHIFT-P
Purpose: OPEN sets up a file to write or read (sometimes both) data to or from tape,
disk, etc. Example: OPEN 1,I,I,"TAPE FILE" opens file #1, called "TAPE FILE", to
the cassette. PRINT#l followed by data will write any data you want to that tape
file, and CLOSE 1 leaves a complete new file called "TAPE FILE", which can be read
back later by OPEN 1 and INPUT#I,X$ or similar statements.

Ten files (enough for almost any purpose) can be open at once, but each must
have a different logical file number (the first parameter of OPEN) so they can be
distinguished. Three tables in RAM store the file numbers along with their device
numbers and other parameters.
Note:
Tape and disk filenames can't exceed 16 characters.
Examples:
1. Tape: OPEN 2,1,0,"TAX"

Opens a file from tape called TAX (or TAXI, etc.) for reading (since the third
parameter is 0) and assigns it #2 so INPUT#2 or GET#2 will fetch data. This is
identical to OPEN 2 except that the file is asked for by name. OPEN 2 opens the
first file it finds. With tape, OPEN reads tape until it finds a header.

2. Disk: OPEN 1,8,3,"ORDINARY FILE,S,R"
Opens the sequential file on disk called "ORDINARY FILE," making it ready

for reading by INPUT#1 or GET#1. The ,S,R is shorthand for ,SEQ,READ.

45

BASIC Reference Guide

3. Modem: OPEN 2,2,0,CHR$(6)
This is a common OPEN, preparing the modem for PRINT#2 and INPUT#2.

4. Printer: OPEN 4,4: REM OPENS FILE#4 TO DEVICE#4

OR
Type: Binary logical operator
Syntax: Logical or numeric expression OR logical or numeric expression. Numeric
expressions must evaluate after rounding down to -32768 to 32767.
Modes: Direct and program modes are both valid.
Token: $BO (176)
Abbreviated entry: None
Purpose: Calculates the logical OR of two expressions, by ORing each of the 16 bits
in the first operand with the corresponding 16 in the second. The four possible
combinations of single bits are as follows:
o OR 0 = 0
o OR 1 = 1
lOR 0 = 1
lOR 1 = 1

The result is 0 only if both bits are O.
It follows that a logical OR is true if either or both of the original expressions

were true. It also follows that 380 OR 75 is 383, though verifying this by finding the
binary arithmetic forms of 380 and 75 is tedious.
Note:
Exclusive-OR (EOR) is useful. A EOR B = A OR B AND NOT (A AND B).
Examples:
1. 560 IF (A <1) OR (A>20) THEN PRINT "OUT OF RANGE"

This is a typical validation test; A must be 1 to 20.
2. POKE 328,PEEK(328) OR 32

This sets bit 5 of location 328 to 1, whether or not it was 1 before, leaving
the other bits unaltered. OR can set bits high; AND can set them low.

PEEK
Type: Numeric function
Syntax: PEEK (numeric expression). The expression must evaluate to 0-65535; the
value returned is 0-255.
Modes: Direct and program modes are both valid.
Token: $C2 (194)
Abbreviated entry: P SHIFT-E
Purpose: Returns the decimal value of the contents of a memory location. PEEK
allows BASIC programs and their variables and pointers to be examined. It also

46

BASIC Reference Guide

opens up other features like ML programs, BASIC's interpreter, hardware registers,
and so on.
Note:
PEEK and POKE are unusual in that they can be replaced by very simple machine
language. Chapter 17 has ML routines to PEEK joystick values, which are far faster
than BASIC.
Examples:
1. PRINT CHR$(34);: FOR J=4096 TO 4195: PRINT CHR$(PEEK(J));: NEXT

Prints 100 characters (PEEKed from the start of unexpanded VIC BASIC) to
the screen. The quote mark is an attempt to prevent problems such as spurious
control characters clearing the screen.

2.500 IF (PEEK(653) AND 1)=1 THEN PRINT "SHIFT KEY"
Tests bit 0 of location 653, which stores SHIFT, Commodore key, and CTRL

key indicators.

POKE
Type: Statement
Syntax: POKE numeric expression,numeric expression. This is actually POKE
address,byte so the first expression must evaluate to a value in the range 0-65535,
and the second expression must evaluate to a value in the range 0-255.
Modes: Direct and program modes are both valid.
Token: $97 (151)
Abbreviated entry: P SHIFT-O
Purpose: POKE writes the byte specified by the second expression into the address
given by the first. If the address is a location in ROM or a location at which nothing
is connected, POKE has no effect. POKE can store ML into memory from DATA
statements, alter BASIC pointers, alter hardware registers, and generally perform
very useful functions which need some ML knowledge.
Note:
POKE (like PEEK) can be replaced by simple ML. POKEing to the screen in ML is an
ideal introduction to machine language. For more on this, see Chapter 7.
Examples:
1. POKE 36879,123

Changes the screen color by altering a VIC chip register.
2. Chapter 6 has a large number of programs which READ data, then POKE it into

memory.
3. FOR J=O TO 499: POKE 7680+J, PEEK(4096+J): POKE 38400+J,0: NEXT

Puts 500 bytes from the BASIC program and variable storage areas of the
unexpanded VIC onto the screen in black. Lowercase mode makes the result
clearer.

47

BASIC Reference Guide

POS
Type: Numeric function
Syntax: POS (numeric expression). The numeric expression is a dummy, as with
FRE.
Modes: Direct and program modes are both valid.
Token: $B9 (185)
Abbreviated entry: None
Purpose: Returns the position of the cursor on its current line as seen by BASIC.
Normally POS(O) is 0-87, but some PRINT statements can return values up to 255.
POS's usefulness is in practice confined to the screen; it won't work with printers.
Examples:
1. 90 FOR J=1 TO 100: PRINT W$(J-1)" ";

92 IF POS(O) + LEN(A$(J»>21 THEN PRINT
94 NEXT

Prints the words in array W$ in a neat format, without wraparound to
following lines. (Assumes no string longer than 21 characters.)

2. Chapter 9's routine to convert ML into DATA uses POS.

PRINT
Type: Output statement
Syntax: PRINT [expression(s)]. The expression(s) may be any type separated by one
or more of the following: SPC (numeric expression), TAB (numeric expression),
space, comma, or semicolon. The separator can be omitted if its absence causes no
ambiguity.
Modes: Direct and program modes are both valid.
Token: $99 (153)
Abbreviated entry: ?
Purpose: Evaluates and prints string, numeric, and logical expressions to an output
device, usually the screen. Punctuation of PRINT partly controls the appearance of
the output, which also depends on the graphics set being used. (See PRINT USING,
Chapter 6, for a discussion of ML editing of numerals.)
Notes:
1. Built-in graphics: The entire character set can be printed, but {RVS} is necessary

to complete the set. Color and other controls are easy to include in strings, either
in quote mode or with CHR$. PRINT "{RED} HELLO {BLU}" and PRINT
CHR$(28)"HELLO"CHR$(31) are equivalent.

48

Because {RVS} is necessary to print some graphics, it's not always easy to
convert a picture on the screen into PRINT statements in a program. Reverse
characters won't be interpreted if you merely home the cursor and type line num
bers followed by?" and RETURN, so be careful when designing graphics directly
on the screen.

BASIC Reference Guide

Chapter 12 discusses this in detail. Note that SHIFT -Commodore key nor
mally toggles between the two sets of characters, lowercase/uppercase and
uppercase/graphics. PRINT CHR$(14) sets lowercase. CHR$(142) sets uppercase,
CHR$(8) locks out SHIFT -Commodore key, and CHR$(9) enables SHIFT -Com
modore key.

2. User-defined graphics: PRINT operates with ASCII characters. Their appearance
isn't relevant, so user-defined characters can be handled by PRINT too. For starters,
it's easiest to keep most characters as usual, so LIST will be readable. See Chapter
12 for full details.

3. Punctuation in PRINT statements:
a. Expressions. Numeric expressions can include numbers, TI, ST, 7[, and so

on; string expressions can include TI$.
b. SPC and TAB allow the print position to be altered (within limits).
c. Comma (,) tabulates output into the first or eleventh columns. Try:

PRINT 1,2,3,4,5

d. Semicolon (;) prevents print position from returning to the next line and
acts as a neutral separator. Try:

PRINT 1;2;3;:PRINT 4

remembering that numbers are output with a leading space (or - sign) and a
trailing space. Often the semicolon isn't needed, as in:

PRINT X$ Y$ "HELLO" N% A

where the interpreter will correctly identify everything.
e. Colon (:) ends the statement, and in the absence of a semicolon moves to

the next line. Thus, PRINT: PRINT advances two lines.
f. Spaces (unless in quotes) are skipped, so PRINT X Y;2 4 does the same

thing as PRINT XY;24.
Examples:
1. PRINT X + Y; 124; P*(1 + R%/100):REM NUMERIC EXPRESSIONS

Prints three numbers on a line. If the first semicolon is omitted, X + Y124 is
assumed.

2. PRINT "HI" NAME$ ", HOW ARE YOU?":REM STRING EXPRESSIONS
Prints all output on the same line if there's room; otherwise, the output may

be broken over two or more lines.
3. FOR J=l TO 20:PRINT J,:NEXT:REM SHOWS USE OF COMMA

PRINT#
Type: Output statement
Syntax: PRINT# numeric expression [,expression(s)]. There must be no space be
tween PRINT and #. The numeric expression is treated as a file number. The file
must be open; and the expression(s) uses a format identical to PRINT.
Modes: Direct and program modes are both valid.
Token: $98 (152)

49

BASIC Reference Guide

Abbreviated entry: P SHIFT -R (this includes #). Note that ?# is incorrect.
Purpose: Sends data to an output device, usually printer, tape, disk, or modem.
Notes:
1. Punctuation: The effect of punctuation is identical to PRINT, except for a few

cases where the appearance onscreen would have been relevant. For example, a
comma in a PRINT statement causes just enough spaces to be printed to align the
output in columns, while a comma in a PRINT# statement always causes 11
spaces to be printed without regard for columns. Expressions in TAB or POS are
not valid; TAB(X + 5) is acceptable with PRINT but not with PRINT#.
PRINT#4,X$ writes X$ followed by CHR$(13), but PRINT#4,X$; writes X$ alone.
PRINT#128,X$: writes X$ followed by RETURN and linefeed; this feature of files
numbered 128 or higher is used with certain non-CBM printers.

2. PRINT# and INPUT#: You can send out strings up to 255 characters long using
PRINT#. However, INPUT# cannot handle strings longer than 88 characters, so
any string you expect to read back with INPUT# should be held to an 88-character
limit.

3. TAB, SPC bug: PRINT#I,SPC(6) generates ?SYNTAX ERROR even though it is
syntactically correct. PRINT#4,TAB(5) generates the same message. Interestingly,
PRINT#I,X$;TAB(5);Y$ is processed correctly. Use any character-even a null, as
in PRINT#I,""SPC(6)-before the first SPC or TAB to avoid this problem. Or you
could avoid using these functions in PRINT# statements.

4. PRINT# and CMD: PRINT#4 unlistens file #4's device, while CMD4 leaves it
listening. See Chapter 17 for further discussion of printers and modems.

Examples:
1. OPEN 1,1,1,I/TAPE FILE": INPUT X$: PRINT#l,X$: CLOSE 1

Opens "TAPE FILE" to tape and writes one string to it. Chapter 14 discusses
tape files; Chapter 15 has information on disk files.

2. 100 FOR J=40960 TO 49151: PRINT#l,CHR$(PEEK(J»;: NEXT
Prints the contents of RAM or ROM in the plug-in area to file#l, perhaps a

tape file. Note the semicolon to prevent having a RETURN written after every
character (making the file twice as long). The resulting file must be read back with
GET#, since it is ML and not designed for INPUT# to handle.

READ
Type: Data input statement
Syntax: READ [variable [,variable ... J]
Modes: Direct and program modes are both valid.
Token: $87 (135)
Abbreviated entry: R SHIFT-E
Purpose: Reads data stored in DATA statements. Each READ fetches one item and
assigns it to a variable.

If the type of variable doesn't match the data (for example, DATA" ABC":
READ X), ?TYPE MISMATCH is printed when the program runs. ?OUT OF DATA

50

BASIC Reference Guide

error is given when a READ is encountered after all the data has been read; RE
STORE is used to once more read data from the beginning.
Examples:
1. 100 READ X$: IF X$<>JlML ROUTINE" GOTO 100

Shows how a batch of data can be found anywhere in the DATA statements.
This construction (with RESTORE) allows data to be mixed fairly freely through
out BASIC.

2.0 READ X: DIM N$(X): FOR J=1 TO X: READ X$(J): NEXT
Shows how string variables (for example, words for a word game) can be

read into an array, by putting the word count at the start (for example, DATA
2,RED,YELLOW).

REM
Type: Remark statement
Syntax: REM [anything]
Modes: Direct and program modes are both valid.
Token: $8F (143)
Abbreviated entry: None
Purpose: Everything on the BASIC line after REM is ignored. REM allows programs
to be commented or notated for future reference. REM statements take space in
memory, and a little time to execute, so you may want to remove REMs from fin
ished programs.
Note:
See REM in Chapter 6 for some special effects. Chapter 7 explains how machine lan
guage can be stored in REM statements.
Examples:
1. GOSUB 51000: REM PRINT SCREEN WITH INSTRUCTIONS

Shows a typical comment.
2. 70 FOR J = 1 TO 1000: REM MAIN LOOP

80 A(J) = J* A: NEXT
Shows poor placing of REM, since the REM statement must be interpreted

1000 times as the loop is executed. Move the REM to line 69 to increase speed.
3. 15998 REM -------------------------------

15999 REM PRINT TITLE ON TOP OF PAGE ***
One way that REMs can be made easy to read in long programs.

RESTORE
Type: Data statement
Syntax: RESTORE
Modes: Direct and program modes are both valid.
Token: $8C (140)

51

BASIC Reference Guide

Abbreviated entry: RE SHIFT-S
Purpose: Resets the data pointer so that subsequent READs take data starting from
the first DATA statement. NEW, RUN, and CLR all incorporate RESTORE.
Examples:
1. 2000 READX$: IF X$="**" THEN RESTORE: GOTO 2000

Reads the same DATA in an endless loop-perhaps to playa tune-where
** is the last data item.

2.130 RESTORE: FOR L=l TO 9E9: READ X$: IF X$<>"MLROUTINE1" THEN
NEXT
140 FOR L=328 TO 336: READ V: POKE L, V: NEXT
9000 DATA MLROUTINE1, 169, 0, 141, 202, 3, 162, 1, 160, 20

Shows how data can be labeled to be certain that the correct block is read.
3. RESTORE: GOTO 100

Is a direct-mode command of the sort helpful in testing programs which
have DATA. Variable values are kept, but DATA is reread from the start.

RETURN
Type: Statement
Syntax: RETURN
Modes: Direct and program modes are both valid.
Token: $8E (142)
Abbreviated entry: RE SHIFT -T
Purpose: Redirects program flow to the statement immediately after the most recent
COSUB statement. COSUB and RETURN therefore permit subroutines to be auto
matically processed without the need to keep a note in the program of the return ad
dresses. See COSUB for a full account of subroutine processing.
Note:
This command has no connection with the carriage return key.
Example:
10 INPUT L: GOSUB 1000: GOTO 10 :REM TEST SUBROUTINE 1000
1000 L = INT(L + .5)
1010 PRINT L: RETURN

This example repeatedly inputs a number and calls the subroutine at 1000 to
process it. The RETURN causes execution to resume with the COTO 10 statement.

RIGHT$
Type: String function
Syntax: RICHT$ (string expression, numeric expression)
Modes: Direct and program modes are both valid.
Token: $C9 (201)
Abbreviated entry: R SHIFT-I (this includes $)

52

BASIC Reference Guide

Purpose: Returns a substring made up of the rightmost characters of the original
string expression. The numeric expression (which must evaluate to 0-255) is com
pared with the original string's length, and the smaller determines the substring's
length.
Example:
100 PRINT RIGHT$(IJ " + STR$(N),10)

This is another method for right-justification; each string is padded with lead
ing spaces, for a total length of ten characters.

RND
Type: Numeric function
Syntax: RND (numeric expression)
Modes: Direct and program modes are both valid.
Token: $BB (187)
Abbreviated entry: R SHIFT -N
Purpose: Generates a pseudorandom number in the range 0-1, but excluding these
limits. RND can help generate test data, mimic random events in simulations, and
introduce unpredictability in games.
Notes:
1. Sign of RND's numeric expression argument:

a. Positive: In this case, the exact value of the expression is relevant. RND(I)
and RND(1234) behave identically. The sequence of numbers generated is always
the same, starting with .185564016 after power-on, because RND uses a seed
value set during the power-on reset sequence.

b. Zero: The seed value is taken from VIA timers. The result is more truly
random, although short ML loops may show repetitiveness. ~

c. Negative: The random number generator is reseeded, with a value depen
dent on the argument. RND(-1) is always 2.99E - 8, for example. Chapter 9 has
information on RND and explains why negative integers yield very small seed
values.

During development of a program using random numbers, start with 0
X = RND(-1.23) to seed a fixed value, then use RND(1) during the program,
which will always follow the same sequence. Thus, the same numbers will be
generated each time the program is run, which will facilitate testing. In the final
program, use 0 X = RND(O) to start seeding with a random value so that the se
quence of numbers will be different each time the program is run.

2. A random number between A and B (excluding exact values of A and B) is given
by A + RND(l)*(B-A). For example, RND(I)*2-1 generates numbers between
-1 and + 1. Integers are equally simple: 1 + INT(RND(1)*10) generates integers
from 1 to 10 with equal probability.

Examples:
1. FOR J=O TO 3000*RND(1): NEXT

Gives a random delay of zero to three seconds.

53

BASIC Reference Guide

2. 100 RESTORE: FOR J=O TO 100*RND(1): READ X$: NEXT
Reads a random string, perhaps a word for a language test, from a list of 100

DATA items. X$ holds the random word.
3.1000 IF RND(1)<.l THEN PRINT JlA VERY GOOD DAY TO YOU"

Has a one-in-ten chance of printing its message.
4. 500 INPUT N:DIM D$(N):FOR J=l TO N:D$(J)=LEFT$(JlABCDEFGHIJ",

RND(1)*10+1) : NEXT
Useful in generating test data, this construction generates an array holding N

strings, of random lengths between 1 and 10.
5. ON RND(1)*4+1 GOSUB 200,300,400,500

Selects one of the four subroutines at random.

RUN
Type: Command
Syntax: RUN [linenumber]. The line number must be ASCII numerals; anything else
is ignored.
Modes: Direct and program modes are both valid.
Token: $8A (138)
Abbreviated entry: R SHIFT-U
Purpose: Executes a BASIC program in memory, either from its beginning or from a
line number. RUN in effect starts with CLR, so variable values are lost; GOTO [line
number] has the same effect but retains variable values.
Notes:
1. On the VIC, RUN doesn't LOAD first. The program must be ready in memory.
2. ?SYNTAX ERROR on RUN means start-of-BASIC is not correct. See CLK
3. Chapter 8 shows how to run BASIC with ML.
Examples:
1. RUN

RUN 1000
These are two straightforward direct-mode examples.

2. IF LEFT$(YN$,l)= JlY" THEN RUN
For use after INPUT "ANOTHER RUN";YN$, this restarts the program from

the beginning after Y or YES is typed in.

SAVE
Type: Command
Syntax: Identical to that for LOAD. With tape, however, the interpretation of the fi
nal parameter is different: a allows a relocating load, so BASIC can work whatever
its start address; 1 forces LOAD to put the program where it was saved from; 2 and 3
are like a and 1 but additionally write an end-of-tape marker. Chapter 14 has details
concerning tape SAVEs, and Chapter 15 discusses disk SAVEs.

54

BASIC Reference Guide

Modes: Direct and program modes are both valid.
Token: $94 (14B)
Abbreviated entry: S SHIFT-A
Purpose: SAVE writes BASIC in memory to tape or disk, so the program is stored for
future use. Programs must be saved to disk by name. Tape programs need not have
names, but names can be useful in identifying tape contents.

Machine language, graphics characters, and other continuous blocks of RAM can
also be saved. All that's needed is to change two pointers, effectively redefining the
position of BASIC. The pointers are in locations 43 and 44 (start) and 45 and 46
(end). See BLOCK SAVE in Chapter 6.

Saving BASIC with its variables is also possible. For example, BASIC followed
by integer arrays holds its data in a very compact form. Both variables and BASIC
can be saved together, although this is tricky (and strings are best excluded). BASIC
followed by graphics definitions can be saved in this way too (see Chapter 12). In
each case, only the pointer in 45 and 46 needs to be altered before saving.
Note:
Messages: As with LOAD, standard messages prompt the user when saving to tape.
PRESS PLAY AND RECORD ON TAPE is the first. The system can't distinguish
these keys from PLAY on its own, so if you're careless you may find you've recorded
nothing.
Examples:
1. SAVE :REM SAVES BASIC TO TAPE WITH NO NAME

SAVE "PROG",1,2:REM SAVE TO TAPE WITH END-Of-TAPE MARKER
Two BASIC SAVEs to tape. (SAVE with forced load address is generally used

only with ML, where the correct position is essential.)
2. SAVE IJPROGRAM"+TI$,B

Sample SAVE to disk. This adds a clock, so that a version's sequence can be
read (provided the clock isn't reset).

SGN
Type: Numeric function
Syntax: SGN (numeric expression)
Modes: Direct and program modes are both valid.
Token: $B4 (IBO)
Abbreviated entry: S SHIFT-G
Purpose: Computes the sign of a numeric expression and gives -1 if negative, 0 if
zero, + 1 if positive. This is related to logical expressions and to ABS and the
comparison operators. For example, SGN(X - Y) is 0 if X = Y, 1 if X exceeds Y, and
-1 if X is less than Y.
Examples:
1. ON SGN(X)+2 GOTO 400,600,800

Branches to 400 if X is negative, 600 if X is 0, and BOO if X is positive. This is
useful in FORTRAN conversions.

55

BASIC Reference Guide

2. FOR J = - 5 TO 5: PRINT J;SGN<J); SGN(J)*J;SGN<J)*INT(ABS(J)):NEXT
Prints several results; the lattermost is like INT but rounds negative

numbers up.

SIN
Type: Numeric function
Syntax: SIN (numeric expression)
Modes: Direct and program modes are both valid.
Token: $BF (191)
Abbreviated entry: S SHIFT-I
Purpose: Returns the sine of the numeric expression, which is assumed to be an
angle in radians. (Multiply degrees by 7r 1180 to convert.) See ATN for the converse
function.
Examples:
1. FOR J=O TO 90: PRINT J SIN(J* 7r 1180): NEXT

Prints sines of angles from 0 to 90 degrees in one-degree steps.
2.120 X=A+SIN(A)/2:Y=A+SIN(A)*3/2

This line calculates X and Y coordinates of a geometrical shape.

SPC
Type: Output format function
Syntax: SPC (numeric expression). SPC appears only in PRINT and PRINT#
statements.
Modes: Direct and program modes are both valid.
Token: $A6 (166)
Abbreviated entry: S SHIFT -P (this includes the left parenthesis).
Purpose: Helps format output to the screen, printer, etc., though the name is
misleading. With output to the screen, it is actually the cursor right character rather
than the space which is printed (try PRINT SPC(200)"HI!"). However, with any
other device, spaces are output since the cursor right character is nonstandard. TAB
is similar, except that it tabulates to a particular position, rather than moving a fixed
number of positions.
Examples:
1. 100 PRINT "{HOME}": FOR J=O TO 21: PRINT "X" SPC(20) "X": NEXT

Prints a border down each side of the screen, without disturbing any other
screen characters.

2.90 OPEN 1,3: CMD 3

56

Add this line to the previous one; note how an open file causes spaces, not
cursor rights, to be output.

BASIC Reference Guide

ST
Type: Reserved variable
Syntax: ST is treated like a numeric variable, except that no value can be assigned to
ST. (For example, X=ST is correct, but ST=X is not allowed.)
Modes: Direct and program modes are both valid.
Token: Not applicable
Abbreviated entry: Not applicable
Purpose: Indicates the status of the system after any input or output operation to
tape, disk, or other peripheral. ST is set to zero before GET, INPUT, PRINT and
CMD, GET#, INPUT# and PRINT#, so ST is rather ephemeral. Where it is used, it
should be used after every command. Note that VIC doesn't handle ST correctly
with modems; use PEEK(663) in place of ST in such cases.

ST is a compromise method of signaling errors to BASIC without stopping it. It
can often be ignored. Table 3-1 shows the meaning of different values of ST for dif
ferent devices. Where more than one error occurs, they are ORed together; ST=66
combines 64 and 2. Chapters 14, IS, and 17 provide details on ST with tape, disk,
and modems.

Table 3- 1. ST Values

ST Tape Read Write Modem Serial Bus Read (Disk) Write

1 Parity error Print time out
2 Frame error Input time out
4 Short block on input RX buffer full
8 Long block on input

16 Mismatch on checking None CTS missing
32 Checksum error
64 End of file on input DSR missing End of file (EOI)

-128 End of tape marker Break detected Device Not present

Note:
ST for tape and disk operations is stored in location 144; RS-232's ST is stored in
663. ST (like TI and TI$) is checked for when a variable is set up; normally, no ST
variable exists in RAM, and ST is processed by special routines. Thus ST isn't a
tokenized keyword or even a normal variable, and that is why BEST = 2 is accepted
to mean BE = 2, despite the apparent presence of keyword ST.

ST can be used from machine language. See Chapter 8, which deals with Kernal
routines, for this and for the associated methods of reading errors from the disk
drive.
Examples:
1. OPEN 11,11: PRINT#l1,X$

Opens a file to a nonexistent device. This sets 5T=-128.

57

BASIC Reference Guide

2.150 INPUT#8,X$: IF ST=64 GOT 1000
This is a typical end-of-file check when reading data from disk or tape.

Line 1000 might be an exit routine to print totals of all the data, then finish.

STOP
Type: Statement
Syntax: STOP
Modes: Direct and program modes are both valid.
Token: $90 (144)
A bbreviated entry: S SHIFT -T
Purpose: Like the STOP key, this command returns the program to READY mode
and prints a BREAK message showing the line number at which the program
stopped. Like END, STOP can also set breakpoints in BASIC. STOP is generally bet
ter than END because the line numbers allow you to insert as many STOPs as you
want. See CONT (and GOTO if CO NT can't continue) for information on using
breakpoints.
Example:
80 GET X$: IF X$=JJ" GOTO 100
90 IF X$="*" THEN STOP :REM STOP IF ASTERISK PRESSED

Typical of a test for keypress which allows a program to be stopped at a
particular point.

SQR
Type: Numeric function
Syntax: SQR (numeric expression)
Modes: Direct and program modes are both valid.
Token: $BA (186)
Abbreviated entry: S SHIFT-Q
Purpose: Calculates the square root of the argument, which must not be negative.
This is a special case of the power (up arrow) function. SQR actually works faster
than XtO.5. In addition, it is more familiar to many people.
Examples:
1. PRINT SQR(2) :REM PRINTS 1.41421356
2. Xl=(-B +SQR(B*B-4*A*C))/(2*A)

X2=(-B -SQR(B*B-4*A*C))/(2*A)
Both are solutions of the equation AX2+ BX +C=O.

58

BASIC Reference Guide

STR$
Type: String function
Syntax: STR$ (numeric expression)
Modes: Direct and program modes are both valid.
Token: $C4 (196)
Abbreviated entry: ST SHIFT-R (this includes $)
Purpose: Converts any floating-point number into a string. It formats numbers as
PRINT does, so STR$ (10.0) is " 10", with a leading space, and STR$(-123) is
"-123".
Examples:
1. FOR J=1 TO 100: PRINT STR$(J)+".O": NEXT

Prints 1 as 1.0, 2 as 2.0, etc.
2. PRINT "0" + MID$(STR$(X),2)

Outputs X as "0.57", etc., where X is between .01 and 1.0. MID$ and STR$
together remove the leading space. Remember that numbers from 0 to .01 are out
put in exponential notation.

SYS
Type: Statement
Syntax: SYS numeric expression. The expression must evaluate to 0-65535.
Modes: Direct and program modes are both valid.
Token: $9E (158)
Abbreviated entry: S SHIFT -Y
Purpose: Transfers control to machine language at the address specified by the nu
meric expression. The ML is executed, and control will return to BASIC at the state
ment after SYS if an RTS instruction (or equivalent) is found. The registers A, X, Y,
and SR are loaded from locations 780-783 by SYS, and the contents of these reg
isters are replaced in 780-783 after the subroutine call. This offers a useful way to
check short ML routines.
Notes:
1. Chapter 7 introduces machine language; Chapter 6 offers many examples which

use SYS. Many of them end with a DATA value of 96, which is the decimal value
of RTS. But a jump to a subroutine (DATA 76,xx,xx) also exits, and RTI is usable
too (64).

2. Careless SYS calls may crash or corrupt BASIC, and perhaps cause odd anomalies
sometime later. Try SYS 55367 as an example; it sets the decimal flag in the chip.

3. BASIC ROM in the VIC resides from 49152 on, so SYS calls to here always have
repeatable effects in the VIC.

Examples:
1. 10 SYS PEEK(43)+256*PEEK(44)+30

Calls ML stored within BASIC; this form works regardless of what BASIC's
starting address was. Chapter 9 explains such techniques in depth.

59

BASIC Reference Guide

2. SYS 64802
A ROM routine call which resets the computer as though it had just been

switched on.
3. POKE 780,ASC(//$//): SYS 65490: REM KERNAL ROUTINE

Puts the dollar sign character in the storage location for A, then calls the
Kernal output routine at $FFD2. Kernal routines are explained in depth in Chapter
8. The effect is to print $.

TAB
Type: Output format function
Syntax: TAB(numeric expression). TAB appears only in PRINT or PRINT# state
ments. There must be no space between the B in TAB and the left parenthesis, and
the expression must evaluate to 0-255.
Modes.: Direct and program modes are both valid.
Abbreviated entry: T SHIFT -A (This includes the left parenthesis.)
Purpose: Tabulates PRINT expression to the position on the line (from 0 to 255)
specified by the parameter, unless this position is left off an earlier TAB in the same
PRINT statement. Like a typewriter's TAB, this function doesn't work backwards.
Notes:
1. TAB is nearly identical to SPC; the difference is that it subtracts its current

position on the line from the TAB value, then issues that number of moves right.
Its use of cursor-rights and spaces is the same as with SPC.

2. PRINT# has a bug with both TAB and SPC. PRINT#1,SPC(5), for example, gives
an error. Use PRINT#1,""SPC(5) or avoid these commands.

Example:
FOR J = 1 TO 10: PRINT J;TAB(4)J*J;TAB(10)J*J*J: NEXT

Produces a tabbed (left-justified) table of squares and cubes.

TAN
Type: Numeric function
Syntax: TAN (numeric expression)
Modes: Direct and program modes are both valid.
Token: $CO (192)
Abbreviated entry: None
Purpose: Calculates the tangent of any numeric expression, which is assumed to be
an angle in radians. The values 7r /2 (90 degrees) and other equivalent values cause
?DIVISION BY ZERO and should be tested for to avoid program crashes. TAN di
vides SIN by COS; it is slower and less accurate than either.

60

BASIC Reference Guide

Example:
90 A=ATN(TAN(A»*180/ 7f

Converts any radian measurement into its equivalent angle from - 90 to + 90
degrees.

TI and TI$
Type: Reserved variables
Syntax: TI is treated like a numeric variable, and TI$ like a string variable, but TI = X
is never allowed. TI$=string expression of length 6 is allowed.
Modes: Direct and program modes are both valid.
Token: Not applicable
Abbreviated entry: Not applicable
Purpose: Contain the numeric and character values of the VIC's realtime clock. The
clock is kept running by BASIC in its normal operation. A feature known as an inter
rupt operates this clock; about every 1/60 second, locations 160-162 are in
cremented, and their collective value is interpreted for TI and TI$. See Chapter 5 for
a discussion of the hardware aspects of this; Chapter 8 discusses its use in
programming.

The clock isn't particularly reliable. Tape use makes it run much faster than
usual, and programs which disable (turn off) interrupts stop the clock altogether.

TI's maximum value is 518400, the number of sixtieth-seconds in a day. TI is
equal to 65536*PEEK(160)+256*PEEK(161)+PEEK(162), where the latter location
changes fastest. (Try PEEK(162) in a loop.) The easiest way to change the clock set
ting is with TI$ =//101500" (fifteen minutes after ten) or whatever. Note that ML can
be used to set and print TI$; Chapter 7 gives full information.
Notes:
1. Like ST, these variables are intercepted by BASIC, not set up in the normal vari

ables space. TIME and TIME$ are treated like TI and TI$, but ANTIC is treated as
AN, and its enclosed TI doesn't matter.

2. The interrupt rate can be changed by POKEing different values into locations
37158 and 37159.

Examples:
1. 50 TI$=HH$+MM$+SS$

Combines three two-digit strings into TI$.
2. T$ = TI$: PRINT MID$(T$,l,2) +JJ:" + MID$(T$,3,2) + JJ:" + MID$(T$,5,2)

Formats TI$ as HH:MM:SS. Note that T$ stores the value in case TI$
changes while the strings are being calculated (for example, from 11:59:59 to
12:00:00).

USR
Type: Statement
Syntax: Numeric variable = USR (numeric expression)

61

BASIC Reference Guide

Modes: Direct and program modes are both valid.
Token: $B7 (183)
Abbreviated entry: U SHIFT-S
Purpose: Allows the user to call a function in machine language. This requires a lot
of ML knowledge; in BASIC it's nearly always easier to use SYS or a DEF FN ex
pression, and not much slower. Chapter 8's section on calculations has a complete
explanation of this function, along with examples.

VAL
Type: Numeric function
Syntax: VAL (string expression)
Modes: Direct and program modes are both valid.
Token: $C5 (197)
Abbreviated entry: V SHIFT-A
Purpose: Converts a string into a number, so calculations can be performed on it. If
the conversion does not yield a valid number, as much as possible is converted, and
the remainder is ignored with no error message. Valid characters include spaces,
signs, numerals, unSHIFTed E, and periods in some combinations. VAL is the con
verse of STR$.
Examples:
PRINT VAL(I/O.77/1) :REM PRINTS .77
PRINT VAL(I/1.72E3/1) :REM PRINTS 1720
PRINT VAL(li +773 DOLLARS"):REM PRINTS 773
IN$=1/1.2.3/1: PRINT VAL(lN$) :REM PRINTS 1.2
PRINT VAL(1/12/1 + 1/./1 + 1/01/1) :REM PRINTS 12.01
IF VAL(IN$)<O OR VAL(IN$»10 THEN PRINT I/ERROR"

These should be self-explanatory. Note that the last of these tests an input num
ber, avoiding bugs caused by comparing strings with each other.

VERIFY
Type: Command
Syntax: Identical to LOAD
Modes: Direct and program modes are both valid.
Token: $95 (149)
Abbreviated entry: V SHIFT-E
Purpose: Reads and compares a BASIC program (or ML) from disk or tape with the
program currently in memory, to verify that a program has been saved correctly. If
the two versions are not identicat ?VERIFY ERROR is reported. It can be used in
program mode, so you can have a program verify itself.

Because programs may load into different addresses depending on LOAD's
parameters, VERIFY should match the parameters of LOAD. Even so, BASIC can

62

BASIC Reference Guide

generate spurious ?VERIFY ERROR messages, as explained in the notes at the end of
this chapter.

VERIFY cannot be used with data files, since these cannot be loaded like
programs.
Examples:
1. SAVE "NEWPROG",8

VERIFY "NEWPROG",8
Saves a program to disk, then verifies it.

2. 10 PRINT liRE WIND TO VERIFY"
20 GET X$: IF X$ = ,11/ GOTO 20: REM PRESS KEY
30 VERIFY

At the start of a tape program, this verifies in program mode.
3. LOAD "VERSIONS6",8

VERIFY liVER 6",8
If you have two programs, which you believe may be identical, VERIFY will

compare them. A report of OK means that your two programs are indeed
identical.

WAIT
Type: Statement
Syntax: WAIT numeric expression, numeric expression [,numeric expression]. The
first parameter is an address (in the range 0-65535); the others must be in the range
0-255. The optional parameter defaults to zero.
Modes: Direct and program modes are both valid.
Token: $92 (146)
Abbreviated entry: W SHIFT-A
Purpose: Waits until one or more bits of the memory location are cleared or set in
the way specified by the two parameters. The contents of the location are exclusive
ORed with the third parameter, then ANDed with the second parameters. If all bits
are still zero, the comparison is repeated; otherwise, BASIC continues with the next
instruction.
Notes:
1. The location read by WAIT must be one whose contents can change, or the pro

gram will wait indefinitely. Chapter 11 has a list of locations which WAIT might
use. Note, however, that WAIT commands don't usually transfer to other comput
ers. In fact, they're better replaced, as they always can be, by an equivalent state
ment using PEEK.
2. The operation of WAIT can be hard to explain. First, consider exclusive OR. Its
truth table is:
o XOR 0 = 0
o XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

63

BASIC Reference Guide

XOR with 1 flips a bit, while XOR with 0 leaves it unchanged. WAIT address,a,b
first XORs the byte in "address" with b. This allows any bit(s) to be flipped. The
result is ANDed with a, which allows any bit to be turned off. Since a zero result
makes WAIT continue, we can select a and b to respond so that any single bit,
changing either to on or off, can exit from WAIT. In the special case WAIT
address,a there is no exclusive OR; thus, WAIT address,16 waits until bit 4 is set
on. If it never is, WAIT continues forever. This is why WAIT addresses should
only be in RAM or in a hardware register which can change.

Examples:
1. POKE 162,0: WAIT 162,16

Waits until the jiffy clock TI counts to 16 (about 1/4 second).
2. 100 POKE 198,0: WAIT 198,1

Waits for a keypress (that is, until a character is in the keyboard buffer).
3. WAIT 37153,2,255

Waits for the left SHIFT key to be pressed.

VIC-20 Error Messages
The following list describes VIC-20 BASIC error messages. Disk error messages are
handled separately from BASIC; for a list of disk error messages, see Chapter 15.

?BAD SUBSCRIPT
The value given an array subscript is larger than that in the corresponding DIM
statement, larger than 10 if the array had not been explicitly dimensioned, or neg
ative. Also given if the wrong number of subscripts is used.

?BREAK ERROR
STOP key pressed before SAVE or LOAD complete.

?CAN'T CONTINUE
The program cannot be continued using CONT because one of the following con
ditions occurs:
1. It halted through a syntax error, instead of STOP key, STOP, or END.
2. CLR has erased its variables.
3. It was edited after it stopped, erasing variables.
4. A direct-mode error occurred, which the system cannot distinguish from a

program error.
s. It has not been run.

?DEVICE NOT PRESENT
One of the following occurs:
1. Printer, disk, or other device does not respond, typically on GET# or INPUT#, be

cause it is unplugged, switched off, nonstandard, unresponsive, or addressed by a
wrong device number.

2. An end-of-tape marker was found.

64

BASIC Reference Guide

?DIVISION BY ZERO
An attempt has been made to divide by zero, which BASIC does not allow, generally
when a denominator underflows to zero. For example, TAN(1["/2) contains an im
plicit division by zero.

?EXTRA IGNORED
Given when the response to INPUT contains more items than asked for by INPUT's
parameter list. The extra items are lost. INPUT# behaves identically, but doesn't
print the error message. Often caused by inclusion of commas or colons in an input
string; avoid this with leading quotes.

?FILE DATA ERROR
The type of data in a file doesn't match the variables to which it is assigned by
GET# or INPUT#. Usually happens when INPUT# tries to read a string into a nu
meric variable.

?FlLE NOT FOUND
Disk file or program not present on current disk, or name misspelled. (Tape gives
?DEVICE NOT PRESENT.)

?FILE NOT OPEN
Indicates that the logical file number referred to in a statement has not been opened.

?FILE OPEN
Means that a logical file number referred to in an OPEN statement has already been
opened.

?FORMULA TOO COMPLEX
This is given if a string expression contains parenthesized subexpressions and the
string descriptor stack (locations $19-$21) is exhausted. For example, PRINT
"A" + (" A" +(" A" + "Q")) will give this error.

?ILLEGAL DEVICE NUMBER
One of the following has occurred:
1. A command has been issued to an unacceptable device (for example, SAVE to key

board or LOAD from screen).
2. Tape buffer has been moved below $0200.

?ILLEGAL DIRECT
A command requiring the input buffer has been entered in direct mode, typically
GET or INPUT, or DEF FN was entered in direct mode.

?ILLEGAL QUANTITY
An expression used as the argument of a function or in a BASIC command is outside
the legal range. Examples include attempting a POKE with either parameter neg-

65

BASIC Reference Guide

ative, using a logical file number greater than 255, or asking for the square root of a
negative number.

I/O ERROR# 1 through 9
These are Kernal errors, seen in BASIC only after POKE 157,64. See Chapter 15 for
a further discussion.

?MISSING FILE NAME
LOAD from, or SAVE to, disk must have a program name.

?NEXT WITHOUT FOR
Given when the interpreter cannot find a FOR entry on the stack corresponding to
the NEXT it has just encountered. This may happen under several conditions:
1. The stack has no FOR entries on it at all, because more NEXTs than FORs have

been encountered.
2. The variable in the NEXT statement is misspelled and doesn't match any FOR

entries on the stack.
3. The required FOR entry has been flushed from the stack by an incorrectly ordered

NEXT in a nested loop.
4. An active GOSUB exists, as in 10 FOR J=l TO 20: GaSUB 100, followed by 100

NEXT.

?NOT INPUT FILE
Appears when an attempt is made to INPUT or GET from a file that was opened to
be written to. For example, files in the write mode cannot be read from.

?NOT OUTPUT FILE
An attempt has been made to write to a disk file that was opened in read mode.
Such a file cannot be written to, and the attempt will give this error. A file to the
keyboard may be OPENed, and read from, but ?NOT OUTPUT FILE will be given if
the attempt is made to write to it, as the keyboard device cannot act as an output
device.

?OUT OF DATA
There were no remaining unread DATA items when a READ statement was en
countered. Pressing RETURN while READY is on the screen generates this message.
RESTORE resets the data pointer.

?OUT OF MEMORY
This means either that the VIC hasn't enough RAM for the program and its variables
(especially if dimensioning large arrays or inputting long strings) or that temporary
storage on the stack has run out. In the latter case, the stack may be filled with
GOSUBs (about 24 maximum), FOR loops (about 10 maximum), or intermediate
calculation results, or some combination of the three. Typically, GOSUBs which are
never RETURNed cause this problem; see the discussion of POP in Chapter 6.

66

BASIC Reference Guide

This message also appears if the end-of-program pointer in 45 and 46 is set
(perhaps by LOAD into high memory) higher than the end-of-BASIC pointer in 55
and 56. Reset the pointer or NEW to correct this problem.

?OVERFLOW
The value of a calculation is outside the valid range for floating-point numbers,
approximately -1.37E38 to + 1.37E38. If a result is actually within the valid range,
this error may be avoided by restructuring the computation.

?REDIM'D ARRAY
An attempt has been made to dimension an array that has already been dimen
sioned. It may have been dimensioned automatically; for example, a reference to
X(8) implicitly performs DIM X(lO) if that array does not yet exist in memory.

?REDO FROM START
Given when the response to an INPUT statement (but not to INPUT#) contains
items of the wrong type. The whole INPUT statement is executed again.

?RETURN WITHOUT GOSUB
A RETURN has been encountered without a GOSUB having first been executed.

?STRING TOO LONG
String expressions must have from 0 to 255 characters; this error is given if a string
expression evaluates to a string longer than this. It will also be given if an attempt is
made to read a string of 89 or more characters into the input buffer, typically by
INPUT#.

?SYNTAX ERROR
Generally, this indicates that a BASIC statement is unacceptable. There are many
causes; Chapter 8 includes a routine to help pinpoint them. The VIC-20 anticipates a
sequence of statements. If a statement does not start with a keyword or the equiva
lent of LET, if a variable name isn't ASCII, if a statement isn't terminated with colon
or null, or if parentheses, commas, and other symbols are misplaced, ?SYNTAX ER
ROR results.

This error message may be given after NEW if the first byte of BASIC is non
zero. POKE PEEK(44)*256,O: NEW typically works.

?TOO MANY FILES
Given in response to an OPEN statement, if ten logical files (the maximum permis
sible number) have already been opened.

?TYPE MISMATCH
Given if the interpreter detects a numeric expression where a string expression is ex
pected, or vice versa.

67

BASIC Reference Guide

?UNDEF'D FUNCTION
An undefined function has been used in an expression; it should first have been de
fined with DEF FN.

?UNDEF'D STATEMENT
The target line number of a GOTO, GOSUB, or RUN does not exist.

?VERIFY ERROR
The program in memory is not identical to the disk or tape file it is being compared
against. Spurious VERIFY ERRORs occur if BASIC programs are loaded into VIC
with memory expansion different from that which was present when the program
was saved; in such cases the link pointers between lines are different, even though
the BASIC may be the same.

68

Chapter 4

Effective Programming in BASIC

Successful programming requires skill in problem solving and design, not just
knowledge of BASIC keywords. This chapter covers the psychology and meth
odology of designing, writing, and debugging programs, with many useful examples.

Becoming Fluent in BASIC
BASIC is a language, with its own vocabulary and syntax. You need a certain
amount of creativity to get good results, just as you need more than a basic knowl
edge of English words and syntax to write good novels.

But how can a novice programmer develop style and fluency in BASIC? Just as
the best way to learn to write is to do a lot of reading and writing, so the best way
to learn BASIC is to examine programs and adopt good techniques which suit you.
Read keyword descriptions to get a feel for those which are appropriate in certain
situations. If you're new to programming, you will certainly find some keywords
very hard to grasp, but don't let that worry you. Just start writing without them, and
introduce them later on.

When writing programs, you have an advantage over writers who use words.
You can experiment freely, and find immediately whether your way of expressing
your programming intentions was right or wrong. If your methods fail, no harm is
done as long as the experiments are kept separate from serious work.

Another aspect of learning BASIC, in a sense the most important, is developing
an appreciation of a machine's capabilities. This is largely a matter of experience.
The remainder of this chapter will present you with advice and information, derived
from computer industry practice over many years, that is essential if you are to write
reliable, easy-to-use programs.

Programs and People
Before considering program design, it is helpful to get an overview of the software
market and of attitudes of software producers and users.

There are three types of programs:
Stand-alone, or single, programs have no problems with compatibility or with

sharing data. They simply carry out their function or functions. Most games are like
this, and "Diet Analysis" (later in this chapter) is an example.

Program systems are less commonly seen associated with the VIC. Such sys
tems generally rely on large numbers of programs and many files of data stored out
side the computer. Interactive systems allow information to be put into or taken out
of files directly; batch systems store new data on file, after which another program
processes it, perhaps merging it into an already-existing file. "Wordscore," a version
of Bingo given later in this chapter, is a fairly simple program system which VIC can
run.

Programs resembling systems. Single programs with a family resemblance to
each other might be classified as midway between single programs and program sys
tems. For example, multiple-choice and other educational program types collectively
can be regarded as systems; so can CBM's adventure games.

The important things here are the concepts, not the names. Program systems are

71

Effective Programming in BASIC

likely to be more difficult to program than stand-alone, single programs, since they
require validation and checks that are unnecessary in the other types. However, pro
grams resembling systems are often easy to program, provided standardized methods
have been developed.

Just as there are types of computer programs, there are types of computer users.
Microcomputer owners are generally classifiable as business, science, educational, or
personal users, and the VIC can be useful to any of them.

Business. A VIC-20, combined with a disk drive and a printer, is capable of
handling reasonable quantities of business data. Mailing or telephone lists, fee
schedules, specialized calculations, and word processing illustrate just a few of the
business applications that can be managed by the VIC.

Science. The VIC can be used to control external hardware, for example, in pro
cess control or in experimental setups. Micros are also quite suitable for calculations
and simulations. An equation solver using Newton's method, like the one described
in a later chapter, is a typical calculation program; in fact, anything with a definite
formula can be done on a computer. Possible subjects range from architectural stress
calculations to zoo nutrition, provided the data will fit into the computer.

Education. The continued drop in the price of computing, plus skillful playing
on parents' fears, has created something of a boom in computer education. But what
makes good educational software?

Multiple-choice question-and-answer programs, categorized by year and subject,
make a potentially attractive package; in principle, dozens of programs could be used
as refreshers and tests in a range of subjects. Multiple-choice questions are easy to
program, since the only reply needed is typically I, 2, 3, or 4, with no need to inter
pret a verbal answer.

Single-concept programs are also good possibilities. Children's counting pro
grams and alphabetic recognition programs represent the simplest of this type; good
graphics can add a lot of appeal. More advanced examples include foreign language
vocabulary and translation tests; economics concepts like price elasticity, supply and
demand curves, and marginal costs; musical relationships between frequency and
pitch; population simulations; and math techniques and ideas like graph plotting,
limits and sums of series, calculus, and simulations of randomness with coins,
roulette, and so on.

All of these, and more, are feasible on the VIC.
Personal use. Obviously, the personal category is as vague as it is large. Owners

need not restrict themselves to anyone category and in fact may use their computers
for a variety of applications.

Program Design
This section describes the thought processes necessary in programming and design,
with a concrete example of each to give substance to the generalities. Bear in mind
that many computer hobbyists use rather ad hoc methods that don't really fit into
tidy theoretical schemes, so if your programs are sometimes disjointed and patched
up, don't worry about it too much. Most other programmers' are too.

To illustrate the programming process, this section will help you write a pro
gram which thinks of a number from 1 to 99, then accepts guesses typed from the

72

Effective Programming in BASIC

keyboard. Where the guess is wrong, it prints TOO LARGE or TOO SMALL, as the
case may be. Correct input is rewarded by an encouraging message plus the total
number of guesses.

Putting this into BASIC requires four steps, which may be formally written
down or simply carried out mentally. The steps are given below, in order.

Understanding the problem. The first step is always to understand the prob
lem. In this example, the problem is quite simple; obviously, however, many com
puter problems are much more complex.

Expressing the problem in a computerizable way. For a computer to solve a
problem, that problem must first be explained in a way that makes sense to the com
puter. This is where programming experience is essential. For example, if you
haven't grasped the idea of computer files, you'll obviously not be able to appreciate
their use in storing data. Similarly, if you haven't understood that the computer must
count lines of print to know where it is on a page, you won't be able to print titles
where you want them. The logical part of programming equips you with methods
and tricks to process data, but experience is necessary to appreciate the physical
limitations and capabilities of computer systems.

One good way to put a problem into computer terms is to use a flow chart. In
this case, the flow chart shown in Figure 4-1 illustrates one approach to the game in
a form which can be written as BASIC. Entries in the boxes are shorter than usual to
avoid clutter. However, you should be able to trace how N records the number of
guesses and how all three possible outcomes of the comparison between X and the
current guess are processed.

Flow charts generally use diamonds to indicate options and rectangles to in
dicate operations. Many other, less common, symbols may also be used, but they are
not necessary for this example.

The direction of flow is usually down, with loops and branches arranged clock
wise, as in this diagram. Virtually all programs have decision points and loops; if
they didn't, they would finish their processing very quickly. Flow charts show these
clearly. However, flow charts are hard to modify and take up space, so many people
prefer quasi-computer languages (that is, stylized lines of English resembling BASIC
programs). The sad fact is that any complex program remains complex regardless of
how it is written down.

Writing the problem as BASIC. In some cases you may be able to write the
whole BASIC routine at once; if it's long, you'll probably write parts of it and test
them individually as modules. This is where past practice is invaluable, not only be
cause of skill in BASIC per se, but because experience suggests efficient ways of get
ting results.

The specific way in which you solve a problem is called an algorithm. Al
gorithms are rules with explicit instructions and no exceptions which generate the
desired correct results.

Math algorithms can be used by anyone, however little may be understood of
the underlying theory. For example, linear programming (solving such problems as
finding the cheapest combination of foods which supply all known nutrients) in
volves long calculations. At a simpler level, an algorithm for chronologically arrang
ing dates in the format YYMMDD is Simpler than one for arranging dates of the

73

Effective Programming in BASIC

form MMDDYY. Similarly, a poker hand can be assessed by sorting five cards (ace
high), evaluating four differences, and taking account only of zeros, ones, pairs,
threes, fours, straights, and others.

Figure 4- 1. Number Guessing Game Flow Chart

G<X

Start

Generate X
(1-99)

N =0

Input Guess G

G=X

End

Other types of algorithms can be used to deal with very complex situations,
where a particular rule is found to give good results and is used for lack of anything
better. Complex chess openings can be generated with quite simple algorithms,
moving to maximize the area under attack and minimize the opponent's range of
replies.

Program 4- 1. Guessing Game
o REM * GUESSING GAME *
10 PRINT "{CLR}GUESS MY NUMBER (1-99) ": PRINT
20 X=INT(RND(1)*99)+1: N=0
30 INPUT "YOUR GUESS"rG: N=N+l

74

Effective Programming in BASIC

4117 IF G<X THEN PRINT "TOO SMALL": GOTO 30
5117 IF G>X THEN PRINT "TOO LARGE": GOTO 3117
6117 PRINT "GOT ITt IN " N "TRIES"

The algorithm used in this guessing game is shown in Program 4-1. As you can
see, it is a fairly simple one. Lines 0-30 correspond exactly to the first boxes of the
flow chart; after this, because IF allows only two options, the lines cannot exactly
match boxes but the logic is identical. Note that line 60 doesn't need to test IF G=X,
since no other possibility exists.

Testing (and probably improving) the program. There are usually ways to im
prove a program's design. In this example, you could add line 70 FOR J= 1 TO 3000:
NEXT: GOTO 10, replacing the box END by a delay loop and a branch back to
PRINT TITLE. Values could be checked to make sure they are in the correct range
(and that they are integers), or the screen layout could use color.

Testing is difficult. In fact, commercial programmers spend most of their time
removing bugs from programs. Ideally, with everything about a program planned in
advance, bugs would not appear. But in practice it's impossible to plan for all
eventualities.

An Example of a System
Later in this chapter is a program called "Wordscore" which assesses five-letter
words on a score-per-Ietter basis. One form of this game scores words reading across
a 5 X 5 grid, where the word BINGO must be included vertically in anyone column
or diagonally from top left to bottom right. Can VIC help?

The first step is to assess the potential data base of words. A typical dictionary
lists about 2000 five-letter words, but not all of these will contain one or more letters
from BINGO. VIC can handle this, and the demonstration shows how any values
can be assigned to letters A-Z before checking the tape file. Keying in the data is not
too long a job. Adding BASIC to select the highest scoring words of form Bxxxx,
Ixxxx, and so on (29 relevant formats) isn't difficult, and the conclusion is that VIC
could be valuable here.

In general, system planning requires four steps. They are given here in order.
Ask if it is feasible. Can a program system reasonably handle the job? Time

may be a problem; sorts, searches, graphics, or tape processing may be too slow to
meet your requirements. You may have to write a test program to check these things
out. RAM space may also be a problem, particularly with the unexpanded VIC. Can
the data coexist with BASIC? Would splitting the program into smaller subprograms
help? The list goes on.

Less tangible problem areas might include reliability or recovery of lost data if
a tape or disk is lost. A little time spent addressing these questions may save time
later on.

Write a solution. Again, you will need to develop suitable algorithms to solve
the problem at hand.

Write the program(s). These should be structured so they are easy to under
stand later. Programs written in modules, each having a single entry and exit point,
are likely to be easier to maintain.

75

Effective Programming in BASIC

Figure 4-2 shows two charts which may be used; one shows a file's structure,
while the other illustrates a modular program structured to read that file. Table 4- L
a condition table, lists alternative actions in tabular form and allows complex
decisions to be checked more easily than spaghettis of IFs permit.

Figure 4-2. File Structure and Related Program

Open
Files

Read
eader

Table 4- 1. Condition Table

Conditions: Stock> reorder level?

Stock minus stock out> reorder level?
Stock out > stock?

Actions: Issue stock
Issue reorder request

Part issue stock I increase commitments

Read
Until
End

Y

Y

N
X

-
-

Read
Trailer

Control Level

Close
Files

Modules

Subroutines

Y Y N N N

N N N N N

N Y N Y N

X - X - -

X X - - -
- X - X -

Test the system. The final step is to test the system, to see if it functions as de
sired. See the next section for a detailed discussion of system testing.

Programming Considerations
Unless you're subject to external constraints (for instance, a house style), there is no
correct way to program. If it's your computer, you can do what you like. However,
this section examines a number of considerations which are important to a program's
readability, ease of maintenance and modification, user-friendliness, and so on. In
each case you must decide whether inclusion of the feature is worth the additional
effort.

Conventions for line numbers, variable names, and REMs. You may choose
to number active lines by fives or tens, putting REMs only on lines whose numbers
end in 9. If standard subroutines are used, retain the same line numbers in different
programs.

76

Effective Programming in BASIC

REMs help readability, but take up space; you may find it worthwhile to docu
ment standard routines for future reference, and delete REMs from programs.

As for variables, remember that BASIC uses global, not local, variables. Be sure
that variables can't be accidentally changed. Either list every variable as it's used
(and make variable names meaningful), or establish a convention that you will
adhere to.

Documentation. Paper documentation could include an operator manual
(explaining how to switch on and off, handle and copy disks, and so on); a user
manual (explaining file structure, validation methods, and correct sequence of pro
grams); and a system manual (providing a complete reference to the system pro
grams, specifications, file structures, and so on).

Ease of modification. Hard-coded programs use large numbers of constants;
soft-coded programs rely more heavily on variables. As a rule, soft coding is easier
to modify but more trouble to write.

Error messages. These signal that a mistake has been made, and, more im
portantly, tell you what it was. Some are built into the computer; you can build
others into your programs to make them easier to use.

Easy INPUT of data. A simple INPUT is fine in many cases, but it doesn't give
full control. It is better to test for and disable all keys except those actually desired
for input; integer input must accept only numerals and not cursor keys, colors, let
ters, and the like. STOP and RESTORE may need to be disabled (see Chapter 6), and
the length of the integer checked. None of these is very difficult, but all take
programming time and use up memory.

Prompts are also important. Instructions like ENTER THE AMOUNT or ENTER
NEXT ADDRESS make programs much easier to use, but (again) take time to write
and occupy memory.

Convenience is another aspect to consider; for instance, a HELP command
might also be included. In addition, correction of data can be simplified by printing
10 or 20 values on the screen and asking the user to indicate any changes that might
be needed; if so, a minimum number of keystrokes are necessary.

Menus are like elaborate prompts that help users find their own way through
programs. A menu displays several options from which the user selects one, typi
cally by pressing a single key. If a menu program stands alone, it has to load and
run a new program; alternately, most or all of the options may exist together in
memory.

Output formatting. Neat output, particularly of numbers, requires some work.
There are a number of ways to format output; for instance, PRINT USING in Chap
ter 6 gives you a way to print numbers as, say, 2.00 instead of 2.

Subroutines. Standard subroutines allow programs to be developed and tested
as modules. It is easier to check isolated parts of BASIC than entire programs; break
ing a program into sections also makes it possible for several people to work
simultaneously, provided the variables and line numbers are agreed on beforehand.

Subroutines often save space and should always improve clarity. In fact, if your
aim is to enhance clarity, it may even make sense to write subroutines which are
only called once.

Testing. Thorough testing ideally checks every possible combination of data.
Generally, this is impossible. In practice, depending on the program or subroutine, a

77

Effective Programming in BASIC

loop may be used to generate ascending values or check their effect, or RND may be
used to make up strings or numerals of the right size. The program "Rounding" later
in this chapter includes a loop demonstration; Chapter 6's sorting routines use ran
dom data to test sorting.

There are several potential problems that you should be aware of when testing.
First, there may be extreme or boundary values which have strange effects; negative
numbers, numbers below .01 (which are printed in exponential notation), and the
double quotes key are likely to wreck input subroutines unless they're tested for and
removed. Second, programming errors may show up only when several events occur
at once, making bugs hard to trace because of their apparent random appearances.
Third, unconscious bias may influence the choice of test data. For these reasons,
commercial systems are tested with data supplied by the user, who also checks that
the output is what it should be. However, this can cause problems since the user
may not appreciate the importance of testing with obviously wrong data which the
system ought to reject.

Validation. Validation is the process of checking to see that data is of the cor
rect type, without necessarily guaranteeing the actual values. For example, although
19/19/86 is an invalid date which should be rejected, 9/9/86 is valid but may be
wrong. In its simplest form, validation simply repeats the request for data. More
sophisticated checking includes error messages.

Debugging BASIC
This section lists common faults in BASIC programs. While such a list cannot be ex
haustive, it should help pinpoint errors. STOP allows you to set breakpoints at
which you can check variables' values; PRINT allows you to check key variables
while BASIC runs.

Syntax errors. These occur when VIC finds something which isn't BASIC, and
therefore can't be understood. Chapter 8 contains a machine language routine that
may help you find the mistake, but generally it's up to you to find where you went
wrong.

Runtime errors. Runtime errors occur in BASIC which is syntactically correct,
but which is trying to manipulate data that isn't valid. Chapter 3 lists all of these
errors. Validation routines which only pass acceptable values are a solution.

Errors in program logic. These errors occur when the programmer makes a
mistake; the program may run without errors but do the wrong thing. They can have
several causes:

Keyword misunderstanding. Misunderstood keywords can produce statements that
don't do what you expect them to do. This is common with logical expressions
where parentheses have been omitted.

Variable's value altered by mistake. All BASIC variables are global, not local, and
a subroutine which uses J can easily be called without its effect on J being noticed.
The same thing will happen if an existing variable name is used over again by mis
take; for instance, you may forget that D already means decimal position and use it
for dollars instead.

Subroutine may be poorly structured. Errors in subroutine structure may cause
program execution to drop through to the following lines.

78

Effective Programming in BASIC

BASIC pointers may be wrong. Placing graphics definitions and ML at the top of
memory requires that certain pointers be changed. If not, the data will be corrupted
by strings. BASIC may assume an arrangement of hardware or software (for exam
ple, a memory configuration) which may not apply.

FN may have been omitted. Omitting FN will cause a function to be read as an
array; DEEK(X) without FN is interpreted DE(X).

There may be loop errors. Systematic errors are usually caused by errors in loops,
particularly in the zeroth and final elements in buffers or POKEs, or in boundary
values that are incorrectly processed.

Bugs in BASIC itself. BASIC has a number of peculiarities. For instance, ASC
of a null character crashes. Several other peculiarities are listed below:

• CLOSE to printer or disk needs PRINT# first.
• FRE is slow if there are very many strings.
• INPUT# gives no error message if it finds extra data .
• PRINT attempts to print anything; a stray period appears as 0, for instance.
• TAB and SPC have a few quirks when used with PRINT# (see Chapter 3).

In addition, numbers are not held with absolute accuracy, as Chapter 6 explains.
For example, as Program 4-2 shows, FOR X=O TO 40 STEP .2 never reaches X=20.
After 19.8 the value of X has accumulated enough rounding error to throw the value
off by a tiny percentage.

Program 4-2. Rounding Error

10 FOR X=0T040 STEP.2:PRINT X
20 IF X=20 THEN PRINT"X IS NOW EQUAL TO 20"
30 NEXT

Hardware bugs. Serious hardware bugs are rare. However, trivial ones may
hold you up; having the SHIFT fLOCK key down may cause inputs to be rejected or
appear very unusual; SHIFT -C may alter the entire screen appearance. Additionally,
a printer may jam, a cassette recorder may need to be demagnetized, or a disk drive
may be disconnected or switched off.

Examples in BASIC
The remainder of this chapter presents several examples of BASIC programming.
Not only are they useful in themselves, but they also illustrate practical BASIC
programming techniques.

Input
Program 4-3 and Program 4-4 illustrate ways to input data. Both examples use GET
to build a string IN$. In Program 4-3, line 150 defines the range of acceptable
characters; for integer input, change the range to 0-9. Line 140 allows the DELete
key to operate; all other special keys are disallowed, except STOP and STOP
RESTORE (which can be disabled if you wish [see Chapter 6]). The POKEs simulate
the flashing cursor seen during BASIC's INPUT.

79

Effective Programming in BASIC

Program 4-3. String and Integer Input
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o REM ***** STRING (AND INTEGER) INPUT{6 SPACES}**
*** :rem 81

1 REM ***** ROUTINE TO INPUT DATA UNDER YOUR FULL
{SPACE}CONTROL ***** :rem 77

2 REM * INDIVIDUAL CHARACTERS ARE X$; :rem 152
3 REM * STRING BUILDS UP INTO IN$; :rem 176
4 REM * UPPER/LOWER CASE AND ALL USUAL SYMBOLS;

:rem 60
5 REM * THE DELETE KEY OPERATES, ALLOWING CORRECTI

ONS :rem 247
6 REM : rem 26
7 REM * SET CURSOR POSITION AT START IF YOU WISH

:rem 110
8 REM TO INPUT NUMERALS,{2 SPACES}LINE 150 LIMITS

{SPACE}ARE u0 u AND u9 u :rem 14
9 REM : rem 29
10 GOSUB 100 :rem 114
11 PRINT: PRINT IN$:rem 113
12 GOTO 10 :rem 253
100 IN$=u":{33 SPACES}:REM SET STRING NULL :rem 35
110 POKE 204,0: POKE 207,0 {18 SPACES}: REM !,!'LASH CU

RSOR :rem 123
120 GET X$: IF X$= GOTO 120{15 SPACES):REM FETCH

CHARACTER :rem 150
130 IF X$=CHR$(13) THEN PRINT U ";: POKE 204,1: RE

TURN: REM EXIT; NORMAL CURSOR EFFECTS :rem 125
140 IF ASC(X$)=20 THEN IF LEN(IN$»0 THEN IN$=LEFT

$(IN$,LEN(IN$)-I):GOTO 170:REM DELETE :rem 81
150 I F NOT (X $ > =" " AND X $ < = U Z") GOTO 110

{3 SPACES}:REM RANGE IS UPPER & LOWER CASES &
{SPACE}SYMBOLS :rem 115

160 IN$=IN$+X${30 SPACES}:REM ADD CHARACTER TO END
OF STRING : rem 75

170 PRINT X$;: GOTO 110:REM ECHO CHARACTER TO SCRE
EN, THEN CONTINUE :rem 206

Decimal input is a bit more complicated, as Program 4-4 illustrates, and extra
programming is needed to insure that only one decimal point can be entered. This
version disallows any more than two figures after the point. All these features can, of
course, be changed, but be sure to test the results carefully.

Program 4-4. Decimal Input
Refer to the "Automatic Proofreader" article (Appendix C) before typing ill this program.

o REM **** DECIMAL INPUT (INPUTS DECIMALS UNDER FU
LL CONTROL) **** :rem 43

1 REM :rem 21

80

Effective Programming in BASIC

2 REM * SET FOR 2 DECIMAL PLACES AT MOST :rem 196
3 REM : rem 23
10 GOSUB 100 :rem 114
11 PRINT: PRINT D$:rem 30
12 GO TO 10 :rem 253
100 D$="": D=-l :rem 147
110 POKE 204,0: POKE 207,0 :rem 17
120 GET X$: IF X$="" GOTO 120 :rem 129
130 IF X$=CHR$ (13) THEN PRINT " "~: POKE 204,1: RE

TURN : rem 67
140 IF ASC(X$)=20 THEN IF LEN(D$»0 THEN D$=LEFT$(

D$,LEN(D$)-1):D=D-1:{2 SPACES}GOTO 170:rem 145
142 IFASC(X$)=20 GOTOl10 :rem 52
144 IFX$="." THEN FORJ=0 TO LEN(D$):IFMID$(D$,J+1,

l)<>"."THEN NEXT :rem 100
146 IF X$="." AND(J=LEN(D$)+l) THEN D=0: GOTO 160

150
152
154
160
170

IF NOT (X$>="0" AND
IF D>=2 GOTO 110
IF D>-l THEN D=D+1
D$=D$+X$
PRINT X$~: GOTO 110

:rem 222
X$<="9") GO TO 110 :rem 226

:rem 227
:rem 89
:rem 75

:rem 225

GET can be used to build strings in any format. Equipment part numbers might
be of the form 999XXX (three digits followed by three letters), and a routine to input
these simply needs to test for the correct input and ignore anything else. Where a
DELete key is allowed, this is a little more difficult. Alternatively, an input string
might be accepted and then tested for correct format; if an error is found, the pro
gram would loop back for reinput, perhaps with an error message.

INPUT in Chapter 3 explains a few tricks, like forcing quotes after the prompt.
Pressing only RETURN in response to the INPUT prompt leaves everything un
changed; so 100 X=50: INPUT "NEW X (OR RETURN=50)"; X allows easy entry
where default values exist.

Output
Program 4-5 formats output. Line 20 demonstrates the routine. Lines 105-115 test
for an E in the string equivalent of V, and line 120 retains the minus sign so that
every eventuality is accounted for. Line 150 controls the length of the string V$ in its
processed form.

Program 4-5. Rounding
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

1 REM ***{14 SPACES}ROUNDING SUBROUTINE{22 SPACES}
*** :rem 135

2 REM * WHEN +VE OR -VE V IS INPUT~ V$ RETURNS WIT
H LENGTH 12,{4 SPACES}* :rem 194

3 REM * AND TRUNCATED TO 2 DEC. PLACES (USER CAN C
HANGE THESE).{3 SPACES}* :rem 30

81

Effective Programming in BASIC

4 REM * EXPONENT E: BELOW .01 GET 0.00; HUGE NUMBE
RS GET OVERFLOW * :rem 214

5 REM *{6 SPACES}.002 IS{2 SPACES}FORMATTED AS "
{8 SPACES}0.00"{17 SPACES}* :rem 5

6 REM * {7 SPACES} -.2 IS {2 SPACES} FORMATTED AS "
{8 SPACES}-.20"{17 SPACES}* :rem 210

7 REM *{2 SPACES}1234.567 IS{2 SPACES}FORMATTED AS
"{5 SPACES}1234.56"{17 SPACES}* :rem 134

8 REM *{7 SPACES}9E9 IS{2 SPACES}FORMATTED AS "***
OVERFLOW"{17 SPACES}* :rem 51

20 FOR V=-20 TO 100: GOSUB 100: PRINTV; V$: NEXT:
{SPACE}END:REM DEMONSTRATION :rem 75

100 T9$=STR$(V):REM WE'LL USE STRINGS :rem 211
105 E9=0:FOR J9=1 TO LEN(T9$):IF MID$(T9$,J9,1)="E

"THEN E9=J9 :rem 31
110 NEXT:IFE9>0 AND MID$(T9$,E9+1,1)="-"THENT9$="0

.00":GOTO 150:REM UNDERFLOW :rem 102
ll5 IFE9>0 AND MID$(T9$,E9+1,1)="+"THENT9$="***OVE

RFLOW":GOTO 150:REM OVERFLOW :rem 226
120 IF MID$(T9$,2,1)="." THEN T9$=LEFT$(T9$,I)+"0"

+MID$(T9$,2) :rem 127
121 REM ADD LEADING ZERO TO (E.G.) .5 OR .123, RET

AINING '-' WHERE PRESENT :rem 253
125 D9=0:FORJ9=ITOLEN(T9$):IFMID$(T9$,J9,1)="."THE

N D9=J9:REM DECIMAL POINT IS :rem 59
130 NEXT:REM AT POSITION D9, :rem 164
135 IF D9=0 THEN D9=LEN(T9$)+I: T9$=T9$+".":REM OR

ADD D.P. ON END :rem 154
140 T9$=T9$+"00":REM ALWAYS ADD 00,BUT :rem 50
145 T9$=LEFT$(T9$,D9+2):REM ONLY TAKE 2 D.P.

:rem 134
150 V$= RIGHT$("{12 SPACES}"+T9$,12):REM ADD LEADI

NG SPACES :rem 137
155 RETURN :rem 123

Routines like this are valuable for such purposes as printing invoices, receipts,
and reports. Chapter 6 contains a machine language version.

Note that X=INT(100*X+.S)j100 is a quick method for rounding to two deci
mal places.

Calculations
Diet Analysis. Program 4-6 is an example of a calculation-and-report program,

predicting weight change by sex, calorie intake, and activity. Lines 400-450 calculate
weight change per week; 16 weeks' results are printed out. The algorithm makes
standard assumptions that one pound of fat is equivalent to 3500 calories, and that a
fairly constant ratio exists between total weight and static-weight calorie intake.

82

Effective Programming in BASIC

Program 4-6. Diet Analysis
Refer to the "Automatic Proofreader" article (Appendix C) before typing ill this program.

10 REM ***
************ :rem ~5

20 REM *******(2 SPACES}WEIGHT(2 SPACES}LOSS
(2 SPACES}PREDICTOR(2 SPACES}FOR(2 SPACES}DIETE
RS(2 SPACES}******* :rem 62

30 REM ***
************ :rem 77

40 REM * ASSUMES SPARE FAT/ NOT APPLICABLE DURING
(SPACE}PREGNANCY ** :rem 154

100 PRINT "(CLR}" : rem 245
110 INPUT "WEIGHT (POUNDS)"~P :rem 227
120 PRINT " INTENDED DAILY" : rem 34
130 INPUT "CALORIE INTAKE"~C :rem 161
140 PRINT "INACTIVE, FAIRLY, OR" :rem 121
150 INPUT" VERY ACTIVE-0,1,2"~A :rem 0
160 INPUT "MALE, FEMALE-M,F"~S$: S$=LEFT$(S$,1)

:rem 96
170 S=1: IF S$="F" THEN S=.9 :rem 134
200 PRINT "(CLR}" S$ "(2 SPACES}WEIGHT NOW:" P

210
220
300

PRINT "CALORIE INTAKE:" C
PRINT
FOR W=0 TO 16

:rem 247
:rem 156

:rem 33
:rem 72

310 PRINT "WEEK" W INT(P*10)/10 :rem 143
400 FOR J=1 TO 7 :rem 13
410 M=P*(14.3+A)*S + C/10(6 SPACES}:REM M=CALORIES

TO MAINTAIN WAIT :rem 186
420 D=M-C(22 SPACES}:REM DIFFERENCE BETWEEN M & IN

TAKE : rem 246
430 DW=D/3500(18 SPACES}:REM DH=WEIGHT CHANGE~ FAT

=3500 CALS/POUND :rem 1
440 P=P-DW(21 SPACES}:REM P=PREDICTED WEIGHT AFTER

1 DAY :rem 197
450 NEXT J(21 SPACES}:REM LOOP FOR 1 WEEK'S LOSS/G

AIN : rem 199
500 NEXT W :rem 43

Bills and Coins. Program 4-7 works out the smallest note/coin combination, in
dollars and cents, to equal any given amount. Line 60 holds DATA; it can be
changed to eliminate $100 bills or to convert to other currencies. Line 130 adds a
small correction to each figure so there is no chance of rounding errors.

Program 4-7. Bills and Coins
Refer to the "Automatic Proofreader" article (Appendix C) before typil1g ill this program.

o REM ** NOTE/COIN ANALYSIS ** :rem 174
1 : :rem 107

83

Effective Programming in BASIC

50 REM * READ DATA INTO ARRAY NC(), AND SET UP ARR
AY FOR QUANTITIES * :rem 107

60 DATA 11,100,50,10,5,2,1,.5,.25,.1,.05,.01:REM A
LL 11 US$ DENOMINATIONS :rem 43

70 READ NUMBER OF DENOMS: DIM NC(NU),QU(NU) :rem 6
80 FOR J=l TO NU: READ NC(J): NEXT :rem 72
100 REM * INPUT SALARY DATA * :rem 63
110 INPUT "{ CLR}# OF EMPLOYEES": EMPLOYEES: DIM SA

LARIES OF (EMPLOYEES) :rem 83
120 FOR J=l TO EM: PRINT "EMPLOYEE #"J: :rem 122
130 ::INPUT SALARY OF (J): SA(J)=SA(J) + NC(NU)/2

:rem 122
140 NEXT :rem 212
200 REM * DETERMINE REQUIRED COMBINATION: START HI

GH * :rem 228
210 FOR J=l TO EMPLOYEES :rem 136
220 ::FOR K=l TO NUMBER :rem 20
230 :::X=INT(SAL(J)/NC(K»: SAL(J)=SAL(J)-X*NC(K):

QU(K)=QU(K)+X :rem 178
240 :: NEXT K : rem 148
250 NEXT J :rem 32
300 REM * PRINT RESULTS * :rem 138
310 PRINT "{CLR} ANALYSIS:" :rem 150
320 FOR J=l TO NU: IF QU(J)=0 THEN 340 :rem 183
330 PRINT QU(J) "OF $" NC(J) :rem 141
340 NEXT :rem 214

Solving Equations. Program 4-8 employs a math technique to find solutions to
equations. Lines 2 and 3 have examples, and the program is set up to perform an in
terest calculation. It will tell you, for example, that ten payments of $135 to clear a
loan for $1000 implies 5.865 percent interest per payment period, a calculation
which is ordinarily difficult because the formula assumes the interest rate is known.

Program 4-8. Solving Equations

Refer to the "Automatic Proofreader" article (Appendix C) be/ore typing in this program.

*** SOLVER :rem 109 o REM
1
2

:rem 107
REM *** EXAMPLE:{2 SPACES}DEF FN Y(X)=X*X - 2 SO
LVES SQR(2) :rem 10

3 REM *** EXAMPLE:{2 SPACES}DEF FN Y(X)=Xt3 + 5*Xt
2 - 3 SOLVES Xt3+5Xf2=3 :rem 181

4 REM *** EXAMPLE:{2 SPACES}DEF FN Y(X)=EXP(X*X+X)
-2 SOLVES EXP(X*X+X)=2 :rem 94

5 REM *** EXAMPLE HERE NEEDS EXTRA VARIABLES N,S,
{SPACE}AND P, INPUT BY LINES 11-13. :rem 98

6
7 REM *** USES AN 'ITERATIVE'

o CONVERGE ONTO RESULT
8

84

:rem 112
(REPEATING) PROCESS T

:rem 141
:rem 114

Effective Programming in BASIC

10 DEF FN Y(X) = P*(l-l/(l+X)lN)/ x - S
11 INPUT "NO. OF PAYMENTS";N
12 INPUT "TOTAL SUM";S
13 INPUT "EACH PAYMENT IS";P
20 GUESS=.1{2 SPACES}:REM SET GUESS AT

MENT INTERVAL, SAY
30 DX=1/1024 :REM SMALL INCREMENT WITH

:rem 68
:rem 144

:rem 62
:rem 142

10% PER PAY
:rem 180

NO ROUNDING
ERROR

40 GRADIENT = (FN
:rem 104

Y(GUESS+DX) - FN Y(GUESS»/DX
:rem 137

50 GUESS=GUESS - FN Y(GUESS)/GRADIENT :rem 31
60 IF ABS(GUESS-Gl)<.00001 THEN PRINT"SOLUTION=" G

UESS: END :rem 245
70 Gl=GUESS: GOTO 40:{2 SPACES}REM PRINT Gl TO WAT

CH CONSECUTIVE GUESSES :rem 30

The program lets you input guesses. This can sometimes be important, particu
larly if a problem has more than one solution. Line 60 controls the precision of the
answer; greater precision takes longer.

Approximating Fractions. Program 4-9 calculates fractional approximations of
decimal entries. It will tell you, for instance, that 7r is about 22/7, and that 355/113
is much closer. It also gives approximations of any constants, perhaps for overseas
currency conversions.

Program 4-9. Approximating Fractions
Refer to the "Automatic Proofreader" article (Appendix C) before typing ill this program.

o REM ************************************:rem 252
1 REM * FRACTIONS APPROXIMATING A NUMBER *:rem 255
100 REM * INPUT NUMBER; CONVERT IT TO FRACTION *

:rem 20
110 INPUT A: T=A:{2 SPACES}B=l :rem 89
120 IF ABS(T-INT(T+.0001»>.001 THEN T=T*10: B=INT

(B*10+.1): GOTO 120 :rem 98
130 T=INT(T+.l) :rem 63
140 DIM A(50),T(50),B(50) :rem 192
150 A(l)=INT(T/B): T=T-INT(T/B)*B :rem 80
200 REM * CALCULATE CONTINUED FRACTION IN A() *

:rem 128
210 X=l :rem 89
220 X=X+l: A(X)=INT(B/T) :rem 63
230 Bl=T: T=B-A(X)*T: B=Bl :rem 103
240 IF B<>l AND T<>0 GOTO 220 :rem 176
250 IF X>16 THEN X=16{11 SPACES}:REM FIGURES TOO L

ARGE AROUND HERE :rem 203
300 REM * CALCULATE TOP/BOTTOM APPROXNS * :rem 203
310 T(l)=A(l): B(l)=l :rem 214
320 T(2)=A(1)*A(2)+1: B(2)=A(2): REM CALCULATE FIR

ST 2, :rem 72

85

Effective Programming in BASIC

330 FOR J=3 TO X(15 SPACES}:REM USE THEM TO CONTIN
UE : rem 115

340 T(J)=A(J)*T(J-1) + T(J-2) :rem 143
350 B(J)=A(J)*B(J-1) + B(J-2) :rem 90
360 NEXT :rem 216
400 REM * PRINT RESULTS * :rem 139
410 FOR J=l TO X: PRINT T(J)"/"B(J) :rem 53
420 NEXT :rem 213

string Handling
Words are handled by BASIC as strings. This allows constructions like 10 INPUT
"NAME";N$: PRINT "HELLO, "N$. Typing tutor programs use the same principle.

At a more advanced level, string handling will let you select any individual
characters, using MID$, LEFT$, or RIGHT$ (actually, MID$ is enough). In addition,
any combination of characters can be generated with the aid of the string concatena
tion operator (+). An earlier program (Program 4-5) shows how you can scan a
string for the character E; Program 4-10 shows how a numeral can be scanned to
replace 0 symbols with 0, which many people prefer.

Program 4- 1 O. Replacing Zeros
o REM *** REPLACE ZEROS IN STRING WITH LETTERS 0 *

**
10 INPUT N$
20 L=LEN(N$)
30 FOR J=l TO L: IF MID$(N$,J,1)="0" THEN N$=LEFT$

(N$,J-1) + "0" + RIGHT$(N$,L-J)
40 NEXT
50 PRINT N$

When storage space is short, data compression may be worthwhile. Program 4-11
illustrates how long numerals can be packed into roughly half their normal length,
using string-handling techniques.

Program 4- 11. Packing Numbers
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 INPUT "NUMBER";NS$:rem 254
99 REM ** PACK NUMBER STRING NS$ INTO NP$--------

(SPACE}*** :rem 16
100 IF LEN(NS$)<>INT(LEN(NS$)/2) *2 THEN NS$="0"+N

S$: rem 18
110 NP$="": FOR J=l TO LEN(NS$) STEP 2 :rem 180
120 NP$ = NP$ + CHR$(VAL(MID$(NS$,J,2»+33): NEXT

199

200

86

REM *** UNPACK NP$
:rem 247

INTO NUMBER STRING NS$---
(SPACE}***
NS$="": FOR J=1
(NP$,J»-33)

: rem 90
TO LEN(NP$): NI$=STR$(ASC(MID$

: rem 40

Effective Programming in BASIC

210 NI$=RIGHT$(NI$,LEN(NI$)-I){14 SPACES}:
(2 SPACES}REMOVE LEADING SPACE :rem 22

220 NI$=RIGHT$("00"+NI$,2): NS$=NS$+NI$: NEXT: REM
MAY ADD LEADING 0 (S) : rem 93

300 PRINT NS$ " " NP$: GO TO 10 :rem 191

Analogous tricks include collecting heterogeneous characters together and select
ing from them with MID$. For example, there's no simple connection between color
keys and their ASCII values, but C$="{BLK}{WHT}{RED}{CYN}{PUR}
{GRN}{BLU}{YEL}" is an eight-character string holding them all. PRINT
MID$(C$,J,I) prints the Jth color, where J is 1-8.

Program 4-12, a version of the game Bingo, illustrates a small system that eval
uates five-letter words on the basis of the point value of each letter (which may vary
between runs).

Program 4- 12. Wordscore
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o REM **********************
1 REM **{7 SPACES}BINGO *{4 SPACES}**
97 REM ---------------------------
98 REM BUILD FILE OF WORDS ON TAPE
99 REM ---------------------------
100 OPEN 1,1,1,"5-LETTER WORDS"
110 INPUT W$
120 IF LEN(W$)<>5 GOTO 110
130 PRINT#l, W$
140 IF W$<>"END**" GOTO 110
150 CLOSE 1: END
197 REM --------------------
198 REM PUT IN LETTER VALUES
199 REM --------------------
200 DIM V(26)
210 FOR J=1 TO 26
220 PRINT CHR$(64+J);
230 INPUT" VALUE";V(J)
240 NEXT
297 REM -----------------------------
298 REM READ TAPE & PRINT WORD VALUES
299 REM -----------------------------
300 OPEN 1,1,0,"5-LETTER WORDS"
310 INPUT#l,W$
320 IF W$="END**" THEN CLOSEl: END
330 PRINT W$;
340 S=0: FOR J=1 TO 5
350 L$=MID$(W$,J)
360 A=ASC(L$) - 64

:rem 176
:rem 86
:rem 19

:rem 208
:rem 21

:rem 223
:rem 157

:rem 71
:rem 28
: rem 83
:rem 78

:rem 9
:rem 182

:rem 11
:rem 123

: rem 61
:rem 141

: rem 18
:rem 213
:rem 159
:rem 140
: rem 161
:rem 224

: rem 31
:rem 50

:rem 217
:rem 8

:rem 133
:rem 70

87

Effective Programming in BASIC

370 S=S+V(A): NEXT
380 PRINT S
390 GOTO 310

:rem 9
:rem 123
:rem 1135

Line 360 converts each letter into a number from 1 (for A) to 26 (for Z), and S is
the total for the word which was just read from the file. This shows how MID$ can
analyze the individual letters in a word. The first part of the program INPUTs five
letter words (note line 120's check) and writes them to tape, stopping when END**
is typed in.

RUN 200 then runs the second phase, in which 26 values corresponding to A-Z
are entered. The computer then goes on to read back all the words on file and print
values. (DATA statements can be used instead. Just use 230 READ VO) and add
10000 DATA 20,3,5 ... or whatever numbers are appropriate.) The program can be
refined by categorizing the words in W$ (for example, into those beginning B, I,
and so on).

Sorting, Searching, Shuffling
Sorting is commercially important in applications like check processing. Chapter

6 has examples, in both BASIC and ML, of sorting routines for VIC. The main
restriction is likely to be VIC's small memory. But whenever some sort of sequential
or alphabetical list would be useful, bear in mind that a sort may be valuable.

Searching is necessary when you have a lot of data in memory or on a file, but
have no index to directly locate a record. For example, an address-book program
might store names and addresses, surname first, so that a printout of all names and
addresses isn't a problem. But there's no way to instantly access a given name.

Rather than read through all the names, a typical search method (the binary
search) is likely to be fast and effective. It assumes the data is already sorted, hence
its inclusion here. The idea is analogous to finding a name in a phone book by open
ing the book exactly in the middle, comparing the name you want with the name at
the center of the open page, and repeating the process with earlier or later halves,
depending on whether the target name is before or after the current position.

This is a binary search algorithm:

X Input and validate item to be searched for (NA$ = name item)
Set N1 and N2 to lowest and highest record numbers

Y R=INT «N1+N2)/2): REM CALCULATE NEW MIDPOINT
Read the appropriate field of record number R, for instance R$
IF R$=NA$ THEN Z :REM FOUND IT
IF Nl> = N2 THEN PRINT "RECORD NOT ON FILE":GOTO X: REM
NONEXISTENT
IF R$>NA$ THEN N2=R-l: GOTO Y: REM REVISE UPPER LIMIT DOWN, OR
IF Nl=R+l: GOTO Y: REM REVISE LOWER LIMIT UP

Z Continue processing of found record

Nl and N2 will converge, sandwiching the correct record number R between
them. This is easy to program and converges quite rapidly. In the worst cases, the

88

Effective Programming in BASIC

item at the first or last position takes the most tests to find; Table 4-2 gives approxi
mate average numbers of searches to find an item, for various numbers of data
items.

Table 4-2. Average Binary Searches to Locate Data Item

Number of Data Items:

Average Number of Searches:

Shuffling is the converse of sorting. Program 4-13 prints a random card deal to
show how shuffling programs can work.

Program 4- 13. Random Card Deal
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

99 REM *** SHUFFLE CARDS.{2 SPACES}(REPRESENTED BY
NUMBERS 1-52){2 SPACES}*** :rem 8

100 DIM S(52): FOR J=l TO 52: S(J)=J: NEXT:rem 129
110 FOR J=l TO 51 :rem 58
120 J%=J+INT(RND(1)*(53-J» :rem 176
130 TEMP=S(J): S(J)=S(J%): S(J%)=TEMP :rem 45
140 NEXT :rem 212
299 REM *** LOOP PRINTS OUT CARDS FROM ARRAY S ***

:rem 9
300 FOR J=l TO 52 :rem 60
310 N=S(J)-l :rem 107
399 REM{2 SPACES}** CONVERT 0-510 INTO SUITi PRINT

IT WITH COLOR: :rem 235
400 S=INT(N/13) :rem 65
410 PRINT MID$("{BLK}A{RED}S{RED}Z{BLK}X",S*2+1,2)

i - - - - : rem 35
499 REM{2 SPACES}** THEN PRINT VALUE OF CARD IN SA

ME COLOR: :rem 60
500 V=N - INT(N/13)*13 :rem 78
510 IF V=1 THEN PRINT "A, "i:{3 SPACES}GOTO 600

:rem 154
520 IF V=ll THEN PRINT "J, "i: GOTO 600 :rem 213
530 IF V=12 THEN PRINT "Q, "i:GOTO 600 :rem 222
540 IF V=0 THEN PRINT "K, "i:{2 SPACES}GOTO 600

:rem 166
550 PRINT MID$(STR$(V),2,LEN(STR$(V»-1)"(BLK}, "i

:rem 81
600 NEXT :rem 213

89

Effective Programming in BASIC

As you'll see, this program uses a fast-shuffling algorithm. Somewhat slower,
but easier to understand, is the routine given in Program 4-14. It puts 1, 2, 3, and so
on (to 52) into a random position in an array, printing out each number as it does. If
the array position is already occupied, it recalculates and tries again.

Program 4-14. Simple Shuffle

100 DIM S(52):FORJ=IT052
110 C=INT(RND(I)*52)+I:REM RANDOM NUMBER 1 TO 52
120 IF S(C»0GOTOI10:REM IF ALREADY USED, TRY AGAI

N
130 S(C)=J:PRINTC:NEXT

Another shuffling program, "Queens," is listed as Program 4-15. It positions
queens on an N X N chessboard so that no queen attacks another queen. Rather
than test completely random boards, it retains most of an unsuccessful test and
switches an attacking queen at random, producing results quite rapidly. The speed
tapers off with larger boards; solving the problem of a 20 X 20 board may take
many hours.

Program 4-15. Queens
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

9 REM *** GENERATE RANDOM STARTING POSITIONS FOR B
OARD

10 INPUT "SIZE OF BOARD";N
20 DIM Q(N)
30 FOR J=1 TO N: Q(J)=0: NEXT
40 FOR J=1 TO N
50 R=1 + INT(RND(I)*N)
60 IF Q(R»0 GOTO 50
70 Q(R)=J
80 NEXT

:rem 42
:rem 246

:rem 44
:rem 255
:rem 244
:rem 106
:rem 245
:rem 226
:rem 167

99 REM *** TEST BOARD;
{SPACE}***

100 FOR J=1 TO N-l

EXCHANGE IF NOT SUCCESSFUL
:rem 248
:rem 127

110 FOR K=J+l TO N
120 IF ABS(Q(J)-Q(K» <> K-J THEN NEXT:

:rem 152
NEXT: GOTO

:rem 119
:rem 153

:rem 69

200
130 R=1 + INT(RND(I)*N)
140 IF R=J OR R=K GOTO 130
150 TEMP=Q(R): Q(R)=Q(K): Q(K)=TEMP: GOTO 100

:rem 243
199 REM *** PRINT DIAGRAM; GO ON FOR MORE ***

200 FOR J=1 TO N
210 FOR K=1 TO N

90

:rem 141
:rem 34
:rem 36

Effective Programming in BASIC

220 IF K<>Q(J) THEN PRINT "w" i :rem 230
230 IF K= Q(J) THEN PRINT "'0"; :rem 164
240 NEXT: PRINT :rem 156
250 NEXT: PRINT :rem 157
300 GOTO 30 :rem 47

It's sometimes handy to use random numbers to help solve simulation prob
lems. At a simple level, Program 4-16 prints the total of two dice, and also keeps a
running score so it can print the average number of throws between 7's. This takes
some math skill to do analytically; the answer is that it takes six throws on average
to score 7.

Program 4- 16. Dice
o REM ** DICE SIMULATION **
10 S=S+l
20 D1%=1 + 6*RND(1)
30 D2%=1 + 6*RND(1)
40 PRINT D1% D2%
50 IF D1%+D2%=7 THEN PRINT "SEVEN";: N=N+1: T=T+S:

S=0: PRINT TIN
60 GOTO 10

Data Structures
BASIC's data structures include files, DATA statements, variables, and RAM storage.
Files, which store data externally on tape or disk, aren't limited by available RAM,
and are necessary for handling large amounts of data. Disk files are generally more
versatile than tape, since several disk files can be accessed at once and search time is
far less. Chapters 14 and 15 give details of tape and disk programming respectively.

You've seen program examples using DATA. Obviously DATA cannot be
changed in the way variables can.

Simple variables are widely used in BASIC. Chapter 6 explains exactly where
they are placed in memory and how their values are stored.

Arrays (subscripted variables) offer a powerful extension to the concept of vari
ables and are worth mastering for many serious applications. They provide a single
name for a whole series of strings or numbers, using one or more subscripts to
distinguish the separate items (called elements).

One-dimensional arrays have a single subscript which may take any value
from 0 to the value used in the DIM statement which defined the array (or to 10, if
DIM wasn't used). DIM A$(50), N%(100), SX(12) defines three arrays (string, integer,
and real number respectively), and space is allotted in memory for them (except for
the strings).

These arrays can be visualized as a set of consecutively numbered pigeonholes,
each capable of storing one value, and initialized with contents zero. A string array
might hold values like this: A$(O)="ZERO", A$(1)="ONE", and so on, so PRINT

91

Effective Programming in BASIC

A$(J) would print the string at pigeonhole J, provided J fell into the correct range. It
might hold strings ready for sorting, so that A$(O), A$(l), and so on would be ar
ranged alphabetically after sorting.

Numeric arrays can store the results of calculations; many of the examples of
this section use such arrays. For example, numbers 1 to 52, stored in an array, can
represent playing card values; similarly, 1 to 8 in an array can represent the position
of queens on a chessboard, where 1-8 denotes the file in which that column's queen
is placed. It's often worth setting up and saving tables of calculation results, which
can be looked up rather than recalculated. Chapter 13's sound calculations illustrate
how this is done.

Array variables are slower than simple variables, because of the processing over
head, but they are more versatile. DIMA$(50) gives control over 51 variables and as
signs each a unique name. Without this facility, you'd have to define 51 individual
names, and the resulting loss of speed would be significant.

Two-dimensional arrays have two subscripts. DIM C(8,8) defines a number
array with room for 81 numbers, which might be used to record a chess position,
with positive and negative numbers, in which sign represents color and magnitude
represents the type of piece.

Two-dimensional arrays are also valuable for storing data for business reports.
For example, sales figures may be available for ten types of items, in 12 different
outlets. An array can keep the sets of data distinct; subtotals and overall totals can
be conveniently stored in zeroth elements.

Integer arrays which store numbers from -32768 to 32767 are particularly ef
ficient in storing data and can be loaded from disk as a block. It's possible to tele
scope surprisingly large amounts of data into memory like this, although the
programming is likely to be difficult.

Arrays with more than two dimensions can be created, but they aren't used
much, probably because of the difficulty of visualizing the data's storage pattern.
DIM X(2,2,2) can be pictured as three dimensional tic-tac-toe, with element X(l,l,l)
in the center position of the center plane. After this, depiction becomes progressively
more complicated. In practice, large numbers of dimensions soon exhaust VIC's
memory.

Matrix arithmetic, which manipulates arrays with rules for addition and mul
tiplication, is perfectly feasible on the VIC. Briefly, a matrix is an array of form
A(R,C), where Rand C indicate the numbers of rows and columns. Its arithmetic
rules are important to the solution of simultaneous equations. Complex simultaneous
equations, and analogous applications, include predictions in biology and economics.
Matrix multiplication is essential to the solution of such problems.

92

Effective Programming in BASIC

Program 4- 17. Matrix Inversion
Refer to the "Automatic Proofreader" article (Appendix C) before typing ill this program.

° REM **
:rem 248

1 REM *{8 SPACES}MATRIX INVERSION PROGRAM
{8 SPACES}* :rem 19

2 REM **
:rem 250

3 :rem 109
4 REM * EXAMPLE: MULTIPLY INVERSE BY COLUMN ARRAY

{SPACE}TO SOLVE SIM. EQUATIONS :rem 8
5 : rem 111
10 DATA 4: DATA 1,2,3,4,O,12,4,O,-1,-5,-7,12,O,O,5

,8{2 SPACES}:REM SPECIMEN 4 BY 4 MATRIX:rem 246
20 READ N: DIM M(N,N),I(N,N){26 SPACES}:REM SET UP

MATRIX AND INVERSE :rem 71
100 REM ** READ MATRIX VALUES (YOU COULD INPUT THE

SE); SET UP IDENTITY MATRIX :rem 99
110 FOR Y=l TO N: FOR X=l TO N: READ M(X,Y): NEXT

(SPACE}X,Y :REM READ VALUES :rem 58
120 FOR Y=l TO N: FOR X=l TO N: PRINT M(X,Y);: NEX

T: PRINT: NEXT : REM PRINT MATRIX : rem 192
130 FOR Y=l TO N: FOR X=l TO N: I(X,Y)=-(X=Y): NEX

T X,Y :rem 187
200 REM ** FIRST STAGE: DIAGONAL AND BELOW ALL ONE

S :rem 153
210 FOR X=l TO N :rem 49
215 :FOR Y=X TO N :rem 152
220 ::D=M(X,y): IF D=0 OR D=l GOTO 255 :rem 166
225 :::FOR K=X TO N :rem 255
230 ::::M(K,Y)=M(K,Y)/D :rem 9
235 :: :NEXT K : rem 210
240 :::FOR K=l TO N :rem 213
245 ::::I(K,Y)=I(K,Y)/D :rem 7
250 :::NEXT K :rem 207
255 :NEXT Y : rem 110
260 IF X=N GOTO 400 :rem 215
300
310
315
320
325
330
335
340
345
350

REM *** NOW PUT ZEROS BELOW DIAGONAL
:FOR Y=X+1 TO N
::IF M(X,Y)=0 GOTO 350
:::FOR K=X TO N
M(K,Y)=M(K,Y)-M(K,X)
: : :NEXT K
: : : FOR K=l TO N
::::I(K,Y)=I(K,Y)-I(K,X)
:::NEXT K
:NEXT Y

355 NEXT X

:rem 45
:rem 240

: rem 85
:rem 251

:rem 77
:rem 206
: rem 218

:rem 38
: rem 212
:rem 106

: rem 52

93

Effective Programming in BASIC

400 REM *** TEST DIAGONAL ELEMENTS ARE ALL 1
:rem 180

410 FOR X=1 TO N: IF M{X,X)=1 THEN NEXT :rem 82
420 IF X<>N+l THEN PRINT "NO INVERSE": END:rem 107
500 REM *** FINAL STAGE :rem 213
505 FOR X=N TO 2 STEP -1 :rem 211
510 :FOR Y=X-l TO 1 STEP -1 :rem 113
515 ::D=M{X,y) :rem 11
520 :::FOR K=X TO N :rem 253
525 ::::M{K,Y)=M{K,Y)-M{K,X)*D :rem 165
530 :::NEXT K :rem 208
535 :::FOR K=1 TO N :rem 220
540 ::::I{K,Y)=I(K,Y)-I{K,X)*D :rem 150
545 :::NEXT K :rem 214
550 :NEXT Y :rem 108
555 NEXT X :rem 54
600 REM ** PRINT INVERSE OF MATRIX :rem 225
610 FOR Y=1 TO N: FOR X=1 TO N: PRINT I{X,Y):: NEX

T X: PRINT: NEXT Y :rem 241
700 REM ** TEST BY REINVERTING :rem 247
710 FOR Y=1 TO N: FOR X=1 TO N: M{X,Y)=I(X,y): NEX

T X,Y: GOTO 130 :rem 213
There is not sufficient space here for a complete discussion of matrix mathemat

ics, but Program 4-17 illustrates one VIC application. It inverts square matrices fairly
rapidly (10 X 10 in four minutes). It transforms matrix M into the identity matrix in
four stages; repeating the identical operations on the identity matrix generates the in
verse. Sample data is included, and (as a check) the program loops back to re-invert
its output.

RAM storage. Data may be POKEd into RAM for future use, or loaded into
memory from disk or tape, although this is not (strictly speaking) BASIC. Chapter 6
has many examples.

BASIC data can be treated in the same way, although generally this is only
worth doing when integer arrays store data and are to be saved directly to disk or
tape (which is far more efficient than writing to a file). Chapter 6 explains block
saves, the relevant area being that from PEEK(47)+256*PEEK(48) and
PEEK(49) + 256*PEEK(50).

Control Structures
Some computer languages offer forms like REPEAL.UNTIL and DO ... WHILE, and
these can be simulated in BASIC. For instance, routines of the form

100 FOR J=O TO -1 STEP 0
110 ...
120J= (A B)
130 NEXT

have the same effect as REPEAL.UNTIL A=B, since J becomes -1 only when the
logical expression in line 120 sets J true.

IF ... THEN ... ELSE ... is another structure missing from VIC BASIC. ON-GOTO or
GOSUB is the closest approximation available. (See ON in Chapter 3.) Where ON

94

Effective Programming in BASIC

isn't suitable, because an expression evaluating to 1, 2, 3 ... doesn't exist, GOTOs will
probably be necessary to process both the THEN and ELSE parts of the program.

Processing Dates
Dates are fairly difficult to handle, but this section offers three routines to help vali
date them, to compute the day of the week given the date, and to calculate the num
ber of days between two dates. Note that leap years are allowed for, but the years
2000 and 1600 (which don't count as leap years) have not been corrected.

Validation. When 0, M, and Y (day, month, and year) are input as one- or two
digit numbers, you can use Program 4-18 to check that the day, month, and year
combination is valid. If OK is true, 0, M, and Yare acceptable. Line 1000 expects Y
to be 85 or 86; you can modify the limits for your own purposes. Line 1010 checks
that the day does not exceed 28, 29, 30, or 31, whichever applies to the given month
and year.

Program 4- 18. Validating Dates

1000 OK=M>0 AND M<13 AND D>0 AND Y>84 AND Y<87
1010 OK=OK AND D<32+(M=4 OR M=6 OR M=9 OR M=ll)+(M

=2)*(3+(INT(Y/4)*4=Y))

Program 4-19 gives the day of the week, for any date, and Program 4-20 tells
you how many days are between two dates. The weekday is found by an algorithm
usually called "Zeller's Congruence." Days between dates are calculated by taking
the difference between days elapsed from an arbitrary early date to the two re
quested dates.

Program 4- 19. Day of the Week
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o REM **
****** :rem 72

1 REM *{10 SPACES}FIND DAY OF WEEK FOR ANY DATE
{9 SPACES}* :rem 22

2 REM **
****** :rem 74

3 REM * EG. MONTH=3, DAY=12, YEAR=86 FOR MARCH 12
[SPACE}l986 * : rem 90

4 REM **
****** :rem 76

10 DATA SUN,MON,TUE,WED,THU,FRI,SAT :C=19 :rem 15
11 REM * C=19 MEANS THIS CENTURY: PUT C=18 FOR 180

0S * :rem 122
20 FOR J=0 TO 6: READ D$(J): NEXT :rem 171
30 INPUT "MONTH,DAY,YEAR": M,D,Y :rem 161
40 M = M-2: IF M<l THEN M=M+12: Y=Y-l :rem 56
50 J = INT(2.6*M - .19) + D + Y + INT(Y/4) + INT(C

/4) - 2*C :rem 233

95

Effective Programming in BASIC

6~ J = J - INT(J/7)*7
70 PRINTD$(J)

:rem 177
:rem 247

Program 4-20. Number of Days Between Two Dates
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

~ REM *** DAYS BETWEEN DATES ** :rem 146
10 DATA 0,31,59,90,120,151,181,212,243,273,304,334

:rem 137
2~ DIM D(12): FOR J=l TO 12: READ D(J): NEXT

:rem 193
100 INPUT "DATE 1 (M,D,y)"~ M,D,Y : rem 196
110 GOSUB 1000: DX=DE :rem 111
120 INPUT "DATE 2 (M,D,y)"~ M,D,Y :rem 199
130 GOSUB 1~0~: DY=DE :rem 114
20~ PRINT DY-DX "DAYS" : END :rem 11
1000 DE = D + D(M) + 365*Y + INT «Y-l) / 4) - «(INT (

Y/4)*4=Y) AND (M> 2)) :rem 146
1010 RETURN :rem 162

96

Chapter 5

VIC-20 Architecture

Successful use of the VIC-20 demands some knowledge of the machine's hardware
and of the way software fits into and uses it. The first half of this chapter deals with
memory and the effects of memory expansion-important with the VIC-20 because
of the many configurations memory can take. The expansion port is covered thor
oughly; topics include the uses of expansion boards and program recovery with a
reset switch. The second half details input/output, including the VIC chip and the
VIAs. By the end of this chapter you should have an appreciation of the different
memory configurations plus a grasp of the VIC chip, and you will be able to start
analyzing and manipulating VIC programs.

The chapter includes eleven sections:
Some Basics. Covers bits, bytes, hexadecimal notation, RAM, ROM, and so on.
The Unexpanded VIC. Discusses the hardware memory map and includes a

short introduction to the VIC's software features. Also includes a short program to
look around in your VIC's memory.

The Expanded VIC. Notes on memory expansion and changes in the memory
maps when RAM expansion is added.

ROM Expanders. What they are and how they work.
Using the RESTORE Key.
Power Up. What happens when you turn on your VIC-20.
The Expansion Memory Port. Covers expansion boards, reset switches, battery

backup of RAM, using write protection to simulate ROM, and hardware addressing.
The VIC Chip. Discusses interfacing to a TV, and international compatibility of

programs.
VIA (Versatile Interface Adapter) Chips. What they are and how they work.
IEEE, RS-232, and Other Standard Ports.
How Commercial Software Is Stored in VIC Memory.

Some Basics
This section is intended for beginners, to show the logic behind bits and bytes and to
introduce the related subject of hexadecimal arithmetic.

Bits, Binary Numbers, Bytes
A bit, or binary digit, is a single, tiny electronic switch which can be either on or off.
It can be pictured as an ordinary switch, which either permits current to pass or
doesn't. Or it can be visualized as a spot that holds either a small electrical charge or
no charge. Hundreds of thousands of these switches are contained in a VIC-20, in
side integrated circuit chips, which are mounted inside the black plastic rectangles
with metal legs which you can see inside the VIC-20 and all other microcomputers.

Why does each bit have a choice of only two values? Because electronics tech
nology can reliably detect the difference, even if any given machine has quite large
variations from ideal voltages. In principle, three values could be used, making tri
nary arithmetic relevant, but binary hardware is by now so firmly established that
this possibility can be ignored for all practical purposes. There would be little
economic sense in introducing hardware based on such novel processes.

99

VIC-20 Architecture

All VIC-20 operations use binary processes. In hardware terms this is reflected
in the large number of tracks needed to carry data within the VIC-20. The expansion
memory port, for example, has 44 separate tracks. Every track, apart from those
which supply power or are grounded, is treated by the system as carrying only high
or low voltage values. Each additional track roughly doubles the system's potential
for information handling.

According to convention, the binary values are assigned numbers (0 and 1), and
the systems are then structured so that ordinary arithmetic works correctly. The
values aren't actually 0 and 1, but this provides a convenient way of talking about
them.

A full understanding of software requires a grasp of the relation between binary
numbers and ordinary numbers. Fortunately this is not difficult, although it can look
rather forbidding. Binary arithmetic uses a notation of O's and l's only. However, it
represents ordinary numbers and is merely a different way of writing them, just as
MCMLXI is a different way of writing 1961.

Just as a digit's position within a decimal number determines the magnitude of
that digit, so that 123 and 1230 mean different things, so the position of O's and l's
within a binary number determines the value of that number. 10101100 is different
from 00101011, with the leftmost number being worth the most. And just as decimal
digits increase in value by 10, 100, 1000, 10000 (in other words, by powers of ten)
as the digit's position moves left, so binary digits increase in value by 2, 4, 8, 16, 32
(powers of two).

To avoid confusion, binary numbers will be written as a series of O's and l's
prefaced by a percentage sign (%). This lets us be sure, for example, that the decimal
number 10 is not confused with %10, which represents 2 in binary notation.

The word byte is a derivation of the word bit. It is supposed to imply a larger,
scaled-up version of a bit, and that is more or less what it is: A byte is a collection of
eight bits which are dealt with by the system as though they were a single unit. This
is a purely hardware matter: IBM invented eight-bit bytes, but other numbers such
as four or six bits are in use too.

The 6502 microprocessor which operates your VIC-20 is called an eight-bit chip
because it is designed to deal with data eight bits at a time. Its addressing uses six
teen bits, but only by dividing up each address into two sets of eight bits each.

Since each bit can be either on or off, you have 2*2*2*2*2*2*2*2 = 256 poten
tial combinations for each byte. That is the reason that PEEKing any address with
PRINT PEEK(address) always yields a value between 0 and 255. It also explains why
the 16-bit address cannot exceed 65535, which is 256*256-1. There are a total of
65536 memory locations, with addresses ranging from 0 to 65535.

Since binary and decimal are only different notations for the same thing, they
must be interchangeable. How can you translate binary into decimal? Consider only
eight-bit numbers now, since they are very common in programming. The conven
tion is to number the bits in order of importance, reading from the left, as 7, 6, 5, 4,
3, 2, 1, O. Figure 5-1 may make this easier to understand.

100

VIC-20 Architecture

Figure 5-1. Binary-Decimal Interconversion

Bit Number:
Decimal Value:

Sample Bytes:
00000000 =
0000 1111 =

10000001 =

11111111 =

Binary-Decimal Number Interconversion
7654321 0

128 64 32 16 8 4 2 1(=2i Bit Number)

o
o
1
1

o
o
o
1

o
o
o
1

o
o
o
1

o
1
o
1

o
1
o
1

o
1
o
1

0= Decimal 0
1 = Decimal 15
1 = Decimal 129
1 = Decimal 255

The diagram shows some binary numbers and their decimal equivalents. Notice
that it also demonstrates certain features of the bit pattern of binary numbers. For
example, if bit 7 is I, the number must have a decimal value of 128 or more. If bit 0
is 0, the number must be even because only bit 0 can take the value 1 and make a
number odd. If a bit pattern is moved bodily right one position, its value is exactly
halved, provided the smallest bit isn't a 1 and therefore lost when the shift takes
place. Finally, if a bit pattern is completely inverted (so that all l's become O's and
all O's become l's), the two individual values will always add to 255 (because 255 is
% 11111111). Observations like these, which are exactly analogous to ordinary base
10 arithmetic, are crucial to the understanding of ML programs.

Hexadecimal Notation
Hexadecimal, or base 16-hex for short-is another notation that is useful when
programming. BASIC programmers usually ignore hex, but ML programmers will
find it quite useful. It relates directly to the internal design of the computer, and it
helps ML programmers and hardware designers because of its direct connections
with system design.

Hex uses the ordinary numeral symbols 0 through 9 to represent quantities 0
through 9, and the letters A through F to represent quantities 10 through 15. To
avoid confusion with ordinary numbers, hex numbers are preceded by the dollar
sign ($) or some other signal such as H. This book uses $, which is by far the most
popular. Thus, $1 is a valid hex number; so are $AOOO, $1234, $21, $ACE, and
$BEEF. The decimal equivalents of these numbers are 40960, 4660, 33, 2766, 48879.
These can be looked up in tables or calculated with a programmer's calculator or
conversion program.

Because the VIC has eight-bit bytes, which can only have values from 0 to 255,
it is usual to write bytes in hex using two digits, even if the leading digit is O. Thus,
the range is $00 to $FF. That makes for tidy programs, because the numbers line up
neatly. Similarly, since memory addresses can only range from 0 to 65535, they are
written as four-digit hex numbers. It is not necessary that leading zeros be included;
$033C and $33C mean the same thing. It is just that many ML programs are written
to expect such an arrangement.

101

VIC-20 Architecture

Hex and Decimal Arithmetic
If you are programming in BASIC, you are likely to use decimal rather than hex. But
when conversion is needed-for example, to find a SYS address-you must make
the conversion. It is usually easiest to convert using a program, a programmer's cal
culator, or a set of conversion tables. But with practice, transition between decimal
and hex as well as addition and subtraction in hex become fairly straightforward.

Decimal numbers use a position convention; the further left the digit, the greater
its value. The numeral 1 can mean 10, a 100, or a 1000, depending on where it is
located within the number. Similarly, a 1 in hex can mean 16, 256, or 4096.

Using the analogy between base 16 and base 10, we need to remember that hex
numerals count up to multiples of 16. Thus $19 plus $1 is $lA, not $20. Similarly,
$1234 plus $OF is $1243. Figure 5-2 illustrates some hexadecimal numbers and their
decimal equivalents.

Figure 5-2. Hexadecimal-Decimal Number Conversion

Hexadecimal-Decimal Number Interconversion
Decimal Value of Each Unit: 4096 256 16 1
Sample Hexadecimal Numbers:

$AO
$11

$1000
$033C
$FFFF

o
o
1
o
F

o
o
o
3
F

A
1
o
3
F

o
1
o
C
F

= Decimal 160
= Decimal 17
= Decimal 4096
= Decimal 828
= Decimal 65535

Memory capacity is rated in K (for kilobytes); 1K of memory is 1024 bytes. 32K is
32768 bytes, for example. Note that $1000 is more than 1K, and in fact is exactly 4K.
A 4K section of memory is often called a block, and your VIC's entire memory can
be regarded as a collection of 16 blocks of 4K each.

In hex notation each block will start with a different hex digit. $OOOO-$OFFF is
the first block, $1000-$lFFF is the second, and so on. $FOOO-$FFFF is the sixteenth
and final block.

It is perfectly possible to program without ever using hex arithmetic. All ML
aids could be written to use decimal. But because of its relevance to hardware, hex is
almost universally used by ML programmers.

RAM, ROM, and Registers
Each memory address of the unexpanded VIC-20 can correspond to one of three
types of hardware: An address can be RAM (Random Access Memory), ROM (Read
Only Memory), or a programmable location called a register (part of another chip).
Also, there may be nothing connected at a particular address. These distinctions are
important and deserve thorough explanation.

RAM exists in blocks of consecutive addresses. It is not cost-effective to have a
single RAM address, and it is convenient to have consecutive storage for almost all

102

VIC-20 Architecture

applications. RAM can be written to, not just read. It can hold programs or data,
which disappear when the power is turned off. It can be overwritten with new data;
if this happens in error, the data is said to have been corrupted, while meaningless
data left over from earlier programs is called garbage. All VICs are fitted with RAM
from $1000 to $lFFF (4096-8191). Try, for example, POKE 4096,123: PRINT
PEEK(4096). It will return 123.

ROM also exists in blocks. Your VIC-20 has ROM in all locations from $COOO to
$FFFF (49152-65535). PRINT PEEK(49152) gives a fixed value; a POKE to this loca
tion (for example, POKE 49152,0) has no effect. ROM cannot be overwritten, modi
fied, or corrupted.

PROM (Programmable Read Only Memory) resembles ROM. ROMs are manu
factured with their programs masked in, and are more economical in very large
production runs (as for the VIC's BASIC ROMs). PROMs can be individually pro
grammed by using a higher-than-normal voltage to make the byte pattern perma
nent. An EPROM (Erasable Programmable Read Only Memory) has a window in the
top of the chip's case, allowing the memory contents to be erased by ultraviolet light
and then reprogrammed. Most non-Commodore ROM products are produced as
EPROMs. The window is covered by a sticky label, and often the package is
mounted inside a cartridge, since exposure to sunlight over a long period could
partly erase such chips.

There is an intermediate form of memory, as we shall see later, in which data
written as RAM can be in effect converted to ROM. This involves use of the RAM
chip's write-enable line. Battery backup can be provided so the package can store
data when disconnected from the VIC-20, providing an alternative to ROM and
EPROM storage.

More than half the memory locations in an un expanded VIC are unused. An un
expanded VIC has nothing from $0400 to $OFFF, from $2000 to $7FFF, and from
$AOOO to $BFFF. Try POKEing location 1024 with any value; PRINT PEEK(1024)
will return the same value regardless of what value you POKE. Note, however, this
is not ROM, but a collection of wires which end at the expansion port and can be
converted into RAM or ROM. The PEEK value is always the high byte of the ad
dress; for example, PEEKing locations 1024-1279 ($0400-$04FF) returns 4, but
PEEKing location 1280 ($0500) returns 5.

VIC memory addresses can also refer to another chip. The VIC-20 has three
subsidiary chips: the VIC (Video Interface Chip), which serves primarily to produce a
signal, including sound, for a TV or video monitor; and two VIAs (Versatile Interface
Adapters), which handle the keyboard, tape, disk, joystick, and the rest of the
computer's communications with the outside world. POKEing these locations, and
sometimes just PEEKing them, can produce dramatic effects which are impossible
with ordinary RAM. The reason, of course, is that these chips have their own func
tions and don't simply store values like RAM. Programming them is more com
plicated than storing data in RAM; for example, changing one location's value can
alter that of a different location.

Incomplete Addressing
There are a few anomalies in VIC addressing; for instance, we have seen how an ad
dress with nothing connected to it gives a PEEK value related to its position in mem-

103

VIC-20 Architecture

ory. The I/O chips show a related oddity: The 16 bytes of each chip are repeated.
The VIC chip registers at $9000-$900F appear to repeat at $9040, $9080, and $90CO.
Both VIA chips appear to repeat 12 times; for instance, VIA 1 repeats at $9110,
$9150, $9190, $9100, $9210, and so forth. This is caused by incomplete address de
coding. It is assumed that the part of the memory map with the I/O chips won't be
used for programming, and it is cheaper to simply omit some address lines. Thus
$9000, $9040, $9080, and $90CO can be regarded as the same address.

In BASIC, this can be useful because some decimal numbers are easier to
remember than others. Locations 36879 and 37007 both control the border and back
ground colors, and one is definitely easier to remember. In addition, 37060 can be
used for 36868, 37070 for 36878, and 37000 in place of 36872. The VIAs have two
alternative starting addresses, 37200 and 37600, which are far easier to recall than
37136 and 37152.

Something resembling incomplete decoding occurs in VIC-20's color RAM,
where only four bits (not the usual eight) are distinguished. Location $9400 contains
values which change erratically-try PEEK(37888)-but if the part of the byte
greater than 16 is ignored, the value is stable, as it has to be to properly represent a
color.

Memory in the Unexpanded VIC

What Is a Memory Map?
The VIC-20's memory map represents the arrangement of memory as it is seen by
in other words, connected electrically to-the 6502 chip which performs most of
VIC-20's computing. Generally, this book uses the phrase memory map to refer to
the 6502's map. However, note that every chip which can address memory has its
own individual memory map. The VIC chip itself has another less complex memory
map which is crucial in understanding graphics, and it is dealt with mainly in
Chapter 12.

The 6502 uses 16-bit addressing and can access 2t16 = 65536 memory loca
tions. As already noted, they are conventionally numbered 0 to 65535 (or, in hexa
decimal notation, from $0 to $FFFF).

A Hardware Memory Map for the Unexpandec:l VIC-20
The memory map shown in Figure 5-3 is divided into 16 equal 4K blocks (4K is
4"'1024 = 4096 bytes; this is $1000 in hex). This is a convenient subdivision.
Conceptually, each block can be further subdivided into pages of 256 bytes each,
with the zero page at $O-$FF, page 1 at $0100-$01FF, page 2 at $0200-$02FF, and
so on. This is important because the 6502 treats pages 0 and 1 as special cases.

104

VIC-20 Architecture

Figure 5-3. A Hardware Memory Map for the Unexpanded VIC
$0000 - 51000 - $2000 - $3000 - 54000 - $5000 - $6000 - $7000 - 58000 - $9000 - $AOOO - 5BOoo - $COOO - $DOOO - $EOOO $FOOO-$FFFF

C
Char- 0
actcr I BASIC Kernal R RAM Gener- I 0

A ator / r ROM ROM
M ROM 0 1 1

R
A
M

Here's an explanation of the map:
RAM from $0000 to $03FF (0-1023). This 1K block of RAM is necessary to run

BASIC and has many functions, described later.
RAM from $1000 to $lFFF (4096-8191). BASIC programs have to be stored in a

single continuous area of memory, so BASIC is stored here in the unexpanded VIC.
The screen is also stored in 512 bytes in this region. The screen normally starts at
$lEOO in this configuration (unless moved), so BASIC has only 4096-512=3584
bytes available.

ROM from $8000 to $8FFF (32768-36863). The VIC character sets are stored
here. There are 128 characters in the uppercase/graphics set and 128 characters in
the lower-/uppercase set; moreover, each is duplicated in reverse. Each character
definition requires eight bytes (64 bits); so the total amount of memory required for
character definitions is 128*2*2*8 = 4096 bytes.

Input/Output chips occupy a total of 48 bytes. The VIC chip uses $9000-
$900F, VIA 1 uses $9110-$911F, and VIA 2 uses $9120-$912F.

RAM from $9400 to $97FF (37888-38911). This is color RAM, determining the
color and type of character on the screen. Only the lower four bits of each byte in
this area are significant.

ROM from $COOO to $FFFF (49152-65535). BASIC and the computer's operating
system are stored here. The Kernal ROM holds all the information needed for the
computer to interface with the outside world, for instance through the screen and
keyboard.

Filling the Gaps in the Memory Map
One drawback of the unexpanded VIC-20 is its tiny memory. VIC comes with RAM
from 0 to $03FF and with 4K of RAM for BASIC from $1000 to $lFFF. Because of
this, the unexpanded VIC is sometimes called the 5K VIC. However, when the
screen has taken its 512 bytes from BASIC's 4096 bytes, only about 3500 bytes
remain.

Memory expansion is essential for serious programming with the VIC-20. How
ever, the VIC cannot be expanded simply by inserting RAM chips into sockets inside
the machine. Cartridges have to be used; these are simple to use but far more expen
sive than their component chips.

There are four missing sections of the memory map, each with particular
characteristics:

$0400-$OFFF. This 3K space can be occupied by RAM or ROM; RAM is usual,
and both the 3K RAM expander and the Super Expander cartridge put RAM here.
BASIC can now occupy an extra 3K.

105

VIC-20 Architecture

$2000-$7FFF. This large area can be occupied by RAM, ROM, or by a combina
tion of the two. Commodore's 8K RAM expander can be set to occupy any of three
blocks; the 16K expander normally puts RAM from $2000 to $5FFF. BASIC can fill
whatever extra RAM follows from $lFFF on. Thus, an 8K expander set to occupy
$6000-$7FFF adds 8K for ML or data storage, but doesn't normally add to BASIC
free memory.

$9800-$9FFF. This 2K area is the odd one out: No Commodore RAM expander
fits it, and generally the area is left unused. It is not contiguous to BASIC and is
therefore always an isolated area separate from BASIC. Some commercial utilities
have ROM here; initialization by SYS 40000 is typical. You'll see later how a 3K
RAM expander can be modified to put RAM here, and ML enthusiasts may find this
area convenient for storage of routines (like Chapter 6's OLD) which they wish to be
protected from BASIC.

$AOOO-$BFFF. This is the most common location for ROM cartridges; almost all
cartridge games load here. In addition, if the proper bytes are present starting at
$AOOO, programs here will automatically begin to run when the "IC is turned on.

As its memory is expanded, the VIC-20 reconfigures itself in several ways. Thus,
programs written for the unexpanded VIC may not work when memory is added,
even though there is clearly no lack of memory space available. For the moment,
attention will focus on the unexpanded VIC, returning later to examine memory
expansion in depth.

Looking Inside the VIC-20's Memory
It is possible to use BASIC to PEEK all locations from 0 to 65535. In a sense, this
would provide you with a memory map. But it would be relatively meaningless
without some further distinctions.

Program 5-1, which works with any VIC-20 regardless of memory configuration,
shows you the contents of any section of VIC-20's memory up to 255 bytes long.
With it you can select a portion of memory and display its contents in black on top
of the screen. Set the display to lowercase mode by pressing SHIFT and the Com
modore logo key. This program is a useful investigative tool, worth typing into your
VIC and saving for later use. It redisplays the selected portion of memory 60 times
each second, giving for all practical purposes a continuous picture of VIC's memory.
Use RUN/STOP-RESTORE to turn it off. Note that it will not operate while the
cassette is in use, or with some cartridges.

Program 5-1. Looking at Memory in the VIC-20
Refer to the "Automatic Proofreader" article (Appendix C) before typilli{ in this program.

o DATA32,115,0,240,37,32,138,205,32,2,215,132,25
1,133 :rem 169

1 DATA252,32,155,215,142,254,2,169,0,133,253,173,l
36,2 :rem 132

2 DATA133,254,120,169,102,141,20,3,169,3,141,21,3,
96,172 :rem 223

3 DATA254,2,136,177,251,145,253,169,0,153,0,148,15
3,0 :rem 90

106

VIC-20 Architecture

4 DATA150,192,0,208,239,76,191,234 :rem 189
10 FOR J=828T0892:READX:POKEJ,X:NEXT :rem 21

Activate Program 5-1 with a statement of the form SYS 828,X, Y where X is the
starting address and Y is the number of bytes, like this:

SYS 828,512,88 (displays the input buffer, showing line input)
SYS 828,256,20 (displays numerals as they are formatted)
SYS 828,217,24 (shows the screen link table)
SYS 828,49310,255 (shows some ROM keywords)
SYS 828,631,10 (shows the keyboard buffer)
SYS 828,211,1 (shows the horizontal position of the cursor)
SYS 828,0,255 (displays the entire zero page)
SYS 828,36864,15 (shows the VIC chip contents)
SYS 828,37200,15 (shows the contents of a VIA chip)
SYS 828,160,3 (shows the locations which make up the VIC's clock)
SYS 828,PEEK(43)+256*PEEK(44),80 (shows how part of a BASIC program in memory is

stored)

The first example shows how the input buffer operates; nothing happens until
RETURN is pressed, then an entire line is input and searched for reserved words.
You can see BASIC being converted into one-byte tokens, and you can watch as
invalid variable names like CONVERSION have the reserved word found.

The next example shows numbers as they are stored before being printed. It is
possible to write an ML program to reformat numbers however you like, for example
with a zero before the decimal point (0.5) rather than .5.

The third example shows a table which keeps track of the way VIC's 22-charac
ter lines are linked. Let the space bar repeat past the end of a few lines to watch the
effect, then scroll the screen and see the links move to match.

Type in SYS 828,631,10 and press RETURN. A series of ten @ symbols should
appear at the top left of the screen. Since this program POKEs values directly to the
screen, and since @ is the screen representation of a zero byte, this means the key
board buffer is empty. To show how it operates, type this short program in-O GET
X$: FOR J = 0 TO 1000: NEXT: GOIO O-and RUN it. The delay loop allows you
to queue keypresses in the buffer, and you can see the later keypresses lining up
after the earlier ones.

Don't worry if you don't completely understand the examples yet; all will be
come clear in due time.

Software Landmarks in VIC-20's Memory
To see how VIC's RAM is prepared for BASIC, you need to understand certain soft
ware structures. "Looking at Memory," the program you just typed in, can help, and
later on we'll present a full memory map showing how software fits into the hard
ware framework of the VIC-20.

There are several types of software landmarks:
Tables. These contain data, not programs, and have innumerable uses. The

screen link table and ROM keywords, revealed by the previous program, are typical.
The screen table is in RAM, because it has to be able to change to reflect the screen's
organization; the high bit of the last character of each ROM keyword is on, making

107

VIC-20 Architecture

the word appear in reverse on the screen. File tables, which hold details about each
currently open file, are another example.

Buffers. A buffer is a section of RAM reserved for input or output. Buffers in
clude the input buffer, the keyboard buffer, and the 192-byte tape buffer at
$033C-$03FB (828-1019), which is important when reading from and writing to
tape.

Pointers. Zero page (locations 0-255) contains many pointers in the form of a
pair of adjacent bytes. Information about the storage of BASIC is held in this man
ner. The pair of bytes forms an address in standard low-byte/high-byte format. For
example, locations 43 and 44 are the pointer to the beginning of BASIC program
storage. On the unexpanded VIC, the normal values held in these locations are 1
($01) and 16 ($10), indicating that program storage starts at location
1 +(16"'256)=4097 ($1001).

Vectors. These resemble pointers, as they are also pairs of bytes that constitute
addresses. However, while pointers merely hold address information, vectors are
used to tell the computer where to find routines to perform certain important opera
tions. Each vector is set up to point to a routine within BASIC or the Kernal operat
ing system when the system is turned on or reset. Altering these values enables
many functions of VIC-20 to be modified. The memory examination program de
scribed earlier changes the vector to the routine which looks at the keyboard every
sixtieth of a second. Sometimes ROM contains vectors; the Kernal itself is a good
illustration. A jump table uses a similar approach, except that each address is pre
ceded by an ML]MP instruction and therefore occupies three bytes instead of two.

Flags and temporary storage. These are programming equivalents of a jotted
down note, invariably in RAM. They keep track of a wide variety of events while
programs run, ranging from whether the machine is in immediate mode to the po
sition of the cursor on the screen.

Programs. Most of ROM is subdivided into the BASIC interpreter and the
Kernal, a collection of many interrelated machine language routines. The only
substantial program outside ROM is CHRGET, a routine at locations $73-$8A (115-
138) which fetches individual BASIC characters. CHRGET is copied out of ROM into
RAM when the system is turned on or reset. Having the routine in RAM is margin
ally faster than using a ROM routine. It also permits new BASIC keywords to be
added to the original stock using a program called a wedge, which will be explained
later.

Accumulators. Several number storage areas exist in RAM: two floating-point
accumulators, where numbers are added, multiplied, and so on ($61-$66 and $69-
$6E); a pseudorandom number storage area ($88-$8F); and the realtime clock ($AO
$A2). The memory examination program shows the three bytes of the clock chang
ing, and PRINT PEEK(160)*65536+ PEEK(161)*256+ PEEK(162) is identical to
PRINT TI.

The stack. The stack can't really be understood without knowing machine lan
guage, so it is dealt with thoroughly in later chapters. Essentially, it is 256 bytes of
RAM from $100 to $IFF (256-511) that are used by the 6502 microprocessor to store
temporary information, particularly information relating to subroutines. It is normally
best left alone. Short machine language routines can be stored in the lower portion
of the stack; if tape is in use, a safe starting location is $0140.

108

VIC-20 Architecture

The Expanded VIC-20

Memory Expanders
Commercial RAM expanders are cased in plastic, either as a sealed unit or (as with
Commodore's) with a screw fitting enabling the two halves to be separated. Such
packaging protects against wear and tear and reduces the risk of static electricity
damage, though that is no longer the hazard it was when chip technology was new.
It also makes a neater and more robust device. It is not necessary to the proper
functioning of the expansion devices.

RAM expanders are assembled on printed circuit boards, typically made of fiber
glass, with a pattern of metal tracks etched on each side to provide electrical connec
tions. The circuits may also include copyright notices, dates, names of components,
pin numbers, ground and power lines, part numbers, and other notes.

ROM cartridges, which use the same address lines that RAM may use, are con
structed identically. However, since RAM boards usually contain more chips, ROM
cartridges are apt to appear a little disappointing when you open them up.

Understanding Commodore's 3K, 8K, and 16K Expanders
The BASIC memory maps for the unexpanded VIC, and for the VIC with 3K, 8K,
and 16K expansion, are shown in Figure 5-4.

Figure 5-4. BASIC Memory Maps for Unexpanded and Expanded VIC
o $1000 $2000 $3000 $4000 $5000 $6000 $7000 $8000 $9000 $AOOO

Unexpanded

S c
C Char- I 0 BASIC R acter / I RAM E 00

E ROM r
IN

VIC + 3K

S
C C Char-BASIC R I 0

acter / I RAM E I,OM o 0
E

)

(

IN
r

{

VIC + 8K

S
C C Char- I 0

R BASTC acter / I
E I,AM ROM o 0
E r) IN

VIC + 16K

s c C Char- I 0
R BASIC acter / I
E RAM ROM o 0

E r
IN

109

VIC-20 Architecture

It is helpful to look at the programming side of these expanders before seeing
what can be done with simple hardware modifications. RAM expander combinations
are listed in Table 5-1. They show start and end of RAM, start and end of BASIC
program storage, bytes free, the start of the screen, and the start of color RAM. Color
RAM position is related to screen position.

Note that a 3K expander, if used together with another expander, is not used by
BASIC (although it can be used to store machine language or data). This is the best
the VIC-20 can do, since its chip design prevents it from putting the screen below
location $1000. Thus, the absolute maximum length of the BASIC program storage
area is from $1200 to $7FFF, about 28,000 bytes. Also note that the Super Expander
cartridge includes an additional 3K built-in RAM, which extends the low part of
memory, so a 3K expander used with the Super Expander adds nothing extra.

Table 5- 1. Memory Expander Configurations

Cartridge Only
Unexpanded VIC-20
VIC-20 + 3K
VIC-20 + 8K*
VIC-20 + 16K

Multiple Cartridges,
with Expansion Board
VIC-20 + 3K + BK*
VIC-20 + 3K + 16K
VIC-20 + 8Kt + 16K
VIC-20 + 3K + BKt + 16K

*8K pack set to $2000-$3FFF
t8K pack set to $6000-$7FFF

RAM
$1000-$lFFF
$0400-$lFFF
$1000-$3FFF
$1000-$5FFF

$0400-$3FFF
$0400-$5FFF
$1000-$7FFF
$0400-$7FFF

Bytes
BASIC Free

$1000-$IDFF 3583
$0400-$IDFF 6655
$1200-$3FFF 11775
$1200-$5FFF 19967

$1200-$3FFF 11775
$1200-$SFFF 19967
$1200-$7FFF 28159
$1200-$7FFF 28159

Screen Color RAM
Start Start

$lEOO $9600
$lEOO $9600
$1000 $9400
$1000 $9400

$1000 $9400
$1000 $9400
$1000 $9400
$1000 $9400

Note: "Bytes free" = total RAM usable by BASIC less 512 screen bytes less 1 zero byte at the very start of
BASIC.

These are the most useful combinations for BASIC. The last two configurations
represent fully expanded VIC-20s. The version which includes the 3K expander can
store more machine language routines or other data, but the extra 3K isn't of much
use for BASIC except in unusual situations requiring a short BASIC program with a
huge number of variables.

The combinations in the table aren't exhaustive, because one or more 8K expan
ders can be switched to create an area of RAM which is separate from the rest of
RAM. Note that 3K and 16K expanders don't have this possibility unless they're
modified. For example, an 8K expander set to start at $2000 adds 8K to an un
expanded VIC-20's BASIC storage area, but the same expander set to start at $AOOO
is independent of BASIC and never corrupted by it. It is perfectly acceptable for a
RAM expander at $AOOO to be loaded with a program from a ROM cartridge, which
it can then run. Alternately, VICMON can be used to write ML programs direct into
RAM at $AOOO, although the contents of this area cannot be directly saved to tape.

If you are mixing BASIC and machine language, it is useful to have reserved
RAM unaffected by BASIC, either in a 3K expander with other expansion or in an 8K
expander switched to select RAM in a disconnected block.

110

VIC-20 Architecture

In practice, strange things may occur when you use a fully expanded VIC, be
cause it is easy to forget that a certain RAM or ROM device is on. For example, pro
grams written for the unexpanded VIC often will not run on expanded VICs, so
some expansion memory may need to be turned off and the equipment reset before
those programs can be run.

Reconfiguring and Downgrading VIC's Memory
Generally, any program written in VIC BASIC can run in any VIC-20 with enough
memory. But it often happens that a VIC won't run a program unless its memory is
reconfigured, because some element (such as BASIC's starting address) is in the
wrong place. Some tape games, for example, are labeled "No RAM Expansion Nec
essary" when a more accurate description would be "Will Not Work With
Expansion."

The problem arises because such programs assume that one particular configura
tion is in use, without allowing for possible differences. Often the programmer has
not understood that there could be a problem. Any program which POKEs characters
to the screen, changes some of the pointers to BASIC, stores its own graphics charac
ters in some fixed location, or relies on the use of supposedly fixed locations within
BASIC RAM, is liable not to run in a differently expanded VIC.

There are two distinct problems here. The first is that the VIC-20 may have
expansion fitted so that a program won't run, even though the total memory in
cludes, as a subset, what is needed to run the program. The extra memory has
caused the difficulty; for example, the screen may be in the wrong place. Utility pro
grams which autostart when the computer is turned on can also cause this sort of
interference with memory. To solve this problem, either the extra RAM must be re
moved or the VIC must be downgraded by software.

In the second case, a program written for a 3K-expanded VIC may not run on
one with 8K or 16K expansion, or vice versa. Again, the memory is actually in a dif
ferent position from what is desired. In such cases you could acquire a 3K expander;
alternately, software reconfiguration is worth a try.

Program 5-2 reconfigures the VIC in one of five ways. Downgrading is generally
successful, but reconfiguring 8K or 16K expansion to run programs written for 3K
expansion is problematical, as the program is simply moved to a new area. For
example, BASIC POKEs into locations 55 and 56, which set the top of BASIC, must
be removed.

The three reset routines are each useful under different conditions.

Normal reset (as though switching on): SYS 64802
Reset which preserves nonstandard BASIC: SYS 64818
Reset which ignores ROM at $AOOO (for example, Super Expander), giving normal

full memory expansion: POKE 783,181: SYS 64815

Program 5-2. Memory Reconfigurafion
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o PRINT "L UNEXPANDED VIC": PRINT"2. VIC+3K"

1 PRINT "3. VIC+8K" :PRINT "4. VIC+16K"
:rem 36
: rem 31

111

VIC-20 Architecture

2 PRINT "5. TRY 3K ON BK PACK":INPUT V
3 FOR J=l TO V:READ B,T,S:NEXT
4 POKE 641,0:POKE 642,B:POKE 643,0:POKE

{SPACE}BASIC
5 POKE648,S:REM START OF SCREEN
7 SYS 64818:REM RESET BASIC WITHOUT

: rem 66
:rem 219

644,T:REM
:rem 54

:rem 134
TESTING RAM

:rem 118
8 DATA16,30,30,4,30,30:REM DATA HOLDS START OF BAS

IC :rem 140
9 DATA18,64,16,18,96,16:TOP OF BASIC :rem 204
10 DATA 32,64,30:REM SCREEN START :rem 113

This program mimics most of the features of VIC's power-on sequence, except
the search for an autos tart cartridge and for the limits of RAM, which are POKEd in
instead.

Modifications (to make the screen start in nonstandard positions, for example)
are simple. The program doesn't check to see that the RAM corresponding to its
setup actually exists; remember that you can't get something for nothing. In such a
case, the hole in the middle will usually keep programs from running. For further
information, refer to the section on reconfiguring BASIC in Chapter 6.

ROM Cartridges and How They Work
Programs in ROM are instantly available without the need for loading from tape or
disk, hence the value of ROM cartridges. Autostart ROMs are designed so that turn
ing on your VIC automatically runs the program. There's no way to prevent a
plugged-in autostart cartridge from running, except for hardware modifications (for
example, some expansion boards have switches to disconnect power to the ROM).
However, ROM need not be autostarting. VICMON (occupying $6000-$6FFF) and
Programmer's Aid ($7000-$7FFF), as well as Commodore's Adventure programs
($4000-$7FFF), print READY when the computer is turned on and need a SYS call
before the system takes note of their presence.

Autostart ROMs must start at address $AOOO (40960). The first nine bytes con
trol the working of the ROM:

AOOO and AOOl: Jump address within ROM taken when the computer is turned on.
A002 and A003: Jump address taken when the RESTORE key is pressed.
A004 through A008: Standard sequence of five bytes, $41, $30, $C3, $C2, and

$CD (65, 48,195,194, and 205), representing the characters aOCBM.

It follows that SYS 64802 (which has the same effect as turning the machine on)
almost invariably runs an autostart program which wasn't present when the com
puter was turned on. So does a SYS to the address at the start of ROM, SYS
PEEK(40960) + 256*PEEK(40961).

Autostart ROM cartridges may contain several ROMs-filling $AOOO-$BFFF, for
example-or only a single ROM, generally $AOOO-$AFFF. Obviously, longer pro
grams need more space; most games occupy the full 8K from $AOOO to $BFFF.

ROM cartridges generally contain machine language programs, which cannot be
listed like BASIC and are generally more impenetrable. It is actually possible to store

112

VIC-20 Architecture

BASIC in an autostart ROM, using VIC's RAM lower in memory for variables, by
manipulating BASIC's pointers.

Some expanders, rather than carrying soldered-in ROMs or EPROMs, have sock
ets (typically for 24-pin 2K or 4K EPROMs) so the user can select his own ROM soft
ware and update or change it as desired. This is primarily of interest to people using
utilities, for in addition to storing programs with an obvious single use (such as a
game) ROM cartridges can contain programs which supplement VIC in various ways.
Commodore's trio of VICMON, Programmer's Aid, and Super Expander are examples.
Others include fast tape operating systems, which add tape commands to decrease
program loading and saving times; IEEE adapters, enabling the use of CBM or tech
nical and scientific peripherals; new languages, like Forth; ML assemblers; and
graphics packages. Commodore also has a diagnostic ROM board which is used to
test the VIC and which some dealers have. The most elaborate devices add a 40- or
80-column display; these add RAM, too, but ignore the VIC chip, generate their own
display, and require their own TV connection.

The RESTORE Key
RESTORE is a panic button. When the RUN/STOP key and RESTORE are pressed
simultaneously, the system usually returns to the preRUN condition of whatever
program was in memory. It is therefore very useful.

There are, however, a few complications. Note that RESTORE doesn't always
work. The reason is that it relies on the Non-Maskable Interrupt (NMI) line of the
6502 processor, which is intended to cause the processor to stop its work at any time
and attend to the interrupt. However, NMI is not always successful; in particular, if
the chip is in an internal loop (called an X2 crash), no interrupt is triggered. Try SYS
49808 when RUN/STOP-RESTORE is ineffective. Later, you'll see how to im
plement a RESET switch that always works.

Another potential disadvantage is that RESTORE can be disabled. Many pro
grams disable RESTORE as a security device. POKE 37150,2 is one easy way to do
so, but note that it is ineffective until the program is actually RUN.

Before summarizing the USE'S of this key, it is helpful to look at the way it works
and what it does. Unlike the rest of the keys, RESTORE is connected directly to one
of the VIA interface chips. The VIA is in turn connected to the 6502's NMI line;
however, if the VIA is set so that no interrupt occurs, the RESTORE key won't get
that far. The POKE just mentioned turns off the interrupt (POKE 37150,130 turns it
back on). When an NMI is received by the processor, the 6502 jumps to the address
contained in locations $FFFA and $FFFB. In the VIC, this vector points to location
$FEA9, the Kernal NMI handler routine. This routine makes an indirect jump
through the vector held in locations 792 and 793 ($0318 and $0319). Normally this
points straight back to $FEAD, but if the values in 792 and 793 have been corrupted,
the system will crash.

Upon return to the interrupt handler routine, the 6502 sorts out whether the
interrupt was RESTORE or an RS-232 or tape interrupt. Assuming RESTORE was
pressed, the computer checks for the presence of an autostart ROM; if one is found,
the computer begins executing the program at the address specified in locations
$A002 and $A003. Otherwise, the STOP key is checked and, if pressed, three sub-

113

VIC-20 Architecture

routines are called which reinitialize all indirect vectors, all VIAs, and the VIC chip,
before entering BASIC.

You can investigate some of these effects by POKEing 792 and 793 with 60 and
3, then POKEing 828 through 835 with 169, 65, 32, 210, 255, 76, 173, and 255. That
redirects RESTORE to PRINT A and then behaves as normal. Pressing RESTORE
causes two outputs of A, showing that an interrupt is triggered by a transition in the
VIA. Note that STOP-RESTORE terminates this process by resetting locations 792
and 293 to their normal value.

With ordinary BASIC STOP-RESTORE is a convenient way to return to the
normal READY state, especially when the VIC chip or VIAs are being programmed.
It is also useful with machine language, but in neither case (especially with ML) is it
foolproof. When it does work, everything is left intact except 16 of BASICs vectors
and a few other things (open files are aborted, for example). With autostart ROMs it
can be used to reset a game. It could also be used with autostart programs in RAM
to interrupt a program while it runs, by changing the contents of $A002 and $A003
so that current variable values can be dumped, the background color changed, a new
program loaded, or whatever.

What Happens When VIC-20 Is Turned On
VIC's BASIC requires a fair amount of initial setting up. Therefore, the machine is
designed to run through an initialization routine when it is turned on. A timer
counts a fixed short delay before grounding a line to the 6502 (the RESET line). This
causes the 6502 to start executing whatever program exists at the address specified in
bytes $FFFC and $FFFD. That, of course, is ROM in the VIC-20, so the same pro
gram is invariably run. What happens is this:

1. The stack pointer is set to $FF, interrupts are disabled, and the decimal flag is
cleared.

2. A test is made for an autostart cartridge at $AOOO; if one is found, the program
jumps to the address in $AOOO and $A001 without further initialization. A sub
routine at $FD3F looks for the five standard bytes. If it finds them, ROM is
deemed to be present. It follows that RAM with these bytes will be executed, too,
and that ROM without these bytes will be ignored. This test can be imitated from
BASIC by SYS 64831. If PEEK(783) AND 2 is 0, there is no ROM; if it's 2, there
is.

3. A subroutine at $FD8D (64909) is called, which puts O's into RAM from $0 to
$03FF, excluding the stack ($0100-$01 FF), which is not usually considered part of
normal RAM. It stores a few values in RAM and then performs an important non
destructive RAM test to find the maximum number of consecutive bytes which it
can allocate to BASIC. This test starts at $0400. An un expanded VIC has no mem
ory there; its RAM starts at $1000. Only a 3K RAM expander can fill the 3K of
RAM between $0400 and $OFFF.

Either way, the start of RAM is noted. The test continues from $1000 to
$1 FFF, which contains the standard 4K of an unexpanded VIC. (If this RAM is
defective, the program enters an infinite loop, leaving a static pattern of meaning
less characters on the screen.) The top of RAM is noted, allowing for any 8K or
16K expanders which may be present. At that point, the screen position is deter-

114

VIC-20 Architecture

mined; unlike the CBM, where the screen always starts at $8000, the VIC chip's
flexibility allows the screen to start in a variety of places. Only two of them are
used by VIC-20 itself; if RAM is not present at $2000 and above, as with the un
expanded VIC the screen starts at $lEOO. Otherwise, it starts at $1000. Finally,
the starting and ending positions of BASIC program storage are fixed to use as
much RAM as possible while avoiding the screen.

4. A subroutine at $FD52 (64850) moves a table from ROM into the third page of
RAM, from $0314 to $0333. This is a table of two-byte vectors; we'll see later how
to make use of them.

5. A subroutine at $FDF9 (65017) initializes both VIA chips.
6. Another subroutine at $E518 (58648) initializes the VIC chip with the 16 values

stored in $EDE4-$EDF3 (60900-60915), setting (among other things) the border
color to cyan and the background color to white. Next the VIC chip registers
pointing to the start of the screen are made to conform to the required screen
starting address. The screen start byte usually contains only $lE or $10, but the
routine is compatible with other values. Then, keyboard and screen characteristics
(keyboard repeat rates, cursor flash rates, a screen link table to keep track of con
nected lines) are set. The cursor is moved to the home position.

7. Finally, the BASIC interpreter is entered via the address in $COOO and $COOl.
Interrupts are enabled, some specifically BASIC pointers are set, and the familiar
BYTES FREE message appears, followed by READY.

The main BASIC pointers are important and worth knowing:

BASIC program storage .starts at the address pointed to by $2B and $2C (43
and 44).

BASIC program storage ends and variables begin at the address pointed to
by $2D and $2E (45 and 46).

Variables end and arrays begin at the address pointed to by $2F and $30 (47
and 48).

Arrays end at the address pointed to by $31 and $32 (49 and 50).
BASIC working memory ends at the address pointed to by $37 and $38 (55

and 56).

The contents of $2B-$2C and $37-$38 match the addresses in Table 5-1; for
example, PEEK(43)+ 256*PEEK(44) is the start of BASIC program storage in decimal.
BYTES FREE is the difference between the start and end of BASIC. There are also
two string pointers which can be ignored; they take care of themselves or can be re
set by NEW or CLR.

These pointers are used too:

MEMBOT is $0281 and $0282 (641 and 642).
MEMTOP is $0283 and $0284 (643 and 644).
Screen start page is $0288 (648).

MEMBOT and MEMTOP are stored when the system has found the extent of
contiguous RAM. These values aren't used except to decide where to put BASIC and
the screen. If there is noncontiguous RAM, the system has no record of it, and it is
irrelevant to normal BASIC. Bv itself, the VIC-20 will set the screen start at one of
just two locations, allowing 51"2 bytes for the screen RAM. (Since a normal screen is

115

VIC-20 Architecture

22 X 23, or 506 bytes, there are 6 spare bytes after the screen}. However, as you'll
see in Chapter 6, the screen position can be set to other values, and the screen size
can also be changed within wide limits.

To review, when power is turned on, almost all BASIC RAM is left untouched.
Only RAM between $0 and $03FF-excluding the first three bytes of BASIC (which
are set to zero) and the stack-is changed. (Consequently, BASIC RAM is left with
the garbage present at power-up. After turning on your computer, try PEEKing loca
tions 4099 and above to verify that RAM hasn't been zeroed.)

This has two consequences. First, SYS 64802, which imitates the reset function,
acts as though VIC had been switched on but leaves any RAM program unchanged,
except that BASIC NEW is in effect performed. See OLD in Chapter 6 for a method
to recover BASIC after SYS 64802 has reset it. Second, a hardware reset switch-see
next section-can be used to investigate any program above $0400 in memory or
within the stack area ($OlOO-$OlFF).

The Expansion Port
This is the large port at the left of the VIC, as seen from the back. It has 44 connec
tions-22 on each side-two of which are unused. One track (pin 21, located second
from the right on the top row) carries the + 5 volt power supply from VIC to the
additional RAM or ROM; such asymmetry, plus the fact that the edge connections
are rather close, makes it risky to insert or remove these when the power is on.

The edge connector system is ideal for the occasional replacement of faulty com
puter cards during maintenance, but it is not really designed for repeated insertion
and removal of boards. That can damage both the plating on the contacts and some
times the spring connectors in the edge connector sockets.

VIC's original design assumed that only one ROM or RAM cartridge would be
put directly in the port, and some of Commodore's cartridges reflect this. For ex
ample, VICMON assumes the screen starts at $lEOO, which is true for the un
expanded VIC.

Expansion boards (a typical board is shown in Figure 5-5) have been produced
almost as long as the VIC has. A typical expansion board has three or four slots into
which RAM or ROM devices can be inserted, with their labels facing the user. Sev
eral cartridges can be used at once provided their memory requirements don't over
lap; for instance, Super Expander, Programmer's Aid, and VICMON can all be plugged
in and used at one time. So can several RAM expanders, VICMON and ROM car
tridges, and RAM with ROM. If each slot has a switch to turn its power on or off,
several cartridges designed for the same area of memory can be present simulta
neously, although only one of them can be in operation at anyone time.

An expansion board is a virtual necessity for serious programming on VIC-20.
However, if more than four additional devices are used (particularly with the cassette
recorder, which is a heavy power user) the VIC's built-in power supply may not be
adequate. Thus, some expansion boards include their own power supply and must be
plugged into a wall outlet. That increases the quantity of cable spaghetti, as well as
the cost of the expanders. Other boards may rely on battery power, and rechargeable
batteries can make for a tidy board.

116

VIC-20 Architecture

Figure 5-5. Typical Four-Slot Expansion Board

161 ~ III! I i 1I1I1I1 i 1I1I1I111 iii I i 1I1I1 i 1I1I1 i lij 61 I

---~ ON

.. OFF

161 ~ 1I1I1 i 1I1I1111111 i 1I1I1I1 i I iii 1I1III1 iii I ij 61 I

/, /(-, ~------------------~

Commodore's own expansion board, the 1010, seems to have been withdrawn,
possibly because cheaper alternatives were available (or perhaps because it was
realized that such boards make it easier to copy software). The 1010 had six slots
and its own power supply, so concern for the VIC's power supply could not have
been a factor.

Expansion boards are relatively simple pieces of equipment, which hardware
people with printed circuit board equipment can easily make. The simplest type just
extends the 44 connections from the expansion port and puts several edge connectors
across them. The edge connectors exactly duplicate the configuration of the expan
sion port. Ribbon connectors, rather than rigid boards, can also be used.

Hardware Aspects of the ExpanSion Port, Chips, and Addressing
For a more complete understanding of the expansion port, it is helpful to take a look
at the connections provided by the port, and also at the pinout of a chip and the in
ternal layout of typical cartridges. You'll see how to figure out the purpose of most of
the expansion port's lines.

117

VIC-20 Architecture

Figure 5-6. The VIC-20 Expansion Port
Bottom Top

GND Ground Z 22 Ground GND
[Not used] Y 21 + 5 Volts +5V

RESET 6502 RESET X 20 [Not used]
NMI 6502NMI W 19 IRQ to 6502 IRQ
S/02 Phase 2 Clock V 18 READ/WRITE (6502) CPU/R/W
II03 IIO Block 3 $9COO U 17 READ/WRITE (VIC Chip) VIC/R/W
II02 lIO Block 2 $9800 T 16 RAM3$OCOO RAM3
CA13 Address Bit 13 S 15 RAM2$0800 RAM2
CA12 Address Bit 12 R 14 RAMI $0400 RAMI
CAll Address Bit 11 P 13 Block 5 $AOOO BLK5
CA10 Address Bit 10 N 12 Block 3 $6000 BLK3
CA9 Address Bit 9 M 11 Block 2 $4000 BLK2
CA8 Address Bit 8 L 10 Block 1 $2000 BLK1
CA7 Address Bit 7 K 9 DataBit7 CD7
CA6 Address Bit 6 J 8 Data Bit 6 CD6
CA5 Address Bit 5 H 7 Data Bit 5 CD5
CA4 Address Bit 4 F 6 Data Bit4 CD4
CA3 Address Bit 3 E 5 Data Bit 3 CD3
CA2 Address Bit 2 D 4 Data Bit2 CD2
CAl Address Bit 1 C 3 Data Bit 1 CD1
CAO Address Bit 0 B 2 Data Bit 0 CDO
GND Ground A 1 System Ground GND

Note; Diagram shows pins in the sequence they appear on a board. Thus, a RAM pack face up with pins
toward you has the 5-volt power line second from left on top.

Figure 5-6 shows how the port is configured. It is possible to trace the connec
tions with the aid of the schematic layout printed in the VIC-20 Programmer's Ref
erence Guide. The diagram shows the layout as it appears on an expansion board or a
plug-in cartridge, which is the way it's usually seen. The numbering and lettering of
the pins are standard; however, some VICs are numbered back-to-front. Note the
position of the 5-volt power line; this is always connected and often has a wider
track than the other lines.

Most of the other connections select addresses. There are 13 bits common to all
addresses, 8K block selection lines (for $2000, $4000, $6000, or $AOOO), lK selection
lines (for the 3K RAM expander-$0400, $0800, or $OCOO), and 2K selection lines
for $9800 or $9COO. The other lines can be used in hardware control; we'll see how
RESET can provide a useful reset switch.

The horizontal line above some of these abbreviations is a notation derived from
logic, meaning "not." Thus, IRQ can be read "not IRQ," or, more accurately, as "IRQ
active low." That means that the line is normally high (5 volts) and will generate an
interrupt when brought low (grounded).

118

Expansion cartridges use the following lines:

Line 17. VIC chip READ/WRITE
Lines 1-9. Data bits 0-7

Lines B-P. Address bits 0-11
Lines 10-13. Some are used to select 2K blocks
+ 5 volt and ground lines

VIC-20 Architecture

To see how these lines function, consider, for example, POKE 8192,12. This puts
12 (%00001100) on the data bus, so the eight bits of the data line take correspond
ing values of 0 or + 5 volts. The address 8192 is $2000 in hex; all address bits 0-11
are low, and block $2000-$3FFF is selected. When the READ/WRITE line is brought
low, the data is written to RAM.

All this, of course, happens in a fraction of a second. The actual order of events
is shown by timing diagrams, and the precise detail is complex.

Commodore's RAM and ROM Cartridges
Each of Commodore's RAM and ROM cartridges has interesting features, so we'll
look at each one in turn. The boards don't contain many components. A typical
board may include capacitors from the 5-volt line to ground, RAM or ROM chip,
and perhaps a multiplexer which picks the correct chip to read from or write to on
the basis of address information from the VIC-20. The circuit boards usually have
optional connectors which allow the addressing to be changed, so the basic board is
potentially usable in the manufacture of other products. Incidentally, most compo
nents can be identified, and their functions checked, by reading the numbers
stamped on them and referring to a parts catalog.

The 16K RAM expander (the VIC 1111) has eight chips of 2K each, mounted on
a board identical to the 8K expander. Capacitors are included to provide protection
against power supply irregularities. An LS139 dual two- to four-line multiplexer se
lects one of the eight RAM chips. Input from pin 10 or 11 selects block $2000 or
$4000; input from pins P and R, corresponding to address bits 11 and 12, selects one
of the four relevant chips.

Selection of blocks $2000 or $4000 is done by the circuitry to the right of the
multiplexer chip, as shown in Figure 5-7. It is a simple matter to reconfigure the
addressing. For example, cutting the connection marked 5, and making a new
connection with a small blob of solder on 7, gives you one 8K block at $2000-$3FFF
and another 8K RAM block at $AOOO-$BFFF. (Note that this will probably invalidate
any warranty.) A switch can be fitted to have the same effect.

The 8K RAM expander (VIC 1110) is half a 16K expander. It contains four 2K
RAM chips. It has an additional interesting feature, a small four-section switch,
which can be accessed only by opening the case of the cartridge. When one of these
sections is on, contact is made to one of lines 10-13 on the expansion port, thus
selecting an 8K block starting at $AOOO, $6000, $4000, or $2000 (in order, left to
right). That makes the 8K expander perhaps the most valuable of the Commodore
expanders. Up to four can be used at once, but this is a costly way to provide mem
ory. The expander can be upgraded to 16K by adding four more RAM chips and four
capacitors.

The 3K RAM expander (VIC 1210) contains a smaller circuit board, which is
identical to that of the Super Expander. Unlike the other expanders, pins 14, 15, and
16 are connected, because the 1210's memory does not start at a block boundary but
at $0400. The board has six chips,. each with 512 bytes of RAM. They are low power

119

VIC-20 Architecture

Figure 5-7. Address Selection of SK and 16K RAM Expanders

To Chip r ----I
Select 0-

7 6 S

-<

•
Pin 13

($AOOO) Pin 12
($6000) Pin 11 Pin 10

($4000) ($2000)

Note: With 16K RAM, the left circuit selects $4000 - S5FFF; the right selects
$2000 - $3FFF. Resoldering the links enables other
combinations to be selected.

With 8K RAM, only the right circuit operates; it is switch able to start at
one of $AOOO, $6000, $4000, or $2000.

Links

chips and can operate by drawing power down address and data lines, so that
expansion boards with switches may not be able to turn these expanders off. The
board is wired to accommodate ROM (or EPROM) at $AOOO, such as the Super
Expander. But the circuitry permits any other block to be used with a little
modification.

As an example of a memory chip's pinout, consider the 2K RAM chips in the 8K
and 16K RAM expanders. The pinout and numbering convention is illustrated in
Figure 5-8. This particular chip is CMOS static RAM, but all RAM and ROM chips
are basically similar.

Figure 5-S. RAM Chip Pinout

A7
A6
AS
A4
A3
A2
Al
AO
101
102
103
GND

120

1
2
3
4
S
6
7
8
9

10
11
12

Top
of

Chip

24
23
22
21
20
19
18
17
16
IS
14
13

+Sv
A8
A9
WE
OE

A 10
CS

108
107
106
lOS
104

Write Enable if low
Output Enable if low

Chip Select if low

VIC-20 Architecture

It's sometimes helpful to trace the circuit paths within the VIC or within a car
tridge. Note that there are 11 address lines, labeled AO to A10, permitting the chip to
distinguish 2t 11 = 2048 bytes, which of course is 2K. There are eight data lines,
labeled 101-108, allowing eight-bit bytes, each with 256 possible values. 10 means
Input/Output, and this usage distinguishes RAM from ROM, which is output only.

The 5-volt power supply and ground pins are at opposite corners of the chip.
The three remaining lines are WE (Write Enable if low), OE (Output Enable if low),
and CS (Chip Select if low). When CS is brought low, that particular chip, wired to
its own 2K of memory area, can be written to or read from, depending on whether
write enable or output enable is low or high. If write enable is held high, the chip
effectively becomes ROM, since it cannot be written to.

Modifying Expansion RAM Expanders and Expansion Boards
It is possible to make some useful modifications based on what has been covered so
far. None of them require much hardware expertise, and I have personally found all
to work perfectly. However, I can accept no responsibility for failure or error.

Reset switch. Pin X on the expansion port resets the 6502 chip when grounded.
The effect is similar to switching off and then on again, except that most RAM is re
tained. BASIC can be recovered intact, including variables, using OLD, a short ML
routine in Chapter 6. The reset switch is identical in effect to SYS 64802, but its reset
action can be carried out even with protected programs, where it is impossible to exit
with the STOP key.

The simplest approach is to attach wires to pin Z (ground) and pin X (6502
RESET). On a plug-in board, these pins are at the bottom left, if the board's contacts
are toward you. Momentarily touching the two wires together causes reset. A more
elegant approach is to install a momentary-contact switch. A .0IJLF capacitor, placed
across the switch contacts, is desirable.

Note that pin X is not connected in RAM or ROM cartridges, as it is in expan
sion boards, so if you don't have an expansion board you'll have to connect the
RESET pins at the port. The proper pins are the two bottom right ones inside the
slot.

Is it possible to use the NMI line for a reset switch which leaves memory in the
lowest parts of RAM untouched? This is potentially useful in investigating programs,
but the answer generally is no. NMI processing is more conditional than RESET, as
you saw when using the RESTORE key, so software which disables the NMI or
changes its vector will be unaffected by NMI resetting. In any case, the X2 crash
can't be interrupted by NMI. For these reasons, reset switches usually rely on pin X.

Battery backup of RAM. This modification powers RAM (or ROM, for that mat
ter), using a supply external to the VIC. This has two advantages. First, it removes all
external drain from the VIC's own power supply; second, it maintains data in RAM
after the VIC has been switched off, so you don't have to reload it later. Note, how
ever, that if the battery runs down or is disconnected, the program is lost.

As an example, consider an 8K RAM expander. If it is opened, the top left track
is ground, and the one next to it carries power to the board. If the power is off, the
RAM is inactive. A piece of masking tape over the power track connection will
isolate it from the connector in the VIC; to make the change permanent, use a sharp
tool to score through and break the circuit at the base of the power track connection,

121

VIC-20 Architecture

where it passes onto the main portion of the circuit board. (Cover or break the + 5
volt line only; do not disconnect the ground connection or the expander will not
work.)

At that point, you're ready to connect the battery backup. Connect the positive
lead to the power line and the negative lead to ground. Both connections are easily
made at the base of the electrolytic capacitor in the lower left corner of the top of the
board. Ideally, you should use a 5- or 6-volt battery pack, although many experi
menters use small 9-volt transistor radio batteries.

When plugged into the VIC, the expander draws all its power from the battery.
It retains its addressing and data line connections with the VIC, and any data stored
in it will remain after VIC itself is off. In effect, the expander acts as a sort of pro
grammable ROM.

Making RAM appear like ROM. Pin 17 (READ jWRlTE) signals readiness to
write to RAM. If the line is not connected, RAM cannot be written to and behaves
like ROM. You can verify this by covering this track on a RAM expander with mask
ing tape; the contents of RAM remain what they were when the computer was
turned on but cannot be changed. Obviously, this is not of much value as it stands; a
switch is needed to select RAM (when a program is being entered or loaded) or
ROM (to preserve the program, which will be immune from overwriting and corrup
tion). Expansion boards are easily modified in this way.

2K RAM for $9800-$9FFF. This is a relatively simple conversion operation. 2K
of the 3K expander is used, by readdressing $0800-$OFFF so that it appears at
$9800-$9FFF. 1K of the expander is left disconnected. (Alternatively, if $0400-$OBFF
is readdressed as $9800-$9FFF, 1K expansion is left with BASIC, giving 4607 bytes
free.) Note that 8K and 16K RAM expanders aren't quite so easily modified.

Three tracks (14, 15, and 16) control the 3K expander's addressing; these are left
of center on the top of the 3K board. If these are masked off, $0400-$OFFF is no
longer accessible as RAM. Pins T and U on the bottom of the board select $9800 and
$9COO, respectively; if they are connected to the tracks where $0800 and $OCOO were
selected, all the internal wiring of the expander applies, but the actual address is
shifted to $9800-$9FFF. As it happens, those tracks are close together on the bottom
of the board, and a small modification (two jumpers) is all that's needed.

Changing block addresses. Blocks $AOOO and $6000 are selected by pins 12
and 13 of the expansion port. A simple interchange of these pins, or substitution of
pin 12 for pin 13, allows RAM or ROM to appear at either address at will. This is
significant because VIC's tape system won't allow a program to be saved beyond ad
dress $8000. However, with perhaps a switch on an expansion board, saving of
ROM software to tape is possible. The following subsection deals with this topic,
which is fairly tricky, in detail.

Address changing is easy to demonstrate on an 8K expander, provided it's
mounted away from VIC so its miniature switch is accessible. Suppose VICMON is
also connected. If the 8K expander's switch is set to $AOOO, for instance, fill RAM up
to $COOO with $FF. Then, changing the switch to select block $2000 causes the pat
tern of 8192 $FFs to appear at $2000-$3FFF. They could also be moved to start at
$4000 or (if VICMON is off) at $6000.

122

VIC-20 Architecture

Saving Programs at $8000 and Above to Tape
There are only three areas above $8000 that you are likely to want to save to tape:
the color RAM, the VIC registers, and the ROM expansion area from $AOOO to
$AFFF or to $BFFF. The first two are necessary if VIC's TV picture is to be saved; the
third allows the ROM area to be loaded back into an 8K RAM expander adjusted to
start at block $AOOO. The programs are detailed in Chapter 14; here we'll explain
three approaches:

Saving the area as a file. This is straightforward but fairly slow (more than five
mintues for 8K). Each address is PEEKed and the resulting value written to tape. No
special hardware is needed.

Moving ROM down. When using an expansion board, an 8K RAM expander
and a ROM cartridge can be present at the same time. Chapter 14 includes a pro
gram which moves ROM down, then saves it to tape with a forced load header so
that it will automatically load into the correct memory area.

Using a block switch. With an expansion board and a switch from block $6000
to block $AOOO, SAVEing is faster than with the first approach. LOADing is easier,
too, but still may not justify the extra work. However, the technique does illustrate
address line changes. Typically, this sequence might be used:

1. Set switch to connect $AOOO to $AOOO.
2. Load or plug program into $AOOO.
3. Switch so program appears at $6000.
4. SYS 64802 or NEW to reset pointers.
5. POKE 43,0: POKE 44,96: POKE 45,0: POKE 46,128 to alter BASIC pointers to

cover $6000 to $8000.
6. SAVE "PROGRAM NAME",l,1 which stores memory from $6000 to $7FFF on

tape, with a forced load header to insure reload into the identical area.

To reverse the process, use this sequence:

1. Set switch to connect $6000 to $AOOO.
2. POKE 183,0: SYS 62937 to load from tape without resetting as though the pro

gram were BASIC.
3. Switch $AOOO to $AOOO.
4. RUN the program. Typically, SYS 64802 simulates switch-on.

The VIC (Video Interface) Chip

TVs
Commodore's designers had the problem of interfacing the VIC with TVs, which
aren't directly controlled by the computer. Their solution was effective and relied on
isolating the TV-specific parts of the computer's operations as much as possible.

TV sets in the United States, Canada, Japan, and much of South America use
the NTSC (National Television Standards Committee) standard of 525 lines per
screen. The screen is refreshed 60 times per second. Most of Europe (excluding
France), Australia, and some other countries use PAL (Phase Alternation by Line),
which uses a 625-line picture and refreshes it 50 times per second. France and the
USSR use SECAM, a system resembling PAL but with certain parameters changed.

123

VIC-20 Architecture

All sets use interlace, which means that only half the picture is traced in each
top-to-bottom scan. On American sets, 262 lines (every other one) are drawn each
1/60 second; thus, the full picture needs 1/30 second. This allows for the appear
ance of motion without flicker.

Not all TVs produce an identical picture. Some, particularly those with a squar
ish screen, lose some at the sides and top. In any case, there is a guard band of lines
which are not intended to be displayed, and many sets are adjusted with overscan,
meaning that the edges are removed. Since VIC-20's display size can be varied from
22 X 23 characters, this can be significant.

Some TVs do not work well with personal computers. In general, newer TVs are
better than old, because the manufacturers now consider computers when designing
their sets. Automatic tuning circuitry and field synchronization (without which the
picture flutters up) have been two difficult areas, but neither square-wave sound nor
static charge noise (when a screen suddenly blanks) has posed major problems.
However, it is still desirable to keep the brightness level below its maximum.

Interfacing VIC-20 to a TV
TV output is generated by the video interface chip, or VIC, which gives the VIC-20
its name. These chips are designed and manufactured by MOS Technology, a subsid
iary of Commodore. The VIC chip is a 40-pin integrated circuit positioned near the
middle of the printed circuit board; some models have shielding around this area, so
the chip may not be very easily accessible. The American version (for NTSC TVs) is
numbered 6560; the PAL equivalent is the 6561. Improvements are continually being
made in the VIC chip's design, so it may be worthwhile exchanging an older VIC
chip for its most recent revision.

VIC produces a composite output (not a separate signal for red, green, and blue)
which makes it difficult to produce a high-quality picture. Channels 3 or 4 are nor
mally used in the U.s.; in the U.K., a videotape channel (36) is generally chosen.

In both cases an external modulator is used between the VIC and the TV. If it is
handled carelessly, so that its connecting leads are weakened or broken, the picture
may deteriorate or disappear. This fault is relatively easy to correct, by resoldering.
Poor color can be improved either by tweaking the potentiometers in the output cir
cuits (R7 or R32 on the VIC schematic diagram) or by adjusting the video or audio
coils in the modulator, if they exist. The cores are easily damaged, however, and a
nonmagnetic alignment tool should be used. Ordinarily, such adjustments shouldn't
be necessary, and in any case they are best performed by experienced dealers.

Note that VIC-20s and their modulators are matched, to some extent, so one
VIC-20 may not work well with another VIC-20's modulator. However, Com
modore's color monitor, which needs no modulator, works with any VIC and pro
duces more stable pictures than an ordinary TV.

What restrictions does the need to conform to TV standards impose on the com
puter? The output to the TV must be correctly synchronized, so the electronic clock
which times all the VIC-20's operations must be properly set. In practice, a high
frequency clock is subdivided to drive both the VIC chip and the 6502 processor; in
the U.S., the 6502 runs at 1.02 megahertz (MHz or million cycles per second), while
in the U.K. its frequency is set to 1.10 MHz. As a result, programs run slightly faster
on PAL sets than on NTSC sets. Other differences concern the position of the screen

124

VIC-20 Architecture

generated by the VIC-2o and the maximum size of the screen-24 rows by 28 col
umns in the U.s. but 26 rows by 32 columns (which still leaves space) on PAL sets.

Fortunately, international variations in the VIC-20's design are usually irrelevant
to the individual programmer. However, there is sufficient traffic in programs to jus
tify some discussion of the topic. Most differences are confined to the Kernal and do
not affect BASIC, so exchanging the Kernal ROM (one of the two ROMs on the cir
cuit board) and using a different VIC chip are the major changes needed to inter
nationalize the VIC-2o. In addition, the timing for the interrupt which controls the
BASIC TI$ clock and the timing for tape and RS-232 operations require different
Kernal constants. Other necessary modifications may involve characters, keyboard,
and power supply.

Using the VIC Chip
The following is a detailed discussion of what the VIC chip can do. Sample pro
grams are given to illustrate the function(s) of each register. For reference purposes,
the appendices contain two diagrams which summarize the main features of the VIC.
Chapter 12 (Graphics) has many programs using the VIC chip.

$9000 (36864)
Bit 7 selects the interlace mode. Normally, half the lines that make up a TV pic

ture are scanned every sixtieth of a second, scanning every other line. The next six
tieth scans the remaining lines, with the idea being to avoid flicker.

Interlace mode turns off one of these scans. Another TV picture can then be
superimposed onto the VIC-20's output. This may improve some TV pictures, so it is
provided as an option on some software. Usually this bit is off.

To see the effect, if any, just add 128 to the POKE value to set the bit if it's off,
or subtract 128 to turn it off if it's on. If you're not sure of its status, POKE 36864,
PEEK(36864) OR 128 turns interlace on, while POKE 36864, PEEK(36864) AND 127
turns interlace off.

Bits 0-6 determine the distance of the picture from the left side of the screen.
This value is normally 5 (U.S.) or 12 (U.K.). Some commercial programs give the op
tion of controlling this feature. Each change in value of 1 moves the screen by four
dots, half a character's width.

This is not very high resolution. The range 0-127 corresponds to several screen
widths, so the screen can be moved right off the TV. Chapter 12 describes how hori
zontal positioning can help you scroll horizontally.

To watch the effect, if interlace is off, POKE 36864 with your chosen value. If
you want to be sure that interlace is unchanged, use POKE 36864, PEEK(36864)
AND 128 OR X, where X is a to 127.

$9001 (36865)
This register selects the distance of the picture from the top of the screen. Normally
that is 25 (U.S.) or 38 (U.K.). A few commercial programs let you change it. Each
change in value of 1 moves the screen by two dots, one-quarter of a character's
height. This is good resolution; Chapter 12 shows you how to use it to achieve
smooth upward scrolling.

To watch the effect, POKE 36865,X where X is a to 255.

125

VIC-20 Architecture

$9002 (36866)
Bit 7 controls the start of screen position jointly with $9005. This bit is treated

as bit 9 of the screen start address and is the lowest bit of the screen under software
control. A screen address is usually of the form %0001 XXYO 0000 0000, where bits
lXX are controlled by $9005, and bit Y is controlled by $9002. For example, a screen
start of $1000 means Y is off, while a screen start of $IEOO means Y is on.

Bit 7 also controls the color RAM address. When it is set to 0, color RAM starts
at $9400 (37888); when it is I, color RAM starts at $9600 (38400).

Because of this dual function, this bit is sometimes said to control the alternate
screen mode. As an example, when the screen is at $IEOO, its colors are controlled
by RAM starting at $9600, and this bit is set. POKE 36866, PEEK(36866) AND 127
turns off this bit, making the screen start at $ICOO and color RAM start at $9400, so
an entirely new complete screen is available.

Why should color RAM move}ike this? If the VIC's screen size were fixed at 22
X 23, there would be no need for it. However, the screen dimensions can be en
larged (for example, to 24 X 26). In that case, 512 bytes from $9600 to $97FF would
be insufficient. Thus, it's necessary to have an option of selecting color RAM from
$9400, which covers all possible screen row and column combinations.

Bits 0-6 determine the number of columns on the screen. These bits are nor
mally set to 22; PEEK(36866) is therefore either 22 or ISO, depending on screen
position. To change the number of columns, leaving the screen position bit un
changed, use POKE 36866, PEEK(36866) AND 128 OR X where X is 0 to 127. X has
an effective maximum of 238, beyond which it has no further effect, but in practice
no more is likely to be required since that more than fills the screen horizontally.
VIC-20 screen editing is not "soft," so screens of widths other than 22 columns
(with the exception of 11) are relatively difficult to edit.

H screen rows multiplied by screen columns exceed 512, the usual 512 bytes of
screen RAM are insufficient and more must be allocated. Chapter 12 explains how.

$9003 (36867)
Bit 7 belongs with register $9004; it is the smallest bit of the current line being

scanned. Because the raster scan line changes so fast, PRINT PEEK(36867) normally
alternates between 46 and 174 (128=46).

Bits 1-6 determine the number of rows on the screen. To change rows while in
the normal 8 X 8 character mode, POKE 36867,2*R, where R is the required number
of rows. For example, POKE 36867,2 gives a single-line display. If you are unsure of
the mode, use POKE 36867, PEEK(36867) AND 1 OR 2*R, which retains the value
of the smallest bit. 2*R (twice the number of rows) is POKEd in because doubling
shifts the bit pattern left to coincide with the VIC's register.

Besides changing the number of rows with ordinary graphics, this register en
ables double-sized character graphics to neatly fill the screen. Typically, 20 columns
by 10 rows, in double-height mode, will give the same screen shape as a 20 X 20
screen made up of ordinary characters.

Bit 0 selects normal (8 X 8) characters or double-sized (8 X 16) characters. Any
VIC-20 screen is regarded by VIC as having a fixed number of locations; normally,
with a 22 X 23 screen, that number is 506. Each of these locations contains a byte
from 0 to 255, corresponding to a pattern stored in the character-generating memory.

126

VIC-20 Architecture

In normal mode (8 dots X 8 dots), 64 bits are needed to define the whole pattern; if
the bit is on, the dot is on, and vice versa. That means that eight bytes are required
for each character, so (for example) the tenth character's pattern begins 72 bytes after
the start of the character generator.

In double-size mode, twice as much memory (16 bytes) is required to define
each character. Try POKE 36867,47 to set this mode; note how the screen extends
down. (POKE 36867,23 corrects this by reducing the number of rows to 11.) Clear
the screen; type @,a,b,c,d, and so on. Each character is twice the normal size and
uses twice as much information from the character generator ROM. This mode is
useful because it lets 22 columns by 11 rows fill the screen. That is less than 256
bytes, which means that every dot on the screen can be separately plotted to pro
duce truly high-resolution graphics (except for colors, which are variable only inside
their 8 X 16 area).

$9004 (36868)
This register identifies the TV screen line being scanned. It changes rapidly and is
only usable with machine language. Since this is a nine-bit register (the smallest bit
is stored in $9003), its maximum range is 512. The actual range is roughly 260 (310
in U.K.) which suggests that the VIC doesn't distinguish between alternate screen
scans. Chapter 12 illustrates a split screen program which uses this register. Light
pens generate coordinates which have the same vertical range of values.

$9005 (36869)
Since this register is the most difficult VIC register to understand, a table in the
appendices lists all the usable values along with their meanings. However, the
following will give you a quick overview.

Bits 4-7 control the starting address of the screen, along with one bit of $9002.
The start of screen is under software control by five bits, suggesting that there are
21'5 (32) possible screen positions. If left to itself, the VIC-20 will only select two of
them; however, any of the others can be selected by software.

The most useful are the following: $1000, $1200, $1400, $1600, $1800, $lAOO,
$lCOO, and $lEOO. All can exist on any VIC-20 without extra memory. If you repre
sent the five relevant bits as PWXYxxxx in $9005, and Zxxxxxx in $9002, the derived
screen address will be %QOOW XYZO 0000 0000, where Q is the reverse of P. All the
usual addresses have bit P = 1 and bit W = 1 and can all be written as %0001 XYZO
0000 0000 in binary; in this representation 1, X, and Y (bits 12, II, and 10 of the ad
dress) come from $9005, while Z (bit 9) is from $9002.

Another, less useful set of screen addresses is selected when bit 6 is o. They are
all of form %0000 XYZO 0000 0000 in binary, and therefore include, in principle, $0,
$0200, $0400, $0600, and so on. The first cannot be used with BASIC and can only
be partially used, with difficulty, in machine language. Address $0200 cannot be
used with BASIC but can be used with machine language. The others, from $0400 to
$OEOO, cannot be used even with 3K RAM expansion, because of the way VIC-20 is
designed. A snowy effect results, with the actual appearance controlled by the
character set; try POKE 36869,64 with the normal character set. POKE 36869,119 is
a typical variation.

Bit 7 of $9005 is almost always set to I, since setting the screen to look at ROM

127

VIC-20 Architecture

or the I/O chips is pretty useless. (This addressing is actually used by the character
generator, bits 0-3 in this register.) Given that bits 7 and 6 are usually 1, there are in
effect only three other bits, giving you the eight possible normal screen positions.

The starting position of the screen can be calculated from this formula:
4*(PEEK(36866) AND 128) + 64*(PEEK(36869) AND 112)

which allows for locations $9002 and $9005. This will normally be identical to
256*PEEK(648), because the system stores the high byte of the screen position in
648. Thus, PRINT PEEK(648) is usually 30 (with the screen at $IEOO, on an un
expanded or 3K expanded VIC) or 16 (with the screen at $1000, on a VIC with 8K or
more expansion).

If those values are not equal, screen editing may not work. SYS 58648 will make
them match; so will SYS 64818, which also cold starts BASIC. POKEing an even
value from 16 to 30 into 648, then entering SYS 64828, lets you set the screen to any
of the eight positions at will.

Each screen needs a color RAM area. You saw how bit 7 of register $9002 se
lects such an area and how it also controls bit Z of the screen address. It follows that
adjacent screens use different color RAM. To better grasp the ways that the screen
can move, enter POKE 648,18: SYS 64818. Now the screen starts at $1200 (or, in
decimal, 18*256=4608). POKE 4608,1 will confirm this by putting the letter A in the
top left of the screen, provided a character is already there so the color is set.

This is a nonstandard position and could not be selected by VIC-20 on its own.
Some knowledge of BASIC is needed when using nonstandard screen positions to
insure that the program won't corrupt the screen. Shifting the screen like this can be
useful as a security device; a program can be developed in which both normal screen
areas contain vital setting-up routines, so if the program is interrupted, parts of it
will be corrupted as the screen overwrites 512 bytes of program.

Program 5-3. Shifting the Screen
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 POKE 36879,8:REM CHANGE BACKGROUND COLOR:rem 40
20 FOR J=12 TO 15:REM BITS P AND W BOTH ARE 1 IN T

HIS RANGE :rem 120
30 POKE 36869,16*J:REM ONLY HIGH NYBBLE NEEDS TO B

E CHANGED :rem 104
40 FOR K=0 TO l:REM ALLOWS FOR BIT Z :rem 231
50 POKE 36866,128*K+22:REM SET BIT 7 AND RETAIN 22

COLUMNS :rem 167
60 P=(PEEK(36869) AND 112)/4:REM BITS W,X,Y:rem 68
70 P=P+(PEEK(36866) AND 128)/64:REM BIT Z :rem 161
80 POKE 648,P:REM SCREEN POINTER NOW CORRECT

:rem 186
90 Q=Q+1.7:GET X$:IF X$="" GO TO 90:REM AWAIT KEYPR

ESS :rem 17
100 NEXT K,J:REM CYCLE THROUGH EIGHT VALUES

:rem 129
110 POKE36879,27: REM SCREEN BACK TO NORMAL

:rem 194

128

VIC-20 Architecture

Program 5-3 demonstrates this, using POKEs into the relevant registers to move
the screen. Each of the eight normal screens is displayed when a key is pressed. Try
this program without 3K expansion, so BASIC itself is stored in one of the screens.
Line 90 includes a calculation involving a BASIC variable Q, so the portion of BASIC
which stores variables will be easy to find.

Note the alternation in color patterns caused by alternate selection of color
RAM. You can STOP the program, write to one of the screens or clear it, then RUN
the program again provided you haven't overwritten BASIC and watch the effect. If
you print to one of the screens in color, the color RAM for that set of four screens
will change. Note also that the screen editing won't be retained between screens;
there's only one link table, so you may no longer be able to modify an existing line
of BASIC.

Bits 0-3 control the starting address of the character generator bytes. As is the
case with the screen position, there is no direct correspondence with the character
generator. The highest bit is wired differently from the other three, so that if $9005
holds xxxxVWXY, the character generator table starts at %COOW XYOO 0000 0000.
Then, to confuse things a little more, when V is 1, C is 0, and vice versa. Basically,
this allows ROM to store characters for normal BASIC, while retaining the option of
user-defined characters which naturally must be placed in RAM.

For example, suppose $9005 holds xxxxOOOO. Then the character generator table
starts at % 1000 0000 0000 0000, or $8000. This is the uppercase and graphics mode
which VIC goes into when first turned on. If $9005 is altered to xxxxOOOI (by POKE
36869,PEEK(36869)+I, for instance), the character generator starts at %1000 0100
0000 0000, or $8400. These are reversed uppercase and graphics characters. $8800
and $8COO hold the lowercase equivalents, which you can see by adding an addi
tional 1 to 36869. There are four of these tables.

Note that PEEK(36869) AND 2 shows which mode the keyboard is in-O for
uppercase and 2 for lowercase. The unexpanded VIC-20 generally has 240 or 242 in
this location, setting upper- or lowercase respectively. POKEing 241 or 243, which
the VIC-20 would never set on its own, gives you unshifted characters that are
printed in reverse. Setting $9005 to xxxx01xx tries to put the character generator
tables into $9000, $9400, $9800, or $9COO; the first area is I/O chips, the second
color RAM, and the final two are nonexistent. As a result, you will not get stable
characters.

When $9005 holds xxxx1xxx, the range of values for the character generator is
zero to %0001 1100 0000 0000 ($1COO), in steps of $0400. The usable range is
$0000, $1000, $1400, $1800, and $1COO. One of those last four values is the normal
choice for user-defined graphics work.

$9006 (36870)
This register and the three that follow are read-only registers that you cannot write
to. This one yields the horizontal reading from a light pen. It is a latched value,
since grounding a line to the VIC chip reads a value into both this and the following
register. Both remain fixed until a new light pen reading is obtained. The resolution
is not fantastic: Only two dots (a quarter of a standard character) can be resolved,
and in practice resolution may be even less because of screen instability and in
adequacies in the pen. The horizontal values in a 22-column screen therefore have a

129

VIC-20 Architecture

maximum range of about 88; typically this register holds a value ranging from 48 to
135. See Chapter 16 for full programming information.

$9007 (36871)
Contains the vertical position of the light pen and is similar to $9006. Its typical
range is approximately 24 to 105 (38 to 129 in the U.K.), corresponding to quarter
character resolution with a 23-row screen.

$9008 (36872)
This and the following register are analog-to-digital converters and can be used with
paddles, a mouse, graphics tablets, or any attachment which outputs two co
ordinates. This register holds the first analog reading, which may range from 0 to
255. Programming is straightforward (for example, PEEK(36872) in BASIC), although
some elaborations are required, as explained in Chapter 16.

$9009 (36873)
This register holds the second analog reading. See notes on $9008.

$900A (36874)-$9000 (36877)
These four sound-generating registers are virtually identical in operation. The first
three are note generators; the fourth is a noise generator.

Bit 7 switches the register on or off. When bit 7 is set, the VIC chip generates a
square wave. If the amplitude (volume) is also turned on in register $900E, a tone is
generated and output with the TV signal. Thus, there are two independent switches
for sound.

Bits 0-6 control the frequency of the sound; the higher the value in the register,
the higher the pitch of the note. The value in the register serves as the start of a
countdown; when it has been incremented to 255, the output toggles and a square
wave is generated. $900A generates low tones, $900B generates medium tones, and
$900C generates high tones.

Each of the tone registers produces notes one octave below the following reg
ister, so there is a lot of overlap. The actual frequencies for the high note generator
are 15980/(255-X) (for the U.S.) or 17320/(255-X) (for the U.K. and Europe). Di
vide by 2 for the medium tone register and by 4 for the bass tone register. X repre
sents the actual contents of the register, except that in the case of 255 the
denominator becomes 128, producing the lowest note.

Program 5-4 shows how different values of X (given in the DATA statement)
affect frequency. Type in and run the program; then press any key to sound the next
pitch.

Program 5-4. Values vs. Pitch
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 POKE 36878,10:REM VOLUME ON :rem 192
20 DATA 254,253,251,247,239,223,191,255 :rem 134
30 READ X: POKE 36875,X:REM MEDIUM TONE GENERATOR

:rem 141

130

VIC-20 Architecture

35 PRINT "{CLR}":PRINT "X ="X:REM DISPLAY X WHILE
{SPACE}SOUNDING TONE :rem 102

40 IF X=255 THEN RESTORE :rem 119
50 GET X$:IF X$=·II. GOTO 50:REM AWAIT KEYPRESS

60 GOTO 30
:rem 47

:rem 2

Register $900D generates noise by randomly varying the frequency of the
square wave. Noise is used in the technical sense to describe a sound with no detect
able note. The VIC chip reloads the frequency-determining timer with pseudo
random values that are not less than the value in this register. There is no way to get
very low frequency noise with this register. However, very high sounds are easy to
achieve, because the average pitch rises rapidly as the value approaches 255.

Chapter 13 explores sound in detail.

$900E (36878)
Bits 0-3 control the volume of the sound. When these bits are zero, no sound is

sent to the TV even if one or more of the sound registers have bit 7 set. This gives a
range of 15 different volumes for bit values of 1 to 15.

All four sound registers are controlled by this register; relative volumes can't be
independently controlled. However, two or three registers may be set to generate the
same note, which may have the effect of reinforcing the note. The precise effect of
adding several sound registers depends on the exact time at which the registers were
loaded with their values.

Avoid maximum volume (with bits 0-3 set to 15, or %xxxxll11 in $900E) when
using VIC to make music, since the sound is often distorted on this setting. This is
the fault of the chip, not the TV.

Program 5-5 varies the volume to produce a steam engine sound. It combines a
low frequency component and a noise component, and continuously changes the
volume of both in a loop. Volume builds relatively slowly, then drops rapidly back
to zero.

Program 5-5. Steam Engine
10 POKE 36874,128:REM VERY LOW TONE
20 POKE 36877,129:REM SLIGHTLY DIFFERENT NOISE TON

E
30 FOR J=0 TO 15:POKE 36878,J:NEXT:REM CHANGE VOLU

ME
40 GOTO 30:REM REPEAT

If the auxiliary color is irrelevant (as it usually is when color graphics isn't in
use), it is sufficient to POKE 36878 with a value from 0 (silent) to 15 (maximum vol
ume). To change the volume without altering the auxiliary color, bits 4-7 have to be
left alone. Use POKE 36878, PEEK(36878) AND 240 OR X where X is 0 to 15. If you
want to use any value of X, PEEK(36878) AND 240 OR X AND 15 will throwaway
all bits in X adding 16 or more.

Bits 4-7 control the auxiliary color, another tricky concept. To illustrate it, switch
on an unexpanded VIC. Color RAM starts at $9600 (38400). Now PRINT

131

VIC-20 Architecture

PEEK(38400) AND 15. This returns the value 6, which is the color (blue)
corresponding to the asterisk at the top left of the screen. Note that since color RAM
uses only four bits, values 0-15 are the only significant values. AND 15 masks off
(ignores) any meaningless higher bits.

Note too that values from 0 to 7 are used within the VIC to denote the primary
and secondary colors black, white, red, cyan, purple, green, blue, and yellow. The or
der is identical to that on the keyboard, but the values for internal storage are 1 less
than appears on the keyboard. Thus, blue is stored as 6. Try POKE 38400 with any
value from 0 to 7; the asterisk, or any other character in the top left, will change
color. For example, POKE 38400,0 changes its color to black.

Since four bits are allowed in color RAM, and since you have so far used only
three to control the color, what does the fourth bit do? It sets auxiliary color mode,
but only for the one character for which the bit is set. Thus, normal and auxiliary
modes can coexist freely. Try POKE 38400 with values from 8 to 15. The top left
character is displayed in a distorted form and with more colors than are usually pos
sible. Usually a character has two color attributes: the background (one of 16 colors
which is common to the whole screen except the border) and the character's own
color (one of the 8 colors on the keyboard). However, when multicolor mode is set, a
character can take on twice as many possible colors. These are the background color
and character color, as well as the border color and a fourth color. That fourth color,
the auxiliary color, is identified in this register.

The change in display that occurred when you POKEd 38400 with a value be
tween 8 and 15 depends entirely on bit 4 of color RAM; when it is on, the VIC chip
automatically redefines its way of outputting its data to the TV. With ordinary graph
ics, if a bit is on, it takes on the character color; if it is off, it assumes the general
background color. But in auxiliary mode a pair of bits determines the color; 00 is
background and 10 the character color, while 01 is the border color and 11 is the
auxiliary color.

This adds to the color possibilities, but unfortunately (since two bits are required
to identify each color) it lowers the horizontal resolution. In fact, it yields characters
with widths defined by four characters instead of by eight characters. Thus, there is
a noticeable tendency for horizontal character elements to be finer than vertical
character elements.

Program 5-6 runs on the unexpanded VIC and shows the effect of using auxil
iary color. Lines 20 and 60 use the positions of screen memory and color memory;
they can be modified to work with any VIC configuration.

Program 5-6. Auxiliary Color
Refer 10 the "Automatic Proofreader" article (Appendix C) before II/ping in this program.

5 PRINT"{CLR}" :rem 153
10 POKE 36879,24:REM BORDER BLACK, BACKGROUND WHIT

E (0+8+16*1) :rem 202
20 POKE 38650,13:REM GREEN CHARACTER PLUS AUX COLO

R MODE : rem 25
30 POKE 38654,0:REM BLACK ORDINARY CHARACTER NEXT

{SPACE}TO AUX COLOR CHARACTER :rem 68

132

VIC-20 Architecture

40 POKE 36878,32:REM AUX COLOR, WHERE IT EXISTS, I
S RED (2*16) :rem 154

50 FOR J=0 TO 255:REM LOOP THROUGH EVERY CHARACTER
:rem 211

60 POKE 7930,J:POKE 7934,J:REM POKE SAME CHARACTER
TWICE : rem 16

70 GET X$:IF X$=""GOTO 70:REM AWAIT KEYPRESS
:rem 51

80 NEXT:GOT050 :rem 127

Type in and RUN the program. Then, press any key to cycle through the charac
ters, watching the effect of the auxiliary color. Most characters resemble their normal
selves, but some appear rather odd. Note that the horizontal resolution is much
greater than the vertical resolution. Also, note that the colors sometimes appear
weak, since they may be present in small amounts. For instance, a small area of the
green character color may appear gray.

The program can be modified to show other color combinations. For example,
the function keys could change one color each, or you could replace line 80 with
NEXT: POKE 36879, 255 AND PEEK(36879) + 1 : GOTO 50 to cycle all border,
background, and reversed character combinations. The colors need not be different.

Auxiliary color mode makes multicolor programming relatively easy, because the
characters appear in a disguised form and effectively enlarge the VIC-20's built-in
character set. When you need custom characters, for instance, it may be possible to
save work by selecting suitable shapes from this extra character set without having
to define a second character set of your own. A BASIC program can be developed to
move ordinary characters around on the screen while setting colors by POKEs to
color RAM. It is simple to convert these POKEs to multicolor mode, or to add
POKEs to those parts to be displayed in multicolor, and if the characters have been
well selected, the result should be effective.

Contrary to what you might think, multicolor mode operates in exactly the same
way in double-size (8 X 16) character mode. This is easy to demonstrate. Just add
another program line (for instance, add 0 POKE 36867,47) to set the double-size
graphics flag in register $9003. Run the program, and again the whole double
character has four colors and less resolution than normal.

If you are using this mode and not using sound, change the auxiliary color by
POKE 36878, 16*X where X is 0 to IS, corresponding to the color required. If you
wish to leave sound amplitude unchanged, mask off the lowest 4 bits with POKE
36878, PEEK(36878) AND 15 OR 16*X where X is 0 to 15.

$900F (36879)
Bits 4-7 control the background color. Sixteen different background colors (and

auxiliary colors) are available. You can number these 0-15 and change the back
ground in BASIC with POKE 36879, PEEK(36879) AND 15 OR 16*X, where X is 0 to
15. The actual colors are these:

o BLACK 4 MAGENTA
1 WHITE 5 GREEN
2 RED 6 BLUE
3 CYAN 7 YELLOW

133

VIC-20 Architecture

8 ORANGE
9 LIGHT ORANGE

10 PINK
11 LIGHT CYAN

12 LIGHT MAGENTA
13 LIGHT GREEN
14 LIGHT BLUE
15 LIGHT YELLOW

The colors from 0 to 7 are arranged in complementary pairs. In other words, if
any complementary pair is turned on together (added together), the result will be
white. Other colors are also achieved by mixing colors on the screen. Cyan is blue
plus green, magenta is blue plus red, and yellow is red plus green. White is red plus
green plus blue.

The monitor creates these colors by turning on combinations of the red, green,
and blue color guns in the monitor's cathode ray tube. For example, magenta is
created by simultaneously applying a voltage to the red and blue guns. White is
made by applying equal voltages to the red, green, and blue guns, thus mixing equal
proportions of red, green, blue, and so on.

The lighter colors, numbered 8 to 15, have similar patterns except for colors 8
(orange) and 9 (light orange). Colors 10 to 15 are lightened versions of colors 2 to 7
and can be considered identical except for added white (red, blue, and green). Some
of them-for example, light orange, light cyan, and light yellow-can almost be
treated as light gray.

Program 5-7 shows a use of the background color and also the reverse flag. Line
10 prints a message in white. If the program stops there, nothing (including the
flashing cursor) will be visible if the screen is in its usual white and cyan mode.
However, line 30 changes the background colors, omitting white and black, from
orange through light yellow. Since the reverse flag is off, the lettering changes in a
colorful way at a speed determined by line 40. Even if the whole screen is full of
writing, the colors change at the same rate, far faster than they would be changed by
POKEing a new color into each color RAM location. Change line 30 to 30 POKE
36879,] + 8 to see what you get when the reverse flag is on.

Program 5-7. Changing Colors
10 PRINT" {CLR} (WHT}MESSAGE"
20 FOR J=48 TO 255 STEP 16
30 POKE 36879,J:REM REVERSE FLAG OFF, CHANGE BACKG

ROUND COLOR
40 FOR K=l TO 100:NEXT
50 NEXT:GOTO 20

To get a similar effect on an all-black screen, the foreground must be set black.
Add the following line: 15 FOR J=38400 TO 38911:POKE J,O:NEXT. Note that this
line must be located after the screen-clear.

Bit 3 is the reverse bit which can reverse background and foreground. When
this bit is on, characters are displayed normally (that is, O's in the character generator
appear in the background color, while l's appear in the character color). When it's
off, characters appear reversed.

The reverse bit is almost always on. Few programs use reverse mode, because it
is conceptually tricky and because there are easier ways to achieve a similar effect,

134

VIC-20 Architecture

notably to PRINT the CTRL-RVS character. Watch the effect of Program 5-8, which
toggles the reverse flag off and on.

Program 5-8. Reverse Flag Toggle
100 P=36879
110 POKE P,PEEK(P)+16*«(PEEK(P)AND8)=8)+.5)
200 GET X$:IF X$="" GOT0200
210 GOT0100

Line 110 tests for bit 3 and flips it. To show the full effect, print different
colored characters on the screen first. This bit has the same effect with double-sized
characters, but note that it has no effect on characters in auxiliary mode. Chapter 12
discusses this bit in more detail.

Bits 0-2 control screen border color. The exterior border can take any of 8 col
ors, which are the same primaries and secondaries as the character colors (black,
white, red, cyan, purple, green, blue, and yellow). In BASIC the border can be
changed with POKE 36879, PEEK(36879) AND 248 OR X where X is assumed to
take a value from 0 to 7. Sometimes it's easier to let X take consecutive values, for
example when looping from 0 through 255, and in this case put (X AND 15) in place
of X.

This register is initialized to $1 B (27). With that value, the background color is 1
(white), the reverse flag is 1 (nonreversed characters), and the border color is 3
(cyan). In addition, the color RAM is set to 1 (white) on initialization or on clearing
the screen, so a POKE to the screen won't be visible (it is white on white) unless the
color is set too. Alternately, if you are POKEing to the screen, the POKEs can be
made visible by changing the background (for instance, by POKE 36869,8 to produce
white characters on black). This is easier and faster than doing something like FOR J
= 38400 TO 38400 + 511 : POKE J,O : NEXT.

Versatile Interface Adapters (VIAs)
The Versatile Interface Adapter, or VIA, is a 40-pin chip called the 6522 that is de
signed specifically to handle interfacing. Connecting the VIC to external devices is a
complex and technically involved subject, and there isn't space to deal thoroughly
with its hardware aspects here. However, this section discusses the important soft
ware aspects of the VIA. You will find this particularly helpful if you wish to write
your own, or decipher other people's input/output routines, or handle such rel
atively easy matters as disabling RESTORE or turning the cassette motor on.

Your VIC-20 has two VIAs, located at the upper left corner of the circuit board.
The best way to introduce yourself to these chips is to examine VIC's schematic,
which is the fold-out wiring diagram in Commodore's VIC-20 Programmer's Reference
Guide. The 6522 chips appear near the bottom of this diagram. They are connected
to the keyboard, the RESTORE key, the cassette port, the serial port, the joystick and
light pen port, pin 18 of the expansion port, and both interrupt pins (IRQ and NMI)
on the 6502 processor. They're also connected to the 24-pin user port at the back of
the machine. That port has its own power supply and an eight-bit parallel data port,
plus two control lines.

135

VIC-20 Architecture

All serial output (to VIC disk drives, printers, etc.) is handled by the VIAs
through the serial port. All RS-232 input or output using device number 2 (usually a
modem) has to use the user port. Non-VIC gadgets which aren't memory expanders
can plug into any of the ports; for example, converters to the IEEE bus standard can
use the memory expansion port and intercept the normal input and output from
there, or if the converters have an external processor, they can use the serial port or
the user port. In fact, given the right software, the cassette port could also send and
receive messages. The point is that all interfacing goes through the VIAs.

The chip labeled UDE8 on the schematic occupies 16 bytes in VIC's memory at
$9010-$901F. It is usually called VIA A or VIA 1. The other, UDE7, appears at
$9020-$902F and is called VIA B or VIA 2. A map of these VIAs' functions can be
built up by examining schematics, looking at the hardware, and by searching VIC's
ROMs to see how the VIA is used. Both chips are quite active, as you can see by
PEEKing with Program 5-9.

Program 5-9. Looking at VIA
10 PRINT" {CLR}"
20 PRINT" {HOME} II

30 FOR J=36880 TO 36895:REM VIA A--FOR VIA B LET J
=36896-36911

40 PRINT J, PEEK(J)"{LEFT}":NEXT:GOTO 20

Alternatively, you might want to try the ML routine given in Program 5-10. It is
faster and can print 16 addresses of either of the VIA chips (in decimal) along with
their bit patterns.

Program 5- 10. Looking at VIA with ML
o DATA 169,147,44,169,19,32,210,255,162,16 :rem 24
1 DATA 134,253,169,145,133,254,32,205,221 :rem 218
2 DATA 32,63,203,160,0,177,253,133,255,169 :rem 14
3 DATA 48, 6, 255, 144, 2, 169, 49, 32, 210

:rem 187
4 DATA 255,200,192,8,208,240,169,13,32,210 :rem 8
5 DATA 255,230,253,166,253,224,32,208,211 :rem 220
6 DATA 32,225,255,208,197,96 :rem 112
10 FOR J =828 TO 890: READ X: POKE J,X: NEXT: SYS

{SPACE}828 :rem 238
100 REM ****{4 SPACES}DISPLAY ADDRESSES AND CONTEN

TS OF VIA#1{4 SPACES}**** :rem 131
110 REM ****{14 SPACES}FOR VIA#2, CHANGE

{16 SPACES}**** :rem 180
120 REM **** 16 TO 32 (LINE 0), 32 TO 48 (LINE 5).

{9 SPACES} **** : rem 91

At this point it is helpful to look at the VIA chips' pinout on the schematic. Both
chips have an eight-bit data bus, as expected, labeled DO to D7. There are four ad
dress bits, RSO to RS3, allowing 16 addresses to be distinguished, plus a chip select
line. There are also Reset, clock, IRQ, Read/Write, + 5 Volt power, and ground lines,

136

VIC-20 Architecture

which have the normal functions of synchronizing timing, sending interrupt request
signals, and so on.

The 20 lines actually used in interfacing are, for each VIA, eight lines making up
Port A (PAO-PA7), eight lines making Port B (PBO-PB7), and four control lines (CAl,
CA2, CBl, CB2). Each of these lines can be either high (at approximately +5 volts)
or low (approximately 0 volts). This is how VIA B reads the keyboard: A keypress
grounds a connection to the VIA, and a zero value appears and is read. Similarly,
VIA A reads a joystick at the controller port; again, a simple grounding action is used.

Generally, VIA programming simply involves arranging or comparing patterns
of O's and l's, typically by ANDing or ORing data. The same programming prin
ciples apply in both BASIC and ML, apart from speed-sensitive processing, so the
user port can often be controlled with POKEs and PEEKs.

The other major aspect of VIA programming is the interrupt handling. Each VIA
has an IRQ (interrupt request) line which is normally high but can be brought low. If
that line is connected to the 6502 processor, then whenever the VIA generates an
interrupt the 6502 will process it.

Seven different events can trigger an interrupt, so the VIA has a register from
which the processor can determine which event just took place. You can let inter
rupts take place upon either of two types of transition: active low, in which a transi
tion from high (5 volts) to low (0 volts) triggers the interrupt, and active high, which
is the OppOSite. If a triggering transition occurs, it is called an active transition.
Transitions in the other direction are not considered active.

Figure 5-9 shows the internal arrangement of any VIA. It is helpful to take a
systematic look at its features and at the names and abbreviations given to them.

VIA Bit Conventions
Fortunately, the 6522 (and other chips in the series) has a standardized set of
conventions for its registers. A bit value of 1 has one of the following effects:

1. Sets a line high, to 5 volts
2. Configures a line for output
3. Defines an active transition as positive (0 to 1)
4. Shows that an active transition has been detected
5. Enables an interrupt to occur when a line receives an active transition

Of course, zero bit values have the opposite effect.

Ports
There are two ports, A and B. These are eight-bit registers held in a single byte; the
individual bits, or lines, are labeled PAO-PA7 in port A and PBO-PB7 in port B.
Sometimes the ports are called lORA and IORB (input/output register A and B).

Each bit can be configured for either input or output. It's often convenient to
configure all eight identically (for instance, to scan the keyboard). If the configuration
is for input, PEEKing the ports shows whether a bit is high (+5 volts) or low (0
volts). Each bit configured for output will set its line at 5 volts or 0 volts, depending
on whether 1 or 0 is POKEd into the port's bit. Some hardware knowledge is needed
to keep from drawing too much power from the chip.

137

VIC-20 Architecture

Figure 5-9. General Diagram of VIA's Intemal AlTangement

Bits 7 6 5 4 3 2 o

Bit Address: Port B IORB

Bit Address + I Port A (with CA2 handshake) lORA

Bit Address + 2 Data Direction Register for Port B DDRB

Bit Address + 3 Data Direction Register for Port A DORA

Bit Address + 4 Timer I (low byte) TlC-L

Bit Address + 5 Timer I (high byte) TlC-H

Bit Address +6 Timer I Latch (low byte) TlL-L

Bit Address + 7 Timer I Latch (high byte) TlL-H

Bit Address + 8 Timer 2 (low byte) T2-L

Bit Address +9 Timer 2 (high byte) T2-H

Bit Address + A SHIFT Register SR

Bit Address + B Timer I Timer 2 SHIFT Register Port B Port A ACR
Control Control Control Latch Latch

Bit Address +C CB2 CBI CA2 CAl PCR
Control Control Control Control

Bit Address + 0 IRQ flag Tl T2 CBI CB2 SW-Reg CAl CA2 IFR
on/off out out trans'n trans'n out trans'n trans'n

Bit Address + E interrupt
enable/
disable

Tl T2 CBI CB2 SW-Reg CAl CA2 IER

Bit Address + F Port A (without CA2 handshake) lORA

Port B appears before port A in the memory map. Even more confusingly, port
A can be found in memory in two different places, and the same data appears in
each. The difference is that one has a handshake effect with CA2 while the other
does not, so when CA2 is irrelevant, the two are interchangeable.

Using control lines CAl and CA2, ports A and B can be latched, meaning that
their current value will be retained. For example, an active transition on CAl freezes
port A's contents until the next active transition on that pin. This is useful whenever
a value to be read depends on some external event.

138

VIC-20 Architecture

Data Direction Registers
DDRA and DDRB are the data direction registers for ports A and B. A value of 1 sets
the corresponding bit in the port for output, while a 0 sets it for input. Thus, $00
configures the entire port for input, and $FF configures it for output.

Note that on switching on, the RESET line to the VIA causes all the internal
registers to be set to zero, so the data direction is set for input. This prevents hard
ware connected to the chip from being turned on, however briefly.

Control Lines
Each port has two control lines. Port A has control lines CAl and CA2, while port B
has lines CBl and CB2. Each control line has its bit connected to a pin on the chip,
so the ports have ten bits each if all the lines are used.

The purpose of the control lines is, not surprisingly, to control the ports (for
example, to determine the precise point at which reading or writing takes place).
This is necessary, because inputs will hardly ever synchronize with VIC. CAl and
CBl are always input lines; CA2 and CB2 may be configured either for input or out
put. Note that each VIA has its own ports and control lines. The VIC-20 has two
CAl lines, one for each VIA, so CAl doesn't refer to a specific line, as you may be
led to think.

A slightly tricky point is that the control lines' status is not present as a bit in
the VIA. The programmer can set a line for input and wait to detect changes in its
status through the interrupt facilities (or set a line for output and then set it high or
low), but there's no bit which directly reveals the current high or low status of any
control line.

Timers
Each VIA has. two 16-bit timers, called Tl and T2, occupying two registers apiece.
Generally speaking, timers have two functions. One, by far the most important, is
timing in the usual sense; the other is counting, which isn't used in VIC. When a
value is POKEd into a timer, it is immediatley set to decrement once every clock
cycle. When any timer reaches zero, an interrupt flag is set if it has been enabled.
With a 1 megahertz clock, the maximum time interval between interrupts is therefore
about $FFFF millionths, or 1/15, second.

Timer Tl has a latch feature, actually another 16-bit register which stores Tl's
value. When T1 reaches zero, the latched value is reloaded and the process repeated.
Thus, an indefinite series of regularly repeated interrupts is possible, though with a
maximum delay between interrupts of only 1/15 second. This is how the keyboard
interrupt is generated.

In this way, T1 takes up four bytes and T2 takes up only two. The rule is that
reading the low byte of either timer (but not the latch) clears its own interrupt flag,
while writing to the high byte clears the flag and starts the timer decrementing. One
shot interrupts, which time out only once instead of continually repeating, can be
used for such purposes as tracing machine language (where an interrupt can be
made to occur before the next ML command is complete) or for timing the response
of equipment which may not be connected. In precision timing like this, the low byte
is POKEd into the timer first. Then the high byte is POKEd to start the countdown.

139

VIC-20 Architecture

If T2 is set for input, it doesn't time in the manner just described. Instead, it
counts the number of pulses received on line 6 of port B and gives an interrupt sig
nal when a preassigned number has been detected. As mentioned, the VIC doesn't
use this facility.

Tl has an analogous feature: It can be set to output a pulse to line 7 of port B.
In free-running mode this continually toggles (reverses) PB7.

The Shift Register
This eight-bit register is connected to CB2. On command, it performs eight shifts,
having the effect either of moving eight bits singly to CB2 or (if configured for input)
of inputting eight bits from CB2 one at a time into the shift register. The shift out is
analogous to the machine language instruction ASL, with the high bit moved first
into CB2, then into bits 6, 5, 4, and so on, so the byte is output in serial form. Shift
ing in is analogous to ROR on the 6502.

The shift register can be timed by T2, or at the same rate as the 6502 using the
so-called phase two clock. Alternatively, another external clock may be used. This is
a versatile register, which in principle extends the VIC's usefulness. However, it con
tains a number of bugs and has to be treated with caution. For example, start-up de
lay is dependent on instruction sequence and timing.

Control Registers of the VIA
Three bytes control the configuration of everything about the VIA, from timers and
shift register to ports, control lines, and interrupts. The interrupt flag register (IFR),
which can be regarded as a fourth control register, hasn't the same status as the
others, since it only provides a record of what's happened without actually control
ling events.

Auxiliary Control Register (ACR). This register controls the timers, the shift
register, and the latch status of ports A and B. Figure 5-10 reflects the conceptual
arrangement of bits 7-0. The shift register control has three bits, and therefore eight
combinations, which explains its prominence.

Figure 5- 1 O. Auxiliary Control Register
ACR7 ACR6 ACRS ACR4 ACR3 ACR2 ACRl ACRO

Timer 1 Control Timer 2 SHIFf Register Control PortB PortA
Control Latch Latch

O=PB? O=One
Unused Shot O=One 000 = SHIFT Reg. Disabled o = Disabled O=Disabled

l=Output 1 = Continuous Shot 001 = SHIFT In by Timer 2
toPB? 1= OlO=SHIFT In, syst. Clock l=Enabled 1 = Enabled

Count 011 = SHIFT In, Ext. Clock on CBl on CAl
Set No. 100=Free RUN by Timer 2 Transition Transition
ofPB6 101 =sHIFT Out by Timer 2 (In/Out) (In)
Pulses 110=SHIFT Out, Syst. Clock

111 = SHIFT Out, Ext. Clock

140

VIC-20 Architecture

Peripheral Control Register (PCR). This register controls the operating modes
of the four control lines CAl, CA2, CB1, and CB2. CAl and CB1 are each allocated
one control bit in this register; their function is to set active transitions high or low.
However, CA2 and CB2 are much more complex and have three control bits each.

If either CA2 or CB2 is set for input, the active transition may be set high or
low. There's also a choice of two methods to allow the flag in IFR to be cleared:
POKEing a 1 into IFRO or IFR3, or simply reading or writing to port A or B.

The second option is often very useful. If CA2 or CB2 is set for output, manual
mode allows the line to be set high or low. Configurations of the form lOx allow for
handshaking. For instance, 100 sets CA2 low when port A is written to or read from
and resets high on an active transition of CAl, while 101 sets CA2 low for just one
cycle. Port B is similar.

Figure 5-11 diagrams this register.

Figure 5- 11. Peripheral Control Register
PCR7 PCR6 PCRS PCR4 PCR3 PCRl PCRI PCRO

CBI CAl
CB2 Control Control CA2Controi Control

Direction: Port CB2Pulse Active Direction: Port CA2Pulse Active
I=Out Read/Write =1 Trans'n: I=Out Read/Write =1 Trans'n:

=0 CB2Hand- High = 1 =0 CA2Hand- High = 1
shake=O Low=O shake=O Low=O

Manual = 1 CB2Hi=1 Manual=l CA2Hi=1
CB2Lo=0 CA2Lo=0

O=In Active Clear O=In Active Clear
High=l IFR only = 1 High = 1 IFRonly=l
Low=O IFRorB=O Low=O IFRor A=O

Figure 5- 12. Interrupt Flag and Enable Registers
IFR7 IFR6 IFRS IFR4 IFR3 IFRl IFRI IFRO

IER7 IER6 IERS IER4 IER3 IERl IERl IERO

1=1 Timer 1 Timer 2 CBl CB2 SHIFTRgr CAl CA2
Enables

0=1
Disables

Interrupt Flag Register (IFR) and Interrupt Enable Register (IER). These reg
isters are symmetrical with respect to each other and can be considered together. The
first indicates whether an interrupt request has occurred, and if so, which VIA device
caused it. This is important, for it allows the interrupt processing to call the appro
priate interrupt servicing routine. These flags are cleared by reading (or writing) the
corresponding registers (though, as noted in PCR above, CA2 and CB2 may be

141

VIC-20 Architecture

exceptions). This explains why VIC's ROM occasionally has seemingly pointless
reads of some VIA registers.

IER7 controls the function of the rest of IER. When IER7 is 0, each bit set to 1
clears its corresponding interrupt enable; when IER7 is 1, each bit set to 1 sets its
interrupt enable bit. Thus, $7F first clears all interrupts; then $81 enables CA2 inter
rupt. Figure 5-12 will help make this clear.

VIAs have a feature not found in ordinary memory: Reading from some registers
alters others. This is useful with interrupts-reading data automatically clears flags
but displays of the VIA's contents aren't entirely accurate. A potential problem can
arise because of this. Its solution requires some ML knowledge. A POKE (or PEEK)
to certain VIA locations has the effect of reading them first, so the result differs from
that obtained by a simple absolute address mode ML command like STA $9020. The
reason: Both commands use indirect addressing, which in effect calculates the ad
dress before POKEing. This can be avoided with a ML subroutine using absolute
addressing to POKE in values.

The User Port
Before looking at the VIC's usage of the two VIAs, it is helpful to briefly discuss the
user port. This is a 24-pin port at the back of the VIC, which doubles as the RS-232
port. The pinout, as it appears from the back of VIC, is shown in Figure 5-13.

Figure 5- 13. VIC User Port
Light Cassette

JoyD Joy 1 Joy 2 Pen Button Serial
eND + SVDC RESET PA2 PA3 PA4 PAS PA6 AtnIn +9VAC +9VAC eND I

1 2 3 4 S 6 7 8 9 10 11 12

A B C D E F H K L M N
I eND CBl PBD PBl PB2 PB3 PB4 PBS PB6 PB7 CB2 eND

All the port and control lines apply to VIA A. Lines A to N are the most im
portant. Be aware that some VIC manuals erroneously describe one of the 9-volt AC
supply lines as ground.

VIC's VIAs
Figure 5-14 shows the registers of VIA A. However, since the contents of those reg
isters can vary, such diagrams are not very satisfactory. DDRA, which corresponds to
port A, is normally configured as shown, with most bits set for input. The ACR val
ues are also normal: Timer 1 generates continuous interrupts, timer 2 gives one-shot
output, and neither port is latched.

Note that the cassette motor control uses manual output, where CA2 high
switches the motor off, and vice versa. Thus, PCR is either xxxxll1x (motor off) or
xxxxll0x (motor on). Pressing the cassette PLAY button appears to switch on the
motor like an ordinary recorder, but the motor is in fact controlled by VIC.

142

VIC-20 Architecture

Note that this VIA's Interrupt Request line is connected to the 6502's NMI line.
The RS-232 handler uses NMIs in its processing.

Figure 5- 14. VIA A Registers

$9110 (37136)

$9111 (37137)

$9112 (37138)

$9113 (37139)

$9114 (37140)
$9115 (37141)

$9116 (37142)
$9117 (37143)

$9118 (37144)
$9119 (37145)

$911A (37146)

$911B (37147)

$911C (37148)

Bit 7

Data Set
Ready

1

0

6 5 4 3 2

User Port or RS232 Port:

Clear Unused Received Ring Data
To Send Line Indicator Terminal

Signal Ready

Other Port A Mostly Used

(Varies)

0 0 0 0 0

RS-232 Output Timer of Tape Write Timer

(Sets repeating value in Timer 1)

RS-232 Input Timer

SHIFT Register-Not Used

1 0 0 0 0

User Port User Port Cassette

Request
To Send

0

0

Pin M Control Pin B Motor Control

$911D (37149)

$911 E (37150)

$911F (37151)

Interrupt RS-232
Flag Out or

Tape
Write

Serial Cassette
ATN Out Button

CAl-RESTORE Key
CA2-Cassette Motor

Control

RS-232 User Port User Port
Input Pin B Pin M

joy joy OJ joy 1
Fire Paddle

Fire

CB1-User Port Pin BjRS-232 Receive Data
CB2-User Port Pin MjRS-232 Transmit Data

Restore
Key

joy 2 Serial
Data In

o

Received Port B
Data

Port A

DDR B

0 DDRA

Tl

T2 Latch

T2

SR

0 ACR

Restore PCR
Key

Control

IFR

IER

Serial Port A
Clock In

143

VIC-20 Architecture

VIA B
This chip controls most of the keyboard and tape interfacing, as well as most of the
serial communications (primarily with disks and printers). Again, ACR sets T1 to re
peat; changing the latched value will alter the interrupt rate. The rate is increased
when tape is read, which is why the built-in clock gains time. DDRA and DDRB are
left as shown at all times, unless RS-232 or the joystick is read, but note that a bug
will occur if a key is pressed while the joystick is being pulled to the right.

Figure 5-15 diagrams VIA B.

Figure 5- 15. VIA B Registers
Bit 7 6 5 4 3 2

$9120 (37152) RS-232 In Tape Out
Joy 3

$9121 (37153) Keyboard Input

$9122 (37154) 1 1 1 1 1 1

$9123 (37155) 0 0 0 0 0 0

$9124 (37156)
$9125 (37157)

Keyboard Interrupt or Tape Read Timer

$9126 (37158)
$9127 (37159)

$9128 (37160)
$9129 (37161)

$912A (37162)

$912B (37163) 0 1

Sets Repeating Value in Timer 1

Serial Device Time Out or Tape Write Timer

SHIFT Register-Not Used

0 0 0 0

1

0

0

$912C (37164) Serial Data Out Serial Serial Port Clock Out

$912D (37165)

$912£ (37166)

$912F (37167)

144

Control SRQ In Control
Control

Interrupt Keybd. Serial SRQ In
Flag Interrupt Time

or Out or
Tape Tape
Read Write
Time Time

Other Port A Mostly Used

CAl-Cassette Read Line
CA2-Serial Port Clock Out
CB1-Serial SRQ In
CB2-Serial Data Out

Tape
Read
Data

o

Port B

Port A

1 DDRB

0 DORA

II

TJ Latch

T2

SR

0 ACR

Cassette PCR
Read

Control

IFR

IER

Port A

VIC-20 Architecture

Examples of VIA Programming
Here are some simple programming experiments-about as simple as they can be
that let you hear the results of VIA programming. All you need is a 24-pin edge
connector to fit the user port and lengths of wire to be soldered to the edge connec
tor, plus (for some demonstrations) a small transistor radio or an audio amplifier.
Caution: Don't inadvertently connect power lines to data lines, or you may damage
your VIC.

CB2 line sound. This is an old favorite. Connect a wire to pin N of the edge
connector; this is line CB2. Wrap the other end of the wire around the radio several
times. CB2 is connected to the shift register of VIA A, and the radio can detect out
put square or rectangular waves generated by the shift register. If you type in and
run Program 5-11, you should hear a glissando effect. Note that the order of lines 10
and 20 is important; reversing them doesn't work. Obviously, it'll sound the same if
a value such as 120 (%01111000) is POKEd in line 20. The value 51 (%00110011)
sounds as though it has twice the frequency, and 85 (%01010101) produces four
times the frequency. In fact, there are 17 fundamentally different bit patterns, not
including repetitions and inversions; their smallest decimal values are 1, 3, 5, 7, 9,
11, 15, 17, 19, 21, 23, 27, 37, 43, 45, 51, and 85.

User port sound with 8-bit resolution. Roughly sinusoidal waveforms can be
generated from the user port with the aid of the simple digital-to-analog converter
shown in Figure 5-16.

Figure 5- 16. Simple Digital-to-Analog Converter

• •
• •

•
C

•
D

•
E

•
F

•
H

User Port

•
J

•
K

•
L

•
•

•
N

Ground

l
To Amplifier

The following simple machine language program will produce audio signals at
the output of the D / A converter. It needs a table of 256 bytes POKEd into RAM. For
example, 1=0: FOR J=5000 TO 5255: POKE J,128+125*SIN(I):I=I 2* 7f/256: NEXT
gives a sine wave output, by storing one cycle of a sine curve over 256 locations.

145

VIC-20 Architecture

LOA #$FF
STA $9112

LOOP LOA TABLE,X
STA $9110
INX
BNE LOOP
LOA $91
CMP #$FE
BNE LOOP
BRK (or RTS)

; CONFIGURE PORT B FOR OUTPUT
; TABtE OF 256 VALUES IN RAM
; OUTPUT VALUE TO USER PORT

; TEST STOP KEY

PB7 square wave for clocking. Pin L of the user port is PB7, which is related to
timer 1. If ACR is 11xxxxxx, output to PB7 continually toggles when timer 1 times
out, generating a square wave. A wire to pin L will give you a square wave, using
Program 5-12.

Program 5- 12. Square Wave Generator

10 POKE 37147,191
20 POKE 37142, LO:REM LOW LATCH VALUE
30 POKE 37143, HI:REM HIGH LATCH VALUE
40 POKE 37141, HI:REM START TIMER 1

Changing the IRQ rate. The IRQ rate is readily changed. Simply alter the
latched value in $9126 and $9127 (37158 and 37159).

Disabling RESTORE. $911E (37150) normally holds $82 (130). The value of 2
in the lower half-byte is the RESTORE key flag, since CAl is connected to RESTORE.
The flag can be reset to zero by storing $7F in the register, which turns off all
interrupts.

Storing $02 turns off only the RESTORE key, leaving other interrupts intact (al
though, in practice, there usually are no others). POKE 37150,127 or POKE 37150,2
therefore disables RESTORE. POKE 37150,130 returns operation to normal. This is
only one example of setting interrupt flags; as the diagram of VIA A shows, pin B or
pin M can be made to cause interrupts on an active transition. Thus, to take just one
illustration, your VIC could count external events by making them trigger interrupts
(which in turn could be counted by the interrupt routine written for the purpose).

Using cassette read and write lines. A connection to the cassette read line (line
4 on the cassette port) lets you aurally check tape reading. You will hear a harsh,
raspy noise. Program tapes played on conventional tape recorders produce a similar
sound.

If you monitor the write line (line 5 on the cassette port), you'll hear the tone
and subsequent program or file recording.

Checking the cassette button and switching the cassette motor on and off are ex
plained in Chapter 14. So is the possibility of converting normal recorders to work
with VIC.

"Tape Talker," the following short machine language routine, demonstrates sev
eral interesting aspects of the VIA by attempting to play ordinary tape recordings.
Some tones, like whistled tunes, are reproduced fairly recognizably, and some re-

146

VIC-20 Architecture

corded voices may be comprehensible. The program might actually be useful for
copying digital tapes.

SEI ; INTERRUPT PROCESSING ISN'T REQUIRED
LDA #$7F ; 0111 1111 TURNS OFF ALL INTERRUPTS:
STA $912E ; STA IERB TURNS THEM OFF IN VIA B.
STA $911E ; STA IERA TURNS THEM OFF IN VIA A.
LDA #$82 ; 1000 0010 ENABLES AN INTERRUPT:
STA $912E ; STA IERB ON CAl TRANSITION (I.E., TAPE READ) IN VIA B,

AND
STA $911E ; STA IERA ON CAl TRANSITION IN VIA A (I.E., RESTORE KEY)

LOOP LDA #$01
STA $912C
LDA #$EC
STA $911C
LDA #$02

WI BIT $912D

W2

BEQ WI
STA $912D

LDA #$00
STA $912C
LDA #$CC
STA $911C
LDA #$02
BIT $912D

BEQ W2
STA $9120
JMP LOOP

,
; STA PCRB SETS ACTIVE TRANSITION ON TAPE READ HIGH
; 111 0 110 0 IN PCRA; 111 SETS CB2 OF VIA A = PIN M OF
; STA PCRA; USER PORT, HIGH. (110 SETS TAPE MOTOR ON.)

; BIT IFRB WAITS TILL IFRB SHOWS AN INTERRUPT HAS
OCCURRED
; ON TAPE READ TRANSITION.
; STA IFRB; STORING BIT LIKE THIS CLEARS THE INTERRUPT
FLAG.

; STA PCRB SETS ACTIVE TRANSITION ON TAPE READ LOW.
; 110 0 110 0 IN PCRA; 110 SETS CB2 OF VIA A = PIN M OF
; STA PCRA; USER PORT LOW (110 KEEPS TAPE MOTOR ON)

; BIT IFRB WAITS TILL IFBR SHOWS ANOTHER INTERRUPT
OCCURRED
; ON TAPE READ TRANSITION IN THE OTHER SENSE.
; STA IFRB CLEAR THE INTERRUPT FLAG.
; CONTINUE WITH LOOP.

Here's how it works. The cassette read line is CAl of VIA B. The motor is
turned on, and tape signals are input on CAl. Then, when CAl is high, the program
sets pin M of the user port (bottom, next to the right, as seen from the back of the
VIC) high; when it's low, the pin is set low. Pin M is a CB2 line, and is therefore
controllable in manual mode. The original tape is output in a simplified square-wave
form which only considers transitions from high to low or vice versa; that is why
definite tones can be reproduced with some faithfulness. Try monitoring pin M of
the user port. Note that the RESTORE key is also allowed to interrupt, so the pro
gram doesn't loop indefinitely. It is pure coincidence that $82 sets both interrupts.

EPROMs. Although the user port has no address lines, it is possible to connect
11 of its lines to a 2K EPROM socket and treat them in software as though they were
address lines. EPROMs can then be burned to save your own ML programs. An ac
curate external power supply of 25 volts (not obtainable directly from the VIC) is
necessary.

An EPROM can be read back through the user port, but it can't be run as a pro
gram since it doesn't use the normal addressing. To run an EPROM, it must be con
nected to the VIC's memory expansion system.

147

VIC-20 Architecture

Ports and External Adapters
You have seen that the user port doubles as a sort of RS-232 port. RS-232 is a stan
dard for transmitting serial data; the alternative transmission system is parallel trans
mission, where several (typically eight) bits are sent together. As might be expected,
serial transmission tends to be slower, but parallel transmission is more expensive in
terms of hardware. Serial transmission has another advantage: It's easier to transmit
reliably over long distances.

An RS-232 connector has 25 pins arranged in two rows, although the VIC isn't
equipped with a direct connector. To keep the costs down, VIC's port is part of its
main board, so some adapter is necessary. RS-232 and RS-232C standard devices are
designed to operate with ideal voltages of -12 volts and + 12 volts, although the
working range is much larger (3 to 20 volts, with luck).

RS-232 and RS-232C differ in their pinouts. Acoustic modems generally use RS-
232C, so they must have an adapter which allows for that configuration. VIC's RS-
232 capability is achieved mostly through software; VICTERM, for example, has only
one reference to the VIA and relies mostly on ROM routines. RS-232 devices are as
signed device number 2 when a file is opened with a statement like OPEN
1O,2,0,baud rate. Any subsequent input or output (by GET#10, for example) uses
two buffers at the top of BASIC memory for storage, and the VIAs are used for
moving data through the user port.

VIC's other input/output port, the six-pin serial port, is located next to the cas
sette port and operates VIC disks and printers. It is nonstandard, and is in fact a
modification of the IEEE interface system found in PET /CBM machines. IEEE-488 is
a 24-pin parallel transmission standard which CBM hardware uses in a slightly
modified form. Commodore's 8050 double-density dual disk drives and the dis
continued 4040 dual disk drives (compatible with VIC 1540 format) are typical of
these IEEE devices; however, VIC cannot simply plug into them. These devices are
faster than VIC disks and offer some other advantages, but they aren't widely used
items because of cost.

Yet another type of port, for printers, is the Centronics interface. This is a 36-pin
parallel system. Again, VIC needs some sort of adapter to handle this. Many printer
users have VIC printers which can be plugged directly into the serial port, but the
attraction of Centronics compatibility is that many fast and high-quality printers are
equipped with Centronics interfaces.

Adapters and Inter1aces
These words are more or less synonymous and refer to a so-called black box which
connects VIC to some other piece, or pieces, of equipment. For example, adapters
which allow several VICs to use the same printer or disk drive are available, and
these can be very useful in certain settings. However, some caution is required. The
easiest interfacing methods don't allow for simultaneous operation, so (for example)
users must warn each other when they're about to write to disk. In addition, the
hardware doesn't react instantaneously; it takes a bit of time for half a dozen people
to read a single disk.

Several IEEE adapters are on the market. One type plugs into the serial port,
converting VIC's modified IEEE signals into a form acceptable to IEEE devices, and

148

VIC-20 Architecture

vice versa. The black box contains an external power supply plus ROM and RAM,
with an IEEE socket and another serial socket so that data can be transferred from
one type of device to another. This system has the advantage of being transparent
(not interfering in any way with normal operations). But since VIC software will not
normally expect IEEE devices to be present, programs to use the system need to be
specially written. Thus, this may not be as great an advantage as it seems.

A different, somewhat less expensive approach is to put the hardware on a
board fitting into the expansion port. Typically, such a board contains a duplicate of
the expansion port (so RAM expanders can still be inserted) and also has an IEEE
socket. If it also has a switch to turn itself off, this is an advantage, because the
board needn't be taken out to run other software. The actual IEEE translation pro
gram is likely to be stored at $AOOO (40960); any hardware which prints a sign-on
message when VIC is turned on is this type. Alternatively, a SYS call will activate it.
The software almost always works by changing the input and output vectors around
($0300), so SYS 64850 (which restores the normal vectors) kills the IEEE feature.

Centronics printers can be easily interfaced with the VIC. Port B on the user
port, plus control lines CB1 and CB2 to arrange handshaking, provides a convenient
parallel port, so all that's needed in hardware is a Centronics cable fitted with an
edge connector for the user port. Special software is necessary to control the lines, in
contrast with RS-232 equipment. This type of system can be excellent if the software
is bug-free; if it isn't, a tiresome process of repeated reloading of software may be
necessary.

Another type of adapter is a set of relays, connected to the user port, which al
lows the VIC (with suitable software) to control external equipment. BASIC, or a set
of BASIC subroutines, may well be adequate. In principle, since there are eight or so
output lines, approximately 200 relays could be controlled.

The Audio-Video Port
This five-pin port has a single audio line, two very similar video lines, and a voltage
line plus ground. The outputs can be used directly by a video monitor such as the
Commodore 1701/1702, or by a television with the RF modulator module supplied
with the VIC. For higher-quality sound, you could even make a connection from the
audio output line to an input of your home stereo system.

Some Notes on Commercial Software
Most of these notes apply to games; similar comments apply in principle to all other
software.

Cartridges
Cartridges almost always have a 4K ROM or EPROM (at $AOOO-$AFFF) in order to
autostart. Sometimes that is all there is, but where 4K isn't adequate, another chip
must be used. Most Commodore cartridge games have a second chip at $BOOO; this
is popular with non-CBM cartridges too. ROM can be elsewhere (for example, at
$6000), providing some protection against disassembly by VICMON, which also
starts at $6000. Cartridges tend to look a little lean if you open them up to look in
side-just a small board with a couple of chips.

149

VIC-20 Architecture

Most non-Commodore cartridges have protection systems designed to prevent a
copy of the cartridge in RAM from working properly. For example, in a copy of a
program loaded into RAM at $AOOO, a simple ML instruction like INC $A300 will
increment the contents of $A300, if $A300 is RAM, but will have no effect on ROM.
In this way, the fact that RAM can be written to can be exploited as a form of
protection, with the program writing into chunks of itself. However, if the write line
is disconnected, RAM in effect becomes ROM. It is possible for the software to test
for time elapsed since reset, but if the program is stored with battery backup, this
provides no security either. Mixing RAM and ROM on the cartridge seems to be the
only method to make copying difficult.

There are valid reasons to want RAM versions of one's own cartridge software,
mainly so that small modifications can be put in (which is of course impossible with
ROM). An appealing idea is to alter games, so that instead of a paltry three or four
spaceships you have 250 or 500. Modifications can be very easy, even for non-ML
programmers. For instance, if three rockets are allowed, the programmer probably
used LDA #3/ STA 10 or something similar. All that's needed is to replace 3 with
255, and a superlong game is yours. BASIC programmers can look for the sequence
169, 3, 133 (this applies where there are three objects; if there are six, look for 169,
6,133, and so on). Enter FOR J=40960 TO 12*4096: IF NOT (PEEK(J) = 169 AND
PEEKO + 1)=3 AND PEEK(] +2)= 133) THEN NEXT. Then, when it stops, try POKE
J + 1,255 with a RAM game. If you're lucky, you'll be rewarded with a much longer
game. If it doesn't work, replace 40960 by the value you found for J + 1, and try
again.

The following POKEs work with the specified programs when they are copied
into RAM, but there may be other versions too. For Galaxians, POKE 41153,255. For
Gorr POKE 47780,255. POKE 41200,255 for Pac-Man. For Ratrace, POKE 45031,255,
and for Titan, POKE 42627,255. POKE 44790,255 gives 255 helicopters in Choplifter.
There are many possible variations, of course; for example, Gorf uses LDX rather
than LDA.

Games can be made to last forever if the counter is disabled. For instance, POKE
43560,0 makes Cloudburst continue indefinitely.

The VIC poses some problems of transatlantic compatibility, as you noticed in
the VIC chip section. For example, programs from the United Kingdom are likely to
be off the right side of the screen when used in the United States, and vice versa.
But this too is often easily cured, simply by hunting for ML operations which set the
screen positions and altering their parameters.

Commodore's Adventure series. The Adventure cartridges are unusual in not
using the autostart feature. They occupy 16K, from $4000 to $7FFF, and are ac
tivated by SYS 32592. Their tables of words aren't coded in any way, so Program 5-
13 can be used to go through ROM and output phrases and words when it reaches
them. Typically, the output will be NOR for north, IDO for idol, KNI for knife, and
so on.

150

VIC-20 Architecture

Program 5- 13. Adventure Game Searcher

10 FOR J=16467 TO 32767
20 P=PEEK(J):IF P=0THEN P=ASC("/")
30 PRINT CHR$(P);
40 WAIT 197,32
50 NEXT

Tape Software
Tape software has a single overriding characteristic: It is slow to load. It's worth
noting that some tape software is in fact in BASIC; sometimes you'll even see pro
grams claiming to be in machine language which are not.

Tape software is usually modifiable by loading it into RAM with a special
loader, editing it, and dumping it back onto tape. This technique is explained in
Chapter 14.

Generally, it isn't possible to automatically put tape software onto disk, except
in the case of straightforward BASIC or ML programs. Any protection method, such
as the use of the tape buffer to hold ML, requires either that the protection be re
moved or that an identical copy of both parts of the program to be loaded off disk.
Any program chaining won't work; the device number would need to be changed
from 1 to 8. In these examples, again excepting simple cases, some ML knowledge is
necessary.

151

Chapter 6

Beyond VIC BASIC

This chapter explains the advanced BASIC capabilities which the VIC-20 has to
offer. It will be particularly valuable for programmers who want to optimize their
work and avoid some of the more subtle programming bugs.

The chapter is divided into four sections.
Storage of BASIC. Shows exactly how BASIC, along with its variables, strings,

and arrays, is stored in RAM. Discusses accuracy, garbage collection in strings,
LOADing one program from another, calculating memory requirements for variables,
and other common queries.

Special features of BASIC. This section looks at buffers and the screen and in
cludes a listing of useful locations. It also examines the keyboard, showing how to
disable STOP or RESTORE, control automatic key repeats, read keys without GET,
and modify the keyboard. A program for function keys is included.

Alphabetic list of BASIC extensions. This section includes useful routines to
BLOCK LOAD and BLOCK SAVE from within BASIC. It also includes routines to
DUMP (display current variables), MERGE (interlink programs), OLD (recover pro
grams), PRINT USING (format decimal numbers), RECONFIGURE (adjust VIC's
memory), SORT (arrange data in sequence), and UNLIST (provide some BASIC pro
gram security).

Detailed description of Programmer's Aid.

How BASIC Is Stored in Memory

Major Memory Locations Controlling VIC-20 BASIC
The previQus chapter explained how pointers controlling BASIC are set up when the
VIC-20 is turned on. These pointers, in decimal, are summarized below.

START OF BASIC RAM = PEEK(641) + 256 * PEEK(642)
START OF BASIC PROGRAM = PEEK(43) + 256 * PEEK(44)
END OF PROGRAM + 1 = PEEK(45) + 256 * PEEK(46) = START OF SIMPLE

VARIABLES
END OF SIMPLE VARIABLES + 1 = PEEK(47) + 256 * PEEK(48) = START OF

ARRAYS
END OF ARRAYS + 1 = PEEK(49) + 256 * PEEK(50)
CURRENT BOTTOM OF STRINGS = PEEK(51) + 256 * PEEK(52)
PREVIOUS BOTTOM OF STRINGS = PEEK(53) + 256 * PEEK(54)
END OF MEMORY USABLE BY BASIC = PEEK(55) + 256 * PEEK(56)
END OF BASIC RAM = PEEK(643) + 256 * PEEK(644)
START OF SCREEN MEMORY = 256 * PEEK(648)
START OF COLOR RAM = 37888 + 4 * (PEEK(36866) AND 128)
START OF CURRENT TABLE OF CHARACTER GENERATOR BITS = 32768 * (1 +

((PEEK(36869) AND 8) = 8)) + 1024 * (PEEK(36869) AND 7)

The main set of pointers occupies 14 consecutive bytes, from locations 43 to 56,
an arrangement found in all Commodore BASICs. Most of these pointers mark a
boundary between one type of item and the others, which is why END OF PRO
GRAM + 1 = START OF VARIABLES (and so on).

155

Beyond VIC BASIC

All this means, in this case, is that the program ends one byte before the pointer
and that the variables start exactly at the pointer, so there's no overlap. A conven
tion like this is obviously necessary, and this pattern is general to Commodore; this
is the reason why the last byte can easily be forgotten when saving ML programs.

These pointers are the most important when considering BASIC on its own, and
much of this chapter is concerned with them, directly or otherwise. For completeness
the list also includes other pointers set by VIC-20 on switch-on. The start and end of
BASIC RAM are stored in an extra set of these pointers when the position of the
screen is set, but these have little function and are less useful than the main
pointers.

Oddly enough, there are no pointers delimiting the whole available RAM. The
screen and character generator pointer values are dependent on the VIC chip, as you
saw in Chapter 5. Setting their values is relatively complex, since they aren't or
dinary two-byte pointers.

Experimenting with BASIC Storage in Memory
As in introduction to BASIC pointers, switch on an unexpanded VIC-20 and PRINT
some two-byte PEEKS, starting with PRINT PEEK(641) + 256 * PEEK(642). You
should find that the BASIC RAM extends from 4096 ($1000) to 7680 ($IEOO). The
screen starts at 7680 ($IEOO). The VIC-20 allows 512 bytes for the screen (22*23 =
506, and 512 is the smallest unit by which the screen can be moved), so the screen
ends at 8185 ($IFF9) with six bytes left over (8186-8191). These can be used to store
a small amount of data. If a top-of-RAM pointer existed, in this case it would hold
$2000 (8192).

You will also find that the actual start of BASIC is one byte beyond the start of
BASIC RAM. In other words, 43 and 44 point to 4097 ($1001). This is because
BASIC always starts with a zero byte; PRINT PEEK(4096) should be O. The BYTES
FREE message in this case has already calculated that bytes 4097-7679 (total of
3583) are available for BASIC. The pointers to end of program, simple variables, and
arrays are all the same (4099). Any program has two consecutive zero bytes marking
its end; as there are not yet any variables, all these pointers are in their starting po
sitions (just after the program) which is where variables will be stored. Zero (or null)
bytes are convenient for markers because they are easy to test for in ML. Thus,
PEEK(4097) and PEEK(4098) both return 0 at present.

Each line of BASIC starts with a two-byte link address, a two-byte line number,
the BASIC line itself, and a final zero byte which also marks the start of the follow
ing line. The link address is simply a pointer to the next line; in fact, it points to the
next line's link address, forming a chain (Figure 6-1) which can be scanned at high
speed. Each link needs two bytes. The line numbers also have two bytes, to allow
for line numbers greater than 255.

156

Beyond VIC BASIC

Figure 6- 1. Storage of BASIC as Linked Lines

Storage of BASI C as Linked Lines
Start End of Line
t t

End of Line
~

L....-______ ----l1' LI _______ ...;J1' LI _____:.11'

The built-in operating system automatically arranges BASIC like this as lines are
typed in at the keyboard. When the method is fully understood, you can modify
BASIC to produce nonstandard effects. For instance, you can use it to insert longer
than-usual lines, to add normally unavailable line numbers, or to arrange a line of
BASIC to contain things it ordinarily could not.

To begin, it is helpful to see standard BASIC storage in action. Type in Pro
gram 6-1.

Program 6- 1. Bytes in a BASIC Line
1 PRINT "HELLO"
30 FOR J=4096 TO 4110
40 PRINTJ:PEEK(J):CHR$(PEEK(J))
50 NEXT

Run it and you will get this output, without the comments:
4096 0 ; Zero byte at the beginning
4097 15 ; Link address; points to start of next line
4098 16 at 4111 = 15 + 16 * 256
4099 1 ;Line number; this line number is 1
4100 0 = 1 + 0 * 256
4101 153 ;Tokenized form of PRINT
4102 32 ;Space
4103 34 " ; Quote and following characters in PET ASCII
4104 72 H
4105 69 E
4106 76 L
4107 76 L
4108 79 0
4109 34 "
4110 0 ; End-of-line null byte

This program shows the contents of every byte of a single typical line of BASIC.
Notes are included to show the function. Incidentally, you will get slightly different
results if you make small changes to line 1. For example, if you remove the space be
tween PRINT and "HELLO" in line 1, it will be missing from location 4102, as you
would expect. In addition, the link address pointer will point to 4110 instead of
4111, because the next line starts a byte earlier. An extra space increases the link
pointer. Similarly, try a different line number in place of 1; you'll see it reproduced
in locations 4097 and 4098 when the program is RUN. Conversely, POKE 4100,2

157

Beyond VIC BASIC

will convert the line number to 1 + 2 * 256 = 513, despite the fact that this number
is out of sequence.

BASIC lines have five bytes of overhead, consisting of the two-byte link address
pointer, the two-byte line number, and the ending null byte. The end of BASIC is
marked by two zero bytes-that is, when a link address is found to be zero, RUN
and LIST will automatically treat it as an END and return to direct mode with
READY. Try POKE 4111,0: POKE 4112,0 with the program above. It will LIST only
one line. Then POKE 4111,35: POKE 4112,16 which will replace the original values
(if the spacing was identical to the version above), and LIST shows the entire
program again.

Normally the end-of-BASIC pointer in 45 and 46 will point just after these three
consecutive zeros. If you think about it, you will realize that only the second of the
pair of terminating bytes is necessary to signal an end. It is of course possible that
the low byte of a link address could be zero. But any normal BASIC line will be in
$0400 at the absolute minimum, so its high byte will never be less than 4.

Watching BASIC
There are several ways to watch BASIC and its variables as they do their work. Pro
gram 5-1 from the previous chapter, for example, can display a dynamic picture of
BASICs storage and is an excellent way to get the feel of BASIC lines, variables, and
strings.

An alternative way is to move the screen. On the unexpanded VIC, POKE
648,16:SYS 64818 to move the screen to coincide with BASICs start. Then
{HOME}{RVSHBLK} with spaces, followed by SHIFT-RETURN, prepares the screen
for a dynamic display of small amounts of BASIC.

Another way to display a BASIC program's contents is to POKE it to the screen.
The following routine can be added to a program on an unexpanded VIC-20. RUN
50000 finds the start and end of BASIC and puts all the bytes between those values
directly into the screen memory. Press RUN/STOP-RESTORE to recover the white
screen background.

Program 6-2. POKEing BASIC to the Screen
50000 POKE 36879,8:REM BLACK BACKGROUND
50010 FOR J=PEEK(43)+256*PEEK(44)TO PEEK(45)+256*P

EEK(46)
50020 POKE 7680+Q,PEEK(J):Q=Q+1:NEXT

Table 6-1 shows the significance of each BASIC byte except for the links and
line numbers). Note that all BASIC keywords are stored as a single byte with bit 7
set (that is, with value 128 or more in decimal). This means that the ML routine can
instantly detect a keyword. It also means that when BASIC is poked to the screen,
lines of BASIC have their keywords converted into a single character which appears
in reverse on the screen.

158

Beyond VIC BASIC

Table 6- 1. Internal Storage of VIC BASIC Bytes

0-31 32- 64- 96- 128- 160- 192- 224-255

3220sp 12880 END 160AOCLOSE 192 CO TAN
6541A 12981 FOR 161AIGET 193C1ATN

3422 " 6642B 130 82 NEXT 162 A2 NEW 194 C2 PEEK
3523# 6743C 13183DATA 163A3TAB(195C3LEN
3624$ 6844D 132 84 INPUT # 164A4 TO 196 C4STR$
3725% 6945E 13385INPUT 165A5FN 197 C5 VAL

7046F 13486DIM 166A6 sPq 198C6ASC
7147G 13587READ 167 A7THEN 199C7CHR$

4028(7248H 13688 LET 168A8NOT 200C8LEFT$
4129) 73491 13789 GOTO 169A9STEP 201 C9 RIGHT$

744AJ 1388ARUN 170AA + 202 CA MID$
754BK 139 8B IF 171AB - 203 CB GO
764CL 140 8C RESTORE 172AC* 204 CC SYNTAX
774DM 1418DGOSUB 173 AD / ERROR

462E. 784EN 142 8E RETURN 174 AEi
794FO 1438FREM 175 AF AND

48300 8050P 14490 STOP 176 BO OR
49311 8151Q 14591 ON 177 B1 >
50322 8252R 14692WAIT 178 B2 =

51333 8353S 14793 LOAD 179 B3 <
52344 8454T 14894 SAVE 180 B4 SGN
53355 8555U 14995 VERIFY 181 B5 INT
54366 8656V 150 96 DEF 182B6ABS
55377 8757W 15197POKE 183B7USR
56388 8858X 15298 PRINT# 184 B8FRE
57399 8959Y 15399PRINT 185B9POS
583A: 905AZ 1549ACONT 186 BA SQR
593B; 1559B LIST 187BBRND

1569CCLR 188BCLOG
1579DCMD 189BDEXP
1589E SYS 190BECOS
1599FOPEN 191 BF SIN 255 FF 7r

Note: This table shows all valid bytes as they are held within BASIC. Bytes not listed will LIST as appar
ently meaningful BASIC. but will not run. Within quotes, the full range of VIC ASCII characters can be
obtained; see Appendix I for a table.

Use this when PEEKing BASIC or modifying BASIC with an ML monitor.

BASIC as stored in RAM looks strange, partly because of this compression and
partly because the apparatus of pointers and line numbers becomes visible. The LIST
instruction has the function of presenting this stored collection of bytes in the famil
iar form, by expanding each token into its correct keyword. Of course, compressing
BASIC in this way is a very valuable space-saving feature. This special coded form
means that the storage system is different from VIC's ASCII and also different from
the screen display system, which may cause some confusion.

It is easy to show how this table could be compiled. Type NEW and enter the
following line:

ox

159

Beyond VIC BASIC

An unexpanded VIC-20 stores X at location 4097 + 4 = 4101. Thus, POKEing 4101
with some value, then LISTing, reveals how BASIC treats the selected value. POKE
4101,128 lists as 0 END, for example, as the table indicates. If you wish to investi
gate this methodically, enter the following line:
o ***********************************

or something similar and POKE values from within a loop. The results may be un
expected; if you POKE a value of 5, this will switch the color of the character to
white, giving a simple type of UNLIST.

If non-BASIC bytes are POKEd in, LIST will often list as something apparently
sensible, but the line will crash with a ?SYNTAX ERROR message. However, literals
within quotes (or after REM or DATA statements) can generally take any value ex
cept a null byte, which will be treated as an end of line. This is why REM lines are a
favorite place for simple anti-LIST methods, as you'll see.

Note that numerals are stored without any attempt at compression, so the 10000
in GOTO 10000 takes five bytes and 123.456 in PRINT 123.456 takes seven; all the
components are stored in ways which exclude ambiguity, and there is no way that
numbers could be compressed without making them resemble tokens or other BASIC
features. Note also that +, -, *, /' and i don't appear in the ASCII list; they are not
stored in this form, but as tokens. Finally, note that BASIC punctuation includes the
comma, the colon, and the semicolon, but not the period, which is treated as the
decimal point.

The token for GO allows BASIC to accept GO TO as well as GOTO. It was
tacked on the end when Commodore replaced an earlier BASIC which ignored
spaces.

How BASIC Stores Hs Variables
Suppose you type A=123 and press RETURN. PRINT A will then print 123. How is
this information stored? You've seen that simple variables are allocated space after
the program and before arrays, but even if there is no program, they are stored after
three zero bytes at the start of BASIC RAM in exactly the same way. Because vari
ables are stored when they're first used, their sequence in memory is the order in
which they were encountered by VIC.

Four types of variables can be stored in this area: numeric or floating-point vari
ables (X), integer variables (X%), strings (X$), and function definitions like DEF FN
X(Y). The name is always stored in two bytes (the second may be a space character).
The four types are distinguished by the high bit of each letter being set or unset.
This obviously gives four permutations on each name. It is also the reason that only
the first two characters of a name are significant; NUMERAL and NUMBER are both
treated as NU. The name carries an implicit type-of-variable declaration, which is
interconverted with the BASIC declarators %, $, and FN, and 0 for arrays.

160

Beyond VIC BASIC

Figure 6-2. Storage of VIC Simple Variables
Variable Type Name Details of Storage

Floating-point ASCII Mantissa
ASCII orO Exponent tl M1 I I I M2 M3 M4

Sign bit

Integer ASC+128
ASC+128

Hi Byte La Byte 0 0 0 or 128
11'

Sign bit

String
ASC+128 Pointer

ASCII
or 128

Length
Lo Byte I Hi Byte

0 0

Function Def' n ASCII Pointer to Def'n Pointer to Variable Initial ASC+128 orO Lo Byte I Hi Byte Lo Byte I Hi Byte ofVar.

Figure 6-2 shows how simple variables are stored in the VIC. Each variable type
takes seven bytes, roughly speaking. This means that when BASIC looks for a simple
variable it always adds a constant offset of seven as it searches the table, minimizing
search time. However, with this scheme three bytes are wasted with integer vari
ables, two with strings, and one with function definitions.

It may be helpful to look at the different ways in which these seven bytes are
interpreted.

Floating-point or real variables (X). The value is held in five bytes to an ac
curacy of one part in 2t31, or roughly one in two billion.

These numbers are liable to rounding errors. A subsequent discussion explains
floating-point storage in more detail, for the benefit of VIC owners interested in
insuring accuracy in financial or other calculations.

Integer variables (X%). Integer variables are held in a signed, two-byte form,
within the range - 32768 to 32767. The following formula, which allows for the sign
bit, gives the value:

(HI AND 127)*256 + LO + (HI>127)*32768
For example, HI=O and LO=100 correspond to 100; HI=255 and LO=156 are -100.
The two expressions add to 0 with overflow.

Strings (X$). Strings cannot be fitted into seven bytes. To allow freedom in
assigning strings (without needing to specify their lengths, as some languages re
quire), they are stored in a dynamic way in RAM. Three of the seven bytes allotted
to a string variable are relevant; two are wasted. One byte holds the length of the
string; LEN (X$) simply PEEKs this value. Another pair of bytes points to the start of

161

Beyond VIC BASIC

the string. Between them, these provide a complete definition. This storage system
explains why any string has a maximum of 255 characters. It also explains why
CHR$(O) gives no syntax error in cases where "" (a null string) does; the former
character has length 1, but the latter has 0 length.

Most strings are stored in the area of free RAM after the BASIC program and
variable storage. As they are redefined (or as new string variables are defined), they
fill progressively lower memory areas until a so-called garbage collection is forced.
To save space, some strings aren't stored after BASIC but reside within the program
itself; X$'s pointer in the assignment 10 X$="HELLO" points back within BASIC,
where HELLO is already stored.

Generally, any string involving calculation is stored after BASIC. For example,
10 X$="HELLO" + "" assigns exactly the same string to X$, but stores it after
BASIC. Again, this has consequences which will be examined shortly. For the mo
ment, note that
10 DIM X$ (200): FOR J=O TO 200: X$ (J) = "1234567890": NEXT

uses much less memory-2000 bytes less-than the same program with
X$(J)="12345" +"67890" because of this internal storage feature. Any string with
any element of calculation (for example, one defined via INPUT or GET or even by
A$ = B$) is stored after BASIC.

Function definitions. These appear in the variables table, too, and it's quicker
to store them here than search the whole program for a definition.

Like strings, function definitions store the solid information elsewhere. A func
tion definition has two pointers, one (within the program) to the defining formula
and one to its principal variable, which is set up in the table jf it doesn't yet exist.
Running 0 DEF FN Y(X) = Xi 2 + 5*X + 3 makes two entries in the variables' table (X
and of the function definition Y). Actually the formula pointer holds the address of
the = sign in the function definition, and the variable pointer marks the address of
the first byte of the floating-point value of its argument. The five bytes are also used
as temporary storage for calculations when running.

Storage of Arrays
Arrays (subscripted variables) are stored after the simple variables; since they can be
of any length, they would spoil the consistency with which seven can be added to
each simple variable's pointer.

All three array types-reat integer, and string (there is no array equivalent to
the function definition)-have a similar layout, except for the data, which is stored in
five-byte batches for real numbers, two-byte batches for integers, and three-byte
pointers plus characters for strings. Figure 6-3 summarizes how VIC arrays are
stored.

162

Figure 6-3. Storage of VIC Arrays
Subscripted Variables (Arrays)

Offset No. of Last DIM + 1
Array Name

Low I High DIMs High I Low
...

Beyond VIC BASIC

First DIM+l

High I Low
... Data or String Lengths & Pointers ...

Arrays are stored in the order they are first used. The array defined last is there
fore immediately below free memory. Because of this, it's possible to erase an array
which is no longer needed; this can be a useful memory-saving trick if an array is
used for some utility purpose (sorting or merging). The general approach is
AL=PEEK(49): AH=PEEK(50): DIM X$(100): POKE 49,AL: POKE 50,AH which
stores the low and high bytes of the previous top-of-arrays pointer, then restores
them after using a new array in some way.

The DIM command defines the size of arrays. Obviously this is necessary unless
you have unlimited RAM, since the computer can't know in advance how much stor
age you'll need. DIM defaults to 10, so it is not necessary with small arrays. Without
DIM, X(8)= 1 is accepted happily, but X(ll) = 1 gives ?BAD SUBSCRIPT ERROR.

Housekeeping with arrays is more complex than that with simple variables, al
though the stored items are essentially identical. The bit 7 conventions for the name
are identical to those for simple variables. The offset figure is the length of the entire
array, including numeric data or string pointers; however, it excludes strings, which
are stored elsewhere.

The number of dimensions is 1 for a one-dimensional array (A(X)), 2 for an
array like A(X,Y), and so on. The actual values of the dimensions have to be stored;
each needs two bytes, to allow for arrays like A(500) with more than 256 items.
DIM + 1 in the diagram is the true number, since dimensions count from the zeroth
item (the first item is numbered 0). Finally, there is the data (or, with a string array,
the string lengths and pointers). Spare bytes are not wasted; for instance, each inte
ger takes only two bytes.

The data or string lengths and pointers are held in strict sequence, which is
ascending order of argument, with the lattermost arguments changing least often.
For example, DIM A(L2) stores its variables in the order A(O,O) A(LO) A(O,l) A(l,l)
A(0,2) A(1,2).

The position of anyone item of an array can be calculated. For example, X(a,b,c)
is at [a+b*(1+DIM1)+c*(1+DIM1)*(1+DIM2)] elements along the array, where
DIM1 is the number of elements for which a was DIMensioned and DIM2 is the
DIMension of b.

163

Beyond VIC BASIC

Figure 6-4. A Typical BASIC Program During Its Run

Start
of

Program
'-it

End
of

Program

""

End of
BASIC
RAM

BASIC Simple Variables Arrays
Program (7 bytes each) (varying length)

Simple & Array Strings.
(Stored without spaces.

Varying length).

Maximum Space
Available for Strings

Figure 6-4 shows a typical BASIC program during a run, followed by its vari
ables and arrays.

Some Consequences of VIC's Methods of Storing BASIC and Its
Variables
A number of consequences follow from these methods of storage. Strings and arrays
are of particular significance with serious programs, so it's worthwhile to explain
them thoroughly. If you understand them, you'll be able to write better programs.

String storage. All strings are stored as ASCII characters in ascending order in
memory. For instance, Program 6-3 shows how a pair of pointers (S and E for start
and end) delimit any current string in memory, and how a string is held in con
ventional sequence in ASCII. Add lines 11, 12, 13, and 14, like line 10; the program
as it stands prints the last of them. But if E is altered to PEEK(55)+256*PEEK(56),
which is the top of memory available to BASIC, you'll see how each string is stored
and the top-down way each is positioned. Figure 6-5 illustrates this. Note that if a
string is redefined, the old string is still left behind in memory; redundant data like
this is called garbage.

Figure 6-5. String Storage

J X$ Y$

String variables, simple
BASIC and array. Length of Strings in

Program string and pointer high memory
stored here.

X$ is stored only in a BASIC program line (for example, 10 X$="HELLO"). Strings
which must be built from other strings are stored in high memory (for example, 20
Y$=Y$+Z$).

164

..v

Beyond VIC BASIC

Program 6-3. Using Pointers to Delimit Strings
10 X$="HELLO"+""
20 S=PEEK(51)+256*PEEK(52):E=PEEK(53)+256*PEEK(54)
30 FOR J=S TO E-l:PRINT CHR$(PEEK(J»~:NEXT

Some loops are heavy users of memory space. For example, FOR J = 1 TO 40:
X$ = X$ + UII: NEXT could be used to generate a string of 40 spaces. But the first time
the loop executes, X$ is defined as a string of one space character; the next time, as
two space characters, and so on; so the total memory used is 1 + 2 + 3 + "" + 40
bytes, or 820 bytes, of which 780 are garbage.

Loops to input data in a controlled way, using GET, do something very similar.
These rely fundamentally on routines like this one:
10 GET X$: IF X$="fI GOTO 10
20 Y$=Y$+X$
30 GOTO 10

and use a lot of memory. A short word like SIMON processed like this leaves
SIMONS 1M OS 1M SIS in memory.

How String Storage Can Corrupt User-Defined Graphics and ML in
RAM
Provided the end-of-BASIC pointer is correctly set, strings will not disturb redefined
characters or machine language stored at the top of memory. Programs 6-4 and 6-5
are small-scale, controlled examples (for the un expanded VIC) of what happens
when BASIC strings encroach into the wrong area.

Program 6-4. Unwanted Screen Characters
10 POKE 55,22:POKE56,30:REM END OF BASIC INSIDE SC

REEN
20 POKE 36879,8:REM BLACK, MAKES POKED CHARACTERS

{SPACE}VISIBLE
30 INPUT N$:N$=N$+"":REM STRING GOES IN SCREEN RAM

40 GOT030

Program 6-5. Corruption of User-Defined Characters and Graphics
10 POKE 36869,255:REM $IC00 IS START OF USER CHARA

CTERS
20 POKE 55,8:POKE 56,28:REM BUT BASIC ENDS AT $IC0

8
30 FOR J=7168 TO 7680:POKE J,PEEK(32768+Q):Q=Q+l:N

EXT:REM MOVE VIC CHARACTER SET
40 PRINT"{HOME}{WHT}@ABC":REM PRINT A FEW CHARACTE

RS
50 INPUT N$: N$=N$+"":GOT050:REM @ SYMBOL IS CORRU

PTED

165

Beyond VIC BASIC

Garbage Collection
Programs using many strings are subject to so-called garbage collection delays. It is
fairly easy to see why. Figure 6-6 shows a simplified situation where RAM contains
several strings, some of which are now redundant.

Figure 6-6. Garbage Collection
Before garbage collection: A$ was ELEPHANT, B$ is DOG, A$ is now CAT.

C I A I T IDlolcl E L E I p I H I A I N I T

oE
free RAM A$ B$ garbage i

Top of
BASIC RAM

After garbage collection ~
C IAITIDlolcl E L C I A I T IDlolcl

< free RAM A$ B$

Let's suppose BASIC tries to set up a new string but finds there's insufficient
room. It calls a routine, the same as FRE(O), to find out which of the strings after
BASIC are still being used. Strings stored within BASIC itself are outside the scope
of this algorithm, and are ignored.

The routine has to check every string variable to determine which is nearest the
top end of memory. This string is moved up as far as possible. The process is re
peated with the remaining strings until the whole collection is cleaned up. The num
ber of strings is important, not their lengths; generally, with N strings this takes time
proportional to N plus N -1 plus N - 2, etc. Mathematically inclined people will
realize tl-,is adds up to an expression including N multiplied by itself (N squared).
What thIS means is that, like the well-known bubble sort, a process that is acceptably
fast with a small number of items can become painfully slow with a larger number.
In fact, the whole process is analogous to the bubble sort: Intermediate results are
thrown away, which saves space but wastes time.

The VIC takes roughly .00075 times the number of strings squared to free mem
ory. The actual relationship is a surprisingly precise quadratic; this is only an
approximation. For instance, 100 strings take .8 seconds, 200 take 3 seconds, 300
take 6.6 seconds, and so on.

Note that, during garbage collection, the keyboard locks in an apparent hangup.
This is normal; if a long ML routine runs, the STOP key hasn't a chance to work.
STOP-RESTORE will interrupt if necessary. In practice, you'll be likely to encounter
garbage collection only if you're using memory expansion and string arrays; even
100 ordinary strings will only cause an occasional delay of less than a second. For
example, Program 6-6 measures the time required to calculate free memory, which is

166

Beyond VIC BASIC

roughly the same as the time required to perform the garbage collection. Chapter 12
has a demonstration graphics program with a garbage-collection time of 5 seconds,
where so many strings are generated that the unexpanded VIC takes 36 seconds to
run the program, and where memory expansion cuts this down to 5 seconds.

Program 6-6. Time Required to Calculate Free Memory

10 INPUT D:DIMX$(D):FOR J=lTOD:X$(J)=STR$(RND(l»:
NEXT

20 T=TI:J=FRE(0):PRINT(TI-T)/60"SECONDS"

If garbage collection is a problem, you must rewrite the program to reduce the
number of strings. There is no other easy solution. For example, pairing strings to
gether roughly divides the delay by 4. Note that performing FRE(O) whenever there's
time available (that is, shifting the delay to an acceptable period) can work. It's also
possible to do a limited FRE on part of the strings, altering 55 and 56 down or 53
and 54 up.

Calculating Storage Space
Calculating storage space can be important with the VIC. Economizing on memory
may have advantages, such as allowing a program to work without expansion. Sim
ple variables and function definitions all take seven bytes, plus allowance for strings,
so reusing variables saves memory.

The RAM occupied by an array is easy to calculate. The figure is identical to its
own offset pointer, plus strings where applicable. The number of bytes is
5 +2*NUMBER OF DIMENSIONS + (DIM1 + 1)*(DIM2+ 1) * ... * 2, 3, or 5, where the
value 2, 3, or 5 depends on the type of array (integer=2, string=3, real=5). In addi
tion, the strings of a string array must be counted.

Integer arrays are very economical. If you have large quantities of numeric data,
it often pays to convert it into this form, provided the range ~32768 to 32767 is suf
ficient. It may be worthwhile combining two smaller numbers to increase the
efficiency.

Examples. (1) X%(500) has one dimension, and DIMI =500. Therefore, it occu
pies 5 + 2 + 501*2 = 1009 bytes.

(2) AB(lO,lO) has two dimensions; DIM1=10 and DIM2=10. This much data
will occupy 5 + 4 + 121 *5 = 614 bytes.

(3) X$(100) defined with strings on average ten bytes long occupies about 5 + 2
+ 101*3 + 101*10 = 1320 bytes.

Order of Definition of Variables
The order in which variables are defined may have a significant effect on the speed
of BASIC. This occurs for two reasons. First, whenever BASIC uses a variable, it has
to search the table for it. If much-used variables are encountered first, there's some
time savings. Second, if BASIC finds a new simple variable and there are arrays in
memory, the array table has to be moved up memory.

DIM is usually the most efficient way to define variables. It operates on simple
variables just as it does on arrays. A statement like DIM J, X, S%, M$, X$(23) has the

167

Beyond VIC BASIC

same effect on BASIC as searching for each variable, not finding it, and therefore
positioning it with its default value of zero or the null string after the program.

BASIC Storage-LOAD and SAVE
In the direct mode, SAVE stores a program to tape or disk. It assumes that the
pointers at locations 43 and 44, and locations 45 and 46, mark the start and end of
the BASIC program, and it saves the bytes between these pointers. As a con
sequence, it is possible to save a program with its variables by moving the end-of
program pointer up to include variables. This technique works very well with integer
arrays, which are an economic way to store numeric data. A similar technique can
save character definitions along with BASIC; see Chapter 12 for the method.

In the program mode, LOAD (from within a program) causes what's usually
called a chain. The next tape program, or a disk program, is loaded, generally into
normal BASIC memory, overlaying the program which performed LOAD. Automati
cally, an instruction to GOTO the first line is executed, so the new program runs
while retaining variables from the earlier program. In this way, BASIC programs too
long to fit memory can still be run; for example, a series of programs explaining how
to use the computer could be stored on tape and run on an unexpanded VIC. Of
course, there's a delay between programs while the next one is loaded.

Figure 6-7. Program Chaining

Variables

I BASIC Program I

Note: LOAD command on first program causes new BASIC program to load, then run. In the
diagram, the new program is shorter than the old, so variables' values are mostly retained.

This technique, illustrated in Figure 6-7, can be extremely powerful. However,
there are two complications. First, the new program may be longer than the second;
in this case, the variables will be overwritten. More seriously, the end-of-BASIC
pointer still thinks the new program ends where the old program did; so whenever a
variable is defined or changed, the program towards the end will be corrupted. For a
complete solution to this problem see OLD later this chapter.

A second problem, which is relevant to the storage of variables, is that some
strings and all function definitions are stored within BASIC. Thus, a chained pro
gram cannot generally make use of function definitions or strings within BASIC. If
this is ever a problem (and it could be if strings of user-defined characters are being
passed between chained programs), it is easily avoided with strings. Simply use
something like A$="ABCDE" + "" in the loader, which forces the string into
higher RAM. Function definitions must be redefined in each new program.

168

Beyond VIC BASIC

Accuracy of Number Storage
All number systems have limitations. Just as the decimal system cannot exactly ex
press thirds, the square root of 2, or pi, so computers with digital storage all have
problems with rounding errors. The difficulty is inherent in the machines. Some
computer chips designed to perform calculations have registers which indicate when
a result has been rounded, and also the lower and upper limits of the result. In prac
tice, great precision is usually unnecessary (or misleading), and for many purposes
this subsection will not be needed.

The only reason accuracy is a possible difficulty with the VIC is the fact that
numbers as they are printed don't match the precision with which they are stored. If
they were printed in full, errors would be obvious.

Try these examples:
PRINT 8.13
PRINT 3/5*5: PRINT 3/5*5 =3

The first gives 8.13000001. This is the smallest value where an evaluation stores a
number in a form which appears changed on PRINT. The second evaluates the result
of 3/5*5 and prints it as 3, but the subsequent test shows that it isn't considered
equal to 3. In fact, it is stored as 3.0000000009.

Obviously, PRINT is designed to work sensibly in most cases. However, since
precision is inevitably lost in some calculations, there must be rounding rules, and
exceptional cases are likely to turn up.

Special techniques can avoid these problems. The first is to allow a range of
possibilities (for example, treating X and Y as identical if ABS(X - Y)<.OOOI or what
ever low value is chosen. The classic example of the need for such an approach is
the computerized accounting system which, at the end of a long session of inputting
of figures, announces that the totals don't balance and that the sum outstanding is
zero. Obviously the figure was held as something very small, which should have
been rounded to the nearest cent.

Another technique is to use only integers wherever feasible. Yet another is to
use special routines; BASIC is generally too slow, but ML routines to multiply digits,
for example, aren't all that difficult to write. In fact, BASIC could be extended to in
clude commands like ADD, SUBTRACT, MULTIPLY, and DIVIDE with string argu
ments, as in COBOL's ADD S$ TO Y$ GIVING Z$. Chapter 4 has some BASIC
routines which perform their own rounding, and PRINT USING (see below) is a
handy ML routine.

Storage and Errors with Floating-Point Numbers
Except for integer variables, where no loss of precision is possible, floating-point
variable values are stored in five bytes (Figure 6-8). Extra bits are used during
calculations, but these are lost when the final computed value is stored.

169

Beyond VIC BASIC

Figure 6-8. Storage of Floating-Point Variables

Byte 1 Byte2 Byte 3 Byte 4 ByteS

Exponent
Sign Bit and

Mantissa 2 Mantissa 3 Mantissa 4
Mantissa 1

This is a standard arrangement in which every increase in the exponent doubles
the value, and where the mantissas are stored in decreasing order of significance. A
single bit holds the sign; there is no point in taking up more space, since a sign must
have one of only two values. A high bit holds the sign, corresponding with the
minus flag of the 6502 chip.

Between them the mantissas hold 31 bits and span a range of 1 to 1.9999 ...
which, when multiplied by the exponent (itself of form 2in), takes in the entire
range from about 10i -38 to l0i38 with an accuracy of one part in 2i31. Outside
these limits, either an overflow error will occur or a very small number will be
rounded to zero. There's no underflow error to indicate that a number is too small to
be handled.

The following formula will convert any numeral stored in this form into a more
comprehensible form:
(-l)i (M1 AND 128)*2: (EX -129)*(1 + ((M1 AND 127)+ (M2 + (M3+ M4/256) /256) /256) /128)

The examples in Table 6-2, PEEKed from VIC memory, will help to clarify this:

Table 6-2. Floating-Point Storage

-1.5

o
.1234

1.5

3

4

5

6

7

8

144.75

99999999

170

Byte 1

129

0

125

129

130

131

131

131

131

132

136

155

Byte 2 Byte 3

192 0

any any

124 185

64 0

64 0

0 0

32 0

64 0

96 0

0 0

16 192

62 188

Byte 4 Byte 5

0 0

any any

35 163

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

31 224

Beyond VIC BASIC

Note that numbers from 4 to 7.9999 ... have the same exponent; their bit patterns
run from 00000 ... to 11111... as the value increases. Adding 1 to the exponent
doubles the value, subtracting 1 halves it, and so on. Note how negatives have the
sign bit set. Note also that an exponent of zero is always taken to indicate a zero
value.

To decode a number, the easiest method is to start at the lowest significant byte,
divide by 256, add the next, divide by 256, add the next, divide by 256, add M1 (less
128 if necessary), divide by 128, and add 1. Scale up the result (which will be from 1
to 1.999 ...) by 2t(EXPONENT-129).

Conversely, if you wish to express a number in this format, either PEEK the val
ues from RAM or (if you can't access a computer) use the method outlined below.

Example. Expressing -13.2681. The minus sign means you must set the high
bit of Ml. The nearest power of 2 below 13 is 8 (2t 3), so the exponent is
129+3=132.13.2681 is 8 * (1 + .6585125).

The value following 1 is the number stored by 31 bits in the mantissa:

.6585125 * 128 = 84.2896,

.2896 * 256 = 74.1376,

.1376 * 256 = 35.2256,
and .2256 * 256 = 57.75.

Thus, the nearest floating-point approximation of -13.2681 is 132/ 212/ 74/35/58.

Storage Errors
Typically, a number giving aberrant results is stored with the final bit(s) incorrect.
For instance, X=3/5*3 stores X as 130/ 64/ 0/ 0/ 1, and the final bit makes X un
equal to 3.

Integers and Fractions
Any whole number between 1 - 2t 32 and 2t 32 -1 is held exactly by the VIC, with
out any error. This is why loops like FOR J= 1 TO 100000: PRINT J: NEXT can con
tinue without error, while the same loop with STEP .9 soon prints numbers with
rounding errors.

Note that 2t32-1 is stored as 160/ 127/ 255/ 255/ 255/ 255 and is the high
est accurately stored integer; 2t32 is stored as 161/ 0/ 0/ 0/ 0. Similar rules apply
to fractions; provided they are combinations of 1/2, 1/4, 1/8, 1/16, ... , 1/2t31, they
can be held exactly. Because of this it may be best (particularly in financial calcula
tions) to store values as integers.

Special Locations and Features of VIC BASIC
BASIC uses a lot of the low end of memory for temporary storage, and many of
these storage locations are programmable from BASIC. This section describes, alpha
betically, some of the more useful storage methods. Most have been used, with
examples, earlier.

The keyboard and some aspects of screen handling are also included here, as
both have special points of interest in BASIC programming.

171

Beyond VIC BASIC

Buffers
The input buffer, keyboard buffer, and tape buffer occupy locations 512-600 ($0200-
$0258), 631-640 ($0277-$0280), and 828-1019 ($033C-$03FB), respectively. During
normal operations, each of these areas has one exclusive function. Program 5-1 from
the preceding chapter allows you to watch the first two of these in action.

Input buffer. Program 6-7 demonstrates the use of the input buffer.

Program 6-7. Using the Input Buffer

10 N$="X=X+1:PRINTX:GOT010"+CHR$(0)
20 FOR J=l TO LEN(N$)
30 POKE 511+J,ASC(MID$(N$,J»:NEXT
40 POKE781,255:POKE782,1
50 SYS50310

An ASCII string, terminated by a null byte and POKEd into the buffer, behaves
exactly as the same line would if typed in from the keyboard. Lines 40 and 50 ex
ecute the buffer, after first setting a pointer to $OlFF (the start of the buffer) less 1.
The buffer would also be executed if the end of the program was reached, or if an
END statement was encountered, but using the SYS shown in Program 6-7 is often
more useful.

Keyboard buffer. It's easy to show that VIC has a queuing system for key
strokes. A short routine (1 GET X$: PRINT X$: FOR J=l TO 2000: NEXT: GOTO 1)
prints characters which must have been typed before GET was reached. Up to ten
characters can be stored here. POKE 649 to change this, but if the value exceeds 10,
you'll corrupt some important pointers.

Location 198 ($C6) independently stores the number of characters in the buffer.
POKE 198,0 therefore removes all characters; it has the same effect as FOR J = 1 TO
10: GET X$: NEXT. SHIFT-RUN puts LOAD:RUN [RETURN] into this buffer, using a
routine at $E609.

Many examples in this chapter (AUTO, DELETE, LIST) rely on this buffer. Pro
gram 6-8 shows how POKEs into the buffer work; try it to get the feel of the
technique.

Program 6-8. USing the Keyboard Buffer

10 DATA 72,69,76,76,79
20 FOR J=631 TO 635:READX:POKEJ,X:NEXT
30 POKE198,S

POKEing one or more return characters (13) into the queue is also a popular trick,
since it allows messages printed on the screen to be input later. In effect, that ex
tends the range of the command beyond ten characters.

The next example, Program 6-9, puts a quote in the line just before INPUT. This
is very useful when a string which is to be input may contain commas, colons, or
other separators. A quote inputs the entire string without error. Run this program,
typing in something like A, B, C, and contrast the result with that achieved by an
unadorned INPUT statement.

172

Program 6-9. Using a Quote Before INPUT

1000 POKE 198,I:POKE 631,34
1010 INPUT X$
1020 PRINT X$:GOTO 1000

Beyond VIC BASIC

Program 6-9 actually eliminates any stored characters, an effect that can be
annoying. A much more sophisticated (but longer) version of that program is given
in Program 6-10.

Program 6- 1 O. Moving Characters Along the Buffer
1000 P=PEEK(198):P=P+l:IF P>9 THEN P=9
1010 FOR J=631+P TO 631 STEP -1:POKE J,PEEK(J-l):N

EXT
1020 POKE 198,P:POKE 631,34
1030 INPUT X$
1040 PRINT X$:GOTOI000

This program moves the characters along the buffer, just as VIC's operating system
does.

A more exotic use is to transfer BASIC programs to the VIC from another com
puter by inputting them in ASCII via a modem, printing individual lines on the
screen, and inputting each line, adding a RETURN at the end. It is quicker than
typing them in, although the work of conversion is likely to be a problem.

Tape buffer. The VIC's operating system reserves this area for tape use, and it is
therefore a popular place to put ML routines once no more tape activity is expected
(after a program has been loaded and is running). It is not actively programmable
like the two previous buffers. In addition, it is overwritten whenever tape is written
to or read from, so don't put ML here if you're using tape to load or save data, or if
you are chaining programs.

Spare RAM areas. These aren't buffers in the usual sense. The VIC has lK of
RAM at the low end of memory for its own use, but some isn't allocated and can be
taken over by programmers. Locations 251-254 ($FB-$FE), 673-767 ($02A1-$02FF),
784-787 ($0310-$0313),820-827 ($0334-$033B), and 1020-1023 ($03FC-$03FF) are
available. The second of these areas is 95 bytes long; the tape buffer has 192 bytes.

Clock
The three-byte jiffy clock is stored at locations 160-162. Location 162 is the fastest
changing byte. At each interrupt about every 1/60 second (a unit of time called a
jiffy, hence the name jiffy clock), that location is incrememted, with overflow when
necessary into the higher bytes. Thus, location 161 is incremented every 256/60 sec
onds, or about every 4.2667 seconds; location 160 is incremented every 65536/60
seconds, or about every 18.204 minutes. The PAUSE routine later in this chapter
shows a possible use of the jiffy clock.

The II and II$ reserved variables discussed in Chapter 3 are derived from these
bytes by a straightforward conversion. II equals PEEK(162) + 256*PEEK(161) +
256*256*PEEK(160); for TI$, the value of TI (in jiffies) is converted into hours, min
utes, and seconds. Although the speed of the clock is constant, it is not identical to

173

Beyond VIC BASIC

that of real clocks, since the interrupts aren't at precise 1/60 second intervals. The
error varies internationally, and between VICs and 64s, but the maximum error will
not be more than one part in 33000 (a couple of minutes a day).

Disabling STOP and STOP-RESTORE
Turning off, or disabling, these keys is a useful way to provide some program se
curity and to guard against accidental use of the STOP key or of SHIFT -STOP
(which will try to load a program).

A completely reliable way to disable this key, while keeping it usable for emer
gencies, is to put a metal guard over the key itself.

Four approaches using software are given below. Remember, however, that if
your computer goes into an infinite loop with STOP disabled, you may have to turn
your VIC off to correct the problem. Be sure to include a subroutine to reenable
STOP.

To disable both STOP and STOP-RESTORE (method 1) POKE 808,109: POKE
809,220: POKE 808,54. To reenable, POKE: 808,109: POKE 809,247: POKE 808,112.
This is one of the best methods, since it leaves the clock working, disables both
STOP and STOP-RESTORE, doesn't affect tape operations, and leaves LIST working
normally.

To disable both STOP and STOP-RESTORE (method 2) POKE 808,109. To
reenable, POKE 808,112. This simple POKE disables both STOP and STOP
RESTORE. It leaves the clock working, but it may have an effect on tape loading. If
you're not using tape once the program is loaded, this method is fine. Note, how
ever, that LIST will be scrambled. Every time LIST checks for the STOP key, the
pointer telling it the length of the current line is changed. It is strange to see a listing
composed of apparent garbage run properly.

To disable STOP, POKE 788,194. To reenable, POKE 788,191. This simple
POKE modifies the interrupt vector so that it bypasses the Kernal routine to in
crement the clock and check STOP. However, it doesn't disable RESTORE. Tape op
erations defeat this procedure; during reading from tape the interrupt sequence is
reset, and STOP breaks into the program. The jiffy clock is turned off.

To disable STOP-RESTORE but not STOP, POKE 37150, PEEK(37150) AND
127. To reenable, POKE 37150, PEEK(37150) OR 128. This turns off the VIA inter
rupt. The usual values are POKE 37150,2 (off) and POKE 37150,130 (on). POKE
792,91: POKE 793,255 has the same effect; it works by altering the NMI vector so
that it immediately exits without carrying out any of its normal processing.

Notes. The STOP key is not an interrupt-like device, as it may appear to be. In
fact, every 1/60 second the Kernal routine which tests the STOP key is called. That
routine looks at location $91 (145), and if the smallest bit is low (that is, if the con
tents equal $FE (254)), STOP is pressed. ML programmers can therefore use JSR
$FFE1/BEQ to STOP a routine.

LIST and RUN also use the Kernal routine which tests the STOP key, which is
why a listing or a running program can be stopped. Tape LOAD and SAVE also use
it; so does RESTORE.

The Kernal routine at location 65505 ($FFE1) jumps to the address in locations
808 and 809. Method 1 changes this from F770 to DC36, via an intermediate

174

Beyond VIC BASIC

meaningful address. The ML it finds there is simply LDA #$1 IRTS. This nonzero
value insures that STOP will never occur. There are several versions of method 2,
POKEing around 130, but these call a routine to close files and can give odd effects
with disks.

Function Keys
The simplest way to program function keys fl-f8 is to use a simple GET. The range
of ASCII values is 133 to 140, in sequence 133, 137, 134, 138, 135, 139, 136, and
140. For example, to test whether f7 is pressed, you could use:
500 GET A$:IF A$ = "" THEN 500
510 IF A$=CHR$(136) THEN PRINT"F7 PRESSED"

More sophisticated function key programming requires machine language. Program
6-11 enables all eight function keys (unSHIFTed and SHIFTed) to be defined with in
dividual strings up to 32 characters long.

Program 6- 11. Function Key Handler
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o DATA 32,253,206,32,158,205,32,141,205,32,247,215
,136,152,10,10,10 :rem 188

1 DATA 10,10,133,253,169,29,133,254,32,253,206,32,
158,205,32,143,205 :rem 0

2 DATA 160,0,177,100,240,22,170,200,177,100,133,25
1,200,177,100,133 :rem 179

3 DATA 252,160,0,177,251,145,253,200,202,208,248,1
38,145,253,169,28 :rem 228

4 DATA 141,144,2,169,75,141,143,2,96,24,165,215,23
3,132,201,8,144,3 :rem 213

5 DATA 76,220,235,170,189,124,28,133,253,169,29,13
3,254,160,0,177,253 :rem 83

6 DATA 240,237,201,95,240,6,32,210,255,200,208,242
,166,198,169,13,157 :rem 71

7 DATA 119,2,230,198,208,216,0,64,128,192,32,96,16
0,224 :rem 152

100 POKE 56, PEEK(56)-2: CLR{8 8PACES}:REM LOWER M
EMORY BY 256 BYTES :rem 241

110 8=PEEK(56): 81=256*S :rem 24
120 FOR J=81 TO 81+131: READ X: POKE J,X: NEXT

:rem 202
130 POKE 81+22,S+I: POKE 81+65,8: POKE SI+90,8: PO

KE 81+94,8+1 :rem 19
140 FOR J=81+256 TO 81+511: POKE J,0: NEXT: REM 8E

T ALL FN KEYS NULL : rem 174
150 PRINT "U8E SYNTAX:- :rem 128
160 PRINT "8Y8" 81 ",N,8TRING:CLR" :rem 199

The program reserves 512 bytes at the top of memory for the ML and the eight
32-character strings. Strictly speaking, only 31 characters are available for each key
definition because each has a null byte as a terminator.

175

Beyond VIC BASIC

When Program 6-11 is run, all function definitions are initially blank. To define
a function key, use a statement of the form
SYS address, n, "string":CLR

Where address is the start of the ML routine (the program will tell you the proper
value to use), n is the number of the function key you wish to define, and string is
the string of up to 31 characters you wish to assign to that key. CLR sets the pointers
properly. For example, if you have an unexpanded VIC and wish to have HELLO
printed whenever you push the f5 key, you would use SYS 7168,5,"HELLO":CLR.

The vector at locations $028F /$0290 is central to the method; see the section in
this chapter on the keyboard for other illustrations. It is changed to point at our ML
routine, where location $D7 is tested, and, if its contents are in the function key
range, the original string is reconstructed and printed out.

The program does not check the length of your definition strings. You can enter
a string longer than 31 characters, but if you do, the string will overwrite part of the
next function key's definition.

The software is written so that the left-arrow key (not to be confused with the
cursor-left key) can be used to insert a RETURN into the keyboard buffer. Thus, SYS
7168,1,"LIST 100-300.-":CLR defines function key 1 to type LIST 100-300 and press
RETURN, so those lines will be listed. POKEs into hard-to-memorize locations,
loops, SYS calls to routines in memory, and printouts of current variable values are
typical applications of user-defined keys. The Super Expander and Programmer's Aid
cartridges have a similar built-in routine.

Keyboard
Commodore keyboards are very reliable. The VIC keyboard has 66 keys, which are
light-colored plastic stems surmounted by colored plastic caps with white legends.
The tops of the keys can be levered off and replaced. It is possible to rearrange the
keys, perhaps into German QZERTY style or the Dvorak layout with ergonomically
arranged letters, or for that matter alphabetically; as you'll see, the software which
decodes the keyboard can allow for this. Single-key entry of BASIC keywords is pos
sible, too, and the function keys can be programmed to output strings.

The keyboard can handle most ASCII characters, with the exception of control
characters and less common punctuation symbols (curly brackets, backsloping single
quotes, and the like). Its software is not quite free of bugs; for instance, the 2 key
plus a joystick held to the right simulates a STOP key and can crash BASIC.

Keystrokes are queued in a buffer (see the discussion of the keyboard buffer
above for details). Holding down the CTRL key delays screen scroll and is designed
to act with the color keys or RVS ON and RVS OFF. CTRL has no other effect;
CTRL-C doesn't generate CHR$(3), for instance.

RUN/STOP, when used with the left SHIFT key, puts LOAD:RUN into the key
board buffer, giving single-stroke loading and running of tape programs. The right
SHIFT key fails to do this. You will soon see how the SHIFT keys can be distin
guished in software.

How the keyboard is read. When the VIC is operating normally, its interrupt
routine performs several functions. The clock is updated and the status of the STOP
key is saved, the cursor may be flashed, the cassette motor is turned off unless a flag

176

Beyond VIC BASIC

is set, and the keyboard is scanned and the keyboard buffer updated if a key is
pressed.

This can be traced by disassembling the Kernal ROM routines. When an inter
rupt is generated, the 6502 finishes its current instruction, saves a few values, and
jumps to the address held in locations $FFFE/FFFF at the very top of memory. In the
VIC, those locations point to a ROM routine which checks that an interrupt (rather
than a BRK instruction) has been encountered, and then jumps to the address in
$0314/0315, which is normally $EABF. The first instruction in the routine at $EABF
is JSR $FFEA, which calls another Kernal routine to increment the clock, save STOP
status, etc., followed by screen and tape handling and a call to $EB1E. This is the
same routine used by the Kernal's SCNKEY routine ($FF9E) which, as the label im
plies, scans the keyboard.

Only 64 of the 66 keys are detectable by the keyscan routine. RESTORE is one
odd key out; it causes a nonmaskable interrupt (NMI) when pressed and isn't de
coded with the other keys. SHIFT LOCK is the other missing key.

To read the keyboard, two ports of a VIA, at $9120 (rows) and $9121 (columns),
are examined for bits set to zero. These bits are almost all 1; only the grounding ac
tion of a key being pressed sets a zero value. That is why Table 6-3 has values of
127,191, and so on, because the bit patterns are 01111111,10111111, and so on. In
turn, the row register is rotated to take one of eight values, and each bit of the col
umn is tested each time. A counter increments with each loop, and this is the value
which is stored when a keypress is found. Since there are eight rows and columns,
64 different values are theoretically possible. VIC uses all of them.

Table 6-3. Rows and Columns of Keyboard VIA
Contents of $9121 (column)

7F BF DF EF F7 FB FD FE
(127) (191) (223) (239) (247) (251) (253) (254)

I ~7_F_(_12_7_)~ __ F7 __ 4-_C_L_R-+ __ -__ -r __ O __ ~ __ 8 __ +-__ 6 __ +-_4 __ -r __ 2~
-.:::.- BF (191) F5 t @ 0 UTE Q

DF (223) F3 = K H F S

EF (239) F1 jRight/SHIFl M B C Z

F7 (247) CRSR / N V X
Down I

FB (251) CRSR ; L J G D
Right

FD (253) RETURN * PlY R

FE (254) INST £ + 9 7 5

Left/SHIFT

A

w
3

Logo

Space

STOP

CTRL

1

Note: The row is always set to 247 except during the actual reading, so STOP can be
detected merely by testing whether $9121 holds $FE. Left-SHIFT, X, and several
other keys can be checked in this manner too.

177

Beyond VIC BASIC

Machine language is necessary to read the keyboard. The following short BASIC
program:
10 POKE 808,109
20 INPUT "ROW"; R
30 POKE 829, R
40 SYS 828: GOTO 40

: REM DISABLE STOP
: REM USE 127,191, ETC

along with this machine language routine:

$033C LOA #$00
$033E STA $9120 ; Set row
$0341 LOX $9121 ; Read column
$0344 LOA #$00
$0346 JSR $OOCO; Print X in decimal
$0349 LOA #$00
$034B JMP $FF02 ; new line

illustrates the way that rows and columns interact. At this level SHIFTed and
unSHIFTed keys aren't distinguished.

Note that $9120 is contigured for output, and $9121 for input, by setting $9122
to $FF and $9123 to $00. Thus, PEEK(37154) is 255 and PEEK(37155) is O. If these
values are changed, which can happen, the Meyboard cannot function correctly.
POKE 37154,191 is typical; it allows only every other key in the top rows to operate.
POKEing the correct values restores normal functioning. P SHIFT -0 37153 + I,
155+99+1 is one way to get around the deactivated 2, 4, and E keys.

How the keyboard is decoded. When a key is pressed, the number of times the
keys can routine has looped (a number from 0 to 63) is stored in $CB (203). The pre
vious value of this location is in $C5 (197), and comparing the two shows whether a
new key is being pressed. PEEKing either location (see Figure 6-9) is a very useful
way to test for key depressions without bothering with GET, and it has the advan
tage of retaining the value as long as the key is held down. If the keyscan routine
loops 64 times and does not detect a keypress, it leaves a value of 64 in these loca
tions, so PEEK(197)=64 means no key is pressed. In practice, locations $C5 and $CB
can be used interchangeably to detect keypresses.

Figure 6-9. Key Values Stored in $C5 and $CB

Fl
8 39

F3
47

F5
55

~ F7
23 63

Space
32

178

Beyond VIC BASIC

SHIFT, Commodore, and CTRL keys. Location $028D (653) stores information
on these keys, which are assigned bit values 1, 2, and 4, respectively. Try FOR J= 1
TO 9E9: PRINT PEEK(653): NEXT which will give a value from 0 to 7 depending on
which of these three keys is pressed. The chess game Sargon looks for all three of
these keys pressed simultaneously (by testing for a value of 7) before centering the
screen.

STOP key, left SHIFT key. Location $91 (145) stores a copy of the normal key
board row and is used to identify the left SHIFT (and distinguish it from the right). It
also indicates when STOP is pressed. Try PRINT PEEK(145) in a loop; it prints 253
($FD) with left SHIFT, and 254 ($FE) with STOP.

Converting the key value to ASCII. Converting these values into ASCII is the
final step. The VIC has four character tables built into ROM, for unSHIFTed,
SHIFTed, Commodore key, and CTRL character sets, starting at $EC5E, $EC9F,
$ECEO, and $EDA3, respectively. They're each 65 bytes long and convert $CB's con
tents (0-64) into ASCII values, making allowance for the SHIFT, Commodore logo,
or CTRL keys. In decimal, these tables start at 60510, 60575, 60640, and 60835.

After storing the key value in $CB, an indirect jump is executed via $028F /0290
to $EBDC. This routine's function is to set the address in $F5/F6 to point to one of
the four keyboard tables, depending on whether a SHIFT key or Commodore is
pressed, so that the correct ASCII value can be determined. In addition, if the value
in location $0291 (657) is less that 128, SHIFT-Commodore will switch graphics sets
from lowercase/uppercase to uppercase/graphics, or vice versa.

With $F5/F6 pointing to one of the four keyboard tables, the routine at $EB74 is
entered and the key'S ASCII value is determined and stored in location $D7. The
routine then deals with keyboard repeats as well as with cursor control and other
special keys.

Detecting several simultaneous keypresses is possible only with a machine lan
guage loop; normal keyboard reading goes no further than the first keypress en
countered. This means that a music-style keyboard must be read with ML.

Using the keyboard vector. The contents of $028F /0290 can be changed to
point to your own routine, so that keys can be intercepted and their effect changed.
This is a machine language technique; see the earlier example showing how to pro
gram the function keys to print out strings of characters.

Method 1: Intercepting one or more keys. Generally, you intercept keys to trigger
an activity, like printing a message. The technique is to test either $CB or $D7 for
your key or keys, $CB if you're only concerned with the physical key, $D7 if you
need to distinguish unSHIFTed and SHIFTed keys. Additionally, left SHIFT can be
detected by testing location $91, and SHIFT/CTRL/Commodore can be detected by
testing location $028D. Jump to $EBDC if the desired key isn't pressed; end your
own routine with JMP $EB74. In this way, keyboard processing is perfectly normal,
SHIFT keys and all, except for your own specially inserted routine. This very simple
example changes VIC's background color whenever the back-arrow (+-) key is pressed
if you change the contents of $028F /0290 to point to the start of this routine:

179

Beyond VIC BASIC

LDA $CB
CMP #$08 ; back-arrow key
BEQ LABEL
IMP $EBDC; Continue normal keyboard operation

LABEL LDA $900F
CLC
ADC #$10 ; adding 16 changes background
STA $900F ; color to next in sequence
IMP EAEO

As a more complex example, consider how to print BASIC keywords with single
keystrokes. You could use left-SHIFT plus a key, or CTRL-Commodore plus a key, or
many other combinations. There are roughly 64 keywords, so almost every key can
be assigned its unique word. The example program below uses the Commodore key
in combination with other keys to print BASIC words; for instance, the Commodore
key with R prints RUN. Many people like this type of entry of BASIC, even though
VIC's key tops are not labeled with the keywords. One of the points to watch for is
the debouncing feature just after LABEL; without this, the words will print re
peatedly, instead of only once.

LDA $028D
CMP #$02
BEQ LABEL

; Is Commodore key pressed?

EXIT: IMP $EBDC ; Continue as usual if not.
LABEL: LDY $CB ; Now look at ordinary scanned keys;

CPY #$40
BEQ EXIT
CPY $C5
BEQ EXIT
STY $C5
INY
LDX #$00

LOOP INX

; exit if no such key pressed.

; Exit if same key pressed as last time;
; if new key, record it in $CS.
; Loop to choose Yth BASIC word.

LDA $C90C,X ; BASIC words are stored from $C09E.
BPL LOOP ; Look for high bits set,
DEY ; and, when found, decrement
BNE LOOP ; Y until it counts down to zero.

PRINT INX
LDA $C09C,X ; Load and print consecutive characters
BMI LAST ; end signaled by high bit set.
ISR $FFD2
BMI PRINT ; Make the routine freely relocatable.
BPL PRINT

LAST AND #$7F ; Turn off high bit of last character
ISR $FFD2 ; then print it.
IMP $EBDC ; Continue normal keyscan.

The BASIC equivalent is given in Program 6-12. Variable S controls the place in
memory into which the routine is POKEd; any free RAM area is acceptable. Note
how line 40 changes the value of the keyboard decode table vector in locations
$028Fj0290 (655/656).

180

Beyond VIC BASIC

Program 6- 12. Single Key Entry of Keywords
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

° DATA 173,141,2,201,2,240,3,76,220,235,164,203,19
2,64,240,247,196 :rem 159

1 DATA 197,240,243,132,197,200,162,O,232,189,156,1
92,16,250,136 :rem 30

2 DATA 208,247,232,189,156,192,48,7,32,210,255,48,
245,16,243,41 :rem 43

3 DATA 127,32,210,255,76,220,235 :rem 30
10 REM SINGLE KEY BASIC :rem 82
20 S=828 :rem 148
30 FOR J=S TO S+54:READ X:POKEJ,X:NEXT :rem 12
40 POKE 656,S/256:POKE 655,S-INT(S/256)*256:REM PU

T S IN ($028F/0290) :rem 166

Method 2: Redefining the keyboard. If you wish to redefine the keyboard, the best
way is to copy all four tables into RAM, modify them, and access them by changing
the vector in $028F /0290 to point to a routine like the following:

LOA $0280 ; test SHIFT, CTRL, Commodore key
ASL ; Omits test for SHIFT -Commodore in ROM
CMP #$08 ; which switches lower- and uppercases
BCC OK
LOA #$06 ; Rest of keyboards are CTRL

OK TAX
LOA TABLE,X
STA $F5
LOA TABLE+l,X
STA $F6
JMP $EB74

where TABLE is six bytes that hold the starting addresses of your unSHIFTed,
SHIFTed, and Commodore key ASCII decode tables (in standard low-byte/high-byte
format).

The following BASIC program will also do this for you, keeping three tables in
the protected top of BASIC memory. It has 31 bytes of ML, then 8 bytes pointing to
the tables in RAM, and finally 260 bytes of tables.

Program 6- 13. Redefining the VIC's Keyboard
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

9 REM(3 SPACES}** LOWER MEMORY TOP/ MOVE KEYBOARD
(SPACE}TABLES TO RAM/{6 SPACES}** :rem 62

10 T=PEEK(55) + 256*PEEK(56) :S=T-299 :rem 148
20 POKE 55,S AND 255: POKE 56,S/256: CLR :rem 35
30 S=PEEK(55) + 256*PEEK(56) :rem 166
40 FOR J=60510 TO 60704 :rem 114
45 POKE S+39+X,PEEK(J): X=X+1: NEXT :rem 237
50 FOR J=60835 TO 60899 :rem 140
55 POKE S+39+X,PEEK(J): X=X+1: NEXT :rem 238

181

Beyond VIC BASIC

59 REM{2 SPACES}** ML TO HANDLE SHIFT ETC/ ADD ADD
RESSES OF RAM TABLES ** :rem 2

60 FOR J=S TO S+30: READ X: POKE J,X: NEXT::rem 67
70 TABLE=S+31: K1=S+39: K2=S+104: K3=S+169: K4=S+2

34 :rem 242
80 POKE TA,K1 AND 255: POKE TA+1, K1/256 :rem 17
90 POKE TA+2,K2 AND 255: POKE TA+3, K2/256:rem 115
100 POKE TA+4,K3 AND 255: POKE TA+5, K3/256

:rem 161
110 POKE TA+6,K4 AND 255: POKE TA+7, K4/256

:rem 168
120 POKE S+19,TA AND 255: POKE S+20,TA/256:rem 176
130 TA=TA+1: POKE S+24,TA AND 255: POKE S+25,TA/25

6 :rem 175
139 REM ** REDIRECT ($028F) TO THE NEW KEYBOARD PR

OCESSING{5 SPACES}** :rem 140
140 POKE 655,S AND 255: POKE 656, S/256: :rem 225
200 DATA 169,1,208,3,76,220,235,173,141,2,10

:rem 97
210 DATA 201,8,144,2,169,6,170,189,31,160,133

:rem 157
220 DATA 245,189,32,160,133,246,76,116,235 :rem 25
300 PRINT "4 TABLES AT" S+39 "TO" S+298 :rem 218
308 REM ** ACCEPT KEY/ SEARCH RAM FOR IT

{23 SPACES}** :rem 9
309 REM ** SEARCH ALL 4 KEYBOARDS/ POKE NEW VALUE

{SPACE}INTO RAM{5 SPACES}** :rem 110
310 PRINT "KEY TO BE REDEFINED?" :rem 61
320 GET X$: IF X$="" GOTO 320 : rem 133
330 PRINT X$: X=ASC(X$) :rem 18
340 FORJ=S+39TOS+298:IFX<>PEEK(J)THENNEXT :rem 124
350 J=J-S-39 :rem 130
360 PRINT "NEW VALUE OF KEY?" :rem 142
370 GET X$: IF X$="" GOTO 370 :rem 143
380 PRINT X$: X=ASC(X$) :rem 23
390 POKE S+39+J,X: GO TO 310 :rem 181
1000 PRINTPEEK(197)PEEK(653) :rem 121
1010 :GOT01000 :rem 246

This program moves the keyboards from ROM (60510-60704) into the protected
top of RAM. Its machine language resembles that above. However, there's an extra
feature; rOKEing location S + 1 (just after the start of the protected area) with 0 re
verts to the normal keyboard.

Lines 80-130 are all concerned with the table addresses, which must be entered
since they can vary. The loop at 310 changes keys. The table definitions can be
saved to tape or disk; line 300 prints the addresses.

The keyboard as a device. The keyboard is treated as device number 0 by the
operating system. You can open a file to the keyboard and treat it as an input device
using the following program.

182

Beyond VIC BASIC

10 OPEN 5,0
20 INPUT#5,X$
30 PRINT X$: GOTO 20: REM LOOK AT WHAT'S BEEN INPUT

Commas and other punctuation symbols, which BASIC treats as separators, will no
longer give ?EXTRA IGNORED (because a file is considered open), but parts of a
string may be lost. The normal question-mark prompt is not printed.

Repeating keys. Location 650 controls which keys, if any, will repeat if held
down. POKE 650,0 causes the space bar, INST jDEL, and cursor control keys to re
peat. POKE 650,64 prevents any key from repeating, and POKE 650,128 makes all
keys repeat.

Repeat rates, as well as the delay before repeat takes place, are not easily con
trolled from BASIC. The constants are built into ROM routines, so POKEd values
quickly revert to normal. An easy way to speed repeat is simply to change the rate at
which interrupts occur, but this has the disadvantage of making the jiffy clock count
faster.

Location 652, the countdown, can be used too for fine-tuning (for example,
where it's necessary to move from one value to another through a large range of
values). Program 6-14 shows how this can be done.

Program 6- 14. Repeat Rates
9000 GET X$: IF PEEK(652»0 AND PEEK(652)<16 THEN

{SPACE}J=0
9010 J=J+1
9020 IF J>100 THEN J=100
9030 IF X$="" THEN 30000
9040 RETURN

Add line 8000 COSUB 9000: X=X+J: PRINT X: COTO 8000 and watch the
value of X increase faster the longer a key is held down. The + and - keys can be
used with a subroutine like this to step through memory efficiently, allowing small
changes by hitting + or - and increasingly rapid changes if either key is held
down.

Important keyboard locations. Table 6-4 shows some of the more important
locations and ROM routines associated with reading and decoding the keyboard.

183

Beyond VIC BASIC

Table 6-4. Summary of Keyboard Locations

$91
$C5
$C6
$CB
$D7
$F5/F6

145
197
198
203
215
245/246

STOP Key/Left SHIFT key record
Previous key pressed
Number of characters in keyboard buffer
Most recent key pressed
ASCII value of key pressed
Keyboard table pointer

$0277-$0280 631-640 Keyboard buffer
$0289 649
$028A 650

$028B 651
$028C 652
$028D 653
$028E 654

Maximum number of characters in the keyboard buffer
Repeat key nag (0: space and cursor keys repeat, 64: no keys repeat,

128: all keys repeat)
Repeat delay after repeating begins
Delay before repeating begins

$028F/0290 655/656

SHIFT, Commodore, CTRL status (1, 2, and 4, respectively)
Previous configuration of SHIFT, Commodore and CTRL
Vector enabling user-written keyboard tables

$0291
$EABF
$FF9F

657
60095
65439

SHIFT-Commodore case switching enable/disable (0 enables, 128 disables)
Starting address of normal interrupt handling routine
Kernal Routine to read the keyboard (SCNKEY); jumps to $EBIE

Table 6-5. Summary of Screen Locations and ROM Routines
$C7
$C9
$CC
$CD
$CE
$CF
$DO
$Dl
$D3
$D4
$D5
$D6
$D9-$FO
$F3
$0286
$0288

199
201
204
205
206
207
208
209
211
212
213
214
217-240
243
646
648

Reverse nag (0 reverse off, 18 character reverse on)
Cursor row and column for input from screen
Cursor nash (0 nashes cursor)
Cursor countdown before blink
Character under cursor
Cursor blink phase (0 or 1)
Input from screen/keyboard (nag is 3 for screen or 0 for keyboard
RAM Address of start of current line
Position of cursor on line
Quotes nag (0 not in quotes, 1 in quotes)
Current length of screen line (21,43,65, or 87)
Cursor's row
Table of screen line links (IE continues; 9E doesn't)
Color RAM address
Color code (0, black, through 15, light yellow) in use
High byte of start of screen (usually 16 or 30)

Interesting ROM routines include:
$E55F 58719 Clear screen
$E5C3 58819 Set VIC chip to normal values
$E64F 58959 Input from screen (or keyboard)
$E912 59666 Converts CHR$ (color) in A into 0-7
$EA8D 60045 Clear entire row (POKE 781,X: SYS 60045 when X is 0-23)
$EAA 1 60065 Plots character and color on screen. A = character, x = color (0-7)
$EAB2 60082 Finds color RAM relevant to current cursor position
$EA08 59912 Scrolls screen down one row (contents of 242 may affect this)
$E975 59765 Scrolls screen up one row

184

Beyond VIC BASIC

Screen
The screen is treated as device number 3, so files can be opened to the screen for in
put and output with OPEN 3,3. This provides INPUT without the normal prompt
and can occasionally be useful in this sort of construction: OPEN 3,3: PRINT
{HOME} ;:INPUT#3,X$ which reads the top line from the screen, subject to the usual
rules governing INPUT.

Screen handling is complicated. Each ASCII value has to be converted into a
POKE value; if it has some special purpose (like clearing the screen or setting reverse
mode), a subroutine must carry this out. The way BASIC lines are temporarily made
up of from one to four screen lines has to taken into account. ML programmers can
trace this process from $FFD2, the Kernal routine CHROUT which prints a character,
to $F27 A and to $E742. From there, an entire range of processes is traceable, includ
ing delete and insert, cursor movements, screen scrolling, and placing the character
and its color into the screen.

The line link table helps the system keep track of BASIC lines, which can wrap
around up to four lines. Some bugs, notably when INPUT takes in its own prompt,
occur as a result of this process.

Important screen locations. Some relevant locations are listed in Table 6-5.
Chapter 12 (Graphics) explores many of them.

Alphabetical List of Utilities and Extensions to VIC BASIC
VIC's BASIC lacks a number of useful commands and structures that are built into
some other BASICs. Many can be simulated, however. The following examples are
grouped under headings of typical keywords, which indicate their functions. Note
that these are typically BASIC subroutines, which must be run as usual, or machine
language routines called by SYS.

The actual words listed (such as APPEND) will not by themselves activate any
of these routines. A wedge or an intercept using a BASIC input vector is necessary to
incorporate new keywords; while these techniques are interesting (they're explained
elsewhere), they would significantly complicate matters here.

APPEND
This BASIC system command can either add one file to the end of another, making a
composite file, or link two BASIC programs end to end in a single program. Machine
language can be linked like this too.

Disk files can be appended (see Chapter 15). Tape files can be appended; how
ever, since the VIC has only one tape port, the process is more difficult.

BASIC programs are easy to append because the LOAD address is easily varied.
Standard subroutines with high line numbers can be put onto the end of programs
without the need to list the subroutines to the screen, load the program, enter some
subroutine lines, save, and repeat. If the line numbers of the programs overlap, the
normal editing won't work and you'll have unremovable lines of BASIC.

Figure 6-10 shows a program in memory, plus two of its pointers. Note how two
zero bytes signify the end of the program. If the new program loads and overwrites
this zero link address with its own link address, the programs append perfectly.

185

Beyond VIC BASIC

Figure 6- 1 O. Appending Programs

Start-oF-Program Pointer
..
I BASIC Program 1

+ Append this:

Start-oF-Program
.j.

Gives: I BASIC Program 1

End-of-Program Pointer

+

BASIC Program 2

+ BASIC Program 2
1
t

New End-of-Program

The easiest approach is to first enter POKE 43, PEEK(45)-2:POKE 44, PEEK(46)
in direct mode; then load or type in the new lines of BASIC and POKE 43,1: POKE
44,16 to start BASIC at $1000 (on the unexpanded VIC; substitute POKE 44,4 on a
VIC with 3K expansion and POKE 44,18 with 8K or more expansion). Perfectly ap
pended BASIC should result. Actually, this method is a shortcut; if PEEK(45) hap
pens to be 0 or 1, you'll get an illegal quantity error and will need to edit your
instructions to POKE 43, PEEK(45)+ 256- 2: POKE 44, PEEK(46)-1, then continue
as before.

AUTO
AUTO is a system command, not available in VIC BASIC, which automatically gen
erates line numbers. Many utility packages (such as Programmer's Aid) contain ver
sions of this command. Program 6-15 is a BASIC subroutine, which uses the
keyboard buffer to take in complete lines. The POKE in line 60010 flashes the
cursor, line 60040 prints the current values of S and I, and line 60050 puts two car
riage returns in the keyboard buffer.

Program 6- 15. AUTO: Automatic Line Numbering
60000 PRINT"ENTER START, INCREMENT":INPUT S,I

60010 PRINT "{CLR}{3 OOWN}"7S7:POKE204,0
60020 GET A$:IF A$=""GOTO 60020
60030 PRINT A$7 :IF ASC(A$)<>13 GOT060020
60040 PRINT"S=" 5+1 ":1=" I ":GOTO 60010":PRINT"

{HOME}"
60050 POKE 631,13:POKE632,13:POKE198,2:END

BLOCK LOAD and BLOCK SAVE
VIC's LOAD and SAVE commands are designed solely for the benefit of users of
BASIC. They automate BASIC program recovery and storage, in a way which is
pleasantly transparent. Programs load into memory into the correct area, and are

186

Beyond VIC BASIC

saved to tape or disk without any need to know about pointers or other inside
informa tion.

However, there are situations when the special assumptions connected with
BASIC do not apply. When a block of machine language, a collection of graphics
characters, or a set of variables and arrays after BASIC is to be saved intact to tape
or disk, normal saving cannot possibly work since the machine can't know what area
of memory you want saved. In addition, loading such blocks back into memory may
be tricky; the machine language or data is liable to be treated as though made up of
BASIC lines, and become corrupted through being linked.

Note that ML monitors (like VICMON) have commands like .s "NAME ",
01,1000,2000 (save the contents of $1000-$lFFF to tape and call it NAME) and .s
"DISK NAME", 08,1000,2000 (save the same data to disk with the title DISK
NAME) to perform block loads and saves. Note also that data above $8000 can't be
saved to tape with the VIC-20, although it can be with disks. Chapter 14 explains
how memory areas in this region, notably the ROM area from $AOOO to $BFFF, can
be stored on tape by first moving them lower down in memory.

BLOCK SAVE. The obvious way to save data other than BASIC programs is to
poke new start and end addresses. For example, you could use POKE 43,0: POKE
44,24: POKE 45,0: POKE 46,26: SAVE "NAME", 1,1. This will save data from loca
tions $1800 to $19FF because the value in the start-of-BASIC pointer is changed to
$1800 and the value in the end-of-BASIC pointer is changed to $lAOO. As far as VIC
is concerned, this becomes the correct area to save. (Note that the last byte at $lAOO
is not saved; SAVE stops when it reaches it.) The secondary address of 1, with tape,
forces the data to LOAD back into the same area as that from which it was saved.

There may be problems in using this technique within a BASIC program. It's
necessary to restore the pointers after use; they must be saved with POKEs and
recovered with PEEKs, or they will be lost.

An alternative technique is given in Program 6-16. It has the same effect as the
POKE-and-SAVE method. SYS 57809 takes in the parameters which save or load.
You can replace NAME with the name of your choice, and change the first 1 to an 8
to save to disk instead of tape. POKE the starting address of the SAVE into locations
193 and 194, and the ending address + 1 into locations 174 and 175.

Program 6- 16. BLOCK SAVE
1000 SYS57809"NAME",I,1
1010 POKE 193,0:POKEI94,24
1020 POKEI74,0:POKEI75,26
1030 SYS63109

You can watch the effect of this program by typing SYS 57809 "HELLO",8,1:
PRINT PEEK(186); PEEK(183); PEEK(187) + 256*PEEK(188); PEEK(185). The values
displayed are the device number, name length, pointer to name, and secondary ad
dress, respectively.

BLOCK LOAD. To load a machine language routine into memory, the easiest
way is simply to use LOAD "NAME", 1,1 (assuming the machine language has been

187

Beyond VIC BASIC

saved with a forced LOAD address). Within a program, a maneuver like the one be
low is needed to avoid the automatic chaining feature:

o IF X=l GOTO 2
1 X=l: LOAD "NAME", 1,1
2 REM CONTINUE FROM HERE ...

There are, of course, limitations on these methods. The first may corrupt its
data; the second is tiresome if you have several LOADs. Program 6-17 shows one
technique that works within programs without interrupting program flow.

Program 6- 17. BLOCK LOAD

1000 POKE147,0
1010 SYS 57809 I SCREEN",8,1
1020 SYS 62795

Example. To see how these routines work, consider Program 6-18 which saves
and loads a VIC color screen to disk. Lines 10-30 save the contents of locations
$lEOO-$lFFF to disk with the title SCREEN. This is the correct area for screen mem
ory in an unexpanded VIC-20. Line 20 saves the corresponding color RAM ($9600-
$97FF); line 30 saves the VIC registers. If user-defined characters were used, these
must be SAVEd too. Between them, these completely define any picture starting at
$lEOO.

Lines 500 to 520 reconstruct the picture. Try typing this program into an un
expanded VIC attached to a disk drive, then put a few random colored characters on
the screen. RUN will store the screen's information on disk. Clear the screen; type
RUN 500, and you'll see the screen reconstruct itself.

Program 6-18. USing BLOCK SAVE and BLOCK LOAD to Save a VIC
Screen
Refer to the "Automatic Proofreader" article (Appendix C! before tl/ping ill this program.

10 SYS 57809 "@:SCREEN",8,1:POKE 193,0:POKE194,30:
POKE174,0:POKE175,32:SYS 63109 :rem 216

20 SYS 57809 1@:COLOR",8,1:POKE194,150:POKE175,152
:SYS 63109 :rem 59

50 END : rem 60
70 REM : rem 75
500 POKE147,0: SYS 57809 ISCREEN",8,1:SYS 62795

:rem 13
510 SYS 57809 ICOLOR",8,1:SYS 62795 :rem 108
600 GOT0600:REM DISPLAY SCREEN UNTIL STOP KEY

:rem 20
Writing a version of this program for tape is more difficult. Memory in the

area used for both color RAM and the VIC chip cannot be saved directly, and the
process is slow. Change lines 10 and 500 to the tape equivalents (10 SYS 57809
"SCREEN",},l etc.) and delete 20, 30, 510, and 520. The screen can be saved, but
without its color information; it's easiest to supply this separately.

188

Beyond VIC BASIC

CHAIN
Chaining is the process by which one program loads and runs another. For example,
a set of programs may exist on disk, each separately accessible by a menu, so that
only one program is in memory at one time and the menu is reentered on exit from
any called program. VIC BASIC (and PET/CBM and 64 BASICs) chains whenever
LOAD takes place inside a program. LOAD, then run without CLR (to retain pre
vious variables), is automatic.

Although basically simple, this is not quite as straightforward as it seems. Earlier
in this chapter you saw how problems can occur when the chained program is
longer than the program which loaded it. You may also encounter occasional diffi
culties with strings and function definitions.

Try the following very short illustration:
1. Save this on tape:

10 PRINT "FIRST PROGRAM"
20 A=10: B%=100: C$="HELLO" + 11/1

30 LOAD "SECOND PROGRAM": REM CHAINS SECOND PROGRAM

2. Now type this in, and save it as "SECOND PROGRAM":

10 PRINT "SECOND PROGRAM"
20 PRINT A,B%,C$

Rewind the tape and load and run the first program. It will almost immediately
reach line 30. Load the second program, and run it, while retaining the variables.
Line 20 of the second program prints 10, 100, and HELLO, the values assigned by
the first program. Note that when the LOAD is within a program, there's no LOAD
ING PROGRAM message and no other messages unless the cassette button isn't
pressed.

Chaining machine language. The easies[way to load and run ML is to use the
Kernal LOAD routine followed by a jump to the newly loaded ML program. This is
explained in detail in Chapter 8.

COLOR Border, Screen and COLOR Character
BASIC graphics packages often have a command called COLOR. All it does is poke a
border and background color into the relevant VIC chip register at $900F (36879). A
BASIC version might assume BO is the border color (0-7) and SC is the screen back
ground color (0-15). In that case, all that's needed is POKE 36879,8 + BO + 16 *
Sc. Alternately, the keypress values (1-8, or 1-16 with some work) may be more
suitable.

Chapter 12 has a routine to set all current color RAM to any selected color.

Compile
Compilation is a process by which a language like BASIC is converted into pure ma
chine language. A program which performs this conversion is called a compiler.
BASIC (the source code) is translated into ML object code; typically it will LIST as a
single SYS call, which is followed by a large (but not listed) ML program.

Compilation is a different order of magnitude from other utilities discussed here.
So far as I'm aware no compiler exists for VIC, mainly because of its small memory.

189

Beyond VIC BASIC

However, it's possible that VIC programs compiled on a 64 could run on the VIC
with expansion memory, if the compiler uses only Kernal routines, so a short dis
cussion is justified.

Briefly, any compiler of an unstructured language like CBM BASIC must first
build up a table of all the program's variables and arrange a position for each of
them in memory. Strings will need pointers, and will be liable to garbage collection
problems unless they are each assigned 256 bytes. When the variables are dealt
with, every BASIC statement must be converted into its ML equivalent; the result is
typically a set of segments which are linked to make up the compiled code.

Speed increases of 10 to SO or more times are claimed, but in practice even a
tenfold increase is probably optimistic. Some of the improvement is directly due to
the replacement of BASIC statements, with all their overhead and housekeeping, by
relatively straightforward processing.

By itself this is not a major factor. Well-written compilers have their own
arithmetic routines, using integers where possible to save time. There's considerable
room for ingenuity; for example, a line like 100 GET X$: IF X$="" GOTO 100,
which is often found in CBM BASIC, could be replaced by five bytes of machine
language.

So-called tiny compilers, working with a restricted set of BASIC (to save the
effort of implementing every command) are occasionally encountered.

Computed GOSUB and Computed GOTO
These functions use a formula or label, instead of a number, for their destination
line. Some computer languages use GOSUB VALIDATE to perform a subroutine
called VALIDATE. Obviously, statements like this are likely to be more readable than
CBM BASICs GOSUB 10000. But there are a couple of things to watch out for.
Don't confuse computed destinations with ON-GOTO-, which provides a choice of
destinations according to the value just after ON. Note, too, that any parts of BASIC
using computed destinations can't usually be renumbered by a utility.

Can you get a version of these functions with VIC BASIC? It is not too difficult,
and versions of each (using a SYS call plus an expression for a line number) are
given here. For example, using the first of the ML routines below, SYS (828) DATE
when DATE=1000 acts just like GOTO 1000, and SYS (840) CHECK when
CHECK = 2000 acts just like GOSUB 2000.

SYS (828) 500 + 10*X and other arithmetic functions can be used too. A wedge
to intercept BASIC is more trouble, but more readable; you can use GOTO DATE,
GOSUB CHECK, and so on. See Chapter 9.

Computed GOTO. This is shorter than GOSUB, because nothing has to be
stored on the stack. If you try SYS (51531) 10, you'll find it behaves just like GOTO
10. This is not surprising, since 51531 is the beginning of the ROM routine that per
forms GOTO. If you replace the routine to fetch an ASCII number with a routine
that calculates a value, you have a short computed GOTO:

$033C JSR $CD8A; Input and evaluate numeric expression
$033F JSR $D7F7 ; Convert to two-byte integer or error message
$0342 JSR $C8A3 ; Enter GOrO, skipping input of fixed number
$0345 JMP $0079 ; Continues at next BASIC character

190

Beyond VIC BASIC

Computed GOSUB. SYS (51331) 10 acts like COSUB 10. Again, if you insert
the following ML to calculate the destination, you have a computed COSUB:
$0348 LOA #$03 ; Test whether stack has room for six bytes
$034A JSR $C3FB ; and print OUT OF MEMORY message if not
$0340 LOA $7B
$034F PHA ; COSUB saves the pointer into BASIC,
$0350 LOA $7 A
$0352 PHA
$0353 LOA $3A
$0355 PHA ; and the current line number.
$0356 LOA $39
$0358 PHA
$0359 LOA #$80 ; COSUB token is for RETURN to identify.
$025B PHA
$025C JSR $0079 ; Move to next BASIC character, at start of numeric expression
$025F JSR $C08A; Input and evaluate (like computed COTO),
$0262 JSR $07F7 ; Convert to two bytes,
$0265 JSR C8A3 ; Find computed line number, go to it,
$0268 JMP C7 AE ; Continue with BASIC.

Both routines can be freely relocated. If you want to try these routines, but do
not yet know ML, load the ML with the simple BASIC loader in Program 6-19.

Program 6-19. BASIC Loader for Computed GOTO and GOSUB
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 DATA

20 DATA
,58

30 DATA
5

32,138,205,32,247,215,32,163,200,76,121,0
:rem 83

169,3,32,251,195,165,123,72,165,122,72,165
:rem 57

72,165,57,72,169,141,72,32,121,0,32,138,20
:rem 199

40 DATA 32,247,215,32,163,200,76,174,199 :rem 181
50 FOR J=828 TO 874:READX:POKEJ,X:NEXT :rem 25

CRUNCH
This utility is not generally a part of any BASIC dialect. The idea of crunching a pro
gram is to delete any parts which are not necessary for the program's operation, with
the aim of increasing BASIC's execution speed. For this reason, compacting is an
alternative name for the process. Conversely, uncrunching means spacing a program
out. It has nothing to do with speed; the intention is to make a program more read
able and documentable. For example, if you wish to decipher someone else's
crunched program, a utility which lists each instruction on a separate line and puts
in spaces may well help legibility. See LIST, as well as Chapter 8 (which has a short
ML routine to separate BASIC statements onto new lines).

The rationale for CRUNCH is that REM statements, spaces, short lines, and so
on slow the BASIC interpreter by making it waste time jumping past spaces, switch
ing to new lines, and so on. How much speed increase is likely? Not a great deal.
The appeal is really of the "every little bit helps" type. Combined with renumbering

191

Beyond VIC BASIC

lines (0,1,2, ...) and adding an extra line or two of DIM statements to order the main
variables, CRUNCH will help things along as much as can be hoped from such
mechanical methods.

Crunching should remove REMs. If these are referenced by GOTO or GOSUB,
they may be retained, or the reference may be changed to the next line. It should
also remove all spaces not within quotes; however, a program crunched in this man
ner may require some adjustment. For example, if the statement X = T AND U is
crunched, BASIC will think it contains the function TAN.

Crunching should also combine as many lines together as possible. Lines span
ning more than 255 bytes should be avoided, since most BASIC pointers-the one
for DATA, for example-are only a single byte. Thus, the longest line is generally
limited to 250 BASIC characters. Note, however, that a line may be referenced (for
instance, by GOTO) and therefore not be combinable with previous line(s).

Crunching could also renumber from 0 upwards in steps of 1; reduce all vari
ables' names to a single character; remove spare semicolons from PRINT statements;
modify CHRGET to remove its test for spaces (see Chapter 8); slow the rate of inter
rupts (or temporarily stop them if the keyboard will not be used); or remove wedges
which intercept BASIC and usually slow it.

In practice, it is often simplest to manually remove spaces and REMs and collect
lines together. Since crunching actually changes the program, BASIC has to use a
keyboard buffer POKE technique, listing an individual line without spaces, entering
it, and starting over with the next line.

DEEK
Double-byte PEEK returns the value in two consecutive addresses, assuming they
follow the 6502 convention of low byte then high byte. Use this formula:
DEF FN DEEK (X) = PEEK(X) + 256 * PEEK(X+l)

DEL
Deletion of an unwanted portion of a BASIC program, to remove test routines and
temporary features, is performed in other dialects of BASIC by DEL a-b, with syntax
similar to LIST (except that DEL alone should not delete everything). The Pro
grammer's Aid cartridge includes a version. DEL seems to have been omitted from
Commodore's originial BASIC specifications.

Program 6-20 is a BASIC subroutine designed to reside at the end of a program.
It works by searching out line numbers within a specified range, then deleting the
line using a trick with the keyboard buffer to simulate entry of the line number at
the keyboard.

Program 6-20. DELete
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

61000 INPUT "DELETE FROM, TO"; L,U:{2 SPACES}A=PEE
K(43) + 256*PEEK(44) :rem 238

61010 DEF FN DEEK(A) = PEEK(A)+256*PEEK(A+1)
:rem 255

192

Beyond VIC BASIC

61020 IF FN DEEK(A+2)<L THEN A=FN DEEK(A): GOTO 61
010 :rem 3

61030 IF FN DEEK(A+2»U OR FN DEEK(A)=0 THEN END
:rem 11

61040 N=FN DEEK(A+2): PRINT "[CLR}" N :rem 14
61050 PRINT "A=" A ":U=" U ":GOTO 61010" :rem 160
61060 POKE 631,19: POKE 632,13: POKE 633,13: POKE

[SPACE}198,3: END :rem 0

Line 61010 skips through link addresses until a line number in the specified
range is found. Line 61020 stops either out of the range or at the end of a program.
Line 61030 prints a line number on the screen, and the rest of the subroutine simu
lates three RETURN keypresses. A more elegant approach is to move the entire pro
gram from the upper line number down, to overlay BASIC from the lower line
number; the link addresses then have to be restored.

DOKE
Double-byte POKE puts a value from 0 to 65535 into any two consecutive bytes,
assuming that the standard 6502 convention of low byte/high byte applies. There's
no way to write this as a function without writing a SYS routine of the form SYS m,
n or using a wedge; instead, DOKE ADDRESS, VALUE can be represented by POKE
AD,VA - INT(VA/2S6)*256: POKE AD+ 1,VA/256

DUMP
One form is a screen dump, which prints a duplicate of the screen onto paper; it
may be useful as a record or interesting as a picture. It is relatively easy to print nor
mal characters when user-defined characters aren't used, since all that's needed is a
PEEK into RAM followed by printout of the corresponding characters. Complications
include high-resolution graphics, color (where conversion to black-and-white may
lose detail) and the fact that Commodore printers have the Commodore character set
while other printers may not.

Program 6-21 is a BASIC dump that assumes the normal VIC character set.

Program 6-21. Screen Dump
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program,

40010 SCREEN = 256*PEEK(648):OPEN 4,4:CMD 4:rem 19
40100 FOR J=0 TO 22:FOR K=0 TO 21:X=PEEK(SC+J*22+K

) :rem 205
40110 IF X>128 THEN X=X-128:PRINT CHR$(PRINTER REV

SON); :rem 239
40120 IF X<32 THEN PRINT CHR$(X+64); :rem 181
40130 IF X>31 AND X<64 THEN PRINT CHR$(X);:rem 243
40140 IF X>63 AND X<96 THEN PRINT CHR$(X+32);

:rem 142
40150 IF X>95 AND X<128 THEN PRINT CHR$(X+64);

40160 PRINT CHR$(146);
40170 NEXT:PRINT:NEXT:PRINT#4:CLOSE4

:rem 197
:rem 176
:rem 125

193

Beyond VIC BASIC

Line 40010 computes the top-left screen position and OPENs a file to the
printer. Line 40100 starts a loop, which PEEKs every individual screen location
(assuming a 22-column X 23-row screen) and prints the corresponding character.
Line 40110 looks for reversed characters and turns on the printer's reverse mode if
any are detected. CHR$(18) turns on reverse mode for Commodore's printers, with
CHR$ (146) also needed in line 40160 to turn it off. Replace these values with those
appropriate to your printer. Chapter 17 contains further information on the use of
printers.

Another form of dump, the variable dump, lists the current values of variables.
Often array variables are ignored. Of course, values can simply be printed by insert
ing a program line, so a dump of this kind is not essential to debugging BASIC.

There's no difficulty writing dumps in BASIC. You've seen how variables and
their types are stored, so variables' names and values can be deciphered and printed
out. They're printed in the same order that BASIC defined them (that is, in the se
quence in which they are stored after BASIC).

An alternative procedure which gives a sorted Jist is to cycle through all the
variable names and types from A, AO-A9, AA-AZ, ... , B%, and so on; each variable
can be sought by the ROM routine (also used in the VARPTR utility in this chapter)
and printed with its name. That is what Program 6-22 does.

Program 6-22. Variable Dump
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o DATA 165,22,72,160,32,162,11,189,185,3,157,32,2,
202,16,247 :rem 125

1 DATA 140,41,2,192,32,240,28,140,36,2,208,23,142,
34,2,173 :rem 6

2 DATA 18,232,201,239,208,8,104,133,22,104,104,76,
116,196,162 :rem 175

3 DATA 48,142,35,2,169,32,133,122,169,O,133,72,32,
134,206,165 :rem 176

4 DATA 72,240,19,169,32,133,122,173,34,2,141,39,2,
173,35,2 :rem 25

5 DATA 141,40,2,32,157,202,174,35,2,232,224,58,144
,211,224 :rem 16

6 DATA 65,144,247,224,91,144,203,174,34,2,232,224,
65,144,251 :rem 137

7 DATA 224,91,144,171,160,36,204,41,2,240,174,144,
139,200,208 :rem 174

8 DATA 136,34,32,32,65,146,61,34,32,65,32,59
:rem 120

10 REM ***

11 REM *(3 SPACES}ALPHABETICAL ORDER
NT BASIC VARIABLES(4 SPACES}*

12 REM * SYS 828 (DIRECT MODE) DUMPS
IABLES' VALUES *

:rem 243
DUMP OF CURRE

:rem 89
NON-ARRAY VAR

:rem 29
13 REM ***

**************** :rem 246

194

Beyond VIC BASIC

100 FOR J=828 TO 963: READ X: POKE J,X: NEXT
:rem 68

FIND
See SEARCH

LIST
LIST can be modified fairly easily; two particularly useful versions follow. The first,
Program 6-23, gives you a window of up to six lines of BASIC at a time, which can
be scrolled up or down. This is helpful when examining BASIC without the benefit
of a printer. The second routine, Program 6-24, is machine language; it alters LIST to
expand the not-very-readable reversed characters of VIC listings into text. Printer
owners may like to list programs in this format.

A window on BASIC. If you append this routine to your BASIC program and
RUN 63000, it will list several lines on the screen. The actual number is selectable in
line 63000. Change the 6 in the part of the statement that currently reads N = M + 6
to the desired number of lines. Obviously, since any single line of BASIC can occupy
as many as four screen rows, six lines may be too much for the screen to hold. Lines
63110 and 63120 are printed on the screen (in white) and list several lines (in black,
to underline the difference from a normal listing) before returning to test for the f1
key pressed (which LISTs upward through the program) or the f7 key pressed (which
LISTs downward through the program). The current starting line is M, and sub
routine 63300 scans the program finding which line numbers to list. After LIST, the
keyboard buffer is POKEd to simulate {CLEAR} RETURN {CLEAR} {DOWN}
RETURN.

Program 6-23. Window Listing of BASIC
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

63000 N=M+1:GOSUB 63300: Ll=L: N=M+6: GOSUB 63300
:rem 76

63110 PRINT "{CLR}{WHT}LIST"Ll"-"L :rem 218
63120 PRINT "M="M":GOTO 63200{BLK}" :rem 230
63130 POKE 198,5: POKE 631,19: POKE 632,13: POKE 6

33,19 :rem 247
63140 POKE 634,17:POKE 635,13: END :rem 6
63200 GET X$: IF X$="" GOTO 63200 :rem 81
63210 IF X$=I{Fl}" THEN M=M+l :rem III
63220 IF X$="{F7}" AND M>0 THEN M=M-l :rem 3
63230 GOTO 63000 :rem 48
63299 REM *** FIND VALUE OF M'TH LINENUMBER, START

ING FROM M=l *** :rem 168
63300 J=0: L=PEEK(43)+256*PEEK(44) :rem 35
63310 J=J+1: IF J<N THEN L=PEEK(L)+256*PEEK(L+l):

(SPACE}IF L>0 GOTO 63310 :rem 10
63320 IF (L=0) OR (PEEK(L)+256*PEEK(L+l)=0) THEN L

=63999: RETURN :rem 174
63330 IF J=N THEN L=PEEK(L+2)+256*PEEK(L+3): RETUR

N :rem 102

195

Beyond VIC BASIC

BASIC can't be edited while using this routine, since the entire process is under
program control; listing is all that is allowed. However, it is possible to write a line
editing program by combining this method with parts of AUTO.

Legible LIST. Program 6-24 loads a transparent machine language program
which provides bracketed text in place of most of VlC's special reverse video control
characters. For the sake of user friendliness, the BASIC program POKEs the machine
language into the topmost available BASIC memory, then lowers the pointers to pro
tect itself. It can be turned off with a SYS call, so that editing retains the original
characters without introducing unwanted expressions in brackets.

Program 6-24. Listing VIC-20 Control Characters in Brackets
Refer to the "Automatic Proofreader" article (AppCl1dix C) before typing in this program.

o DATA 173,7,3,73,223,141,7,3,173,6,3,73,11,141,6,
3,96,8,133,255,152,72,36,15,48,8 :rem 185

1 DATA 104,168,165,255,40,76,26,199,162,0,232,189,
-188,240,240,197,255,208,246,160 :rem 221

2 DATA 0,200,185,-156,201,91,208,248,202,208,245,3
2,210,255,200,185,-156,201,93 :rem 23

3 DATA 208,245,32,210,255,104,168,165,255,40,76,24
6,198,144,5,28,159,156,30,31,158 :rem 217

4 DATA 18,146,147,19,148,20,145,17,157,29,160,255,
133,137,134,138,135,139,136,140 :rem 163

5 DATA 0,0,0,0,91,66,76,65,67,75,93,91,87,72,73,84
,69,93,91,82,69,68,93,91,67,89,65 :rem 61

6 DATA 78,93,91,80,85,82,80,76,69,93,91,71,82,69,6
9,78,93,91,66,76,85,69,93,91,89 :rem 255

7 DATA 69,76,76,79,87,93,91,82,86,83,93,91,82,86,8
3,79,70,70,93,91,67,76,82,93,91 :rem 249

8 DATA 72,79,77,69,93,91,73,78,83,93,91,68,69,76,9
3,91,85,80,93,91,68,79,87,78,93 :rem 11

9 DATA 91,76,69,70,84,93,91,82,73,71,72,84,93,91,8
3,72,45,83,80,67 :rem 234

10 DATA 93,91,80,73,93,91,70,49,93,91,70,50,93,91,
70,51,93,91,70,52,93,91,70,53,93 :rem 231

11 DATA 91,70,54,93,91,70,55,93,91,70,56,93:rem 85
100 T=PEEK(55) + 256*PEEK(56) :rem 213
110 L=T-268 :rem 60
120 FOR J=L TO T-l: READ X% :rem 117
130 IF X%<0 THEN Y=X%+T: X%=Y/256: Z=Y-X%*256: POK

E J,Z: J=J+l :rem 33
140 POKE J,X%: NEXT :rem 48
150 REM L+17 IS ENTRY POINT TO MACHINE CODE ROUTIN

E IN RAM
160 REM HI BYTE $C7=199
162 H%=(L+17)/256
164 P= (H% OR 199) AND NOT (H% AND 199)
166 POKE L+4,P
170 REM LO BYTE $IA=26
172 L%=(L+17) - 256*H%

196

:rem 97
:rem 190

:rem 63
:rem 34

:rem 243
:rem 134
:rem 217

Beyond VIC BASIC

174 P= (L% OR 26) AND NOT (L% AND 26) :rem 181
176 POKE L+12,P :rem 35
200 POKE 55,L-INT(L/256)*256: POKE 56,L/256 :rem 3
210 SYS L :rem 222
300 PRINT "{CLR}{2 DOWN}SYS"L :rem 100
310 PRINT "TOGGLES THE SPECIAL :rem 58
320 PRINT "'LIST' FUNCTION ON/OFF :rem 219
330 PRINT "NOTE: POKE" L+99 ",29 :rem 168
340 PRINT "IF SH-SPACE NOT WANTED :rem 189
400 NEW: REM DELETE BASIC, RETAINING SPECIAL LIST

:rem 187

A SYS call modifies LIST's vector so that it points within the routine, where all
characters in quotes are checked. This part of the program is in fact quite small.
Entering SYS to the same address toggles LIST off; a special exclusive-OR feature
has been used, so that only one address need be noted.

Most of this program is made up of two tables (one of the ASCII characters and
one of their translated form within brackets), so the program can be easily modified
to allow for graphics characters or to put in your own alternative forms. The ASCII
values of the brackets [and] are 91 and 93; Table 6-6 lists the ASCII values and text
for the special characters for the program as it stands.

Table 6-6. ASCII Values of Special Characters for Program 6-24
{BLACK}
{WHITE}
{RED}
{CYAN}
{PURPLE}
{GREEN}
{BLUE}
{YELLOW}
{RVS}
{RVSOFF}

144
5

28
159
156
30
31

158
18

146

{CLR}
{HOME}
{INS}
{DEL}
{UP}
{DOWN}
{LEFT}
{RIGHT}
{SPACE}
{SHIFT-SPACE}

147
19

148
20

145
17

157
29
32

160

7r

{F1}
{F2)
{F3}
{F4}
{F5}
{F6}
{F7}
{F7}

255
133
137
134
138
135
139
136
140

Printers can use this program successfully. However, lines containing special
characters will be longer than usual.

MERGE
Combining two BASIC programs into a single program, with the lines sorted cor
rectly, is called a merge. You can use MERGE, for example, to insert standard sub
routines without the need for retyping. Many BASIC extension packages have
MERGE; because of the flexible way merging is done, this command can also per
form other functions (such as loading PET ICBM tapes into the unexpanded VIC).

Tape merge. The following procedure involves storing the subroutine(s) to be
merged as sequential file(s), not as tokenized programs, then reading them back
using the keyboard buffer to simulate entry of each line by RETURN.

To save the subroutine on tape as a file, use OPEN l,l,l,"NAME OF SUB
ROUTINE"; CMD 1: LIST [OPTIONAL LOW-HIGH LINES]. When the cursor re-

197

Beyond VIC BASIC

turns, type PRINT#l:CLOSE 1 to close the file and write the last portion of data to
tape.

Merging can be carried out whenever you have a program in memory. The re
sult will be a fully merged program, as if the lines had been separately typed at the
keyboard. Note that lines entered with any BASIC abbreviations and which are ab
normally long when listed may need to be divided into shorter lines.

Use the following procedure to merge program lines. Start with a program in
memory and the tape in the cassette; then POKE 19,1: OPEN 1,1,0, "NAME OF
SUBROUTINE" to read the tape until it finds the correct header. This will be sig
naled by FOUND.

At that point, it will wait for the file to be read. Type {CLEAR} and
{DOWN}{DOWN}{DOWN}. Then POKE 153,1: POKE 198,1: POKE 631,13: PRINT
CHR$ (19) and press RETURN, and the tape file will be automatically read and
merged. Eventually, a ?SYNTAX ERROR message appears; this is not a mistake, but
a result of either the tape or the program having no more lines left. It means that the
merge is finished.

Disk merge. Program 6-25 uses 144 bytes from ROM, modified slightly in
RAM, to merge new lines into a BASIC program in memory. It has a driver routine
starting at $033E (830) which fetches single characters of BASIC, building them into
the input buffer.

Program 6-25. Disk Merge
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 8=PEEK(55) + 256*PEEK(56) :rem 164
20 8=8-145: REM 8 IS START ADDRESS :rem 173
22 POKE 56,S/256: POKE 54,S/256: POKE 52,S/256

:rem 129
24 POKE 55, SAND 255:POKE 53,S AND 255:POKE 51, S

AND 255 :rem 105
30 X=0: FOR J=S TO S+144:POKE J, PEEK(50338+X): X=

X+l: NEXT :rem 180
50 POKE S+85,210: POKE S+139,76 :rern 91
60 POKE S+75,234:POKE S+76,234:POKE S+77,234

:rern 119
70 POKE S+136,234:POKE S+137,234:POKE S+138,234

:rern 2
90 REM MERGE PROGRAM FOR BASIC PROGRAMS ON DISK

:rern 81
100 FOR J=830 TO 889: READ X: POKE J,X:NEXT:rern 68
1000 DATA 162,8,32,198,255,32,207,255,32,207,255,1

60,0,32,207,255 :rern 120
1001 DATA 32,207,255,240,33,32,207,255,133,20,32,2

07,255,133,21 :rern 1
1002 DATA 32,207,255,153,0,2,240,3,200,208,245,152

,24,105,5,168 :rern 254
1003 DATA 32,162,196,208,215,240,213,32,89,198,76,

128,196 :rern 10

198

Beyond VIC BASIC

Use this program by entering LOAD, RUN, and NEW. Load or type a program
into memory, and additional programs can be merged into it with OPEN 8, 8, 8,
"PROGRAM NAME": SYS 830. Turn off the disk light with OPEN 15,8,15: CLOSE
15.

MOD
This is an arithmetic function, found in some BASICs, which calculates the remain
der when one integer is divided by another. MOD is an abbreviation of modulo, a
mathematical term used in number theory. The statement" 4 = 19 modulo 5" means
that 4 and 19 have the same remainders when divided by 5. The simplest BASIC
version is DEF FN MOD(N) = N - INT(NjD)*D, where D is the divisor. This
formulation may be of use when converting other BASICs to CBM BASIC.

Examples of the use of MOD are D=12:H=FN MOD(16), which converts 16
hours to 4 o'clock, and D=256: PRINT FN MOD (50000), which prints the low byte
of 50000.

OLD and BASIC Recovery
Originally, OLD was used to restore a program which had been inadvertently
removed by NEW. However, the VIC-20 offers two other important uses, which are
covered under the heading BASIC recovery. These are best distinguished from the
start.

Program 6-26. OLD
10 FOR J=320 TO 340:READX:POKEJ,X:NEXT
20 DATA 169,1,168,145,43,32,51,197,165,34
30 DATA 105,2,133,45,165,35,105,0,133,46,96

OLD as UnNEW. This restores BASIC because NEW leaves most of the program
intact, simply arranging pointers as though no program were present, and putting a
zero link address at the very start of BASIC. (It also sets GETCHR and the RESTORE
pointers, clears variables, and closes files.) Run the program, type NEW, then type
SYS 320:UST. The program is restored perfectly. In fact, its variables are even re
tained. If BASIC has not been NEWed, or even if it's running, the SYS call does no
harm.

OLD after chaining. When used with LOAD within a program, this restores
BASIC when the new program is longer than the old one. As explained under
CHAIN, in order to pass variables from one chained program to the next, the end
of-program pointers are not set. Thus, if the newly loaded program is too long, its
top end will be corrupted. However, if the ML routine has been POKEd in by the
loader program, 0 SYS 320:CLR at the start of the new program will prevent corrup
tion. (CLR is needed to remove garbage after the program, which may appear as
pseudo-data; it is not possible to recover the overwritten variables.)

The reason location 320 was chosen as a starting address for this routine was to
allow it to be used with tape LOADs. If locations 828 and following had been used,
as in some of the other examples, the tape buffer where the routine resides would be
overwritten. The routine can be relocated anywhere in free RAM.

199

Beyond VIC BASIC

OLD restores BASIC after SYS 64802 or after a hardware reset switch has
apparently returned the machine to its post-switch-on state, as explained in Chapter
5. Both these routines leave BASIC RAM unaltered and in effect perform NEW, so
SYS 320 is just as effective as with NEW. Note that 320 is also protected against re
sets. The stack isn't touched. Thus, any BASIC program, including one which dis
ables STOP and RESTORE, can be freely reset and recovered by this method (if you
have a hardware reset switch).

The following ML routine could be put in RAM or ROM. The machine-language
uses the built-in feature to link BASIC lines. It must have a nonzero link address,
which is why the first commands put 1 just after the location which 43 and 44 point
to (the first link address which NEW zeros). The end-of-program pointers also have
to be set, because the relinking routine doesn't set them.

LDA #$01
TAY
STA
JSR
LDA
ADC
STA
LDA
ADC
STA
RTS

($2B),Y
$C533
$22
#$02
$2D
$23
#$00
$2E

; Nonzero bvte in first link address
; Make all li;"ks consistent
; Add 2 to the final address,
; Giving the end-of-program address
; Which is stored in its pointer

BASIC version of OLD. Is there a BASIC equivalent of the above? Yes, but the
trouble is that the end-of-program pointers get lost and take some effort to retrieve.
If the end-of-program isn't moved up, variables will overwrite your program when it
runs:
POKE PEEK(44)*256 + 2,1:SYS 50483:POKE 46, PEEK(56) --l:CLR

This assumes that BASIC starts in one of the normal places and that the end-of-pro
gram pointer's position isn't critical (it becomes set to a location 256 bytes below the
end of BASIC memory). The program will now LIST properly.

A more complete version, which can also be used from within a chained pro
gram when a short program loads a longer one, is given in Program 6-27.

Program 6-27. A BASIC Version of OLD

e POKE PEEK(43) + 256*PEEK(44)+l,l:SYS5e483:POKE46
,PEEK(56)-1:CLR

1 L=PEEK(43)+256*PEEK(44):FORJ=1 TO 9E9:L2=PEEK(L)
+256*PEEK(L+l)

2 IF L2>eTHENL=L2:NEXT
3 POKE 45, (L+2)AND 255:POKE 46,(L+2)/256

ONERR
VIC has an indirect vector at $0300/0301, which is locations 768 and 769 in deci
mal, to process error messages. Usually, this is set to $C43A, and the actual error is
dictated by the contents of the X register. You can mimic this with POKE 781, error

200

Beyond VIC BASIC

number: SYS 50234, where error number is between land 30.
ONERR usually works by specifying a line number to COTO in the event of er

ror. The advantage is that the program cannot crash; the drawback is that processing
ONERR properly is liable to be unacceptably long, since many possible errors may
have caused the problem.

Chapter 8 gives an example which identifies the position of errors in BASIC pro
gram lines.

PAUSE
There are two versions of this command. The first waits for a timed delay; the sec
ond is a coffee-break type command which temporarily freezes BASIC or ML.

Timed delays are useful with some types of music programs. BASIC delay loops
(FOR J = 1 TO 500: NEXT) provide an excellent method, though the actual timing
varies with the stored position of the loop variable in memory; if J is set up as the
first variable, this problem no longer applies.

The VIC's internal clock is another obvious way to get accurate timing. The
clock is stored in 160, 161, and 162, with 162 changing fastest. The tidiest routine is
therefore POKE 162,X: WAIT 162,2tN which has a maximum delay of 255/60, or
about four seconds.

To see how the formula works, note that WAIT stops until just one bit is set.
POKE 162,0:WAIT 162,64 delays until location 162 reaches 64, and so pauses for
64/60, or just over one second. POKE 162,4:WAIT 162,64 therefore gives a one-sec
ond delay. The timing is reasonably constant, although the first POKE could occur at
any time between interrupts, so there's a sixtieth of a second maximum difference in
pauses. Unless the interrupt rate is changed, resolution below about 1/60 second
isn't possible.

Delays longer than about four seconds involve location 161. POKE 161,0:POKE
162,0:WAIT 162,2 pauses for 2*256/60 = about eight seconds.

The easiest way to implement a pause for an indefinite period of time is to inter
cept the normal IRQ interrupt routine and check for a keypress. The SHIFT key is
useful, because SHIFT-LOCK can pause indefinitely. However, any SHIFTed entry
will then temporarily stop the program. The following ML will do the trick with nor
mal keys (for example, the left arrow key); it is easily modifiable to check the key
board twice, so the key needn't be held down, or to test for Commodore, SHIFT, or
CTRL keys. To use the pause routine, change the interrupt vector at locations
788/789 ($0315/0315) to point at the start of this routine:

PAUSE JSK $FF9F ; Scan keyboard

POP

LDA $C5 ; Look at keypress
CMP #$08 ;This is left arrow
BEQ PAUSE ; Pause while pressed
JMP $EABF ; Continue interrupt

POP discards a RETURN from the stack and erases the effect of the previous
COSUB, so that if RETURN is encountered, the address returned to will be that of
the previous COSUB (or, alternatively, the error ?RETURN WITHOUT COSUB will

201

Beyond VIC BASIC

be signaled). This is useful in providing an escape from subroutines, although it's
quite difficult to explain why. To give just one example, a game may contain a long
loop to redraw the screen and move a player. End-of-game may be tested by a sub
routine; if RETURN isn't then necessary, redundant RETURN addresses can build
up. Typically, you'll get an otherwise inexplicable ?OUT OF MEMORY message after
24 or so games, as stack space runs out. You can cure this problem and others like it
with Program 6-28.

Program 6-28. POP

10 DATA 104,10~,169,255,133,74,32,138,195,201,141
20 DATA 240,3,76,224,200,232,232,232,232,232,154,9

6
30 FOR J=828 TO 850:READX:POKEJ,X:NEXT

From the viewpoint of structured programming, this command is unnecessary
(and even harmful) since such programming demands that subroutines have a single
entry and exit without irregular exits by GOTO or POP.

This program is relocatable (as written, it starts at 828) and called by a simple
SYS from within a program (SYS 828). RUN and test with SYS 828; you should get
?RETURN WITHOUT GOSUB.

Another type of POP, using a part of CLR, is more thorough, clearing away all
loops and subroutines within a program by resetting the stack pointer and deleting
all evidence of FOR-NEXT and GOSUB. Variable values, DATA pointers, and so on
are retained. On an abort or escape, this routine would cut through any tangle of
loops and subroutines. With VIC, machine language is necessary; the following rou
tine shows how it's done.
PLA ; Remove SYS address
PLA
JMP $C67E; Enter CLR to reset the stack

Program 6-29 shows the same thing in decimal.

Program 6-29. Super POP

10 DATA 104,104,76,126,198
20 FOR J=828 TO 832:READX:POKE J,X:NEXT:REM SYS 82

8 IS SUPER-POP

PRINT @
This command moves the cursor rapidly anywhere on the screen, as specified by
horizontal and vertical parameters (HTAB and VTAB is another formulation of this
idea). Graphics in BASIC can often be much improved with one of these methods, in
place of printing {HOME} and many cursor downs, lefts, and rights. The fastest ver
sions need ML, and therefore space to be stored; less speedy versions use ROM
routines, and are more convenient but slightly slower.

202

Beyond VIC BASIC

Fast ML version. Using Program 6-30, SYS 828,H,V takes in horizontal (H) and
vertical (V) parameters and puts them into the Kernal routine at $FFFO.

Program 6-30. PRINT @

o DATA 32,155,215,138,72,32,155,215,104,170,164,10
1,24,76,240,255

10 FOR J=828 TO 843:READX:POKEJ,X:NEXT

To do the same thing in BASIC, POKE 781,V:POKE 782,H:POKE 783,0:SYS
65520:PRINT "HELLO!"

Another approach, valuable when the screen size has been changed (and there
fore conflicts with the assumption that the screen has 22 columns and 23 rows) is
given in Program 6-31.

Program 6-31. PRINT@ for Refonnatted Screens

10000 S=7680: REM SCREEN START AT $1E00; $1000 IF
{SPACE}8K OR 16K ADDED

10010 SC=S+24*Y+X: REM EXAMPLE APPLIES TO 24 COLUM
N SCREEN

10020 POKE209,SCAND255: REM POKE POINTERS TO RELEV
ANT X,Y POSITION

10030 POKE210,SC/255: REM IN SCREEN MEMORY
10040 PRINT "HELLOI":

Line 10010 calculates the position in screen RAM of horizontal and vertical
parameters X and Y (assumed to start at 0), on the assumption of 24 columns. This
could just as well be 25 or 10 columns. Chapter 12 has many examples of the use of
subroutines like this, some of which use different pointers (notably 211 and 214) but
with the same object. Such subroutines are invaluable with full-size screen displays.

PRINT USING
In business systems it's customary to specify the format in which numbers and
characters are printed. Program 6-32 is a valuable routine which provides an easy
way to output numeric data in a variety of formats (for example, rounded to two
decimal places or with leading asterisks). The overall lengths, including leading
characters, are selectable, so lining up decimals in columns is made very simple.
Output can be directed to a printer if hard copy is wanted.

Program 6-32. PRINT USING
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o DATA 1,8,2,32,162,0,221,0,1,240,6,232,224,12,208
,246,24,96,169,69,32,-162 :rem 72

1 DATA 176,90,173,-166,240,94,173,2,1,208,11,172,-
165,169,48,153,2,1,136 :rem 209

203

Beyond VIC BASIC

2 DATA 208,250,169,46,32,-162,168,144,2,160,48,169
,0,32,-162,152,157,0,1,169 :rem 148

3 DATA 46,32,-162,172,-164,232,136,208,252,236,-16
5,176,33,172,-165,169,0 :rem 3

4 DATA 153,1,1,189,0,1,201,32,208,3,169,32,234,153
,0,1,202,16,6,173,-163,136 :rem 114

5 DATA 16,244,136,16,231,169,0,133,97,160,1,132,98
,96,169,0,32,-162,144,240 :rem 106

6 DATA 138,168,173,2,1,240,9,169,46,32,-162,144,2,
138,168,152,170,202,16,181 :rem 156

7 DATA 0,32,158,205,32,221,221,32,-148,32,30,203,9
6 :rem 181

10 PRINT" {CLR} {RVS }VIC PRINT USING" : rem 204
20 T=PEEK(55)+256*PEEK(56):REM T= TOP OF BASIC

:rem 63
30 L=T-166:REM PROGRAM IS 166 BYTES IN LENGTH

:rem 89
40 FOR J=LTOT-l:REM PLACE ROUTINE IN TOP OF AVAlLA

BLE RAM :rem 156
50 READ X%:IF X%<0THENY=X%+T:X%=Y/256:Z=Y-X%*256:P

OKEJ,Z:J=J+l :rem 197
60 POKE J,X% :rem 136
70 NEXT :rem 166
100 X%=L/256:Z=L-X%*256:REM WILL BE HI & LO BYTES

{SPACE}OF NEW TOP OF MEMORY :rem 135
110 POKE 55,Z:POKE53,Z:POKE51,Z:REM SET NEW MEMORY

TOP : rem 29
120 POKE56,X%:POKE54,X%:POKE52,X%:REM WITHOUT USIN

G CLR :rem 131
125 REM**PRINT OUT INSTRUCTIONS AND ADDRESSES, ONT

o SCREEN** :rem 251
130 PRINT "{DOWN}SYS ("~L+153;")FOLLo\'lED BY ANY NU

MERIC :rem 96
132 PRINT"EXPRESSION PRINTS THE FORMATTED VALUE.":

PRINT :rem 80
140 PRINT L "=DEC/INT FLAG" : rem 239
150 PRINT L+l "=OUTPUT LENGTH" :rem 255
160 PRINT L+2 "=DEC. PLACES" : rem 0
170 PRINT L+3"=LEADING CHARS" :rem 181
180 PRINT L+98"=+VE LEAD CHAR" :rem 137
190 PRINT "{DOWN}SAVE FROM" L "TO" T-1~ :rem 255
200 PRINT"($"~:GOSUB500: PRINT" TO $"~: L=T-l:GOSU

B 500:PRINT")" :rem 62
210 PRINT"{DOWN}SET UP WITH LENGTH 9,2 DEC. PLACES

, LEADING SPACES. :rem 56
250 END :rem 110
499 REM***ONE LINE DECIMAL TO HEX CONVERTER***

:rem 191
500 L=L/4096:FORJ=lT04:L%=L:L$=CHR$(48+L%-(L%>9)*7

) : PRINTL$ ~ :L=16* (L-L%) :NEXT: RETURN : rem 236

204

Beyond VIC BASIC

Enter this program, save it, and run it. You should get a screen display similar to
that shown in Figure 6-11. The figures in the resulting screen depend on VIC's mem
ory, because the ML is stored in the highest available RAM (where it is protected
from corruption by BASIC strings). Note that the relocating loader puts 166 bytes
into memory, while there are actually fewer bytes than this in the DATA statements.
This is not a mistake; each negative value corresponds to an address to be relocated
and contributes two bytes, not one.

The un expanded VIC should give the display shown in Figure 6-11.

Figure 6- 11. PRINT USING Display

SYS (7667) FOLLOWED
BY ANY NUMERIC
EXPRESSION PRINTS THE
FORMATTED VALUE.

7514 = DECIINT FLAG
7515 = OUTPUT LENGTH
7516 = DEC. PLACES
7517 = LEADING CHARS
7512 = + VE LEAD CHAR

SAVE FROM 7514 TO 7679
($ID5A TO $IDFF)

SET UP WITH LENGTH 9,
2 DEC. PLACES, LEADING
SPACES.

Using this routine is less complicated than it might appear. SYS 7667 (X), for
example, will print the current value of X, formatted in accordance with the contents
of the locations listed below.

Decimal/integer flag. A value of 0 in this location means the result will be
treated as an integer (no decimal point symbol will be printed) while 1 means it is
decimal.

Output length. This location specifies the total length of the output string -1.
It allows tables of numbers to be constructed easily.

Decimal places. This controls the number of figures after the decimal point. If
the number is an integer, it is ignored.

Leading characters. This location holds the ASCII character printed before the
number begins. This enables printing in formats like ****100 or 000123,23. The
usual leading character is the space character (32).

Positive symbol. Numerals are preceded by a space or minus sign with un
modified PRINT; this routine permits a substitute for space to be printed (for ex
ample $) so all positive numbers will appear preceded by $.

Note that X is truncated, not rounded off. If you wish to round to two decimal
places, use SYS 7667 (X + .005).

205

Beyond VIC BASIC

Demonstration program. Program 6-33 demonstrates an application of PRINT
USING by printing formatted columns of figures. Lines 20, 30/31, and 40 print the
first, second, and third columns. It assumes an un expanded VIC and uses meaningful
variable names (insofar as reserved words permit) to make the POKEs more
comprehensible.

Program 6-33. PRINT USING Demonstration
Refer to the "Automatic Proofreader" article (Appelldix C) before typillg ill this program.

o PRNT=7667:SWITCH=7514:LNGTH=7515:DECPTS=7516:CHA
R=7517:LDGCHAR=7612 :rem 29

10 FORJ=-10T0100 STEP 10:PRINT :rem 245
20 POKE SWITCH,0:POKE LNGTH,4:POKE CHAR,42: POKE L

DGCHAR,42:SYS (PR) J :rem 132
30 POKE SWITCH,l:POKE LNGTH,7:POKE CHAR,32: POKE L

DGCHAR,32 :rem 17
31 POKE DECPTS,4: SYS (PR) l!(l+J) :rem 57
40 POKE LDGCHAR,ASC("$"): POKE DECPTS,2rSYS (PR) 1

00+J :rem 0
50 NEXT :rem 164

The core of this routine is as follows:

JSR $CD9E ; Input and evaluate a BASIC numeric expression
JSR $DDDD ; Convert contents of FP accumulator 1 into a string
JSR $xxxx ; Special routine (address varies) to process $OlOO-$OlOC
JSR $CBIE ; Print the string using A (low), Y (high) pointers
RTS ; Return to BASIC without any other action.

The idea is to print exactly as normal, except that the number, after being pre
pared for printing as a string, is edited. The ML routines which edit are located
earlier in memory, and the table of values is at the start. The first four values in the
DATA statements, in fact, set the decimal mode, the length, the number of decimal
points, and the leading character (which is a space).

When the relocating loader runs, the start and end addresses of the routine are
printed. Thus the routine can be loaded directly at any time in the future without
having to be relocated in memory. Remember to lower the pointers each time any
ML routine coexisting in BASIC space is newly loaded, or string calculations will
corrupt it.

Reconfiguring BASIC Memory
Chapter 5 explained how BASIC configures itself on switch-on, to allow for any
expansion RAM which may be present. The position of a BASIC program in memory
(as defined by pointers to its start and end) and the positions of the screen and
character generator are set. Any pure BASIC program will run, provided there's
enough RAM. But machine language, graphics requiring a fixed position in memory,
or PEEKs and POKEs may fail to work.

If you're in the position of having software which runs with some but not other
memory configurations, try Program 6-34. The most common problem (apart from

206

Beyond VIC BASIC

simply not having enough RAM) is that a program designed to run on 3K added
memory won't run with an 8K or 16K expander because the screen moves. Option 5
of Program 6-34 may help.

Program 6-34. Reconfiguring VIC's Memory Without Removing RAM
or ROM Packs
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o REM REARRANGE POINTERS IN MEMORY AND MIMIC VARIO
US BASIC SETUPS

10 PRINT {CLR}CONFIGURE MEMORY
20 PRINT 1 UNEXPANDED VIC
30 PRINT 2 VIC + 3K RAM PACK
40 PRINT 3 VIC + 8K RAM PACK
50 PRINT 4 VIC + 16K RAM PACK
60 PRINT 5 VIC+8K & 3K PROGRAM
70 PRINT 6 VIC+3K & 8K PROGRAM
80 PRINT 7 DISCONNECT ROM PACK
90 PRINT "8 ANY OTHER{DOWN}
92 PRINT "PRESS 1 TO 8"

:rem 64
AS: - {DOvlN} : rem 42

:rem 16
:rem 206
:rem 213

:rem 6
:rem 150
:rem 152

94 GET V: IFV=0 GOTO 94: REM SELECT

:rem 69
:rem 203
:rem 213

OPTION 1-8.
:rem 80

96 ON V GOT0100,200,300,400,500,600,700,800
:rem 115

100 S=4096: E=7680: SC=7680: GOTO 1000: REM SET ST
ART OF BASIC, :rem 86

200 S=1024: E=7680: SC=7680: GOTO 1000: REM END OF
BASIC, AND :rem 123

300 S= 4608: E=16384:SC=4096: GOTO 1000: REM START
OF SCREEN FOR :rem 179

400 S=4608: E=24576: SC=4096: GOTO 1000: REM EACH
{SPACE}COMBINATION. :rem 94

500 S=8192: E=16384: SC=7680: GOTO 1000 :rem 209
600 S=1024: E=4096: SC=4096: GOTO 1000 :rem 144
700 POKE 783,181: SYS 64815: REM DISCONNECT $A000

{SPACE} ROM : rem 90
800 INPUT" START OF BASIC";S :rem 127
802 INPUT "{3 SPACES}END OF BASIC";E :rem 188
804 INPUT "START OF SCREEN";SC :rem 36
1000 POKE641,S-INT(S/256)*256: REM PUT LOW AND HIG

H : rem 85
1010 POKE642,S/256: REM BYTES OF START AND:rem 115
1020 POKE 643,E-INT(E/256)*256: REM END OF BASIC.

:rem 91
1030 POKE644,E/256 :rem 206
1040 POKE648,SC/256: REM HIGH BYTE OF SCREEN

1050 SYS 64818
:rem 235
:rem 208

207

Beyond VIC BASIC

If you have some standard application, you can simply pick out the relevant
parts of the program. For example, if you use a ROM assembler or other utility (such
as the Super Expander), only lines 700 and after are needed.

The program allows un expanded VIC programs to run on VIC with 3K, 8K, or
16K expansion; it allows VIC with several RAM packs in an expansion board to be
reconfigured as though only one were present.

Option 5 puts the screen in the 3K expansion position, so with 8K or 16K expan
sion a 3K program using POKEs to the screen can work. Also, unexpanded programs
using screen POKEs, which have too many REMs in their fully commented forms,
can be run in this way. Option 6, with 3K expansion, puts the screen in the 8K
position, so programs developed with 8K may run (but they'll have to be short).

Note that programs can call the reset routine from within themselves, and if
they do this your reconfiguration will be reset. There may be no choice but to use
the correct memory packs.

Reconfiguring without resetting BASIC The program listed above works in a
completely general way, but it resets BASIC as though the VIC were just switched
on. When can you reconfigure without losing the program? Lowering the top of BA
SIC's space (or raising it again) can be done within BASIC without any problems.
Moving the bottom of BASIC is more difficult, and the easiest solution is to use a
loader or boot program.

Lowering top-of-BASIC with an unexpanded VIC The unexpanded VIC's
pointers (at 43 and 44, and 55 and 56) show that BASIC occupies $1000 to $IEOO.
To lower the top of memory available to BASIC to $1800, pointers 55 and 56 must
have high byte 24 ($18) and low byte 0. POKE 55,0:POKE 56,24 sets the upper limit.
CLR will reset all the string pointers but lose the variables. POKE 51,0:POKE
52,24:POKE 53,0:POKE 54,24:POKE 55,0:POKE 56,24 has the same effect but does
not lose variables' values. If only 55 or 56 is changed, the first string in memory will
position itself above the new top of BASIC; subsequent strings will be below.

The graphics chapter contains many such examples, which set the VIC chip to
coincide with BASIC For example, POKE 36879,254 assigns the area starting at
$1800 to character definitions.

Reconfiguring to move BASIC without resetting the VIC chip. Program 6-35
is an alternative form of RECONFIGURE; rather than call a reset routine, it alters
pointers so the screen color and size are retained.

Program 6-35. Reconfiguring VIC Memory by Altering Pointers
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 POKE 43,STARTLO:POKE44,START
ART OF BASIC+1

20 POKE55,ENDLO : POKE56, ENDHI

HI: REM DESIRED ST
:rem 103

: REM DESIRED END
(SPACE}OF BASIC+1 :rem 73

30 POKE STARTLO+256*STARTHI-1,0: REM ZERO BYTE MUS
T START BASIC

40 POKE 648,SCREENHI: REM SCREEN START
50 POKE36866,ROWS+128: REM OMIT 128 WITH

EEN

208

: rem 81
:rem 30

LARGE SCR
:rem 55

Beyond VIC BASIC

60 POKE36869,VALUE FROM 192 TO 255: REM SET CHARAC
TER GENERATOR POSN :rem 219

70 NEW : REM MAKES BASIC SELF-CONSISTENT :rem 163

Notes on BASIC's zero byte. BASIC must have a zero byte at the position in
dicated by 43 and 44. If it hasn't, NEW or RUN will give ?SYNTAX ERROR.
VICMON alters 43, so POKE 43,1 may be necessary after its use.

For example, to make BASIC start at $1200 and end at $1400, with the screen at
$1600 and color RAM therefore at $9600, you should POKE 43,1: POKE 44,18:
POKE 55,0: POKE 56,20: POKE 256*18,0: POKE 648,22: POKE 36866,150: POKE
36869,210: NEW. At that point, PRINT FRE(O) shows 509 free bytes, and POKE
5632,6: POKE 38400,5 prints a green F at the top left of the screen, showing that the
POKEs have worked.

Loaders, or boot or bootstrap programs. So far, you have seen how to design
any feasible BASIC arrangement you like. However, if the start of BASIC is moved
during reconfiguration, the reconfigure program is lost. How can you load and run
another program? The keyboard buffer, or input buffer, offers a solution. (Alter
natively, commands can be printed to the screen and the keyboard queue can be
used to input them; this, however, assumes that the position of the screen doesn't
change.)

For tape booting, add line 65 POKE 631,131:POKE 198,1 to Program 6-36 be
low. These POKEs have the effect of typing SHIFT-RUN; the ASCII value is 131.
Location 198 holds the number of characters in the keyboard queue, and 1 simulates
a single key. Now the program reconfigures BASIC, loads the next tape program, and
runs it.

For disk booting, a different approach is required. The keyboard queue can't
easily hold more than ten characters, which is not enough to load a disk program
since a name is usually needed. LOAD"*",8:RUN (which, in its short form, is L
SHIFT-O "*",8:R SHIFT-U) just fits. A solution is to use the input buffer, by adding
the lines in Program 6-36.

Program 6-36. Booting Disks
61 CLR : REM NEVl NOT NEEDED AT END(AS NEH PROGRAM

(SPACE}IS TO BE LOADED)
62 N$="LOAD" +CHR$(34) + "HELLO"+CHR$(34)+ ",8"+CH

R$(0)
63 FORJ=lTOLEN(N$):POKE511+J,ASC (MID$(N$,J»:NEXT
64 POKE198,3:POKE631,82:POKE632,213:POKE633,13
65 POKE781,255:POKE782,l: REM POINTER TO $01FF
66 SYS 50310: REM INPUT LINE

Line 62 sets up a string ending with a null byte; this exactly mimics a line input
from the keyboard, when line 63 POKEs it to the input buffer at 512 ($0200). Add
PRINT N$:END if you're not sure of the quotes. Line 64 puts R SHIFT-U RETURN
in the keyboard buffer, to enter RUN after LOAD. Lines 65 and 66 process the line
in the buffer, loading the program called "HELLO."

209

Beyond VIC BASIC

REM
REM is part of VIC's normal set of commands, but it deserves a place here because
of the unique status of REM statements outside the normal strict rules of BASIC
syntax.

REM with SHIFT and quotes. SHIFTed characters have their high bit set and
are interpreted as tokens, so LIST converts these into reserved words, expanding the
line. Cursor control characters (HOME, etc.) can be inserted after an opening quote.
So can DElete, by opening up space inside quotes with the Insert key. A hidden line
can be created by following it by :REM"", expanding the space in quotes, and filling
with DELetes, though this maneuver won't hide the line when it's listed on a
printer. REM stores some characters (for example, *, which is a reserved word) dif
ferently inside quotes than outside. Thus, utilities which search for strings may not
find them in REM statements.

Inserting characters into REMs. REM is tokenized as 143 in decimal. Program
6-37 puts two RETURN characters immediately after REM in a REM line, and also
immediately before the end of the REM line, so (for example) 100 REM** RE
MINDER COMMENTS * will list remarks neatly onto new lines.

Program 6-37. Inserting Characters into REMs

63000 L=43
63010 L=PEEK(L)+256*PEEK(L+1):IFL=0THENEND:REM SKI

P THRU LINKS.
63020 IF PEEK(L+4)<>143 GOT063010: REM IF REM FOUN

D, THEN:-
63030 POKEL+5,13:POKEL+6,13: REM POKE 2 RETURNS

63040 FOR J=L+5 TO 9E9: IF PEEK(J»0THEN NEXT: REM
FIND END-OF-LINE,

63050 POKEJ-1,13: GOTO 63010: REM AND POKE 1 RETUR
N.

Other characters might include printer control characters (to give bold or
reversed printing of REMs) or color characters (to list REMs in a different color on
the screen).

REMs to store ML. BASIC can hold ML routines or DATA as REM statements.
All that needs to be done is to POKE in the relevant bytes. However, there are three
potential problems with this technique:

Zeros should not be used because they will be treated as end-of-line markers if
the program is edited, thus corrupting the ML by inserting a spurious link address
and line number. This behavior could be used, with care, as a security device. Gen-
erally, instead of LDX #0, you should use LDX #ljDEX. "

The actual position in memory has to be known. It is easiest to put a REM state
ment at the very start of a program, so the sixth byte from the initial zero byte is the
start position.

BASIC containing ML in REM must load back to the same RAM area (unless it
relocates), and the SYS call takes account of the starting location. Allowing for mem
ory expansion thus adds a slight amount of work.

210

Beyond VIC BASIC

RENUMBER
Renumbering, or resequencing, a BASIC program has some cosmetic advantages and
is valuable where BASIC line numbers are too close to allow more BASIC to be
added (although BASIC numbered 0,1,2, ... , runs slightly faster than it would other
wise). Program 6-38 is a short BASIC subroutine that changes line numbers only, be
tween a selected range, by POKEing in new values.

Program 6-38. RENUMBER
62000 A=1025:B=256:PRINT"LO/HI LINES, START & INCR

EMENT": INPUT L,H,S,I
62010 FOR R=0 TO 9E9: IF PEEK(A+2)+B*PEEK(A+3)<L T

HENA=PEEK(A)+B*PEEK(A+1):NEXT
62020 FOR R=0TO 9E9:X=S+R*I:IF A=0 OR PEEK(A+2)+B*

PEEK(A+3»H THEN END
62030 POKE A+3,X/B:POKE A+2,X-(INT(X/B)*B):A=PEEK(

A)+B*PEEK(A+1):NEXT

A good renumbering utility should obviously change addresses (such as GOTO
or GOSUB) within BASIC, since otherwise the program will no longer run. However,
this is more difficult to program than you might think. BASIC holds line numbers as
ASCII strings, so these may have to be changed in length (unlike the two-byte line
number storage system) to accommodate the renumbered address. At least two
passes are necessary, one to store current line numbers and one to change references.

Another desirable feature is to have four parameters, so that a range of lines can
be numbered. The Programmer's Aid cartridge does not have this feature, so that the
whole program must be renumbered and the numbering of standard subroutines
cannot be retained.

Generally, renumbers are prone to various difficulties. All line numbers after IF
THEN, GOTO, GO TO, GOSUB, ON-GOTO, and ON-GOSUB must be located and
changed. RUN and LIST can be followed by line numbers, too, and are often in
cluded in renumbers. The renumbering may cause lines to have impossibly high
numbers, or, with four parameter utilities, to coincide with or overlap already exist
ing numbers. References to nonexistent lines should be signaled as errors (for ex
ample, GOTO 100 where there was no line 100). Conceivably, graphics could be
upset too since the whole program changes length.

SEARCH and REPLACE
Searching BASIC is reasonably straightforward, given an understanding of the way it
is stored. Program 6-39, a VIC search routine, is an example; it is an ML search
which hunts for a match with the contents of the first line of the BASIC program
currently in memory. To use the program, load and run Program 6-39, then load the
program you wish to search and add as the first line the characters for which you
wish to search. Start the search with SYS 828. For instance, with 0 XX as the first
line, SYS 828 prints all lines containing the variable XX. The ML relocates and can
be stored elsewhere than in the tape buffer.

211

Beyond VIC BASIC

Program 6-39. VIC Search Routine
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o DATA 166,43,165,44,134,251,133,252,160,1,134,253
,133,254,177,253,240,73,72,136,177 :rem 41

1 DATA 253,72,160,4,132,142,132,143,177,251,201,34
,208,2,230,143,164,143,177,251,240 :rem 14

2 DATA 28,72,164,142,177,253,240,15,104,209,253,24
0,6,230,142,160,4,208,222,230,142 :rem 223

3 DATA 208,226,104,104,170,104,208,193,160,2,177,2
53,170,200,177,253,32,205,221,169 :rem 233

4 DATA 32,32,210,255,201,O,208,231,96 :rem 9
10 FOR J=828 TO 919: READ X: POKE J,X: NEXT:rem 21

Program 6-40, which lets you both search and replace, works along the same
lines. It is a rather simple relocatable example, which ML programmers might like to
examine; it changes single bytes, not strings, so that all X's could be changed to Y's,
or all PRINTs to PRINT#s.

Program 6-40. VIC Search and Replace
Refer to the "Automatic Proofreader" article (Appelldix C) before typing in this program.

a DATA 165,43,133,252,198,252,165,44,133,253,169,0
,133,254,168,24,165 :rem 80

1 DATA 252,105,4,133,252,165,253,105,0,133,253,230
,252,208,2,230,253 :rem 244

2 DATA 177,252,240,26,201,34,208,6,165,254,73,255,
133,254,165,254,240 :rem 72

3 DATA 232,177,252,201,65,208,226,169,66,145,252,2
08,220,200,200,177 :rem 18

4 DATA 252,208,196,96 :rem 20
10 FOR J=320 TO 390: READ X:POKE J,X:NEXT :rem 1

You control the character searched for and the replacement character by chang
ing the contents of locations 375 and 379 after the program has been loaded. Loca
tion 375 holds the value of the character to be searched for, and location 379 holds
the character with which the search character will be replaced. This search and re
place program has three modes, controlled by POKEing locations 370 and 371. To
change only those characters which appear within quotes, POKE locations 370 and
371 with values of 240 and 232, respectively; to change only those occurrences of
the specified character outside quotes, POKE the values 208 and 232 into those loca
tions. To change both, POKE 234 and 234.

For example, suppose you want to change all occurrences of the variable Y
(ASCII 89) to Z (ASCII 90). You wouldn't want to make the replacement where Y
appears in quotes-you don't want to change things like PRINT"YES OR NO" to
PRINT"ZES OR NO". First, load and run Program 6-40, then load the program to be
modified, then type:

POKE 375,89: POKE 379,90: POKE 370,208: POKE 371,232
Start the search-and-replace process with SYS 320.

212

Beyond VIC BASIC

If the ML is put into an area other than locations 320-390, of course, these ad
dresses will change.

SET
SET (and UNSET or RESET) are graphics commands in some BASICs which allow a
point or small square to be drawn at any specified position on the screen. Chapter
12 contains an extensive discussion of this, including a high-resolution plotting rou
tine and a space-saving routine to plot battenberg cake style quarter-size dots which
provide 44 X 46 resolution. The same principle can be followed with larger screen
displays. VIC's limitations on color mean that all four quadrants cannot be indepen
dently colored, even with 256 user-defined characters, including all combinations of
character/background/border / auxiliary colors.

SORT
Sorting, in computer jargon, means arranging a list in order, usually alphabetically or
numerically. Many types of sorts exist, but to save space only three will be discussed
here: a machine language sort, which includes a demonstration to illustrate the syn
tax, and two BASIC sorts.

Machine language. The ML version is far faster than BASIC. Program 6-41 puts
it securely at the top of BASIC memory, although it is relocatable and can be put
anywhere in free RAM. It sorts string arrays in ascending order, using an ordering
algorithm identical to the VIC-20's, and it is initiated using a simple SYS call. It lets
you sort strings from the second, third, or any other character, and it works with any
memory configuration.

Program 6-41. Machine Language Sort for VIC String Arrays
Refer to the "Automatic Proofreader" article (Appendix C) before typil1g in this prograll1.

o DATA 32,115,0,133,97,169,128,133,98,32,115,0,240
,7,9,128,133,98,32,115 :rern 213

1 DATA 0,165,47,133,99,165,48,133,100,160,0,165,97
,209,99,208,7,200,165,98 :rern 79

2 DATA 209,99,240,20,24,160,2,177,99,101,99,72,200
,177,99,101,100,133 :rern 71

3 DATA 100,104,133,99,144,221,160,5,177,99,133,102
,200,177,99,133,101,208 :rern 3

4 DATA 2,198,102,198,101,24,165,99,105,7,133,99,16
5,100,105,0,133,100,165,101 :rern 192

5 DATA 208,2,198,102,198,101,208,4,165,102,240,18,
133,105,162,0,134,103,134 :rern 82

6 DATA 104,165,99,133,106,165,100,133,107,240,224,
240,114,24,165,106,105 :rern 198

7 DATA 3,133,106,165,107,105,0,133,107,230,103,208
,2,230,104,160,2,177,106 :rern 17

8 DATA 153,109,0,136,16,248,160,5,177,106,153,109,
0,136,192,2,208,246,170 :rern 7

9 DATA 56,229,109,144,2,166,109,160,255,232,200,20
2,208,8,165,112,197,109 :rern 16

213

Beyond VIC BASIC

10 DATA 144,10,176,34,177,113,209,110,240,238,16,2
6,160,2,185,112,0,145 :rern 142

11 DATA 106,136,16,248,160,5,185,106,0,145,106,136
,192,2,208,246,169,0,133 :rern 49

12 DATA 105,165,101,197,103,208,152,165,102,197,10
4,208,146,165,105,240,138,96 :rern 1

18 REM ****** FIRST LOWER MEMORY BY 256 BYTES .•.
:rern 124

19 REM ****** ... THEN POKE IN RELOCATING CODE, AN
:rern 126
:rern 130
:rern 167

D GIVE ITS ENTRY ADDRESS
20 POKE 56, PEEK(56)-I: CLR
30 T=PEEK(55) + 256*PEEK(56)
100 FOR J=T TO T+242: READ X: POKE J,X: NEXT

:rern 107
110 PRINT "USE SYS"T":X TO SORT ARRAY X$(), FOR EX

AMPLE:-" :rern 54
1000 INPUT "SIZE OF ARRAY";N :rern 109
1010 DIM XY$(N) :rern 16
1020 FOR J=0 TO N: XY$(J)=LEFT$(STR$(RND(I)*100),6

): NEXT :rern 67
1030 PRINT "SORTING ... " :rern 69
1040 ML=PEEK(55) +256*PEEK(56) :rern 78
1050 SYS ML:XY :rern 73
1060 FOR J=0 TO N: PRINT XY$(J): NEXT :rern 6

This is a version of the Bubble Sort, which operates on the pointers of string
arrays and produces no garbage collection delays. It operates in direct or program
modes; to save space it doesn't include a validation routine, so don't try to sort an
array that does not exist.

Speed is maximized if new items are added at the beginning of an array before
sorting. The zeroth element isn't sorted; it can hold a title if desired. If the 255 in
line 9 is changed to 1, strings are sorted from the second position; if it becomes 2,
from the third; and so on.

Provided spaces pad out the strings correctly, it's possible to re-sort an array in
different ways. For an example, see the disk drive sorting program, which sorts on
the initial of each program or file.

Strings are sorted in ASCII order. This can produce apparent anomalies: 12.3
comes before 2.87, which comes before 29.67. HELLO! precedes HELLO; and strings ° to 25 emerge as 0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,2,20,21, 22, 23, 24, 25,
3, 4, 5, 6, 7, 8, 9. Computer sorting always produces effects like these, but they
should not pose too much of a problem in practice. In fact, programming can often
be simplified by careful choice of the way in which items to be sorted are arranged.
For instance, a date held as YYMMDD automatically sorts into the correct order.
Similarly, the fact that the comma has a lower ASCII value than any letter insures
that names held with commas sort correctly. Williams,P. will come before
Williamson,A.

Lines 1000-1060 in Program 6-41 provide a demonstration of the sort. Lines
1000 and 1010 establish array XY$, and line 1020 fills the array with random nu
meric characters. Line 1040 calculates the address at the top of free RAM where the

214

Beyond VIC BASIC

machine language sorting routine is stored, and line 1050 shows the proper syntax
for initiating the ML sort. Note that you specify XY to sort array XY$; the $ is not
used. After the array is sorted, line 1060 prints the results. If you wish to add this
sorting routine to your own programs, lines 1000-1060 should be omitted.

BASIC sorts. The Shell-Metzner Sort is a fast sort, which is also quite easy and
trouble-free to program. The version given in Program 6-42 sorts items 1 to N of an
array dimensioned with A$(N). The sort is written as a subroutine to be added to
your programs. It assumes that array A$ and number of elements N have both been
established before you GOSUB to the routine. Upon return from the routine, the
contents of array A$ will be arranged in ascending order.

Program 6-42. Shell-Metzner Sort
Refer to tiIe "Automatic Proofreader" article (Appendix C) before typillg ill tiIis program.

59000
59005
59010

59020
59030
59040
59050

59060
59070

REM SHELL-METZNER SORT
M=N
M=INT(M/2):IFM=0THENRETURN:
ED
J=I:K=N-M
I=J

:rem 244
:rem 219

REM SORT COMPLET
:rem 8

:rem 66
:rem 209

L=I+M :rem 76
IF A$(I»A$(L)THENTE$=A$(I):A$(I)=A$(L):A$(L
)=TE$:I=I-M:IF I>0THEN59040 :rem 219
J=J+l:IFJ>KGOT059010 :rem 5
GOT059030 :rem 63

The Tournament Sort, so called because it pairs together items for comparison,
starts to give answers almost immediately, rather than waiting for the entire array to
be sorted. In addition, since numbers rather than strings are moved, garbage collec
tion time (which can otherwise be horrendous with BASIC) is nil.

Program 6-43 illustrates the Tournament Sort. Lines 10 and 20 allow you to set
up the array N$, which will be sorted. A numeric array I is also required, and it
must be dimensioned for twice as many elements as N$. Lines 200-330 perform the
sort, printing each element as it is sorted into its proper position and ending when
the sort is complete.

Program 6-43. Tournament Sort
Refer to tiIe "Automatic Proofreader" article (Appendix C) before typing ill tiIis program.

10 INPUT "SORT HOH MANY ITEMS":N:B=N-l:DIM N$(B),I
(2*B) :rem 141

20 FOR J=0TOB:INPUT N$(J):NEXT:REM SETS UP DEMONST
RATION DATA :rem 56

200 X=0:FORJ=0TOB:I(J)=J:NEXT: REM INDEX ARRAY SET
UP WITH 0,1,2,3,... :rem 51

210 FOR J=0 TO 2*N-3STEP2:B=B+l:REM ORDERS INDEX A
RRAY IN PAIRS :rem 157

220 I(B)=I(J): IF N$(I(J+l»<N$(I(J» THEN I(B)=I(
J+l) :rem 200

215

Beyond VIC BASIC

230 NEXT :rem 212
250 X=X-1:C=I(B):IFC<0THEN END: REM SORT FINISHED

260

270
280

300
310
320

330

PRINT N$(C) " ";: REM PRINT ONE
DATA

I(C)=X: REM SORT LOOP IS HERE
J=2*INT(C/2):C=INT(C/2)+N:IF C>B

: rem 166
SORTED ITEM OF

: rem 230
:rem 107

GOTO 250
:rem 204

IF I(J)<0 THEN I(C)=I(J+1):GOT0280 :rem 8
IF I(J+1)<0THEN I(C)=I(J): GOTO 280 :rem 9
I(C)=I(J): IF N$(I(J+1))<N$(I(J)) THEN I(C)=I(
J+1) :rem 203
GOTO 280 :rem 105

TRACE with SINGLE STEP
Program 6-44 presents a version of TRACE to help you understand the workings of
BASIC The whole current BASIC line is displayed at the screen top. The f1 key
toggles the trace from on to off and vice versa, while f3 changes the speed of TRACE
by accepting a number from 0-9. The program executes a true single-step whenever
f5 is pressed, and f7 traces as fast as possible through BASIC

The machine language program starts at $3000 (12288) and therefore assumes
that an 8K or 16K memory expander is present. This is partly because the program
occupies about 600 bytes. It works for any screen position and can easily be made to
operate with programs for the unexpanded VIC Program 6-44 erases itself after
loading the machine language, so be sure to save a copy before you try to run the
program.

Program 6-44. TRACE for the VIC
Refer to the "Automatic Proofreader" article (Appendix C! before typillg in this program.

o DATA 169,76,133,132,169,19,133,133,169,48,133,13
4,96,255,0,254,15 :rem 243

1 DATA 0,252,72,138,72,152,72,173,136,2,141,148,48
,166,197,224,39 :rem 139

2 DATA 208,12,228,197,240,252,173,13,48,73,255,141
,13,48,173,13 :rem 31

3 DATA 48,240,38,224,47,208,61,228,197,240,252,160
,0,140,14,48,132 :rem 173

4 DATA 198,32,249,241,240,251,24,105,198,141,15,48
,165,57,164,58 :rem 99

5 DATA 205,16,48,208,5,204,17,48,240,92,173,15,48,
141,18,48,162 :rem 36

6 DATA 128,160,25,165,197,201,63,240,22,201,47,240
,200,173,14,48 :rem 66

7 DATA 208,162,208,74,202,208,236,136,208,233,238,
18,48,208,228 :rem 46

8 DATA 120,162,0,181,0,157,76,49,202,208,248,162,8
7,169,160,157 :rem 43

216

Beyond VIC BASIC

9 DATA 0,16,202,208,250,32,129,229,165,57,164,58,1
41,16,48,140,17 :rem 131

10 DATA 48,133,20,132,21,32,207,48,162,0,189,76,49
,149,0,202,208 :rem 68

11 DATA 248,32,135,229,88,104,168,104,170,104,76,1
52,227,224,55 :rem 37

12 DATA 208,137,142,14,48,228,197,240,252,208,180,
32,19,198,160 :rem 41

13 DATA 1,132,15,177,95,240,67,32,44,200,234,234,2
34,200,177,95 :rem 24

14 DATA 170,200,177,95,197,21,208,4,228,20,240,2,1
76,44,132,73,32 :rem 121

15 DATA 205,221,169,32,164,73,41,127,32,71,203,201
,34,208,6,165 :rem 17

16 DATA 15,73,255,133,15,200,240,17,177,95,208,16,
168,177,95,170 :rem 96

17 DATA 200,177,95,134,95,133,96,208,181,96,234,23
4,234,234,234 :rem 53

18 DATA 16,215,201,255,240,211,36,15,48,207,56,233
,127,170,132,73 :rem 120

19 DATA 160,255,202,240,8,200,185,158,192,16,250,4
8,245,200,185 :rem 32

20 DATA 158,192,48,178,32,71,203,208,245,96:rem 84
100 PRINT "{2 SPACES}*****{7 SPACES}VERSATILE TRAC

E FOR VIC BASIC{12 SPACES}***** :rem 45
101 PRINT "{2 SPACES}*{7 SPACES}ASSUMES 8K OR 16K

{SPACE}EXPANSION MEMORY{15 SPACES}* :rem 26
102 PRINT n{2 SPACES}* Fl TOGGLES ON/OFF; F3 + NUM

BER SETS SPEED OF TRACE;{4 SPACES}* :rem 96
103 PRINT "{2 SPACES}* F5 SINGLE STEPS; F7 QUICK T

RACE {24 SPACES} * : rem 7
110 FOR J=12288 TO 12619: READ X: POKE J,X: NEXT

120 SYS 12288
130 POKE 55,0: POKE 56,48: NEW

:rem 9
:rem 151

:rem 25

To use TRACE with a program which works only on the unexpanded VIC,
switch on VIC with the 8K or 16K RAM in place. Now type in POKE 642,16: POKE
644,30: POKE 648,30: SYS 64818. VIC will now have BASIC from $1000 to $lEOO,
and the screen will be at $lEOO, exactly as in the unexpanded VIC-20. Load and run
the TRACE program, which puts TRACE into memory at $3000 (12288), where it is
protected from BASIC. Load your BASIC program. Then type SYS 12288 to initialize
TRACE and run your program.

When f1 is pressed, the program should be traced. F7 will move rapidly through
the program. F5 will single-step. F3 waits for a numeral key from 0 to 9 before
continuing. Programs controlled with ordinary keystrokes (not the function keys) are
best.

Programs which have user-defined graphics may produce partly or completely
illegible BASIC lines. This is one of the problems of designing TRACE for VIC.
Other problems include finding memory for it, trying to prevent its controls from

217

Beyond VIC BASIC

conflicting with ordinary program operations, and trying to guarantee that the nor
mal screen isn't disrupted too much by TRACE's own display.

TRACE intercepts BASIC with a wedge. It performs various operations before
returning to BASIC, which as far as possible is untouched. In operation, first, the key
f1 is checked; if it's pressed, a flag is reversed. Then, if the flag is off, program con
trol is returned to BASIC. If the trace flag is on, however, f3 is checked, and, if
pressed, a number key from a to 9 is accepted and put into a delay loop. F5 is also
tested; if the single-step flag is on, the program loops indefinitely waiting for f5.
However, when this key is found, the program runs BASIC until it finds a new line
number. The new line is listed on the screen, and the loop reentered. If f7 is found
to be pressed, the delay loop is bypassed and BASIC lines are listed as rapidly as
possible. In this way, you have maximum keyboard control over the trace.

As it stands, the program is not relocatable since it includes a number of internal
storage areas. However, it isn't difficult for an experienced ML programmer to move
it. Note that the routine at $307F (which lists lines) saves the entire zero page (other
wise, LIST corrupts many locations), homes the cursor and blanks the first four lines
of the screen, lists the line with a modification of LIST, and restores the zero page
and cursor position.

UNLIST
This system command prevents LISTing of BASIC programs to reduce the risk of un
authorized copying or modification. Un listing is successful only in proportion to the
difficulty of learning about a system. No widely sold microcomputer offers a fool
proof protection scheme; however, temporary and makeshift expedients may be bet
ter than nothing.

Several suggestions follow. Note that disabling STOP and STOP-RESTORE was
discussed earlier in this chapter.

Machine-language routine to run BASIC. This method is given first because it
is usable by anyone, works with any memory configuration, saves normally, and is
very puzzling to the uninitiated. It also disables STOP and STOP-RESTORE, so if the
program has no errors, no explicit or implicit END, and no STOP statement, it can't
be stopped at all by a user with an unmodified VIC. BASIC runs normally but lists
as a SYSPEEK(44)*256+23 without any further lines.

To use this routine, follow these steps:

Step 1. Be sure that the program has no line numbered a or 1. Change numbering if
it has.

Step 2. Enter line 0, with no spaces, in exactly this way: OSYSPEEK(44)*256+23
Step 3. Enter line 1 with exactly 21 asterisks (or any other character) and no spaces,

like this: 1 *********************
Step 4. List lines 0-1 and check them.
Step 5. Type in X = PEEK(44)*256 + 23. This is the starting address of the ML you

will poke in; it varies with memory, so use the variable X.
Step 6. Enter the following 24 POKEs. They are written as a continuous string of

POKEs, but only to save space. You should enter them one by one. Check by
PEEKing (use PRINT PEEK(X)) before you run. All must be correct. POKE X,
169: POKE X+l,45: POKE X+2,133: POKE X+3,43: POKE X+4,169: POKE

218

Beyond VIC BASIC

X+5,l09: POKE X+6,141: POKE X+7,40: POKE X+8,3: POKE X+9,160:
POKE X+10,O: POKE X+11,169: POKE X+12,PEEK(X+22): POKE
X+13,145: POKE X+14,43: POKE X+15,32: POKE X+16,89: POKE
X+17,198: POKE X+18,76: POKE X+19,174: POKE X+20,199.

Finally, type in POKE X-4,O: POKE X-3,O: POKE X+22,O.
Step 7. Save the program, list it, and run it to be sure that UNLIST is working cor

rectly. Now show the result to a friendly hacker and see if he can list it.

Rather than reveal how this method operates, I'll explain a shorter version. En
ter a short working program into an unexpanded VIC and add lines 0 SYS4111 and
1 ********** (ten asterisks). Perform the following twelve POKEs: POKE 4111,169:
POKE4112,26: POKE 4113,133: POKE 4114,43: POKE 4115,32: POKE 4116,89:
POKE 4117,198: POKE 4118,76: POKE 4119,174: POKE 4120,199. This completes
the ML.

Now POKE 4107,0 and POKE 4108,0 to put end-of-program bytes after line O.
Your program should now LIST as 0 SYS4111,but it should RUN as normal. After
the program is run, it will then list as usual.

The ten ML bytes are as follows:

$100F LDA #$lA
$1011 5TA $2B ;Moves start-of-BASIC to the true start after ML
$1013 J5R $C659 ;CLR sets pointers
$1016 JMP $C7 AE ;runs program from start

The effect is identical to POKE 43,31: RUN. All that's needed is to add some
unlist features and disable STOP and STOP-RESTORE to get an effective UNLIST.

Special characters in REM statements or dummy lines. Since characters
following a REM don't affect a program's performance, there is ample opportunity to
POKE or otherwise enter confusing characters which will disrupt a listing. A dummy
line is one which is never run, always branched past. Some of the characters you can
put in REM or dummy lines to disrupt listing are given below.

SHIFT-L stops a listing with ?SYNTAX ERROR.
{WHT} makes a listing to screen invisible.
HOME or CLEAR confuses a screen listing.
DELetes can erase a line from the screen, making it invisible.
Printer commands can (for example) force page throws.

See REM in this section for the ways to actually construct these lines. For example,
try this on an unexpanded VIe: Type a few program lines, run them to make sure
they contain no syntax errors, then add this line at the beginning:

1 REM""L
(the underline indicates that you should hold down SHIFT when you type the L).
Now, position the cursor on the right quote mark and insert six spaces (hold down
the SHIFT key and hit the INSTjDEL key six times). Type six DELete characters by
hitting INST jDEL six times (without SHIFT). Each DEL should appear as a reverse
video T. Hit RETURN to enter the revised line, then try to list your program. You
should see only a single set of quote marks and a ?SYNTAX ERROR message. How
ever, the program should still run properly. To make it possible to list the program
again, simply delete line 1.

219

Beyond VIC BASIC

Five leading tokens method. This method, once considered for commercial use,
causes a program's line numbers to list, but nothing else. It is easy to use. Add five
colons (or any five characters or tokens) at the start of every line of BASIC. Then
add these lines to the program, choosing your own line numbers if 50000 to 50002
are taken:
50000:::::S = PEEK(43)+ 256*PEEK(44): FOR J = 1 to 1E8
50001:::::IF PEEK(S+4»0 THEN POKE S+4,O:S=PEEK(S)+256*PEEK(S+1): NEXT
50002:::::END

Now, RUN 50000 will put null bytes into the start of each line. The program lines
will now LIST as line numbers only but will run normally! Type LIST; you should
see a set of line numbers, and nothing else. Delete lines 50000 to 50002 and the pro
cess is complete.

The following line (omit spaces to make it fit) can put the colons back, so the
lines will LIST again: S=PEEK(43)+256*PEEK(44): FOR J=l TO 1E8: POKE
S+4,58: S=PEEK(S)+256*PEEK(S+1): IF S THEN NEXT.

With this method, about the best you can hope for is that would-be listers of
your programs haven't read this book. You can also set traps, like putting :::NEW: or
::::X before a variable, rather than five colons, before UNLISTing the program. If the
program is made listable again but these entries pass unnoticed, the program will be
NEWed on running, or variable A may be mysteriously converted into XA.

Overlong lines. A line longer than 250 characters cannot be listed after the first
250 or so bytes. LIST expects each line to be spanned by a single-byte pointer and
will loop indefinitely if not. However, some other commands, like READ, also fail to
work.

To combine lines, replace the null byte at the end of each line but the last one
with a colon, then move the lines down in memory to overwrite the link addresses
and line numbers. The very first link of the series must be set to span the completed
giant line, and all the later link addresses (which are now wrong) must be corrected.

If the idea interests you, put the following routine at the beginning of a program
and run. Type in two line numbers; when the program has finished they'll be joined
together. Each line number is printed as its line joins onto the first line selected; this
ends up as a composite line, so the lines listed on the screen disappear from the
program.

Program 6-45. Combining BASIC Lines
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o INPUT "COMBINE LINES";L,U: REM LOWER AND UPPER L
INES :rem 5

1 C=PEEK(43)+256*PEEK(44):E=PEEK(45)+256*PEEK(46)-
4 : rem 44

2 LT=PEEK(C+2)+256*PEEK(C+3) :rem 46
3 IF LT<L THEN C=PEEK(C)+256*PEEK(C+1):GOT02

:rem 254
4 IF LT>L THEN PRINT "LINE NOT FOUND": END:rem 147
5 S=C:C=C+4 :rem 100
6 IF PEEK(C)<>0 THEN C=C+1:GOT06 :rem 31

220

Beyond VIC BASIC

7 IF PEEK(C+2)=0 GOTO 13 :rem 230
8 LT=PEEK(C+3)+256*PEEK(C+4): IF LT<=U THEN PRINT

{SPACE}LT :rem 201
9 IF LT<=U THEN POKE C,58:FOR J=C+l TO E: POKE J,P

EEK(J+4): NEXT: GOTO 6 :rem 191
10 C=C+l: POKE S,C AND 255: POKE S+I,C/256:S=C:C=C

+4 : rem 214
11 IF PEEK(C)<>0 THEN C=C+l:GOTOll :rem 119
12 IF PEEK(C+2)<>0 GOTO 10 :rem 76
13 PRINT C+3:C=C+l:POKE S,C AND 255: POKE S+I,C/25

6: CLR:END :rem 4

When this program is run, line numbers are printed, as is a value (line l3)
which is the new, lower end-of-BASIC. It isn't necessary to POKE this in, but if you
wish to save memory, you can do so. If, for example, 4567 is printed, type in POKE
45, 4567 AND 255: POKE 46,4567/256:CLR. Be sure to type it correctly. Otherwise,
there'll be problems; incorrectly linked BASIC behaves in odd ways and may refuse
to accept new lines or delete old ones. Remember not to include lines referenced by
GOTO or GOSUB, or lines with IF statements or REM statements which will cause
later parts of the newly joined line to be bypassed.

Self-modifying BASIC. If a program has only a few GaTOs and GOSUBs, this
is an excellent way to get simple list protection. LIST needs a correct link address for
each line of the BASIC program. However, RUN doesn't, except to process GOSUB
or to GOTO a lower destination line than the command (10000 GOTO 100).

You can make use of this to get another type of UNLIST. With an unexpanded
VIC. type in a few lines of program. Now POKE 4097,255 or some other random
value. LIST will probably show garbage, but RUN will be satisfactory.

Before a GOTO or GOSUB of the sort just described, you'll need to POKE 4097
with the correct value for the program, then afterwards POKE in the wrong value
again.

VARPTR
VARPTR finds the location of any variable stored in RAM. Its main use is to investi
gate variables, exactly as in the first part of this chapter. Program 6-46 loads a ma
chine language routine which will find the starting location of a variable name,
whether simple or subscripted. To be conveniently usable with BASIC. it uses ROM
routines not only to find the variable, but (with LET) to assign the resulting address
to another variable.

Program 6-46. VARPTR
Refer to the "Automatic Proofreader" articie (Appelldix C) before typing ill this program.

100 DATA 32,115,O,32,139,208,164,95,165,96,32,145,
211,32,115,O :rem 218

110 DATA 32,139,208,133,73,132,74,165,14,72,165,13
,72,76,186,201 :rem 80

120 FOR J= 828 TO 859: READ X: POKE J,X: NEXT
:rem 74

221

Beyond VIC BASIC

After this is typed in and run, to put the ML into memory, the syntax SYS
828:AB$:L (for example) assigns to variable L the value of the address where AB$'s
seven-byte description starts in memory. Program 6-47 is an example that finds and
prints the value of X.

Program 6-47. An Example of Using VARPTR

200 X=123
210 SYS 828:X:S : REM SNOW = START OF X DESCRIPTI

ON
220 FOR J=S TO S+6: PRINT PEEK (J):: NEXT: REM PRI

NT 7 BYTES

This routine can't find TI, TI$, or ST, which are not stored as conventional vari
ables. The actual machine language for the VARPTR routine is given below:

JSR GETCHR ; JSR $0073 (ignores separating colon)
JSR SEARCH ; with JSR SEARCH finds the variable
LOY $5F
LOA $60
JSR FXFLT
JSR GETCHR
JSR SEARCH
STA $46
STY $47
LOA $08
PHA
LOA $07
PHA
JMP ASSIGN

; Convert pointer bytes to floating-point
; Ignore colon
; Finds second variable

; Two entries on stack needed
; to assign value to variable

Programmer's Aid
Programmer's Aid is a Commodore cartridge (designated VIC-1212) which fits either
the VIC-20 or an expansion memory board. Its function is to aid BASIC program
writing. It need not be present in memory when the final program runs, and the
commands it adds to BASIC are all intended to be used in direct mode.

Don't let anyone convince you that this utility package is necessary for good
programming or that programs cannnot be written without it. Both statements are
untrue. Nevertheless, the cartridge is widely available and does provide many useful
functions, so an overview of its use is included here.

Technical Description
Programmer's Aid ROM routines occupy locations $7000-$7FFF and so cannot be
initialized simply by switching on VIC-20. $7009 is the entry point, so SYS
7*4096 + 9 or SYS 28681 is needed to activate it.

Once activated, the title PROGRAMMER'S AID will appear on the screen. BA
SIC's top of RAM is lowered by 120 bytes the first time SYS 28681 is used, to store
function key definitions.

222

Beyond VIC BASIC

The KILL command turns Programmer's Aid off, but the 120 bytes aren't recov
ered. POKE 783,181: SYS 64815 will reset the system and recover these bytes. KILL
followed by POKE 55,0: POKE 56, PEEK(56) + 1: CLR recovers them and retains
BASIC in memory; use this if you unexpectedly run short of memory during pro
gram development or if you wish to check the runtime speed of the program (which
will increase by a small amount when Programmer's Aid is disabled).

SYS 28681 and KILL leave BASIC programs unaltered, as they should. STOP
RESTORE leaves Programmer's Aid active and retains BASIC. Don't reinitialize it.

Programmer's Aid 16 commands are listed from $73A6, with the high bit set, as
RUN, AUTO, STEP, TRACE, OFF, RENUMBER, DELETE, HELP, FIND, DUMP,
PROG, EDIT, CHANGE, KEY, MERGE, and KILL. The CTRL key is usable too.
Abbreviated entry of these commands (with two keys, such as R' SHIFT -E for RE
NUMBER) always works, because a wedge intercepts them before normal BASIC
processing begins. This wedge has limitations, however; it works only in direct
mode, and only for one command, so TRACE:KEY which looks all right won't in fact
perform KEY.

Programmer's Aid commands are similar to those found in earlier utility chips for
the PETjCBM.

Programmer's Aid can coexist, though not in a very happy state, with VICMON
in RAM, and with Super Expander too, on an expansion board. Most Programmer's
Aid functions operate normally unless they come across a Super Expander keyword,
in which case they hang up in an infinite loop. FIND, CHANGE, and HELP are
risky because Programmer's Aid cannot list a line containing a Super Expander
keyword.

Using Programmer's Aid
Debugging commands: HELP, DUMP, TRACE, STEP, and OFF

HELP after a syntax error is supposed to list the defective line with a reversed
character or reserved word at the place where the error was detected. Unfortunately,
the interpreter often detects errors only when its BASIC pointer is away from the ac
tual error, so this command isn't as useful as it sounds. HELP's pointer is the same
that CONT would use; it is soon lost, so if you want help, get it right away.

DUMP looks for nonarray variables at the end of BASIC and prints them out in
sequence. Try entering X = 12.34: Y% = 2:Z$ = "STRASMA" in direct mode, then
DUMP. Arrays cannot be listed, a rather silly limitation. DUMP works only in direct
mode. If you wish to dump within a program, use SYS 30817; this lists the variables,
then stops.

TRACE puts six line numbers in a six-by-six reverse window at the top-right of
the screen (unless the numbers have been replaced with user-defined characters); the
lines themselves aren't listed. However, this may not be much help in tracing the
way a program runs (see TRACE elsewhere in this chapter). OFF turns TRACE off.
STEP is activated by the CTRL, Commodore, or SHIFT keys, but it isn't a true single
step. It merely stops tracing when it finds one of these keys isn't pressed.

TRACE, STEP, and OFF can all be activated while a program runs. POKE 127,2
puts TRACE on; POKE 127,3 sets STEP; and POKE 127,0 turns TRACE off.

223

Beyond VIC BASIC

Line number commands: AUTO, DELETE, RENUMBER
AUTO a,b outputs line numbers in sequence starting with a and incrementing by

b. For example, AUTO 1000,10 prints 1000 then, after entry of some BASIC and RE
TURN, 1010, and so on. This saves the effort of typing in line numbers. AUTO alone
defaults to AUTO 100,10 and starts with 100. However, from then on the default
varies. Generally, it carries on where it left off. This of course allows you to exit
AUTO (by pressing RETURN twice), change a line or two, and then return to AUTO.
SYS 30728,a,b has the same effect as AUTO.

DELETE offers a number of syntax alternatives; for example, DELETE -999
leaves lines 1000 and above. SYS 30415,a-b works too. DELETE on its own isn't al
lowed. It assumes conventional BASIC and (not surprisingly) can't be relied on in
the presence of several line 999's, which RENUMBER makes easily possible. It can
also cause problems with APPENDed line numbers out of sequence.

RENUMBER a,b is a two-parameter renumber which yields BASIC line numbers
starting with a and incremented by b. RENUMBER 0,1, for instance, leaves the
numbering as 0,1,2,3, and produces some speed increase. An increment of 0 is al
lowed; all the lines are then numbered O. There is no way to renumber program seg
ments, so if you'd like to keep some standard subroutines at line 60000, RENUMBER
is not very much help. If there's no program in memory, RENUMBER hangs; STOP
RESTORE will recover. SYS 28908,a,b works exactly like RENUMBER.

Destination lines in GOTO, GOSUB, and RUN are renumbered; so is the line
number designated by a in LIST a-b. ON is also renumbered despite the error in
logic. Nonexistent line numbers are set to 63999, so FIND 63999 after RENUMBER
will detect any loose ends.
Search/replace commands: FIND, CHANGE

FIND is valuable for quickly checking whether a variable has already been used
in a long program. It isn't easy to use successfully for other purposes, because of the
way BASIC is tokenized and stored. FIND T will find T (as well as T%, 1$, T(8), and
TA), but not TAN or "STAY", which must be found by FIND TAN and FIND ''1''
respectively. Generally, try it with and without quotes, and watch out for BASIC re
served words and for REM.

Spaces can be a problem. For instance, FIND GOSUB 500 won't find
GOSUB500, and Programmer's Aid has no command to erase spaces. Each line with
the sought item is printed. With long programs the text quickly scrolls off the screen.
The command has a range restriction to avoid this problem; it has the form FIND
ITEM,a-b with the usual permutations of a and b.

CHANGE has FIND's drawbacks plus some of its own. Assume you decide to
change all occurrences of variable D into DEVICE, to make a program more read
able. CHANGE D,DEVICE will change the variable, but it will also change a variety
of other things. REM ADDRESS will become REM ADEVICEDEVICERESS, and vari
ables like MD become MDEVICE. Strings are expected to be changed into same
length strings. The best approach may be to FIND all occurrences and change them
manually, retaining the option of rejecting spurious occurrences.
Function key commands: KEY, EDIT, PROG

KEY lists the current definitions of twelve function keys. Function keys fl-f8 are
the usual unSHIFTed and SHIFTed function keys; f9-f12 are CTRL plus one of the
four keys. The Commodore key used with the function keys has no effect.

224

Beyond VIC BASIC

Two sets of key definitions exist in Programmer's Aid, starting at $7 A90. EDIT
and PROG switch between the two sets, which are given in Table 6-7. KEY lists
them exactly as shown, except that the back arrow (representing RETURN) appears
in reverse video on the screen. The idea is apparently for the PROG set to be useful
while programming, offering a convenient method to enter single-key BASIC com
mands, while EDIT should be useful with the Programmer's Aid cartridge itself.

Table 6-7. Function Commands Listed by KEY
KEY l:'UST"
KEY 2,"MID$("
KEY 3,"RUN <-- "

KEY 4:'LEFT$("
KEY 5,"GOTO"
KEY 6,"RIGHT$("
KEY 7,"INPUT"
KEY 8,"CHR$("
KEY 9,"EDIT +- "

KEYIO,"GOSUB"
KEYll,"RETURN <-- "

KEY12,"STR$("

KEY l:'UST"
KEY 2,"AUTO"
KEY 3,"RUN <-- "

KEY 4,"DELETE"
KEY 5,"FIND"
KEY 6,"CHANGE"
KEY 7,"TRACF <-- "

KEY 8,"STEP <-- "

KEY 9:'PROC +- "

KEYI0,"RENUMBER"
KEYll:'MERGE"
KEY12:'OFF <- "

KEY X, String Expression sets new values for the function keys. For example,
KEY 1, "LOAD" -I- CHR$(34) -I- "$" -I- CHR$(34) -I- ",8" -I- CHR$(13) prints
LOAD "$",8 and loads the directory from disk whenever f1 is pressed. Note, how
ever, that string expressions longer than ten characters aren't allowed (12 lots of 10
bytes fill 120 bytes at the top of memory), which considerably weakens their appeal.
Nevertheless, it's possible to fit in useful expressions. If you have a printer, for in
stance, OPEN 4,4:CMD4 and PRINT#4:CLOSE 4 will fit into two key definitions if
you abbreviate the keywords. Use KEY 1, "O.E4,4:CM4" and KEY 2, "PR4:CL04" -I
CHR$(13), where the underlining indicates that the designated characters should be
SHIFTed.

Program manipulation command: MERGE
MERGE is a modified LOAD which retains the current program in memory. Pro

grammer's Aid's version of MERGE preserves duplicate line numbers if these exist.
For example, if LOAD loads a BASIC program from tape, then MERGE "",1 pro
duces a listing with each line listed twice.

MERGE "STANDARD SUBROUTINES", 1 illustrates the sort of thing for which
this command was designed. It has its own error message, ?MERGE ERROR, which
is given if the program doesn't exist.

Screen editing: the CTRL KEY The routine at $7BCB tests for the CTRL (Con
trol) key and one of L, N, E, U, Q, OR A. About 500 bytes processing follows.

CTRL-Q and CTRL-A let you scroll back and forth through BASIC, an enormous
improvement on LIST. The cursor doesn't go to the top/bottom of the screen at
once, so there are delays while it moves. Forward scrolling leaves large spaces be
tween program lines.

CTRL-L , CTRL-U, and CTRL-N clear parts of the screen without erasing the
program. CTRL-L clears the program line (up to four screen lines) on and after the

225

Beyond VIC BASIC

cursor. CTRL-U clears the whole program line. CTRL-N clears the screen after the
cursor. As an example, if a line begins 100 PRINT, with the cursor on P, then CTRL
L leaves only 100 on the screen. However, if additional BASIC lines are added and
RETURN is pressed, the new line 100 replaces the old. These commands seem to be
modified from CBM's BASIC 4.

CTRL-E turns off quote mode.
Programmer's Aid Machine Language Internal evidence (unused pointers and

characters) suggest that Programmer's Aid was written to start at $AOOO. It also tests
for ROM at $BOOO, where no Commodore cartridge fits. This explains why it starts at
$7009 rather than at $7000. Initialization is similar to that of the Super Expander, but
Programmer's Aid doesn't take more memory on repeatedly initializing and uses this
wedge:
0073 INC 7A
0075 BNE 0079
0077 INC 7B
0079 LOA BASIC
007C JMP 731C

This leaves room from $7C to $8A for other storage; for example, $7F holds the trace
indicator. KILL of course reinserts the normal CHRGET routine to get a BASIC
character and set significant flags.

The entry addresses of the commands (in two tables, starting at $73EE and
$ 73FE) are as follows:
$70EC RENUMBER
$740E RUN
$7423 CHANGE
$742B FIND
$7610 OFF
$7614 TRACE
$7617 STEP
$76CF DELETE

$7780 HELP
$7808 AUTO
$7861 DUMP
$7943 KEY
$7A31 KILL
$7BB1 PROG
$7BBE EDIT
$7EOE MERGE

Machine language programmers might note an unusual feature of the code: JSR
$ 72D5 has to be followed by two parameters, which often appear as ??? on dis
assembly. Subroutine $72D5 moves two bytes from the first parameter's address to
the second parameter's address.

226

Chapter 7

6502 Machine Language

Most programmers feel that machine language programming is more difficult than
programming in BASIC but by the end of this chapter you should have a good
grasp of ML techniques on the VIC-20.

In the following discussion, machine language instructions are presented (as far
as possible) in sequence from the easiest to the trickiest. It is assumed that you're
familiar with hex notation (Chapter 5) and that you have an ML monitor available
(for example, VICMON). Readers without a monitor may type in the monitor at the
end of this chapter. That monitor is written in BASIC and requires memory expan
sion to be fully functional.

Note that Chapter 10 is a complete reference section, with examples, on all 6502
instructions. It can be used to help you with your own ML programs.

There are four subdivisions of Chapter 7. First, you'll see actual examples of ML
programming to help you start learning. That is followed by a full description of the
6502 chip. Next is a list of problem-solving techniques. Finally, there is a discussion
of machine language monitors for the VIC-20.

Introduction to 6502 ML Programming

Examples
In this section, you'll write some short ML programs, using only the simplest ML
instructions. Each example should be entered with a monitor. VICMON offers a fairly
standard format, which the examples use. At this stage, only four monitor com
mands will be considered: A (Assemble) for entering ML; D (Disassemble) to convert
ML bytes into readable form, so they appear as they did during assembly; M (the
Memory Display command) which displays consecutive bytes; and G (Go or Go
Run) which executes the program, much as RUN executes programs written in
BASIC.

The monitor program presented with this chapter has the first two commands,
provided your VIC has expanded memory, but not the third; however, bytes can be
PEEKed from BASIC to check statements made about M.

Note that leading dollar signs ($) are not used to indicate hex arithmetic in the
BASIC monitor, so type (for example) 033C instead of $033C when entering the
example programs. Also, the example ML routines end with BRK; this is fine for
VICMON and ML monitors, but BASIC monitors require that routines end with RTS,
since they are called with SYS (typically SYS 828 rather than G 033C). RTS returns
control to BASIC.

These programs all put characters into screen memory, so the effect of each pro
gram is instantly visible. Direct feedback like this will prove helpful in learning.

The VIC-20 has movable screen memory, and these programs assume a screen
start of $lEOO (applicable to an unexpanded VIC). But the screen may be at $1000,
because the full BASIC monitor can't be fitted into VIC's original small memory. In
this case, substitute 1000 for 1EOO and 9400 for 9600 when color RAM is used. If

229

6502 Machine Language

you're not sure where the screen is, PRINT PEEK(648). A value of 30 means the
screen starts at $lEOO. Color RAM starts at $9600 when the screen is at $lEOO; when
the screen is at $1000 it starts at $9400.

Example 1: Placing a Single Character on the Screen
With VICMON. Activate VICMON with SYS 6*4096 (some VICMON cartridges

require SYS 40960 instead), and type in the six-byte ML program exactly as shown,
using either the M or A command. The two forms are exact equivalents; they are
simply different ways of showing the same thing. For example, the byte A9 is
treated as an LDA (LoaD Accumulator) instruction by the 6502, and the D or dis
assemble command simply expands A9 into LDA whenever it is found. This is
analogous to BASICs LIST command, which expands one-byte tokens into
keywords .
. A 033C LDA #$00
.A 033E STA $IEOO
.A 0341 BRK

or
.M 033C 0341
.:033C A9 00 8D 00 IE
.:0341 00 --- any ---

You'll find that a disassembly command, for instance .D 033C 0341, disassembles
the bytes so they appear exactly as they did when you typed them in.

Note that, looking at the six bytes in memory, the screen starting address $lEOO
is held in reverse order, with 00 preceding IE. This feature is common to all three
byte instructions of the 6502 and many other microprocessors.

The command .G 033C executes this short program, then returns to VICMON.
Its effect is to print an @ symbol in the top left of the screen, unless the screen
scrolls and loses it (or unless there was no character there already so color RAM is
white, making the @ invisible).

Why does this work? You know that $lEOO is the first screen position and that
POKEing 0 to the screen generates @. That should give a clue. The program loads
the accumulator (also called the A register) with 0 (LDA #$00), stores the accu
mulator's content in $lEOO (STA $lEOO), then breaks (BRK) to return to VICMON.
The accumulator is an eight-bit location within the 6502 processor that can be
loaded with any value from $00 to $FF. This example has the same effect as POKE
7680,0.

Can you do more with this? If you cursor up and alter the program to LDA
#$01 (or 033C A9 01, etc.), then G 033C has the effect of POKEing 1 into the
screen, so the letter A appears. In fact, you can put any character into any screen
location, after a certain amount of calculation to determine the address, and after
looking up the screen POKE value from the appendices.

With the BASIC monitor. Load and run the monitor, preferably the full version
with both Assembly and Disassembly facilities, but otherwise the Assembly portion.
Then assemble from address 033C entering the following lines:

033C LDA #00
033E STA 1000
0341 RTS

Use STA lEOO if your VIC is unexpanded. The query and quotes generated by the
INPUT statement have been omitted; they aren't central to the program. Now, press
RETURN, which inputs nothing and exits to READY mode. SYS 828 returns to

230

6502 Machine Language

READY, after putting @ at the top left of the screen, just as the similar ML of
VICMON does. For J = 828 TO 833:PRINT PEEK(P): NEXT prints the six bytes of ML,
and is analogous to VICMON's M command. Machine language programs can be
POKEd into memory by reversing this procedure; Chapter 9 includes a program
which converts ML into BASIC DATA statements.

To underline the fact that BASIC can POKE in and use ML programs, type in
FOR J = 1 TO 255: POKE 829,J: SYS 828: NEXT which prints all 256 characters in
quick succession at the top left of the screen. Each loop alters the ML program, then
executes it in its new, slightly changed, form. Disassembly of the program in its final
form gives the following:

033C LOA #FF
033E STA 1000
0341 RTS

showing how the second byte of the six in the sequence ended as $FF, or 255. Ex
actly the same BASIC will work from VICMON, after exit to BASIC with .X, but
remember to end the ML with RTS, not BRK, so the SYS call will operate properly.

Example 2: Placing a Character on the Screen with Color
This program will put a character on the screen and place a byte into the same
character's color RAM. The comments are for information only and are not intended
to be typed in; VICMON won't accept them.

With VICMON. Enter the following with the A command:

.A 033C LOA #$00 iLOAO ACCUMULATOR WITH ZERO

.A 033E STA $lEOO iSTORE ACCUMULATOR IN SCREEN

.A 0341 STA $9600 iSTORE ACCUMULATOR IN COLOR RAM

.A 0344 BRK iBREAK, BACK TO VICMON

This nine-byte program will disassemble, with D 033C 0344, into exactly the same
form. If you use M 033C 0344, you will get this:
.: 033C A9 00 80 00 IE
.: 0341 80 00 96 00--

This is similar to the first example, except for the introduction of 8D 00 96, bytes
which decode to STA $9600 just as 8D 00 IE is STA $lEOO.

The command G 033C executes the program, causing @ to appear in black at
the top left of the screen. It is black because color RAM treats 0 as black. Cursor up
and replace LDA #$00 by LDA #$02; G 033C then prints a red B.

With the BASIC monitor. Assemble this at 033C:

033C LOA #00
033E STA 1000
0341 STA 9400
0344 RTS

Use STA 1EOO and STA 9600 with an unexpanded VIC.
SYS 828 prints a black @. As before, FOR J=O TO 255: POKE 829,J: SYS 828:

NEXT will cycle through all VIC's characters, but this time the colors cycle too.

231

6502 Machine Language

From now on, the examples will assume VICMON; this is to save space. You
should have little difficulty making the small amendments which may be needed to
convert one format into the other.

Example 3: Introducing an Index
This example introduces the X register and its use as an index. The X register is an
other eight-bit location within the 6502 processor, like the accumulator. Notice its
use in the following program:
.A 033C LOA #$00 ;LOAO ACCUMULATOR WITH #0
.A 033E TAX ;TRANSFER ACCUMULATOR TO X
.A 033F STA $lEOO,X ;STORE ACCUMULATOR IN SCREEN + X
.A 0342 LOA #$00 ;LOAO ACCUMULATOR WITH 0
.A 0344 STA $9600,X ;STORE IN COLOR RAM + X
.A 0347 BRK ;BREAK

The TAX (Transfer Accumulator to X register) instruction simply copies the con
tents of the accumulator into the X register. The ,X in STA $lEOO,X is a special nota
tion. It refers, not to address $lEOO, but to address $lEOO plus X's current contents.
That is, whatever value is in X is added to $lEOO, and the resulting address used in
the instruction. Since X has eight bits, the range must be within $lEOO-$lEFF in the
example. Likewise, the address for STA $9600,X must be within the range
$9600-$96FF.

If you execute this program with G 033C, it prints an @ in black at the top left
corner of the screen, exactly like the previous program. The difference appears after
cursoring up and altering LDA #$00 to (for example) LDA #$05. Executing this
prints E in black, but prints it five characters over from the @ in the top left. Any
other value in place of the initial $00 prints a character offset from the screen start
ing location.

Now change BRK to RTS, type X to exit to BASIC, and type in FOR J=O TO
255: POKE 829,J: SYS 828: NEXT. This prints all 256 characters consecutively in
black, filling the top half of the screen, and shows clearly how the index X operates.
POKE 835 with another color value, say 2 for red, to watch the effect of the ML after
$0342.

Example 4: Loops with Machine Language
You have just used BASIC to cause a loop, but how can you do this in ML? As in
BASIC, you will need a counter to check the number of loops, plus a test for the end
of the loop.

The example shows a standard way of doing this with the 6502; it is standard
because the instructions are designed for this very purpose. The program has an in
crement instruction (INX) and a branch instruction (BNE). A decrement instruction
can be equally useful, and sometimes better, but increments are easier for beginners .

. A 033C LOX #$00 ;LOAO X REGISTER WITH #0

.A 033E TXA ;TRANSFER X TO A (HAPPENS 256 TIMES IN LOOP)

.A 033F STA $lEOO,X ;STORE A IN SCREEN START + OFFSET X

.A 0342 LOA #$02 ;SET COLOR REO

.A 0344 STA $9600,X ;STORE COLOR IN COLOR RAM + OFFSET X

.A 0347 INX ;INCREMENT X REGISTER

232

6502 Machine Language

.A 0348 BNE $033E ;BRANCH IF X NOT EQUAL TO ZERO

.A 034A BRK ;BREAK WHEN X CYCLES THROUGH TO #0

With this ML in memory, G 033C prints 256 characters in red in the top half of the
screen. It does this far faster than the equivalent BASIC version given in Example 3;
in fact, it takes only about 1/200 second.

How does this work? First, both the accumulator and X are loaded with #0. (The
TXA transfer uses one fewer byte than LDA #$00.) TXA (Transfer X register to Accu
mulator) has the property of insuring that the offset X corresponds to the character
in the accumulator, so that after the branch at 0348, which is taken 255 times, the
contents of the accumulator depends on the value of X. This is a short way to pro
gram the result and depends on the use of INX to increment X by 1. Note that the
value stored in screen memory cycles from $00 to $FF, but the value stored in color
RAM is always 2. Thus the color of each character stays constant.

To understand this program fully, note the values in the accumulator and X at
each stage of the program. The value in X progressively increases, until eventually it
reverts from $FF to $00, while the value in the accumulator alternates between the
identical (increasing) value of X and 2.

Note too that the branch instruction only occupies two bytes, in spite of dis
assembling to three bytes. It uses relative addressing, meaning that the branch, if
taken, goes to the address of the following instruction plus the byte just after the
branch instruction. The example adds $F4 to $034A, treating $F4 as negative (or
-$OC, since $F4+$OC=$00). In addition, $034A -$OC=$033E. Branch instructions
can therefore reach only 127 bytes forward or 128 back. More on this later on.

Example 5: Comparisons and Subrou1'ines in ML
You have seen how SYS calls can run ML as a subroutine, provided the RTS instruc
tion ends the ML. This also operates in ML itself; RTS (ReTurn from Subroutine) is
analogous to RETURN in BASIC. Try the following program after changing BRK to
RTS in Example 4's ML:
.A 0350 JSR $033C ;CALL EXAMPLE 4'S LOOP AS A SUBROUTINE
.A 0353 INC $0343 ;INCREMENT THE COLOR IN EXAMPLE 4
.A 0356 LOA $0343 ;LOAO A WITH THE NEW COLOR
.A 0359 CMP #$08 ;COMPARE THE NEW COLOR WITH 8
.A 035B BNE $0350 ;BRANCH IF NOT EQUAL TO 8
.A 0350 BRK ;BREAK WHEN COLOR = 8

Now G 0350 cycles through the colors until the last color (yellow) is reached. Be
cause the subroutine is changed by this program, G 0350 behaves differently the sec
ond time the program is executed. The point is that, as in BASIC, ML subroutines
provide a powerful means of dividing programs into manageable chunks. You'll see
later that comparisons can be followed by other types of branch than BNE or BEQ
(Branch if EQual); the illustrations here are used for simplicity.

Because of the speed of ML, the colors on the screen are changed too fast to be
visible. As an exercise, add a delay loop after 0350 JSR $033C, to use up time with
out performing significant processing work. Hint: Use the X and Y registers; Y is the
other eight-bit register of the 6502. Construct two loops within each other, and use
DEX (DEcrement X register) and DEY (DEcrement Y register), each followed by BNE,

233

6502 Machine Language

so X decrements 256 times for each decrement of Y. Remember that STOP-RESTORE
generally returns you to BASIC if your program doesn't work.

Full Description of the 6502 Chip
This section describes the 6502 microprocessor by looking at addressing modes; the
status register (N, V, B, D 1, Z, and C flags); the program counter, zero page, and
stack; NM1, RESET, and IRQ vectors; and opcodes.

Opcodes (machine language instructions) are introduced last because their use
depends on prior knowledge of the other 6502 features. Chapter 10 has a guide,
with notes, on all the opcodes; and the appendices have comprehensive tables,
giving concise information on the 6502 for experienced ML programmers.

Addressing Modes
The 6502 has 13 addressing modes. Most are easy to understand, but a few are more
difficult.

You've seen how disassembly always treats a given byte in the same way; 8D xx
yy is always treated as STA yyxx. In other words, this is implicit in the chip: When
ever 8D is encountered as an instruction, the following pair of bytes is considered to
be an address in low jhigh byte order. A disassembler therefore prints STA in place
of 8D and follows it with a 16-bit address.

Most addressing modes process the contents of memory locations, rather than
using explicit values. This is invaluable in dealing with RAM and ROM where the
processor is often a sort of intermediary, mainly concerned with arranging blocks of
RAM. However, it is a rather abstract property, which takes some time to grasp.

All 6502 instructions take one, two, or three bytes; each type will be examined
in some detail.

Single-byte instructions. Single-byte instructions cannot reference either ad
dress or data, and operate only on features within the 6502. The phrase addressing
mode doesn't really apply, but for consistency these instructions are described as
possessing implied addressing. Instructions which shift or rotate bits in the accu
mulator like ASL (Arithmetic Shift Left) are sometimes distinguished as accumulator
addressing. At other times, however, they are not, so you may encounter monitors
which require ASL A rather than just ASL.

Two-byte instructions. These instructions consist of an instruction followed by
a single byte. If this byte is treated as data, the instruction uses immediate mode.
This is usually indicated by a number sign (#) before the data; you saw examples in
the programs of the last chapter. Apart from loading the accumulator or X and Y reg
isters with a value, this addressing mode is used in arithmetic operations, logical op
erations, and comparisons.

All other two-byte instructions refer to addresses, not data. There are six dif
ferent types. You have already used one of them, branches, in the previous chapter.
That addressing mode is usually called relative because of its use of an offset.

Zero page instructions. The five remaining two-byte modes all use zero page
addressing. The zero page is not a feature of the chip itself; it is the section of RAM
(or ROM) which is wired to addresses $OOOO-$OOFF. However, the chip has the facil
ity of enabling the most significant byte to be ignored, so that (for example) LDA

234

6502 Machine Language

$34 can be written in place of LDA $0034. This saves a byte, which in turn shortens
programs and increases their speed. For this reason, the first 256 bytes are usually in
great demand in 6502 programs, so that machine language routines which coexist
with BASIC must be careful to take into account BASIC's use of these locations.

In the simplest type, the second byte specifies the address in zero page. For
example, LDA $55 loads the accumulator with the contents of address $0055; loca
tion $55 may hold any value from $00 to $FF. Note the difference between this and
the immediate mode instruction LDA #$55 which loads the value $55 into the accu
mulator, and has no connection with location $55.

Zero page indexed by X. LDA $AO,X loads the accumulator from an address cal
culated by $AO plus the contents of the X register at the time the instruction is car
ried out. Note that the total of $AO + X is itself treated as a zero page address; if
there is overflow, it is ignored. For example, if X holds $60, $AO+$60 is treated as
$00, not $0100, and the contents of address 0 are loaded into the accumulator.

Zero page indexed by Y. This is exactly analogous to the previous mode, but the
chip is designed so that only two instructions can use this mode (LDX and STX).

Indexed indirect. An example of this type of instruction is LDA ($OO,X). The
parentheses are a convention which indicates that the accumulator is loaded from an
indirect address. That is, the quantity in parentheses specifies the address of the first
of two consecutive zero page bytes which form the address from which the data is
taken. Let's assume for the moment that X contains 0, to simplify matters. In effect,
LDA ($OO,X) would then be equivalent to LDA ($00), since the indexing effect of X is
zero.

Suppose the first few bytes in zero page are 01 80 84 02. LDA ($00) loads the
accumulator from the address it finds in the bytes in locations $00 and $01, in this
case $8001. So the instruction, in this instance, has the same effect as LDA $8001.

Pure zero page indirect addressing is not available on the 6502. Indexed indirect
addressing, as the name implies, allows indexing of the indirect address. Thus, if X
were loaded with $02, then LDA ($OO,X) has the effect of loading the accumulator
from the indirect address of $00+$02, or ($02). Therefore, with the figures above,
the equivalent of LDA $0284 is executed. The instruction is useful when X is set to
$00, as pure indirect addressing of the zero page, and when a table of pointers exists
in the zero page. The BASIC pointers to the start of BASIC, its end, and its variables
provide an example. This instruction is asymmetrical with respect to the X and Y
registers; see STY in Chapter 10 for additional information.

Indirect indexed. An example of this type of addressing is LDA ($2A),Y. As with
the previous mode, the address in parentheses specifies the location of the first of
two consecutive bytes which together form an address. Apart from this special case,
however, this mode is post-indexed by Y; that is, the indirect address is calculated,
then the value in the Y register is added, and the resulting address is the object of
the processing.

To show how this works, consider the data shown in the indexed indirect mode
example above, with four possible bytes at the very start of RAM. LDA ($OO),Y loads
from $8001 +Y, so the 256 bytes from $8001 to $8100 can all be accessed, depend
ing on the value in Y.

235

6502 Machine Language

Indirect indexing can only be used with the Y register. It is used for pure in
direct addressing (when Y contains $00) for such purposes as following the link
pointers from one BASIC line to the next and for processing blocks of data which
aren't in the zero page.

Three-byte instructions. Three-byte instructions in the 6502 always consist of
an instruction followed by a two-byte address. There are four interpretations of the
address: absolute, absolute indexed by X, absolute indexed by Y, and absolute
indirect.

Absolute. This mode is a simple reference to a two-byte address, as in LDA
$1234 or LDA $8000 or LDA $0012.

Absolute indexed by X. The contents of X are added to the address to give the ac
tual referenced address. Thus, if X holds $50, LDA $8000,X loads the accumulator
from $8050. As with zero page indexing, the maximum value cannot exceed the
legitimate range, so LDA $FFFO,X when X holds #$11 loads the accumulator from
$0001, not from the nonexistent $10001.

Absolute indexed by Y. This is exactly analogous to the previous mode, except
that it is indexed by Y.

Indirect. The 6502 has only one instruction with this mode, namely JMP (JuMP).
An indirect jump transfers the program's flow of control to a new address; this ad
dress is found from the contents of the address indicated by the indirect instruction.
An example is helpful: Suppose the first few bytes in zero page contain the values
shown above in the example for indexed indirect mode. In that case, JMP ($0000)
has the same effect as JMP $8001; JMP ($0001) jumps to $8480; and so on. This
instruction is useful when a table of addresses (like the three vectors at the top of
RAM) exists in a block. For example, the RESET vector at $FFFCjFFFD can be called
by JMP ($FFFC) irrespective of BASIC ROM.

The Status Register
The status register (or processor status register), denoted SR by VICMON, is another
eight-bit register. It contains seven individual status bits, or flags, all of which are
automatically controlled by the 6502 chip as ML programs run. Bit 5 of the register
isn't used and is permanently set at 1. Table 7-1 lists all possible bit-pattern
combinations for the status register. Note that values of 0, 1, 4,5, 8,9, C, or Dare
not possible in the high nybble, since bit 5 is always set to 1. This means that the
value in the status register will always be at least 32, $20, even when all flags are
clear. For example, if the register contains $32, then B is set (high nybble $3), and Z
set (low nybble $2).

236

6502 Machine Language

Table 7 - 1. VIC Status Register

765 432 1 0

B 0 I z c

High Nybble Low Nybble

2 • 0

3 • B 1 C

6 V • 2 Z

7 V • B 3 Z C

A N • 4 I

B N • B 5 I C

E N V • 6 I Z

F N V • B 7 I Z C

8 0

9 0 C

A D Z

B D Z C

C D I

0 D I C

E D I Z

F D I Z C

These flags don't change unless altered by an instruction. The decimal mode (0)
bit, for example, typically remains off through all BASIC programs.

The table of 6502 opcodes in Appendix N shows which instructions alter which
flags. LOA, for instance, alters (or rather conditions, because the new value may be
the same as the existing value) the Nand Z flags, but none of the others. This pro
cess is automatic; it's part of LOA and happens even if you have no need for it.
However, a few instructions do explicitly set flags: CLC (CLear Carry) sets the C flag
to 0, and SEC (SEt Carry) sets C to 1.

The logic behind the use of flags can be difficult to follow at first. The V and N
flags, in particular, are tricky, while Z and I are much simpler. With practice, the pro
grammer should find them easy enough (or at least be able to avoid the awkward

237

6502 Machine Language

ones). For instance, V is seldom used.
The N, or negative, flag (bit 7 of SR) is a direct copy of bit 7 of the result of

some other operation. Thus, LDA #$D3 loads $D3 into the accumulator, and since
$D3 is shorthand for binary 1101 0011 (which has bit 7 high), N is turned on by this
instruction. Some hardware ports are wired up to bit 7, so LDA from the location
sets or clears N to reflect the status of bit 7. N is used along with BMI (Branch on
MInus) or BPL (Branch on PLus), the branches being taken if N is 1 or 0
respecti vel y.

The negative idea is part of twos complement arithmetic, which is dealt with in
the next section.

The V, or internal overflow, flag (bit 6 of SR) is seldom used. Like N, it's re
lated to twos complement arithmetic and indicates typically that two numbers added
together give a result outside the acceptable range. See the next section.

The B, or break, flag (bit 4 of SR) is usually set only on BRK. Its purpose is to
enable a BRK instruction to be distinguished from an interrupt, since both jump to
the same address. The address is fixed in ROM. This is a hardware feature of the
6502, discussed in greater detail later in this section.

The 0, or decimal calculation mode, flag (bit 3 of SR) changes the mode of
addition and subtraction performed by the 6502 to decimal, actually binary coded
decimal) instead of the usual binary. The results resemble ordinary decimal
arithmetic. Again, this concept is not a simple one. As an illustration, consider add
ing 35 to 97. In hex, the result is $CC; in decimal mode, it is 32 with the carry flag
set, identical to the normal decimal outcome. The 6502 automatically adds 6 to
either nybble if a result exceeds 9.

The I, or interrupt disable, flag (bit 2 of SR), when set with SEI (SEt Interrupt
flag), prevents any IRQ interrupts from taking place, Chapter 8 explains these inter
rupts, with examples, but due to their importance in handling the keyboard, they are
mentioned in several places in this book. The main point of disabling interrupts is to
prevent them from disturbing ML routines which temporarily can't handle interrupts,
often when a new piece of programming is inserted into the regular interrupt
sequence.

The Z, or zero result, flag (bit 1 of SR) is set by most of the instructions which
set N. Z ORs together all eight bits of a result; if this process gives a value of zero,
the Z bit is set to show a zero result. Otherwise, ,,,,hen Z is off, the result is nonzero.
The notes to BEQ and BNE in Chapter 10 expand on this.

The C, or carry, flag (bit 0 of SR) is primarily of use in addition or subtraction,
where its function is similar to the carry which denotes overflow from a column of
figures to a more significant column. BCe, BCS, CLC, and SEC are other instructions
involving this flag.

The Program Counter, Zero Page, and Stack
The program counter (PC) is a 16-bit register within the chip that records the ad
dress of the current instruction being executed. The register can't be accessed di
rectly; BRK, or an interrupt, saves its value on the stack, as does JSR. Thus, the value
of the PC can be determined after BRK, for example, which is how VICMON is able
to record the Pc. Branch and jump instructions operate at chip level by loading new

238

6502 Machine Language

values into the PC, transferring control to some new program location.
The zero page, as you have seen, is the section of memory from $00 to $FF. Be

cause many 6502 instructions can use zero page addressing modes, which are faster
(and shorter) than addressing elsewhere, this region is important and invariably con
nected to RAM. It's called a page because blocks of 256 bytes form a natural sub
division of 6502 addressing; there are 256 pages in all.

The stack is a part-RAM, part-hardware feature of the 6502. It uses page 1 of
RAM, from $100 to $IFF, and it can be difficult to understand for several reasons.
First, page I, although used by the processor as the stack, also doubles as normal
RAM. Second, instructions like PHA (PusH Accumulator onto stack) and its opposite
PLA (Pull Accumulator from stack), which are used for temporary storage purposes,
work in a fairly complex way, adding new bytes to the lower end of the stack and
recovering old bytes from the lower end, under the control of another eight-bit reg
ister, the stack pointer. The process is explained in Chapter 10. Note that another
complementary pair of instructions, PHP and PLP, operate on the status register,
allowing it to be stored and examined at will. Four other instructions operate on the
stack: JSR (Jump to SubRoutine), its converse RTS, BRK, and RTI (ReTurn from Inter
rupt). The stack pointer can be read or reset by copying values to or from the X reg
ister, using the TSX (Transfer Stack pointer to X register) or TXS (Transfer X register
to Stack pointer) instructions respectively.

NMI, RESET, and IRQ Vectors
The 6502 has a group of reserved addresses, defined in hardware, at the top of its
addressing area. The top of memory is therefore invariably ROM. Whenever the
NMI, RESET, or IRQ pin of the 6502 is grounded, the processor sets the program
counter to the address in location $FFFA/FFFB, $FFFC/FFFD, or $FFFE/FFFF respec
tively. For example, when the VIC is turned on, after a short delay, the RESET line
of its 6502 is held low, causing the processor to look to locations $FFFC and $FFFD
for the address for the standard switch-on sequence. If you check these addresses
with PRINT PEEK(65532)+ 256*PEEK(65533), you'll see that the VIC's ROM reset
routine begins at location 64802 ($FD22), as discussed in Chapter 5.

Briefly, the RESTORE key uses NMI, and NMI can also be programmed. RESET
is valuable in program recovery, to restore programs which have crashed in other
wise unstoppable loops. IRQ is used by the VIC to read the keyboard. Chapters 5, 6,
and 8 consider the software side of these hardware features.

6502 Instructions and Opcodes
An opcode (operation code) is a number, an eight-bit byte, that instructs the
microprocessor to perform a particular action. Since humans find it easier to deal
with letters rather than numbers, the opcodes are usually represented by mnemonics,
character representations intended to make machine language relatively easy to read.
All 6502 opcodes are three letters long, which makes for neat assembler and
disassembler listings.

Although the mnemonics are standard, there is nothing to stop you from coming
up with your own (for example, by modifying the BASIC monitor program in this

239

6502 Machine Language

chapter). This may in fact be helpful as a learning aid, although it would be
unorthodox.

There are 56 distinct types of instructions (and hence 56 different standard
mnemonics), some with one addressing mode, some with as many as eight, for a to
tal of 151 valid opcodes. They can be grouped by function, as shown below.

Add/subtract. ADC (ADd with Carry) and SBC (SuBtract borrowing Carry) are
the 6502's arithmetic functions. Both addition and subtraction are carried out on all
eight bits, using the carry flag (C) for overflow. Twos complement arithmetic is not
used, but flags are present which enable it to be implemented. A binary-coded deci
mal (BCD) arithmetic mode is also available.

Branches. The 6502 has eight branch instructions, all conditional on the status
of a flag, and all having a single-byte twos-complement offset. The instructions are
BCC and BCS, BNE and BEQ, BPL and BMI, BVC and BVS, and the branch is taken
if the C, Z, N, or V flag is off (clear) or on (set) respectively.

Break. The BRK instruction causes an unconditional jump to the address in loca
tions $FFFE/FFFF, having first saved both bytes of the program counter and the sta
tus register on the stack.

Comparisons. CPX, CPY, and CMP make it possible to compare the contents of
X, Y, and A (the accumulator) with data or with memory contents. The data or mem
ory is subtracted from X, Y, or A, and flags are set, without changing the value in
the register. N, Z, and C are set, so a comparison may be followed by any branch
(except BVC or BVS) to test the comparison.

Data transfers. Data can be loaded into the 6502 from RAM or ROM by LDA,
LDX, or LDY; it can be stored in RAM by STA, STX, or STY. These few instructions
are extended in power by being equipped with a large number of addressing modes.

Decrements/increments. These alter X, Y, or memory locations by subtracting
or adding one bit, setting Nand Z according to the result. The instructions are DEX,
DEY, DEC, and INX, INY, INC.

Flag clear/set. These enable some status register flags to be altered at will.
CLC, CLD, CLI, and CLV clear flags C, D, 1. and V; SEC, SED, and SEI set flags C,
D, and 1.

Jumps. JMP acts like COTO in BASIC. JSR acts like COSUB, with RTS the
equivalent of RETURN. JSR saves the current address plus two on the stack.

Logical operations. AND, EOR (exclusive OR), and ORA (inclusive OR) perform
binary logical operations on the accumulator and data or memory, retaining the re
sult in the accumulator, and setting the Nand Z flags. BIT sets the Z flag just as
AND would, but does not affect the contents of the accumulator.

No operation. NOP does nothing.
Return. RTS returns to the instruction following JSR by jumping to the address

currently on the stack, plus one. RTI jumps to the address on the stack and also
loads the status register from the stack.

Rotate/shift. ROL (ROtate Left) and ROR (ROtate Right) act on the accumulator
and the C (carry) flag (a nine-bit rotation). For example, an ROL causes all bits in the
accumulator to move one position to the left; the leftmost bit (bit 7) is pushed out
into the carry flag, and the old contents of the carry flag wrap around into the
rightmost bit of the accumulator (bit 0). ASL (Arithmetic Shift Left) and LSR (Logical
Shift Right) also involve the accumulator and C (but do not rotate C) so that bit 0

240

6502 Machine Language

with ASL and bit 7 with LSR are always set to zero. Flags N, Z, and C are set.
Stack operations. These are PHA, PHP, PLA, and PLP. These are explicit opera

tions on the stack, but BRK, JSR, RTS, and RTI also use the stack. TSX and TXS al
low the stack pointer to be found and set respectively.

Transfers between registers. Six instructions allow transfers between any two
registers Y, A, X, and S. The opcodes are TYA and TAY, TAX and TXA, and TXS
and TSX.

Note. Not all 6502 machine language is instructions; tables of data are a com
mon, and necessary, feature, and these can usually be identified by the fact that they
don't disassemble sensibly. Chapter 5 explains about such tables. BASIC ROM starts
with tables, including address tables (that is, tables of 16-bit numbers), BASIC
keywords, and BASIC messages.

Timing
All opcodes take a precise number of 6502 clock cycles; the faster the clock, the
faster the ML executes. VIC's chip runs at about one million cycles per second. Table
7-2 summarizes timing in the 6502; most instructions are included in the first col
umn, but a few exceptional instructions are listed in the other columns.

Table 7-2. 6502 Timing Reference Chart

Exceptions
Addressing

Time
DEC, INC,

Mode Rotate, Shift Others

Absolute 4 6 JMP=3)SR=6

Abs,X and ABS,Y 4 (+ lover page) 7 STA=5

Zero Page 3 5

ZP,X and Zp,Y 4 6

Implied 2 Stack PH=3, PL=4
RTS=6 RTI=6

Immediate 2 BRK=7

Relative 2 (if no branch)
3 (if branch taken

+ lover page)

Accumulator 2

(Ind,X) 6

(lnd),Y 5 (+ lover page) STA=6

Indirect 5

241

6502 Machine Language

In practice, it is impossible to time long programs by timing individual instruc
tions, since there are too many instructions to count. But it's helpful in speeding up
slow ML routines, when you're trying to optimize functions like updating a screenful
of information.

6502 Techniques and Methods
This section deals with the following topics:

• Two-byte operations, including incrementing, decrementing, adding, subtracting,
multiplying, dividing, and comparing.

• Testing for a range of data.
• Loops.
• Shift and rotate instructions.
• Logical instructions, including AND, ORA, EaR, and BIT.
• Twos complement arithmetic.
• Decimal arithmetic.
• Debugging ML.

Two-Byte Operations
Incrementing two bytes. The best method to increment two bytes is illustrated

by the following routine:
INC LOBYTE
BNE CONT ;BRANCH UNLESS FF JUST BECAME 00
INC HIBYTE ;ONLY NEEDED WHEN LOBYTE NOW IS 00

CONT ...
Decrementing two bytes. There's no test for decrement from $00 to $FF, so this

is less simple than incrementing. However, the following routine will do it:
LDA LOBYTE
BNE DECL ;BRANCH UNLESS LOBYTE IS 00
DEC HIBYTE ;ONLY NEEDED WHEN LOBYTE WAS 00

DECL DEC LOBYTE

Adding two-byte pairs. The carry flag carries from low to high bytes.
CLC ;START BY CLEARING CARRY
LDA LOl ;GET FIRST LOW BYTE ...
ADC L02 ; ... ADD IT TO OTHER LOW BYTE
STA L02 ;AND STORE RESULT
LDA HIl ;GET FIRST HIGH BYTE ...
ADC HI2 ; ... ADD IT AND CARRY TO OTHER HIGH BYTE,
STA HI2 ;AND STORE RESULT

In this example, L02 and Hl2 end up with the contents of LOl and HIl added
to them. Chapter 10 has another example.

Subtracting two-byte pairs. The carry flag is set before subtraction (if it's clear
the result will be off by 1). If C is clear on exit, the result is negative-that is, the
amount subtracted was larger than the original two-byte amount.

SEC ;SET CARRY FLAG
LDA LOl ;GET FIRST LOW BYTE ...
SBC L02 ;SUBTRACT OTHER LOW BYTE

242

6502 Machine Language

STA L02 ;STORE RESULT'S LOW BYTE
LDA HIl ;GET FIRST HIGH BYTE ...
SBC HI2 ;SUBTRACT OTHER HIGH BYTE AND CARRY FLAG COMPLEMENT
STA HI2 ;STORE HIGH BYTE OF RESULT.

Multiplying two single bytes to give a two-byte result. Multiply and divide
instructions don't appear on the 6502. The example multiplies the contents of two
zero page locations ($FC and $FD), leaving the result in the same two bytes. On
average, about 6000 multiplications can be performed per second by this routine,
which uses ROR (ROtate Right) to detect bits and to store the result in FC (low byte)
and FD (high byte). This example is formatted for the BASIC monitor program pre
sented with this chapter. With VICMON or a similar monitor, remember to add $ to
all the numbers and to change the RTS to BRK.
033C CLC
033D LDA #00
033F LDX #08
0341 ROR
0342 ROR FC
0344 BCC 0349
0346 CLC
0347 ADC FD
0349 DEX
034A BPL 0341
034C STA FD
034E RTS

The one-line program 10 INPUTX,Y: POKE 252,X: POKE 253,Y: SYS 828:
PRINT PEEK(252) + 256*PEEK(253) can be used to test this. It is possible to test this
routine exhaustively, something practically unattainable with more complex ML.

Division of a two-byte number by a single byte. The next routine is roughly
the opposite of the previous one. A 16-bit (two-byte) number in locations $FC (low
byte) and $FD (high byte) is divided by the contents of $FE, and the result (assumed
to be in the range $OO-$FF) is left in $FC, with the remainder in $FD. The identical
addresses and locations need not be retained in actual programs, of course. This
example is formatted for the BASIC monitor program presented with this chapter.
With VICMON or a similar monitor, remember to add $ to all the numbers and to
change the RTS to BRK.

033C CLC
033D LDX #08
033F LDA FD
0341 ROL FC
0343 ROL
0344 BCS 034A
0346 CMP FE
0348 BCC 034D
034A SBC FE
034C SEC
034D DEX
034E BNE 0341
0350 ROL Fe

243

6502 Machine Language

0352 STA FD
0354 RTS

This can be tested from BASIC by POKEing locations 252 and 253 with low and
high bytes of the numerator, POKEing 254 with the denominator, SYS 828, and
printing PEEK(252) and PEEK(253) for the solution and remainder.

Comparing two-byte pairs. The trick is to avoid comparison instructions and
use SBC instead, which retains results as well as setting flags. Use the following
routine:

SEC
LDA L01
SBC L02
STA TEMP ;TEMPORARY STORE
LDA HIl
SBC HI2
ORA TEMP ;RESULT 0 ONLY IF A AND TEMP BOTH ZERO

Z is set if the contents of the first address equaled those of the second; C is clear
if the contents of the first were less than the second. BEQ, BCe, and BCS test for =,
<, and> respectively.

Other two-byte operations. It's often possible to write compact ML using the X
and Y registers to store two bytes. Suppose locations $FD and $FE contain an ad
dress to be decremented, then stored in locations $0350 and $0351. You can use the
following routine:

LDY $FE
LDX $FD
BNE NO
DEY

NO DEX
STY $0351
STX $0350

Testing That a Byte Is in the Correct Range
The following example tests whether the byte in the accumulator is within the range
5 to 9. A whole sequence of CMP instructions, with their immediate mode bytes in
increasing order, can be tested with a succession of BCC instructions. It's not nec
essary that the second branch be BCS, as it is here.

CMP #$05
BCC SMALL ;BRANCH TAKEN IF A =0,1,2,3, OR 4
CMP #$OA
BCS LARGE ;BRANCH TAKEN IF A=OA,OB,OC, ... ,FF

OK ... ;CONTINUE WITH A IN DESIRED RANGE

Loops
Loops generally use X or Y as a counter and often as an offset too. There's some
room for timesaving in the design of loops. Also, it's worth checking over their logic.
It's easy to write loops which aren't quite correct, perhaps missing one of the values
at one end of the loop.

244

6502 Machine language

Look first at a typical small loop. This one puts the five bytes for the letters of
the word HELLO on the screen. There are two versions (shown here in the format of
the BASIC monitor program):

LDX #0
LOOP LDA TABLE,X LOOP

STA lEOO,X
INX
CPX #5
BNE LOOP
RTS TABLE

TABLE .BYTE 'HELLO'

LDX
LDA
STA
DEX
BNE
RTS
.BYTE

#5
TABLE-l,X
lEOO,X

LOOP

'HELLO'

In the first version, X successively takes values 0, I, 2, 3, and 4; in the second,
the values taken are 5, 4, 3, 2, and 1. The second version is shorter; DEX counts
down to zero, and CPX #$00 is redundant, since in effect the processor does this
when it sets Z flag of the status register. For this reason, decrements are often more
elegant than increments. However, you should take note that the decrementing ver
sion prints OLLEH instead of HELLO. That is, the bytes are read from right to left
with this version. You'll need to take that into account when you set up your tables
of data. Using decrements also adds an extra difficulty in that the bytes' start is one
position away from the address in the LDA instruction, as a consequence of the fact
that X is never zero. This explains why the decrementing version uses LDA
TABLE -I,X instead of LDA TABLE,X.

Note that LDX #$04j. .. /BPL LOOP counts X down from 4 to 0, and the accu
mulator loads from the expected start point. However, X values larger than $7F
won't cause a branch on BPL, so it's best to avoid BPL at first.

Looking at longer loops, there are again several possible methods. Suppose 512
bytes are to be moved into color RAM from $lDOO. Different approaches are given
below.

(a)

LDA #$00
STA $FB
STA $FD
LDA #$10
STA $FC
LDA #$96
STA $FE
LDY $00

LOOP LDA ($FB),Y
STA ($FD),Y
INY
BNE LOOP
INC $FC
INC $FE
LDA $FE
CMP #$1F
BNE LOOP

(b)

LDY #$00
LOOP LDA $lDOO,Y

STA $9600,Y
LDA $lEOO,Y
STA $9700,Y
INY
BNE LOOP

(c)

LDY #$00
LOOP LDA $lDOO,Y

STA $9600,Y
INY
BNE LOOP
INC LOOP+2
INC LOOP+5
LDA LOOP+2
CMP #$lF
BNE LOOP

Loop (b) is the shortest (and also the fastest). It moves bytes in pairs. The loop

245

6502 Machine Language

will obviously get longer if several thousand bytes are to be moved, perhaps when
ML has been loaded into RAM from tape and needs to be put into its correct RAM
area to run.

Loop (c) is basically similar but uses self-modifying ML, which you may find
easier to understand than indirect addressing. In the example, the loop becomes LDA
1EOO,Y/ STA 9700,Y the second time around, then LDA IFOO,Y/ STA 9800,Y, after
which the CMP test terminates the loop. Although this is fairly straightforward, it
has the drawback that the ML is different on exit from what it was at the start. Thus,
a second call to the ML gives different results.

Loop (a) is a general-purpose version, suitable in most cases; it's longer than the
others, because of the need to set up $FB/FC and $FD/FE with $lDOO and $9600.

In each case, these examples assume that the loop ends at an address like
$lFOO. Obviously both bytes in the address can be compared if this doesn't apply.

Saving the zero page is sometimes a useful trick, perhaps to optimize ML run
ning with BASIC. VICMON can do this; TRACE (Chapter 6) does it, too, to allow
LIST and BASIC to work together. The routines are simple enough but require an
inviolable 256 bytes of RAM (usually at the top of BASIC). Use the following routine
to save the area:

LDX #$00
LOOP LDA $OO,X

STA STORE,X
INX
BNE LOOP

and use this one to restore it later:
LDX #$00

LOOP LDA STORE,X
STA $OO,X
INX
BNE LOOP

Shift and Rotate Instructions
Shift instructions (ASL, LSR) and rotations (ROL, ROR) are useful whenever individ
ual bits are important. For example, an easy way to print a byte as eight O's or l's is
to shift the byte eight times, using BCC or BCS to determine whether 0 or 1 is cor
rect. Parallel-to-serial interconversion, where a byte is sent as separate bits or put to
gether from bits, uses the same idea.

Because rotations use nine bits, including C. they can be used to hold intermedi
ate results during processing. The multiply and divide routines presented earlier use
rotations like this; division, for example, repeatedly doubles the denominator and
compares it with the numerator (to see which is bigger) while collecting the result.

Both types of instructions are valuable in calculations, because they multiply by
2. This example shows how to multiply by 22; at the start, $FB is assumed to hold a
Y value from 0 to 22, representing a screen row. $FC is assumed to hold #$OF. After
the ML executes, the screen position $lEOO + 22*Y is left in $FB/FC. and an X
value can be added.

246

6502 Machine Language

LDA $FB ;A HOLDS Y VALUE (0-22)
ASL ;A=TWICE Y (0-44)
ASL ;A=4*Y (0-88)
ASL ;A=8*Y (0-196, C ALWAYS CLEAR)
ADC $FB ;A=9*Y (0-198, C CLEAR)
ADC $FB ;A=10*Y (0-220, C CLEAR)
ADC $FB ;A=l1*Y (0-242, C CLEAR)
ASL ;A=22*Y (0-484, C MAY BE SET)
ROL $FC ;FC NOW HOLDS 1E OR 1F, DEPENDING ON 22*Y
STA $FB ;FB HOLDS LOW BYTE OF ADDRESS

Logical Instructions
AND and ORA act like BASIC's AND and OR, except that only eight bits are in
volved. EOR (exclusive OR) doesn't exist in BASIC; the nearest thing is (A OR B)
AND NOT (A AND B). As Chapter 11 shows, AND is used to mask out bits, ORA is
used to force bits high, and EOR is used to reverse bits. In each case, any combina
tion of bits can be chosen.

For example, assume you have a byte ($72) which you want to print as the
digits 7 then 2. Store the byte, then shift it right four times. AND #$OF masks off
(erases) the leftmost bytes, then ORA #$30 forces $30 into the byte to create the
ASCII value of a numeral ready for printing. Recover the original byte and repeat.
Both digits are correctly output.

An example of EOR may be helpful too. EOR combines bits in repeatable pat
terns (unlike AND and ORA, which eventually set all bits to 0 and 1 when operating
on sequences of bytes). You can use this to generate a checksum for BASIC or ML
programs, helpful in checking that a program is correct; the following version prints
a number from 0 to 255 and will print the same number whenever the identical pro
gram loads into the identical memory area.

LDA $2B ;COPY START-OF-PROGRAM POINTER
STA $FD ; INTO FD AND FE
LDA $2C
STA $FE
LDY #$00

LOOP EOR ($FD), Y
INC $FD
BNE NOINC
INC $FE

NOINC LDX $FE
CPX $2E
BNE LOOP
LDX $FD
CPX $2D
BNE LOOP
TAX
LDA #$00

;SET Y TO 0

;INCREMENT ADDRESS IN FDjFE

;TEST WHETHER FEjFF YET EQUALS 2Ej2F
; 2Ej2F, THE END-OF-PROGRAM POSITION

;END OF PROGRAM. NOW PRINT OUT A'S VALUE

IMP $DDCD ;USING THIS ROM ROUTINE

All logical instructions (like the arithmetic instructions ADC and SBq use the
accumulator in their logical expressions; this is what the accumulator is for. EOR

247

6502 Machine Language

#$FF is the equivalent of NOT A, since all the bits in the accumulator are flipped.
The BIT instruction is rather different from the above three instructions; it sets

flags but doesn't alter the accumulator or any address. It may be of use when some
location is to be tested logically while the accumulator must remain unchanged. The
Z flag is set if the accumulator and the operand of BIT together AND to zero, and
bits 6 and 7 of the result are copied into the V and N flags respectively.

Twos Complement Arithmetic
Is it possible to arrange arithmetic in eight-bit bytes to allow for negative values?
You've become used to $OO-$FF representing 0-255, but you can, with a change in
interpretation, allow negatives too. This is not a convention, in the strictest sense,
but a consequence of the rules of binary arithmetic. Thus it must work on any
microprocessor .

Bit 7 (the leftmost bit) can be regarded as a sign bit. It takes one of two values,
with 0 designating a positive number and 1 designating a negative number. The N
flag in the status register is wired to be consistent with this; when N=I, the number
is deemed negative and BMI's branch is taken. If N=O, BLP is taken. These branches
operate whether or not you're using negatives.

A number and its negative must add to zero. It follows that a pair of numbers
(say + 7 and -7) can be represented by $07 and $F9, because these add to $00, and
because the second has its high bit set. The use of numbers like $F9 to represent
negatives is called twos complement arithmetic, and $F9 is the twos complement of
$07. You'll find with experiment that the largest possible one-byte twos complement
number (%0111 1111) is 127, and the smallest (%10000000) is -128. These figures
are identical to the range available to branch instructions and show how a branch's
offset can be stored in just one byte.

Subtraction from 256 gives the twos complement. Another rule, which may be
easier to use, is to flip all the bits in the byte, and add 1. So, the twos complement
of %0101 0101 ($55) is %1010 1010 plus 1, or %1010 1011 ($AB). Again, $55 plus
$AB adds to $00, ignoring the carry flag. Note that $00 has no negative complement;
it equals its own twos complement.

You can generate twos complement numbers with the following routine:

LOA NUMBER
EOR #$FF
CLC
AOC #$01

Since the sign can be stored elsewhere, this type of arithmetic isn't particularly
popular; however, VIC's BASIC integer variables (for example, X%) use a 16-bit ver
sion of twos complement arithmetic in which the highest bit stores the sign, so inte
gers may range from -32768 to 32767. Their twos complements need EOR #$FF on
both bytes, plus #$01.

The V flag is also associated with this type of arithmetic, showing that an over
flow took place into the sign bit. Consider addition, where V is conditioned by ADC
(and four other instructions). Numbers of opposite sign cannot overflow; even ex
treme values (0 -128) must fall in the correct range. But if the signs are the same,
overflow is possible. $44 + $33 gives $77, and V is clear; but $63 + $32 gives $95,

248

6502 Machine Language

which in twos complement arithmetic is considered negative, so this addition results
in V being set. Similarly, two negative numbers can appear to add to a positive re
sult, and if this is the case, V will also be set.

The condition of the V flag is in fact determined internally, by the chip, by
reversing the EOR of the sign bits (giving 0 if they match, 1 otherwise). V is set, in
other words, when the signs are the same; the result (incorrectly) shows a different
sign.

To reiterate, twos complement is an interpretation. Many programmers may
never use it, preferring to work in positive numbers. But you can't understand Nand
V flags without grasping the idea of negative bytes.

Decimal Arithmetic
Decimal mode arithmetic, with the D flag set, packs two digits into each byte and
adds or subtracts in decimal. This example adds a four-digit number in locations $8B
(high byte), $8C (low byte) to a six-digit number in locations $8D (high byte), $8E
(middle byte), $8F (low byte), leaving the result in the three-byte number. Scoring in
games often uses such subroutines; a score is stored in the smaller location, the sub
routine called to total, and the result printed.

SED ;TURN ON BCD MODE
CLC ;CLEAR CARRY
LDA $8C ;ADD LOW BYTES,
ADC $8F
STA $8F
LDA $8B
ADC $8E
STA $8E
BCC NOINC
INC $8D

NOINC CLD

;STORE RESULT
;ADD MID BYTES

;AND STORE

;HIGH BYTE
;RETURN TO NORMAL MODE

The six-digit number can be printed by looping three times to select a byte, then
shifting it right, using AND #$OF followed by ORA #$30 to convert to ASCII,
outputting with JSR $FFD2, and repeating with the same byte unshifted.

It is often simpler to use individual bytes for totals of this sort. This example
uses the first five locations of the unexpanded VIC's screen. It starts by putting zeros
there, and then puts scores into $8B through $8F as, for example, 00 00 01 00 00 (to
represent 100). The result appears directly on the screen.

LDX #$04 ;SET COUNTER FOR 4,3,2,1,0
CLC ;CLEAR CARRY

LOOP LDA $lEOO,X ;LOAD BYTE FROM SCREEN
ADC $8B,X ;ADD CORRESPONDING BYTE
CMP #$3A ;15 RESULT 10 OR MORE?
BCC CLEAR ;IF NOT, BRANCH,
SBC #$OA ;IF SO, SUBTRACT 10, LEAVING CARRY SET

CLEAR STA $lEOO,X ;UPDATE SCREEN BYTE
DEX ;COUNT DOWN TO NEXT BYTE
BPL LOOP ;BRANCH UNTIL X IS FF

249

6502 Machine language

This is very fast and efficient. Change the value of X for more or fewer than six
digits. This method does not use BCD mode.

Debugging ML Programs
Listed here are many errors common in 6502 ML programming. Program design
should be approached methodically, preferably from the top down, starting with the
writing or reusing of standard subroutines. Careful analysis of the code, perhaps
with flow charting, and testing with typical and abnormal data should insure a
sound program.

Careless errors. Careless errors may remain undetected for a long time. Ex
amples include transcription errors (entering 7038 for 703B) and immediate mode #
errors (using LDA 00 instead of LDA #00). You might also use a wrong ROM ad
dress, perhaps one for a different computer, or make branch errors, especially with
simple assemblers where forward addresses must be reentered. Yet another possibil
ity is the use of a subroutine which alters A, X, or Y.

Addressing mode errors. These stem from confusion of order of low and high
address bytes, failure to understand indirect addressing modes, or attempted use of
indexed zero page addressing to extend above location $FF (LDA $AB,X always loads
from zero page, for any X). Indirect jumps may also cause problems; JMP ($03FF)
takes its address from $03FF and $0300.

Calculation errors. With addition, subtraction, and so on, do not forget to use
the proper instruction (CLC before adding, SEC before subtracting, and SED and
CLD with BCD math). Remember, too, that LDA #$02 followed by ADC $FD adds
the contents of location $FD to the 2 in the accumulator, but leaves $FD unchanged.
It's easy to forget that only the accumulator holds the result, and STA $FD may be
needed to return the answer to the desired location.

You should also be careful to keep track of the carry bit with shifts and rotates.
That can be tricky; C is easy to overwrite.

Status flag errors. The logic behind the flags' settings may cause difficulties for
beginners, who may not realize (for example) that AND #$00 is identical to LDA
#$00. Incrementing from a value of $7F to $80 sets the negative flag. The following
routine
LOA KEY
CMP #$3A
BNE ERROR
STA LOCN

stores the contents of KEY in LOCN, but STA sets no flags. You might expect it to
clear Z, but this is not the case. Z will remain set until cleared by the execution of
some instruction which affects that flag.

Stack errors. Generally, the number of stack pushes should equal the number of
pulls; additionally, the order should match. PHA/ TXA/ PHA, for example, usually
requires PLA/ TAX/ PLA to retrieve A and X later on.

Errors in which RAM is overwritten. Programs or their data can be over
written by BASIC strings or variables, by tape activity, or by subroutines which hap
pen to access similar RAM areas or zero page locations (including utilities like
VICMON), to name but a few. The program itself may be at fault: A loop may move

250

6502 Machine Language

some data it shouldn't, a pointer may be updated while still in use so it points tem
porarily to a wrong address, or a part of the stack may be used for storage but get
filled by normal stack activity.

Machine Language Monitors with VIC-20

VICMON
Commodore's VIC-1213 cartridge, called VICMON, is a popular monitor. VICMON
occupies 4K, usually from $6000 to $6FFF. Some VICMON cartridges were produced
in which the ROM occupies locations $AOOO-$AFFF. SYS 6*4069 (or SYS 40960, in
the case of ROM at $AOOO) turns it on. It inevitably uses RAM, almost all of it in the
zero page.

Syntax of commands. VICMON command syntax is more involved than BASIC.
First, each line starts with a period; the function of this is to verify that a line is in
tended as input to the monitor. Other prompts, for use internally by the monitor, ap
pear after the period, the colon (when altering memory with M), the semicolon
(when altering registers with R), the comma (when disassembling), and the single
quote (when used with the interpret command). Generally, these are handled
automatically.

VICMON commands usually consist of a single letter (A, B, C, 0, E, F, G, H, I,
L, M, N, Q, R, 5, T, W, or X) followed by some byte pattern relevant to the com
mand. The routine which searches for one of these letters is in ROM; there's no easy
way to add extra commands, as you can see by disassembling. Two commands-RB
and J-are patched into other routines and are exceptional.

As an example, .T 1800 1850 033C copies the contents of $1800 through $1850
into the area starting at $033C, therefore filling $033C through $038C. The pattern
of addresses must be entered correctly. There is no error indication if a mistake is
made, but nothing happens. Some mistakes, however, do indicate that there has
been an error; one of them is Y, a nonexistent command.

The parameters to be input are accepted by absolute position. Punctuation is
irrelevant. Thus, .T 1800,1850,033C produces exactly the same results as the earlier
form, but commas aren't compulsory.

Most command inputs are accepted up to, but not beyond, a colon. For example,
.A 033C CLC: GARBAGE is treated as .A 033C CLC and assembled correctly. This is
often a timesaver.

Screen handling. Two things are noteworthy here. First, VICMON uses what
ever line lengths already exist; therefore, spacing is liable to be erratic until a
screenful of data has been processed. Second, many commands scroll back, if cursor
up is held. The screen is assumed to be at $lEOO. With memory expansion in place,
this feature won't work. Scrolling up also affects BASIC.

Exit from ML programs. BRK as the last instruction returns to VICMON;
VICMON's X command returns to BASIC. Any BASIC in memory is prone to pointer
alteration by VICMON. Type POKE 43,1 to correct this. You may need to POKE
44,16 and, usually, POKE 16*256,0 too if you've used trace commands. Alternatively,
tuck away BASIC's zero page with .E 1DOO (for the unexpanded VIC when you
aren't using that area); X restores BASIC, and the cursor position, to its entry

251

6502 Machine Language

position. It's also true that RTS returns to BASIC, but in an irregular way. Reserve
RTS for subroutines to be tested from BASIC.

Running ML programs .. G 033C runs the ML program starting at $033C from
within VICMON. This is usually satisfactory, but there may be zero page clashes be
tween your routines and VICMON. For instance, JSR $DDCD (a ROM routine which
outputs a number) won't give the correct result within VICMON, but when called by
SYS from BASIC it runs fine.

Programs can be run from VICMON under trace control, so, in principle, each
instruction can be carried out singly and the results checked.

What to do if ML crashes. If your ML program goes into some apparently end
less loop, from which it looks like there is no escape short of turning off the com
puter, there are two things that you can try. STOP-RESTORE will often work. If it
doesn't, the only recovery procedure is an external reset (see Chapter 5). Provided
the ML is in RAM above $0400, it will be completely unaltered by this process.

To help avoid this, fill RAM with zero bytes (using the F command) to increase
the chance that a wrong instruction will end on BRK. In addition, check that all
branch instruction destinations are valid.

Using VICMON's Walk and Quick Trace. The W command lets you "walk"
(single step) through ML. It works reliably. However, it lists each line of ML
onscreen, so graphics programs usually can't be walked.

To get around this problem, Quick Trace was introduced. But it is not reliable; if
you have no reset switch, you should probably avoid Q altogether. Otherwise, you
may lose your program. The reasons include zero page clashes, if your program uses
locations $FD and $FE, for example.

Walk's J command (to skip subroutines, avoiding long detours) also has bugs. C,
Q, and W share most of their ML; a flag ($00, $40, or $80) in location $12
distinguishes them.

Notes on using VICMON. When using VICMON, it's best to stick to tried and
tested commands. Assemble and Disassemble (along with Load and Save) are prob
ably the most useful.

Using VICMON with BASIC, although tricky, is perfectly feasible. A reset switch
is useful; if you have one, put your ML above $0400 (not in $033C and following,
which reset erases). You should also avoid working with BASIC in RAM, because
you'll have to lower its memory top to preserve your ML. Note that SYS 64802 will
clean everything up, provided the ML is located above $0400, so if things are going
wrong, exit to BASIC and use the SYS statement.

If you're a beginner, use VICMON to assemble the programs at the start of this
chapter. Run them with C, and disassemble again with D; you'll soon get the feel
of it.

VICMON Commands

A (Assemble)
Assemble is a miniassembler, which converts instructions into the correct form
(inferring addressing mode from format) and stores bytes into memory. There's a
read-back check in case RAM isn't there. Labels and other features of true assem-

252

6502 Machine Language

biers aren't accepted. Press RETURN to leave A mode. Note that errors also exit
from A. The entry??? is accepted and treated as byte #$02, so be careful when dis
assembling not to press RETURN over ??? or data may be corrupted.

Examples of the use of this command include .A 033C LDA #$00 and .A 033E
STA #lEOO.

B (Breakpoint)
Breakpoint allows ML to be stopped at a predetermined point, without running its
full extent. This is a valuable feature when used with G (and Q). VICMON runs the
ML and checks for equality with the breakpoint, which is stored in locations $10 and
$11; a breakpoint therefore slows program running.

For example, B 0343 OOOA puts a breakpoint at 0343, ready for G 033C or Q
033C. The second parameter stores the number of times (10) which the breakpoint
will be ignored; this is useful for testing loops. The default B 0343 breaks the first
time round. The maximum number of waits is $FFFF, enough for most purposes.

A breakpoint must be set to coincide with an opcode, not with data or tables, or
it will be missed. Note that only one breakpoint can be set at anyone time.

RB (remove breakpoints) is not reliable. Use B 8000 instead, which relocates the
breakpoint into ROM, where it will never apply.

C (Compare Memory)
This command reports any differences between two areas of memory. Syntax is
identical to T. For example, C 1000 10FF 033C checks whether the contents of loca
tions $1000-$10FF match the contents of $033C-$043B and prints the address of
any discrepancies.

D (Disassemble)
Disassemble is a standard 6502 disassembler, including $ and # symbols, and
compatible with the assembler. D 033C then RETURN starts disassembly; cursor
down or up continues. D 033C 0344 disassembles a range. Bytes which cannot be
interpreted as opcodes disassemble as ???; their actual contents can be read with the
M command.

When scrolling back, disassembly gives priority to longer opcodes, so it can give
results different from normal disassembly. However, this is impossible to avoid.

E (Enable Virtual Zero Page)
This command saves a copy of the current zero page. With BASIC, use of this just
after entering VICMON allows X to operate correctly most of the time. The most
common location for the virtual page on the unexpanded VIC is just below screen
memory, so you would use E 1DOO.

It's not necessary to use this command; with Walk or Quick Trace, this stored
page is swapped back and forth provided your program doesn't use locations $FE
and $FF. Thus, if your ML uses other zero page locations and you wish to try W or
Q, use E 1DOO. E 0000 has the effect of turning this command off.

253

6502 Machine Language

F (Fill Memory)
As you might expect, this command fills a region of RAM with identical bytes. For
example, F 033C 03FF 00 fills the tape buffer with zero bytes. This has no syntax or
read-back checking, so if you enter it incorrectly nothing will happen. The byte $EA,
equivalent to a NOP instruction, is another useful filler.

G (Go Run)
Go Run executes ML from VICMON. G DDF9, for example, goes to a BRK instruction
in ROM and immediately stops. G alone goes to the address currently in the pro
gram counter (which you can change with the R command), but there's no advan
tage in using it.

Once started with G, execution continues until interrupted by BRK (which re
turns to VICMON) or RTS (a bad exit to BASIC), unless B has set a breakpoint, in
which case it terminates there. The combination of G and B is a very useful one for
program debugging.

H (Hunt Memory)
This command reports all instances of a byte combination or string of characters be
tween two addresses. For example, H COOO FFFF 00 90 prints all occasions in ROM
where address $9000 is referenced. Another example, H CODa FFFF 'BASIC, prints
all appearances in ROM of the word BASIC.

Be careful when interpreting the results of H. For instance, the pattern 20 E4 FF
is almost certainly JSR $FFE4, but a hunt for OF 90 to find a reference to address
$900F may yield nothing since 9000,X may be used to address that location. Ad
dresses of branches cannot be picked up, and so on.

I (Interpret Memory)
The I command prints the contents of a range of memory locations, displaying the
bytes as ASCII characters. The output lines are formatted as an address followed by
12 characters. For instance, I C09E ClOO prints some BASIC keywords from ROM.
To take another example, I C09E prints a single line; cursor down (or up) for more.

J
See W.

L (Load ML)
L has syntax L "NAME",OI from tape or L "NAME",08 from disk. Abbreviations are
accepted. For example, L "",01 loads the next tape program; L "N*",08 loads the
first disk program beginning with N. In either case, the program or data is loaded as
an image. After loading it's not altered in any way.

M (Memory Display)
This command displays the contents of a range of memory locations, formatted as an
address followed by five hex bytes. M 033C 0350 displays bytes from the tape
buffer, while M 033C displays a single line of five bytes. Again, use cursor down or
up for more.

254

6502 Machine Language

N (Number Adjuster)
N is used after transferring ML with T. It's an intelligent routine which relocates
numbers, adjusting subroutine calls and absolute addresses within the original ML so
they also apply to the shifted ML. This command is not particularly user-friendly.

Chapter 9 shows how to use it to relocate VICMON itself. To move the contents
of $6000-$6FFF to $2000-$2FFF, you could use T 6000 6FFF 2000, which transfers
the bytes unchanged, provided there's RAM at $2000-$2FFF.

N 2000 2FFF CODa 6000 6FFF searches $2000-$2FFF for all references to ad
dresses between $6000 and $6FFF, which the original ML would have used. It alters
them by adding $COOO. This is because $6000+$COOO=$2000 (overflow is ignored).
You have to calculate the offset yourself. The first instruction in VICMON is 6000
JMP $600C. After Transfer, you have 2000 JMP $600C. Then N converts it to 2000
JMP $200C.

N 2E7F 2EB5 CODa 6000 6FFF W is an alternative option. This searches for word
tables, which have nothing to do with words but are simply tables of addresses (like
VICMON's at $6E7F) which store the addresses of each VICMON command. These
tables are updated just as the instructions' addresses were.

N works best with straightforward ML, starting at the beginning, with tables of
addresses collected at the end. Embedded ASCII and other data, which won't dis
assemble meaningfully, should be avoided.

P (Printer)
VICMON has no special printer commands. Use OPEN 4,4: CMD 4: SYS 6*4096 and
type commands blind.

Q (Quick Trace)
Despite its name, Q is a relatively slow way to run ML; apart from this it's nearly
identical to G. Both use breakpoints. Q, however, can be stopped (by hitting STOP
and X) during its run. In addition, Q enters Walk mode, rather than displaying reg
isters with R, when it finishes.

Always use E before Q. STOP-X will not work with an X2 crash; only RESET
can help.

Suppose you have some ML starting at $033C, and ending at $036B with BRK,
which prints text to the screen. If G displays it too fast, and W spoils the layout, try
E IDOO (to set up the virtual zero page), B 036B (to set a breakpoint at the end), and
Q 033C (to quick trace).

The program runs more slowly than usual, ending with BRK as Walk mode is
entered. STOP now exits; cursor down would continue walking through ML.

R (Registers)
R displays the contents of the program counter, status register, A, X, Y, and stack
pointer as they were on entry to the monitor. Only PC can be altered; if it is, G on
its own has the same effect as G followed by Pc. R is mainly used to check that the
registers hold correct values; G 033C with 033C LDX #99/ BRK should show that
the X register contains 99.

255

6502 Machine Language

RB (Remove Breakpoints)
See B.

S (Save ML)
S has syntax SAVE "ML",01,6000,7000 (for tape) and SAVE "ML",08,6000,7000 (for
disk). It is essential to specify the range of addresses to be saved; these examples
save from $6000 through $6FFF, without saving the byte at $7000. Note there's no
error warning when saving to disk if the drive is off, so check to be certain that your
drive is turned on.

T (Transfer Memory)
T copies a block of memory; the syntax is identical to C. For example, T lEOO 2000
lEal moves a screenful of bytes by one position. The endpoint of the new block is
implicit in the three parameters. The original block is not altered unless the transfer
overlays part of the original. See also N for relocation of programs.

V (Verify)
VICMON has no built-in VERIFY, but BASIC's VERIFY can be used as follows: S
"TEST",08,AOOO,COOO, then X to BASIC, then VERIFY "TEST",8,1.

W (Walk)
W single-steps through ML, listing each ML instruction onscreen. It does this by set
ting a timer to interrupt just as the next instruction starts; the interrupt routine dis
assembles a single instruction from the program counter's address so ML cannot run
more than one instruction.

For example, W 033C single-steps from 033C. RETURN and several other keys
single step; the space bar and other keys repeat. STOP exits to normal VICMON
mode.

When a subroutine (for example, JSR $FFE4) is encountered, pressing the J key
is intended to execute it without the tedious detour of listing it line by line. How
ever, this feature isn't entirely reliable.

X (Exit to BASIC)
Used without parameters, X recovers a virtual zero page and returns to BASIC. See
the earlier notes.

Other Monitors Written in ML
"Tinymon" fits any VIC; it is modified from CBM monitors and has R, M, G, X, L,
and S commands, without A or D.

"Super VIC Mon" is CBM's "Supermon" modified for VIC. It fits any VIC and
has most of VICMON's commands, excluding W, Q, and N.

"VIC Micromon" requires memory expansion. It offers more commands than
VICMON, including number conversion. However, its mnemonics are much like
those of VICMON, so it's similar to VICMON in use.

256

6502 Machine Language

Monitors in BASIC
BASIC monitors, although slow, have some advantages. They are easier for begin
ners to use, since they have familiar INPUT commands, and they can be loaded, run,
and listed without difficulty. They are also much easier to modify than ML monitors;
if you want printer disassembly, the necessary programming is relatively easy to put
in. And they make the processes of disassembly and assembly easier to understand;
studying the BASIC program is far easier than deciphering ML.

Program 7-1 is a BASIC monitor. The complete program will not fit an un
expanded VIC. However, either the assembly or the disassembly part will fit, so it's
possible to run either part alone. The program runs on the 64 too. To use just the
assembly feature, type only lines I, 100, 300, 800-950, and 4000-8000; also, add a
new line: 5 GOTO 4000. For disassembly only, use lines 6-680, 2000-3090, and
5000-8000.

Disassembly requires that an opcode be PEEKed and printed out, followed per
haps by an address, before disassembling the next instruction. For example, a deci
mal value of 32 is the JSR instruction, so it's followed by the next two bytes in
reverse order. A loop in BASIC finds the opcode (or prints ??? if the number found
doesn't match any valid opcode) and its addressing mode and outputs the result.

Assembly is trickier. This version infers the addressing mode from the format
for example, treating LDA 1234,X as absolute indexed while rejecting PQR or LDA
#1234. Some programs use nonstandard opcodes like LDAIM to help ease this
problem.

Disassembly to a printer is more complete than disassembly to the screen, be
cause there's no limit of 22 characters when using a printer. Figure 7-1 shows a typi
cal printer output.

Program 7-1. A BASIC Monitor
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o REM *** VIC-20/C64 TINY ASSEMBLER/ DISASSEMBLER
{SPACE}*** :rem 236

1 GOSUB 5500 : REM READ OPCODE DATA :rem 137
2 PRINT" {CLR}": PRINT" {3 DOWN} {2 RIGHT} {RVS }A{ OFF} S

SEMBLE" :PRINT" {3 DOWN} {2 RIGHT} {RVS}D{OFF}ISASSE
MBLE":PRINT"{3 DOWN}" :rem 132

3 INPUTA$: PRINT" {CLR}" : rem 198
4 IF A$="A" GOTO 4000 :rem 231
6 GOTO 2000: REM DISASSEMBLE IS DEFAULT :rem 28
100 L=L/2t(4*N-4):FORJ=lTON:L%=L:PRINTCHR$(48+L%-(

L%>9)*7); :L=16*(L-L%):NEXT:RETURN :rem 198
300 L=0:FORJ=lTOLEN(L$):L%=ASC(MID$(L$,J»:L=16*L+

L%-48+(L%>64)*7:NEXT:RETURN :rem 11
400 FORK=2T01STEP-1:L=PEEK(CA+K):N=2:GOSUB100:NEXT

: RETURN :rem 171
500 L=PEEK(CA+1):N=2:GOT0100 :rem 111
600 PRINT"(";:GOSUB400:PRINT")"; : RETURN :rem 161
610 GOSUB500:PRINT",Y";:RETURN :rem 145
620 PRINT" ("; : GOSUB500: PRINT" , X) II ; : RETURN : rem 40

257

6502 Machine Language

630 PRINT" (" i :GOSUB500: PRINT"), Y" i : RETURN : rem 42
640 L=PEEK(CA+l):IFL>127THENL=L-256 :rem 52
642 L=CA+2+L:N=4:GOT0100 :rem 122
650 GOSUB400:PRINT",Y"i:RETURN :rem 148
660 PRINT"#"i :GOT0500 :rem 211
670 GOSUB400:PRINT",X"i : RETURN :rem 149
680 GOSUB500:PRINT",X"i:RETURN :rem 151
800 ONLEN(AS$)-2GOT0810,4015,4015,820,830,840,4015

,850 :rem 78
810 L$="L":RETURN :rem 240
820 L$="J":RETURN :rem 239
830 L$="G":RETURN :rem 237
840 IFRIGHT$(AS$,l)="X"THENL$="I":RETURN :rem 143
842 IFRIGHT$(AS$,l)="Y"THENL$="B":RETURN :rem 139
844 IFLEFT$(AS$,l)="B"ANDMID$(AS$,2,l)<>"I"THENL$=

"E" : RETURN :rem 194
846 L$="K" : RETURN : rem 248
850 IFRIGHT$(AS$,l)="X"THENL$="H":RETURN :rem 143
852 IFRIGHT$(AS$,l)=")"GOT0860 :rem 183
854 IFMID$(AS$,8,l)=")"THENL$="D":RETURN :rem 32
856 L$="F":RETURN :rem 244
860 IF MID$(AS$,9,l)="X"THENL$="C":RETURN :rem 76
862 L$="A":RETURN :rem 236
900 P=6:L=4:GOT0950 :rem 100
905 P=5:L=2:GOT0950 :rem 102
910 P=6:L=2:GOT0950 :rem 99
920 P=5:L=4:GOSUB950:N=4:GOSUB300 :rem 242
921 L=L-CA-2:IFL>1270RL<-128GOT04015 :rem 98
922 IFL<0THENL=L+256 :rem 176
923 RETURN :rem 126
925 P=5:L=4:GOT0950 :rem 106
950 L$=MID$(AS$,P,L):RETURN :rem 96
2000 GOSUB5500 : rem 12
2010 INPUT"DISASSEMBLE AT"iL$:rem 3
2020 INPUT"DEVICE#"iD:IFD<>3THENOPEND,D:CMDD

:rem 11
2030 GOSUB300:CA=L :rem 31
3000 L=CA:N=4:IFD=4THENPRINT"{9 SPACES}"i :rem 130
3005 GOSUB100:PRINT" "i:P=PEEK(CA):RESTORE

{5 SPACES} :rem 62
3015 FORJ=0T0150:READOP:IFOP<PTHENNEXT :rem 247
3020 IFOP=PGOT03030 :rem 127
3025 NB=1:0$="???":M=0:GOT03053 :rem 229
3030 IFOP<100THENM=ASC(MID$(OP$,4*J+4,l))-64:0$=MI

D$(OP$,4*J+l,3):GOT03045 :rem 165
3035 IFOP<200THENM=ASC(MID$(OQ$,4*J-220,1))-64:0$=

MID$(OQ$,4*J-223,3):GOT03045 :rem 119
3040 M=ASC(MID$(OS$,4*J-468,l))-64:0$=MID$(OS$,4*J

-471,3) :rem 32
3045 NB=2:IFM=10RM=60RM=80RM=11THENNB=3 :rem 207
3050 IFM=12THENNB=1 :rem 113

258

6502 Machine Language

3053 IFD=3GOT03080 :rem 18
3055 FORK=0TONB-1:PRINT" "::L=PEEK(CA+K):N=2:GOSUB

100:NEXT :rem 49
3060 PRINTLEFT$("{8 SPACES}",10-3*NB): :rem 28
3065 FORK=0TONB-1:L=PEEK(CA+K):IFL<320R(L>127ANDL<

160)THENL=32 :rem 12
3070 PRINTCHR$(L)::NEXT :rem 169
3075 FORJ=NBT03:PRINT" ": :NEXT :rem 98
3080 PRINTO$" ": :rem 74
3085 ONMGOSUB600,610,620,630,640,650,660,670,680,5

00,400 :rem 133
3090 PRINT:CA=CA+NB:GOT03000 :rem 201
4000 INPUT"ASSEMBLE FROM" :L$: rem 195
4005 N=LEN(L$):GOSUB300:CA=L :rem 136
4010 L=CA:N=4:GOSUB100 :rem 22
4015 POKE631,34:POKE198,1:INPUTAS$:rem 16
4020 CO$=LEFT$(AS$,3) :rem 112
4030 GOSUB800:CO$=CO$+L$:RESTORE :rem 187
4040 FORJ=0T055:IFMID$(OP$,4*J+1,4)<>CO$THEN NEXT:

GOT04050 :rem 184
4045 FORK=0TOJ:READOP:NEXT:GOT04500 :rem 3
4050 FORJ=0T061:IFMID$(OQ$,4*J+1,4)<>CO$THEN NEXT:

GOT04060 :rem 184
4055 FORK=0T056+J:READOP:NEXT:GOT04500 :rem 154
4060 FORJ=0T061:IFMID$(OS$,4*J+1,4)<>CO$THEN NEXT:

GOT04015 :rem 187
4065 FORK=0TOl18+J:READOP:NEXT :rem 142
4499 REM *** OP IS OPCODE VALUE: ADDRESSING MODE I

S HELD IN RIGHT OF CO$:rem 11
4500 NB=2:L$=RIGHT$(CO$,1) :rem 181
4510 IFL$="A"ORL$="F"ORL$="H"ORL$="K"THEN NB=3

4520 IFL$="L"THEN NB=l
4530 POKECA,OP:IF NB=l GOTO 4900
4540 IFL$="E"THENGOSUB920:POKECA+1,L:GOTO

:rem 73
:rem 196
:rem 23

4900
:rem 221

4550 ONASC(L$)-64GOSUB900,905,910,910,920,925,910,
925,905,905,925 :rem 142

4560 IF NB=2 THEN N=2:GOSUB300:POKECA+1,L :rem 87
4570 IF NB=3 THEN N=4:GOSUB300:POKECA+1,L-INT(L/25

6)*256:POKECA+2,L/256 :rem 49
4900 CA=CA+NB: GOTO 4010 :rem 5
4999 REM *** DATA HOLDS DECIMAL VALUES OF LEGAL OP

CODES :rem 155
5000 DATA0,1,5,6,8,9,10,13,14,16,17,21,22,24

:rem 126
5010 DATA25,29,30,32,33,36,37,38,40,41,42,44,45

:rem 46
5020 DATA46,48,49,53,54,56,57,61,62,64,65,69,70,72

: rem 235

259

6502 Machine Language

5030 DATA73,74,76,77,78,80,81,85,86,88,89,93
:rem 222

5040 DATA94,96,97,101,102,104,105,106,108,109,110
:rem 147

5050 DATA112,113,117,118,120,121,125,126,129,132,1
33,134 :rem 221

5060 DATA136,138,140,141,142,144,145,148,149,150,1
52,153 :rem 246

5070 DATA154,157,160,161,162,164,165,166,168,169,1
70,172,173,174 :rem 157

5080 DATA176,177,180,181,182,184,185,186,188,189,1
90,192 :rem 41

5090 DATA193,196,197,198,200,201,202,204,205,206,2
08,209 :rem 255

5100 DATA213,214,216,217,221,222,224,225,228,229,2
30,232 :rem 229

5110 DATA233,234,236,237,238,240,241,245,246,248,2
49,253,254 :rem 204

5499 REM *** STRINGS FOLLOWING ARE SET UP AT START
OF PROGRAM :rem 81

5500 OP$="BRKLORACORAJASLJPHPLORAGASLLORAKASLKBPLE
ORADORAIASLICLCL :rem 46

5510 OP$=OP$+"ORAFORAHASLHJSRKANDCBITJANDJROLJPLPL
ANDGROLLBITKANDK :rem 245

5520 OP$=OP$+"ROLKBMIEANDDANDIROLISECLANDFANDHROLH
RTILEORCEORJLSRJPHAL :rem 30

5530 OP$=OP$+"EORGLSRLJMPKEORKLSRKBVCEEORDEORILSRI
CLILEORFEORH : rem 23

5540 OP$=OP$+"LSRHRTSLADCC :rem 103
6000 OQ$="ADCJRORJPLALADCGRORLJMPAADCKRORKBVSEADCD

ADCIRORISEILADCF :rem 236
6010 OQ$=OQ$+"ADCHRORHSTACSTYJSTAJSTXJDEYLTXALSTYK

STAKSTXKBCCE :rem 80
6020 OQ$=OQ$+"STADSTYISTAISTXBTYALSTAFTXSLSTAHLDYG

LDAC :rem 232
6030 OQ$=OQ$+"LDXGLDYJLDAJLDXJTAYLLDAGTAXLLDYKLDAK

LDXK :rem 152
6040 OQ$=OQ$+"BCSELDADLDYILDAILDXBCLVLLDAFTSXLLDYH

LDAHLDXFCPYG :rem 194
6050 OQ$=OQ$+"CMPCCPYJCMPJDECJ : rem 118
7000 OS$="INYLCMPGDEXLCPYKCMPKDECKBNEECMPDCMPIDECI

CLDLCMPFCMPHDECH :rem 242
7010 OS$=OS$+"CPXGSBCCCPXJSBCJINCJINXLSBCGNOPLCPXK

SBCKINCKBEQE :rem 212
7020 OS$=OS$+"SBCDSBCIINCISEDLSBCFSBCHINCH:rem 199
8000 RETURN :rem 168

260

6502 Machine Language

Figure 7-l. Disassembly to a Printer

D367 (116 71 • ASL 71
D369 26 72 3~_ ROL 72
D:36B 9121 lilB BCC D378
D36D 18 CLC
D36E 8A TXA
D36F 65 28 ADC 28
D371 AA TAX
D372 98 TYA
0373 65 29 ADC 29
D375 A8 TAY
D376 8(21 93 r BCS D31218
0378 C6 50] DEC 50
037A Dl11 E3 " BNE 035F
037C 6(11 RTS
D370 A5 (110 LOA 1210
037F Flil 1113 r BEQ 0384

Symbolic Assemblers
You have seen how much easier it is to use mnemonics than the fundamental eight
bit system of the 6502. A full assembler carries this process further, allowing ML to
be represented in a completely symbolic, algebraic way. In fact, you have seen sym
bolic notation in some of the examples; LOOP STA SCREEN,X/INX/BNE LOOP
illustrates this, where LOOP is a label and SCREEN is an address or word.

ML in this form is called source code. A program called the assembler converts
source code into object code, which is identical to ML generated without an
assembler.

Source code must include equates commands, like SCREEN=$lEOO, in the pro
gram, and typically also has a comment after each instruction, to document the pro
gram. Therefore, source code is usually much longer than object code, at least 20
times as long.

But the great advantage of source code is the fact that it can be edited. There's
no problem inserting extra instructions in the middle of a program, because assembly
simply recalculates all the addresses and branches. In contrast, VICMON users have
to shift parts of the program, alter addresses, and generally rewrite and recheck.

VIC's small memory makes it an unlikely machine for assemblers. The closest
available programs are on ROMs and use BASIC's editing facilities, so a line of
source code might be 100 LOOP JSR GETCHR; GET FROM KEYBOARD. Most such
assemblers assume ML will be put into the tape buffer and start assembling at $033C
unless specifically told otherwise.

There is no standard assembler for VIC, but the interested user should try his or
her hand with an assembler using BASIC line-editing. You will probably find that
the information supplied with these systems is not very complete; you may also
discover that the assemblers themselves may have quirks. Finally, note that it is
possible to assemble for VIC on the 64, though you can only test the object code on
VIC.

Chapter 8

ML Methods Specific to the
VIC-20

This chapter shows how to program using the built-in features of VIC BASIC. It
covers five areas of application for ML to the VIC.

Kernal routines. These are versatile and useful ML routines for input and out
put handling.

BASIC ROM routines. Less well-known than Kernal routines, these allow
powerful results to be achieved with minimum effort. The section should be read in
conjunction with Chapter 11's comprehensive breakdown of ROM and will let you
construct your own programs from ROM subroutines.

Modifying BASIC. Wedges allow BASIC to perform entirely new commands;
the technique for altering RAM is explained fully.

Vectors. Some BASIC commands are vectored through RAM; these too can be
changed to add features to BASIC.

Interrupts. Both NMI and IRQ interrupts are possible with the VIC. This section
gives examples of each, allowing (for example) music to be played while BASIC
runs.

Other chapters discussing ML are Chapter 6 (keyboard, screen, etc.), Chapter 12
(graphics), and Chapters 13 through 17 (sound, tape, disks, peripherals).

Kernal Routines
The Kernal is a jump table giving access to routines which are supposed to be fairly
constant between Commodore machines. In practice, this consistency can be realized
only slightly, because so many hardware and software differences exist between
machines.

Even so, the Kernal does serve a useful purpose. Its routines are arranged in
ROM order in the following list. The Kernal appears less formidable if you note that
more than half is concerned with opening and closing of files and input/output of
characters. Table 8-1 lists input; output errors that may be returned by Kernal
routines.

265

ML Methods Specific to the VIC-20

Table 8- 1. Kemal Routine I/O Errors

JMP to ERROR# Description Example

F77E 1 TOO MANY FILES OPEN when ten files open already
F780 2 FILE OPEN OPEN 1,3: OPEN 1,4
F783 3 FILE NOT OPEN PRINT#5 without OPEN 5
F786 4 FILE NOT FOUND LOAD "NONEXISTENT",8
F789 5 DEVICE NOT PRESENT OPEN 11,11: PRINT # 11
F78C 6 NOT INPUT FILE OPEN 8,8,8,"SEQ,S,W": GET#8,X$
F78F 7 NOT OUTPUT FILE OPEN 1,0: PRINT#l
F792 8 MISSING FILENAME LOAD "",8
F795 9 ILLEGAL DEVICE NO. LOAD "PROGRAM",3

Kernal routines with error-trapping return 0-9 in the accumulator.
Note: POKE 157,64 makes these I/O messages visible; try POKE 157,64: PRINT#55,X$ which prints I/O
ERROR #3

Kernal Routine
Address Location Name Description

FF8A FD52 RESTOR Set Default Vectors
Sets 16 vectors ($0314 to $0333) from a ROM table; used
on power-up and RUN/STOP-RESTORE. Alters A, X, Y,
and SR. No error returns.

FF8D FD57 VECTOR Save/Set User Vectors
C flag set: Moves table from $0314-$0334 to X low, Y high
address, saving current vectors. C clear: Moves table from X
low, Y high back to $0314-$0334. Alters A, Y, and SR. No
error returns.

FF90 FE66 SETMSG Control Screen Messages
Puts A into $9D to control messages. A has bit 7 on for di-
rect mode, off for program mode. Bit 6 (not used by VIC)
causes I/O errors to appear, as Table 8-1 shows. Alters A
and SP. No error returns.

FF93 EECO SECOND Send Secondary Address After LISTEN
Can be used to send a secondary address to the serial bus
after LISTEN. A holds the address, which is used un-
changed, and therefore needs to be ORAd with #$60. After
this subroutine, ATN is brought low so data output from
the VIC-20 can begin (see Chapter 17). Alters A and SR,
and probably X and Y. Errors returned in ST byte at $90.

FF96 EECE TKSA Send Secondary Address After TALK
Can be used to send a secondary address after TALK on the
serial bus; A needs to be ORAd with #$60. The routine
checks for a return clock pulse. Alters A, and probably X
and Y, and sets C flag. Errors returned in ST byte at $90.

266

ML Methods Specific to the VIC-20

FF99 FE73 MEMTOP BASIC RAM Top
C flag set: Loads X low, Y high from ($0283). C clear:
Stores X low, Y high into ($0283). Note that ($0283) is not
the normal top of memory, which is ($37), but that it holds
the top of memory as detected by the VIC when power is
applied. Alters X, Y, and SR. No error returns.

FF9C FE82 MEMBOT BASIC RAM Bottom
Identical to MEMTOP, except that ($0281) is the relevant
address.

FF9F EBIE SCNKEY Read Keyboard
Reads the keyboard and puts key, if any, into the keyboard
buffer, where GETIN can recover it. The normal keyboard
locations are used too, so $028D holds the SHIFT key in-
dicator (see Chapter 6). Normally executed at each inter-
rupt, this subroutine is useful for interrupt-driven routines
where IRQ is moved or when the interrupt is disabled. Al-
ters A, X, Y, and SR. C set on return means the buffer was
full and the character wasn't accepted.

FFA2 FE6F SETTMO Set Timeout
Not used by the VlC-20. Stores A into $0285, but that loca-
tion is also never used. Intention is to set a timeout value,
after which a serial device is assumed not present.

FFA5 EF19 ACPTR Input a Character from Serial Bus
Gets a byte from device number 4 or higher, typically disk.
A file must be opened or the device made to talk. This rou-
tine is virtually identical to CHRIN (FFE4); the reason it has
a Kernal address at all is because it allows GET from a de-
vice without a file necessarily being open. The character re-
turns in A. Errors are returned in the status byte $90. Alters
A, X, and SR.

FFA8 EEE4 ClOUT Output a Character to Serial Bus
Exactly analogous to ACPTR, this routine transmits the con-
tents of A to device number 4 or higher, provided a file is
open and ready or the device is a listener. CHROUT, FFD2,
calls this routine. Errors return in the status byte $90. Alters
A and SR.

FFAB EEF6 UNTALK Untalk Serial Devices
Untalks devices on the serial bus, sending IEEE standard
UNTALK command. Alters A, X, SR, and probably Y.
Errors return in status byte $90.

FFAE EF04 UNLSN Unlisten Serial Devices
Exactly analogous to UNTALK, this command unlistens de-
vices numbered 4 or higher. Alters A, X, SR, and probably
Y. Errors return in status byte $90.

FFBI EE17 LISTEN Make Device a Listener
Converts a device on the serial bus to a listener. A holds
the device number (4-30). ATN is held low to send the
command byte, which is the device number ORAd with
#$20. Alters A, X, SR, and probably Y. Errors return in
status byte $90.

267

ML Methods Specific to the VIC-20

FFB4 EE14 TALK Make Device a Talker
Exactly analogous to LISTEN, this converts a device into a
talker. The device number in A is ORAd with #$40. Alters
A, X, R, and probably Y. Errors return in status byte $90.

FFB7 FE 57 READST Read a Status Byte
Reads the status byte into A. Serial bus devices have $90
and RS-232 devices have $0297 for their respective status
bytes.

Note that the VIC has a bug. $0297 is converted to
zero, and so is A. It's therefore necessary to use LDA $0297
with RS-232 devices to check ST. LDA $90 applies equally
with serial bus devices but may not transfer between Com-
modore machines.

FFBA FE 50 SETLFS Set File Number Device, Secondary Address
This and the following routine are preliminaries to opening
a file. They are, in effect, used by OPEN 4,4 and all other
OPEN statements. There are three routines because the
6502 has only A, X, and Y registers.

SETLFS puts the contents of A into file number stOT-
age in RAM, X into device number, and Y into secondary
address. To mimic OPEN 1,4 in ML, load A, X, and Y with
1, 4, and 0 respectively, then JSR $FFBA. No error returns.

FFBD FE49 SETNAM Set Filename
A is the length of the filename; X low, Y high points to the
start of the name. If A is zero (not acceptable for disks, but
OK for tape), X and Y become irrelevant. No error returns.

FFCO (031A) OPEN Open One File
Usually Opens a file, assuming that the filename and other param-
F40A eters have been set. Entry values of A, X, and Yare thus

irrelevant. On exit, carry set indicates an error; the error
number 1, 2, 4, 5, or 8 (see Table 8-1) returns in A. Alters
A, X, Y, and SR.

FFC3 (031C) CLOSE Close One File
Usually A holds the file number on entry to this routine, which
F34A closes that file only, deleting its parameters from the file

tables and decrementing the number-of-files-open location.
On exit, C is clear. No errors are reported. Alters A, X, Y,
and SR.

FFC6 (031E) CHKIN Prepare Open File for Input
Usually Opens an input channel in preparation to read characters.
F2C7 This is analogous, with (for example) GET#4,X$, to

converting GET to file 4 in place of the usual keyboard. The
method here is to load X with the file number, call CHKIN
with jSR FFC6, then typically use JSR FFE4 to get charac-
ters. After the characters are read, CLRCHN returns files
and devices to normal, un talking them. On return from
CHKTN, C set indicates an error; A holds the error number
(3, 5, or 6). Alters A, X, Y and SR.

FFC9 (0320) CHKOUT Prepare Open File for Output
Usually Exactly analogous to CHKIN, this prepares output to be
F309 directed to a file specified by CHKOUT, in the same way

268

FFCC

FFCF

FFD2

FFD5

(0322)
Usually
F3F3

(0324)
Usually
F20E

(0326)
Usually
F27A

F542

ML Methods Specific to the VIC-20

PRINT# commands operate. Load X with the file number,
call CHKOUT with]SR FFC9, output characters with
CHROUT, and close files with]SR CLALL, is a typical se
quence. C set on return from CHKOUT indicates an error;
A holds the error number (3, 5, or 7). Alters A, X, Y, and SR.

CLRCHN Set I/O Devices to Normal
Sets output device to screen and input device to keyboard,
and unlistens or untalks active devices. Leaves open files
open, so CHKIN and CHKOUT still operate when wanted
without further OPENs being needed. Compare CLALL,
which is virtually identical but also closes all files.]SR
FFCC is all that's needed. Alters A, X, and SR. No error re
turns. Note that $9A holds current output device number;
$99 holds input device number.

CHRIN Input a Character
Gets a single byte from the current input device (stored in
$99). This routine is identical to GETIN, FFE4, except for
two factors. For keyboard characters, CHRIN is designed for
use with INPUT statements and gets characters from the
screen even when the keyboard is the nominal input de
vice. Second, CHRIN with RS-232 loops until a non-null
character is found. In all other cases (tape, disk), CHRIN
and GETIN are identical. See the examples for use of
CHRIN.]SR CHRIN returns the byte in A. Alters A, X, Y,
and SR. Errors returned in ST byte $90.

CHROUT Output a Character
Outputs a single character to the current output device(s). A
character may be sent to tape, RS-232, screen, or the serial
bus, where any listener will receive the character. Generally
there is only one listener. To use CHROUT, load A with
the character, then]SR FFD2 to output it. A retains its
value on entry; X and Yare unaltered. Errors return in
status byte $90.

LOAD Load to RAM
Kernal LOAD is used by BASIC LOAD to load from tape or
disk into RAM. The result is not rechained; this is a feature
of BASIC LOAD. Kernal LOAD loads RAM from the device
without any changes. Keyboard, RS-232, and screen return
ILLEGAL DEVICE.

Since commands like LOAD "filename",},} use a de
vice number and name, SETLFS and SETNAM or the
equivalent POKEs have to be called before LOAD.

Before entering LOAD, A holds 0 for LOAD, } (or
some nonzero value) for VERIFY. LOAD and BASIC's VER
IFY use almost identical routines, except that VERIFY com
pares bytes rather than storing them in memory. X low, Y
high points to the address ($C3) into which LOAD will
start, provided that the secondary address is O. If it isn't,
($C3) will be overwritten by the start address stored with
the file to be loaded.

269

ML Methods Specific to the VIC-20

FFD8

FFDB

FFDE

FFEl

270

(0330)
Usually
F549

F675

(0332)
Usually
F685

F767

F760

(0328)
Usually
F770

LOAD has a vector after X and Yare stored. The rou
tine branches to F563 (disk LOAD), and F5Dl (tape LOAD).

On exit, C set denotes an error. A holds the error
number (4, 5, 8, or 9). A, X, 4, and SR are all altered by
LOAD. X low, Y high points to the end address, one byte
after the final loaded byte, following LOAD.

SAVE Save to Device
Kernal SAVE is similar to LOAD. It dumps memory un
changed to tape or disk, has the same illegal devices, and
requires SETLFS and SETNAM or their equivalents to be
called first. There is no equivalent to a LOAD/VERIFY flag.
But SAVE has to specify two addresses, the start and end
addresses; it uses A, X, and Y for this. X low, Y high defines
the end address (one byte past the relevant data's end). A is
used rather clumsily as a pointer. If A holds #$2A, for in
stance, the contents of $2A (low) and $2B (high) define the
start address.

SAVE has a vector after the addresses that are stored
in ($Cl) and ($AE). After this the routine branches to F692
(disk) and F6F8 (tape) SAVEs.

On exit, C set denotes an error. In this case A holds 5,
8, or 9. However, with disks there may be a disk error
(FILE EXISTS) which has to be read from disk. Alters A, X,
Y, and SR.

SETTIM Set Jiffy Clock
Stores Y (highest), X (high), A (low) into three RAM loca
tions which store the jiffy clock. If TI$ is greater than
240000, the next interrupt resets to a normal time range.
This is a rather trivial routine. The main problem with the
TI clock is printing it in ML.

RDTIM Read Clock
The converse of the previous routine, RDTIM loads Y
(highest), X (high), and A (low) from the 11 clock's bytes.
Again, the result usually needs some conversion to be
useful.

STOP Test STOP Key
Easy way to check if STOP is pressed, so STOP can be used
to break into ML programs as an exit mechanism. JSR FFEI
then BEQ will branch if the STOP key is pressed. Note that
seven other keys-left SHIFT (not right SHIFT), X, V, N,
the comma, /' and cursor up/down-return unique values
in A. A returns with #$FD if left SHIFT. A returns with
#$FF if none of these keys is pressed.

If STOP is pressed, CLRCHN is called. If you don't
want this, use LDA $91, then CMP #$FE, which gives the
same results as STOP.

Alters A and SR and, if CLRCHN is called, Y. No
errors returned.

ML Methods Specific to the VIC-20

FFE4 (032A) GETIN Get One Character
Usually Almost identical to CHRIN, except that keyboard input is
F20E taken directly from the keyboard buffer, like BASIC GET.

Character is returned in A. Zero byte means no character
found in keyboard; RETURN means no more disk charac-
ters; and space means no more tape characters. The other
alternatives apply only when the input device number in
$99 is changed from O. Alters A, X, Y, and SR. No errors
returned if keyboard GET; otherwise, errors returned in
status byte $90.

FFE7 (032C) CLALL Abort All I/O
Usually Sets number of open files to zero and unlistens and untalks
F3EF all devices. Does not close files. Compare to CLRCHN,

which is almost identical. Alters A, X, and SR. No error
returns. Note: Because files aren't closed, this command
may give problems with write files. It is always best to
close them.

FFEA F734 UDTIM Update Timer, Read STOP Key
Increments TI clock; if the result is 24 hours, returns to
zero. (To keep correct time, increments must be made regu-
larly by interrupt.) Location $91 is updated to hold the
STOP key register, so the Kernal STOP routine can be used
after this. Alters A, X, and SR. No error returns.

FFED E505 SCREEN Return 22 and 23
SCREEN is a rather pointless routine, returning 22 in X and
23 in Y regardless of the true screen dimensions (which VIC
can change). Alters X, Y, and SR. No errors.

FFFO E50A PLOT Cursor Position
C flag set: Reads $D6 into X and $D3 into y, cursor
positions down (0-22) and across (0-21) respectively. C flag
clear: Acts the other way, putting X down, Y across. See
examples of its use in practice. PLOT adjusts the screen
links. Alters A, X, and SR. No errors.

FFF3 E500 BASE Return $9110
Loads X low, Y high with $9110, the start of the VIA chips.
Not much use with VIC-20; could be useful if machine
architecture were more variable.

(FFFA) FEA9 NMI Non-Maskable Interrupt
(FFFC) FD22 RESET Reset
(FFFE) FF72 IRQ Interrupt Request and Break

Using 'the Kemal
Using CHROUT to print to screen. CHROUT (FFD2) prints to screen as PRINT

does, using the same VIC characters. This makes it an easy command to use, and
produces a notable increase over BASIC's speed. Typically, a table of characters
beginning with 147 ($93), clear screen, and ending with 0 is set up, including color
and cursor characters; a Kernal loop prints these far faster than BASIC. The zero
byte is used to indicate the end. Chapter 12 includes several graphics routines using
CHROUT.

271

ML Methods Specific to the VIC-20

Try the following:
033C LDX #$00

LOOP 033E LDA TABLE,X ;TABLE COULD START 034A
0341 BEQ EXIT
0343 JSR FFD2
0346 INX
0347 BNE LOOP

EXIT 0349 RTS or BRK

Using PLOT to position cursor. PLOT tends to need further routines to make it
work properly; this example is typical. The non-Kernal routine is part of the power
on sequence, where the cursor is positioned at the screen start.

CLC ; SET CURSOR. EXAMPLE VALUES:
LDX #$09 ; 10TH LINE DOWN
LDY #$03 ; 4TH COLUMN ACROSS
JSR FFFO
JSR E587 ; NON-KERNAL ROUTINE

Using GETIN to fetch keyboard characters. The following listing shows how
this is done. With the unexpanded VIC, keypresses are echoed by a POKE to the
screen top. In practice, more constructive uses are likely.

Note the loop branching back to JSR FFE4; this is exactly similar to the GET
loop waiting for a character. Note also the test for * pressed; it avoids an infinite
loop.
LOOP JSR FFE4

BEQ LOOP
CMP #$2A
BEQ EXIT
STA $lEOO

;AWAIT KEY
iA HOLDS BYTE. COMPARE WITH *
iEXIT ON *

BNE LOOP ;BRANCHES ALWAYS
EXIT RTS or BRK

FFE4 alters X and Y registers, unlike FFD2. Using FFD2 in a loop with X is
therefore acceptable. But this will not work with FFE4; some storage location must
be used.

Using CHRIN to fetch characters. The routine below shows how a loop inputs
successive characters. If you precede this short program by the cursor position rou
tine, you can simulate INPUT. The cursor will flash at the selected position onscreen.
The demo prints the characters at the top of the screen (on the unexpanded VIC-20)
to show how CHRIN works. Note the use of a temporary store for the current offset;
X or Y is altered by CHRIN. As with BASIC INPUT, if you wish to validate a string
being typed, GETIN is best, but CHRIN is easier to use.
iPOSITION CURSOR

LDA #$00
STA $FE

LOOP JSR FFCF

272

CMP #$OD iRE TURN IS LAST CHARACTER
BEQ EXIT
LDX $FE
INC $FE

ML Methods Specific to the VIC-20

STA $0400,X ;POKE CHARACTER
LOA #$00
STA $9600,X ;ANO COLOR RAM
BEQ LOOP

EXIT RTS or BRK

Using LOAD and SAVE. Examples are in Chapter 6 (Block LOAD and SAVE)
and in the disk and tape chapters. If the precise mechanism of these commands in
terests you, disassemble the routines, following the branches to tape or disk. Tape
LOAD, at F5Dl, prints SEARCHING, loads a header, computes the start and end ad
dresses, prints LOADING, and continues with the data LOAD. Disk LOAD reads the
first two bytes for its LOAD address.

Using OPEN and CLOSE. Chapter 15 contains disk examples.
Using READST. JSR FFB7 loads A with the status byte, either RS-232 or other

wise, depending on which device is used. VIC's RS-232 clears the byte. Because of
this bug, $0297 has to be loaded without READST. This is a simple routine, saving
you the effort of remembering ST's RAM address.

Using SCNKEY. Chapter 6's PAUSE is an example of how this can be used.
The IRQ vector is redirected by altering (0314) to point somewhere other than EABF,
its usual destination. The new routine sets the interrupt disable flag, so no further
interrupts are allowed, and repeatedly reads the keyboard until some predetermined
keypress occurs. At that time, CLI then JMP EABF carries on as though nothing had
happened.

Using STOP. JSR FFEI then BEQ EXIT is an easy way to stop ML from the key
board. Without it, the STOP key is generally inactive. STOP is called after each
BASIC statement is executed in a normal RUN, which is why STOP works with
BASIC.

Using SETTIM and RDTIM. Both these commands are very simple. What's
usually more important is converting the result into a readable form. This ML rou
tine (non-Kernal) converts the clock's contents into a form exactly like TI$ (a string
of exactly six numerals, with leading zeros where needed), so that a quarter after
seven is 071500. The string is left in locations $FF-$0104, as the demo shows by
POKEing it into the screen top. The six bytes can of course be edited and printed
(for example) as 07:15:00.

JSR CF84
STY $5E
OEY
STY
LOY
STY
LOY
JSR
LOX

LOOP LOA
STA
OEX

$71
#6
$50
#$24
$OE68 ; NOW TI$ IS SET UP IN 00FF-0l04
#5 ; POKE 6 BYTES INTO SCREEN
$OOFF,X; NOT $FF,X
$IEOO,X; INCLUOE COLOR IF YOU WANT

BPL LOOP
RTS or BRK

273

ML Methods Specific to the VIC-20

INPUT jOUTPUT. There's a relatively complex example at the end of Chapter
15 which includes eight Kernal calls.

Using BASIC's ROM Routines
BASIC has an enormous number of built-in routines, many of them having a rec
ognizably BASIC feel about them. This section will show you how RUN can be per
formed from ML and will give you an easy way to input data from the screen. You'll
see how numbers and strings can be input by ML. Finally, you'll look at calculation
in ML, which is not as difficult as it might seem. Examples include the USR function,
a hex-to-decimal converter, and a random number generator.

Executing RUN from ML
When there is BASIC in memory, JMP $C871 (or the SYS equivalent, SYS 51313)
will run the program, provided it has a line O. Any line of BASIC can be run from
ML with this equivalent of RUN 100:

JSR C660 ;CLR
LDA #$LO ;LOW BYTE OF LINE NUMBER
STA $14
LDA #$HI ;HIGH BYTE OF LINE NUMBER
STA $15
JSR $C8A3 ;FIND LINE
JMP $C7 AE ;GOTO LINE

This can be useful when ML calls BASIC; see UNLIST for an example in Chapter 6.
Also, it's sometimes easier to include some BASIC along with ML, particularly with
tricky programming involving arrays or file handling, which can be more trouble to
convert to ML than they're worth.

Receiving Lines from the Keyboard
JSR $C560 prints a flashing cursor, then inputs the screen line into the 88-byte
buffer starting at $200. This is easier to use than the Kernal CHRIN routine. The end
of line is marked by a zero byte (replacing the carriage return character actually en
tered). Once input, the line can be processed in any way you want; normally, VIC
tokenizes the buffer and treats it as BASIC. To get the feel of this, load and output
characters from $200 onwards with CHROUT.

Processing BASIC Variables
INSTRING$ (Chapter 6) is ML with notes, showing how strings can be manipulated,
using their three-byte parameters of length and pointer to start. VARPTR (also Chap
ter 6) uses JSR D08B to input a variable name and search for it in BASIC RAM. The
address returns in Y / A.

Printing strings and numerals. A cluster of routines around $CB1E outputs
strings without the need to repeatedly call FFD2 to print individual characters. For
example, JSR DDDD then JSR CB1E prints the contents of FACl. JSR DDDD con
verts the accumulator to an ASCII string, setting pointers ready for JSR CB1E to
print.

274

ML Methods Specific to the VIC-20

CBIE is generally useful and will print any ASCII string up to a zero byte (or
double quote mark), provided A (low) and Y (high) were set correctly on entry.

Inputting parameters for SYS calls from BASIC. PRINT@ and COMPUTED
GOTO in Chapter 6 are examples which take in numbers, in the first case in the
range 0-255, and in the second in the two-byte range 0-65535. The entire range
isn't used in either example, of course. JSR D79B and JSR CD8A fetch the numbers.
Other examples (for instance, Chapter 12's double-density graphics) take in data in
the same way. There's generally a choice of registers and memory locations for use
in transferring data between ROM routines. D79B returns the value in both $65 and
X; CD8A evaluates numeric expressions (for instance, VAL(X$) + 6*X) and leaves the
result in FACt, so there's less choice with this. COMPUTED GOTO shows one
continuation with FACt, namely conversion to integer format using only two bytes.

Calculations
This section explains, in some detail, how to carry out calculations in ML. With the
help of Chapter 11, you'll see that useful results are relatively easy to achieve, so
you should not be held back by problems needing arithmetic.

Floating Point Accumulator 1 (FACt for short) is a major location for number
work. Occupying six bytes from $6t to $66, the format is slightly different from the
five-byte variable storage of BASIC. Conversion from FACt to the memory format
(MFLPT for short) rounds off the extra bit.

FAC storage can be summarized as EMMMMS, having an exponent byte, four
entire bytes of data (mantissas), and a sign. If E is set to zero, the number is treated
as zero regardless of M's contents.

Some math routines (like negation) operate only on FACl. However, many use
FAC2, including all the binary operations. For example, when adding, FACt and
FAC2 are each loaded with a value; when the addition subroutine is called, the
numbers are totaled and the result left in FACl.

FACI can be stored in RAM either by copying the six bytes for later use or by
using one of the routines around DBC7. You'll see an example in the ML hex-to
decimal converter later on.

Storing FACI in MFLPT format is of course part of BASIC. and many of Chap
ter l1's routines are relevant to BASIC. As an example, DD7E adds the contents of A
to FACl, and DAE2 multiplies FACI by 10. Between them, these routines allow or
dinary decimal numbers to be input and stored in FACt as each digit is entered.

ROM routine D391 is an easy way to put integers from -32768 to 32767 into
FACt as floating-point numbers. The following routine loads 1 into FACl.

LOY #1
LOA #0
J5R 0391

The USR Function
USR is helpful with ML calculation programming. It is less often used with BASIC.
because function definitions are much easier to write than USR. However, USR is a
function; it is always followed by a value in parentheses, like PEEK.

275

ML Methods Specific to the VIC-20

To understand what it does, consider PRINT USR(6). When BASIC finds this,
the value in parentheses is computed (to allow expressions like PEEKO)) and the
value is put into FACl. Then BASIC executes JMP $0000. If it finds 0000 JMP 033C,
for example, it continues to 033C with whatever program is there; eventually, when
it finds RTS, the value then in FAC1 is the value printed by PRINT USR(6).

Thus, POKE 0,96 puts RTS at 0000, so USR returns without any alteration to
FACl. PRINT USR(6) is 6.

Program 8-1 is a more elaborate example. Load and run the program; then enter
any number (say 1234) and five bytes will be output in MFLPT format.

Program 8- 1. USR Demonstration
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 FOR J=828 TO 841: READ X: POKE J,X: NEXT:rem 15
20 POKE 0,76: POKE 1,60: POKE 2,3: REM USR VECTOR

{SPACE}NOW $033C :rem 92
30 INPUT X :rem 75
40 X=USR(X) :rem 156
50 FOR J=842 TO 846: PRINT PEEK(J);: NEXT :rem 241
100 DATA 32,199,219,162,4,181,92 :rem 41
110 DATA 157,74,3,202,16,248,96 :rem 247

The first byte controls the magnitude of the number. The others determine its
value, except for the high bit of the first data byte, which handles the sign. This is
handy if you wish to store floating-point numbers in memory. It works by directing
USR to the following:
033C JSR DBC7 ;FAC1 INTO MFLPT FORMAT AT $5C
033F LDX #$04 ;MOVE TO MORE PERMANENT RAM AREA
0341 LDA 5C,X
0343 STA 034A,X ;WHERE PEEKS CAN RECOVER
0346 DEX
0347 BPL 0341
0349 RTS ;BACK TO BASIC AFTER USR

Line 20's POKEs direct USR to 033C Line 40 executes a USR command. First, what
ever number was input is converted to FAC1 format. Then BASIC jumps to 0000,
where it finds JMP 033C Here, FAC1 is rearranged in RAM, and its five bytes are
moved from their temporary storage (which would soon be overwritten) into the
tape buffer. After RTS, BASIC resumes and MFLPT can be PEEKed.

For example, suppose you want to evaluate -10*X*X. Enter the following at
033C:

033C JSR
033F JSR
0342 JSR
0345 JSR
0348 RTS

DCOC
DA30
DFB4
DAE2

;COPY FAC1 INTO FAC2
;MULTIPLY FAC1 BY FAC2. RESULT IN FAC1
;NEGATE FAC1
;MULTIPLY FAC1 BY 10. RESULT IN FAC1

Return to BASIC Then POKE O,76:POKE1,60:POKE2,3 and PRINT USR(8). You'll
get -640, and so on. If you have no ML facilities, POKE the following numbers

276

ML Methods Specific to the VIC-20

from 828 to 839: 32, 12, 220, 32, 48, 218, 32, 180, 223, 76, 226, and 218.
Routines can be strung together like this in many ways, though it's helpful to

know ML well enough to appreciate potential problems. For instance, add]SR DEFD
to calculate EXP of FACl. Alternately, use temporary storage areas. For instance, the
following routine puts FAC1 into MFLPT form beginning at $57, then multiplies
FAC1 by the MFLTP number it finds starting at $57. In effect, it is simply another
way of multiplying a number by itself.

JSR OBCA
LOA #$57
LOY #$00
JSR OA28

USR is not a very important function, but as these examples show, it can be
useful in testing ML calculation routines.

Hex-fo-Decimal Conversion: A More Complex Example of ML Mafh
Program 8-2 is a longer program that illustrates several points. INIT sets FAC1 to
zero and stores 16 in MFLPT form in spare RAM (in fact, in the random number
storage area). GET not only fetches an individual character, but also flashes the
cursor and tests for the STOP key. PROC is the processing part; each digit is con
verted from ASCII (#$30 to 0, #$41 to 10, and so on), added to FAC1, and, if a fur
ther digit is wanted, multiplied by 16. PRINT outputs the result.

Program 8-2. Hex-fo-Decimal Conversion
Refer to the "Automatic Proofreader" article (Appendix C) before tuping in this program.

10 DATA 169,4,133,254,169,0,133,97,162 :rem 81
11 DATA 4,149,139,202,208,251,169,133,133 :rem 223
12 DATA 139,169,0,133,204,133,207,32,225 :rem 165
13 DATA 255,208,5,169,1,133,204,96,32,228 : rem 227
14 DATA 255,240,241,72,32,210,255,104,201 : rem 205
15 DATA 65,144,2,233,8,233,47,32,126,221 : rem 168
16 DATA 198,254,240,11,169,139,160,0,32 : rem 127
17 DATA 40,218,240,212,208,210,32,221,221 : rem 200
18 DATA 32,30,203,169,13,32,210,255,240 : rem 110
19 DATA 172,208,170 : rem 168
100 FOR J=828 TO 913: READ X: POKE J,X: NEXT

:rem 63

SYS828 accepts four-digit hex numbers and continues until the STOP key is pressed.
The routine is relocatable. For binary-to-decimal conversion, POKE 829,8: POKE
844,130 after running.

The complete source code is given below.

INIT 033C LOA #$04
033E STA $FE ;COUNT 4 DIGITS
0340 LOA #$00
0342 STA $61 ;FAC1 NOW ZERO
0344 LOX #$04
0346 STA $8B,X ;LOOP PUTS 16 IN

277

ML Methods Specific to the VIC-20

0348 DEX iMFLPT FORM INTO
0349 BNE $0346 i8B-8F (RND AREA)
034B LDA #$85 iFOR REPEATED USE
034D STA $8B
034F LDA #$00
0351 STA $CC
0353 STA $CF iCONTROL CURSOR

GET 0355 JSR $FFE1 iTEST STOP KEY
0358 BNE $035F
035A LDA #$01 iIF STOP PRESSED,
035C STA $CC iFLASH CURSOR

EXIT 035E RTS iRE TURN
035F JSR $FFE4 iGET CHARACTER FROM KEYBOARD
0362 BEQ $0355 iWAIT FOR NON-NULL CHR

PROC 0364 PHA iSAVE CHARACTER
0365 JSR $FFD2 iECHO TO SCREEN
0368 PLA iRECOVER
0369 CMP #$41 iCOMPARE WITH A
036B BCC $036F iBRANCH IF LESS THAN A
036D SBC #$08
036F SBC #$2F iCONVERT ASC O-F TO 0-15
0371 JSR $DD7E iADD A TO FAC1
0374 DEC $FE iREDUCE COUNTER
0376 BEQ $0383 iEXIT AFTER 4 DIGITS
0378 LDA #$8B
037A LDY #$00 iSET POINTERS TO $8B
037C JSR $DA28 iMULTIPLY FAC1 BY MFLPT AT $8B (IE BY 16)
037F BEQ $0355 iBRANCH BACK (RELOCATABLE) FOR
0381 BNE $0355 iNEXT DIGITS

PRINT 0383 JSR $DDDD iCONVERT FAC1 INTO STRING AT $100
0386 JSR $CB1E iPRINT STRING
0389 LDA #$OD iPRINT RETURN TO GO TO
038B JSR $FFD2 iNEXT LINE
038E BEQ $033C iBRANCH BACK (RELOCATABLE) FOR
0390 BNE $033C iNEXT HEX NUMBER

Random Numbers
Random numbers are used in simulations and in games. From ML, the easiest
method is to call ROM routines, which have the advantage of being repeatable if
you want them to be. J5R EODO is equivalent to RND(- X) and seeds the random
number storage area with a value dependent on FACl. The reason RND of negative
integers is always very small is that the FLPT bytes are simply switched around.

EODO can be used to seed a constant value. However, with ML it's quicker to
store your own seed value directly in 8B-8F.

J5R EOBB uses a formula to calculate a new random number from the previous
one, leaving the result in both FACl and 8B-8F. The sequence is completely
predictable.

J5R E09B uses VIA timers to generate a true random number, except in the
sense that very short ML loops may start to show regularities.

278

ML Methods Specific to the VIC·20

Typically, during testing, a seed is chosen. Then EOBB is used to give a repeat
able sequence (this eases debugging). The seed is replaced by E098 for use.

One- or Two-Byte Random Numbers
Often more useful in ML, you could use the following routine:
JSR $EOBB jNEW RND NUMBER FROM OLD
LDA $8C
EOR $8D jCOMBINE DATA BYTES
EOR $8E jINTO COMPOSITE BYTE
EOR $8F

It uses all four bytes, excluding the exponent, presumably increasing the result's
randomness. Suppose you want something to happen 10 times in 256. All you need
is eMP #$OA, then Bee to branch when the accumulator holds 0-9.

If you need a random number in ML within a fixed range, say 0-20, the easiest
method is to use repeated subtraction (rather than to get a decimal, multiply by 20,
take an integer, and add 1):
RANGE CMP #$15 jCOMPARE WITH DECIMAL 21

BCC FOUND jNUMBER IN RANGE 0-20
SBC #$15 jSUBTRACT DECIMAL 21
IMP RANGE jCOMPARE AGAIN

FOUND CONTINUE jA HOLDS 0-20 DECIMAL

Note that a random number from 48 to 57 is 48 plus a random number from 0 to 9.
If you need random numbers in quantity, it's faster to generate your own. All

you need is one RAM location (or two for a 16-bit number). The following routine
uses a single byte, LO:
LDA LO
ASL
ASL
CLC
ADC #$odd
ADC LO
STA LO

Any odd number can be selected (#$81 for example). The contents of LO now cycle
through 256 different values in sequence. The method uses 5 times the previous
value plus an odd number, ignoring overflow above 255; in other words, x becomes
5x+c (mod 256). Five is easy to program, but 9, 11,21, or other numbers can also
be used.

Each call to this routine loads A with the next number; this is not necessarily
suitable as a random number, since the series repeats, but EOR with a timer (for
example, EOR $9115) will scramble LO into an unpredictable form.

For a two-byte random number, use the following:

CLC
LDA LO
ADC HI
STA HI
CLC

279

ML Methods Specific to the VIC-20

LDA #$odd
ADC LO
STA LO
LDA #$any
ADC HI
STA HI

In this case, x becomes 257*X + c (mod 65536) where c is odd. Any series gen
erated from this repeats at 65536 cycles.

Sequences generated by this method always produce alternate odd and even
values, and internal subseries are common, so the guarantee of a very long repeat
interval doesn't insure success in any actual application. However, details like this
are unlikely to trouble VIC users.

Series Calculations
All of the VIC's mathematical functions are evaluated by series summation. Briefly,
the value to be converted is first put into a smaller range. Trig functions, for in
stance, repeat regularly, so their input values can be reduced (if large) by subtracting
multiples of 7r • Then a series evaluation works out the function's value, and finally
an allowance is made for the initial scaling-down process.

In the VIC-20, the ROM routine at E056 sums the series. The following short
example shows how:

LDY #$03
LDA #$40
J5R $E056
RTS

Location 0340 must contain 2, and locations 0341-0345, 0346-034A, and 034B-
034F each must contain a number in MFLPT format. If we designate these Nl, N2,
and N3, calling the routine replaces FACl's value with N3 + N2*X + Nl *X*X.
Working out the actual series parameters is beyond this book's scope.

Integer to Floating-Point Conversion and Multiply/Divide by 2, 4,
8, etc.
Although conversion of two-byte integers into floating-point form is often useful, the
standard ROM routine at D391 converts A (high) and Y (low) into the range
-32768-32767, the range of integer variables.

The following routine puts A (high) and Y (low) into FACl in the range 0-
32767. There is no shorter way to do this. Note that the VIC-20 has vectors near the
start of RAM which can be changed to allow for just such modifications.

LDX #$00
STX $OD
STA $62
STY $63
LDX #$90
SEC

;HIGH
;LOW (NOTE REVERSE ORDER)
;EXPONENT (#$91 DOUBLES, #$94 MULTIPLIES BY 16)

JSR $DC49 iCONVERT TO FACl

280

ML Methods Specific to the VIC-20

Modifying BASIC
VIC BASIC has a large number of vectors in RAM; these are addresses which BASIC
uses as it runs. If these vectors are altered, BASIC can be intercepted and new com
mands tested for and executed. Alternately, old commands can be modified slightly
(or completely) as required.

The techniques are simple, but plenty of small problems await the programmer.
In particular, when you alter BASIC any errors in the added ML are likely to pre
vent BASIC from working normally. Thus it's important to save programs as they
are written, or to use a reset switch for emergency recovery, in order to avoid
tedious retyping. All the methods use ML, but this need not be too daunting, since
the VIC can do most of the work.

Vectors and Wedge Methods
RAM contains blocks of vectors as indirect addresses. LIST, for example, has a com
mand]MP ($0308) within it, so the contents of $0308 and $0309 determine what
LIST does.

There are about 20 such vectors. In addition, the CHRGET routine at $0073
(which fetches BASIC characters as it runs) is accessible for programming; as you'll
see, this allows access to BASIC as it runs, so new commands can be added.

Alterations to CHRGET or to vectors called from BASIC are semipermanent.
Once in place, SYS 64802 or switch off and on will remove them, but otherwise
even STOP-RESTORE leaves them untouched. This is intentional. On the other
hand, STOP-RESTORE sets vectors used by the Kernal routines to the default values.

First, consider examples involving vector alterations and use of wedges. Gen
erally, wedges are probably easier to program; there's only one subroutine to worry
about, and commands can be added almost indefinitelv. However, tokenization isn't
possible, so short commands like @X or @Y are gene;ally used.

BASIC vectors allow some effects to be achieved which aren't possible with
wedges, for example, modified LIST. The Super Expander uses most of these vectors,
which allow it to insert its own tokens, translate them, LIST them properly, and so
on. Such large-scale modifications take prior planning and are not for inexperienced
programmers. Kernal vectors are easier to deal with, in the sense that they give
convenient access to commands but are not often used. There are not that many
occasions when you would want to reprogram OPEN, LOAD, or SAVE. Kernal ~ec
tors, like the three interrupt vectors, are all set to normal by STOP-RESTORE.

The Wedge
To understand the wedge, first look at CHRGET, the RAM routine starting at $0073,
which fetches every BASIC character while BASIC runs:

CHRGET 0073 INC $7 A ;ADDS 1 TO CURRENT ADDRESS
0075 BNE $0079 ;WITH THIS STANDARD 2-BYTE
0077 INC $7B ;INCREMENT

CHRGOT 0079 LDA CURRENT
007C CMP #$3A ;COLON (OR GREATER) EXITS
007E BCS $008A
0080 CMP #$20 ;SKIPS SPACE CHARACTERS

281

ML Methods Specific to the VIC-20

0082 BEQ $0073
0084 SEC ;ANYTHING FROM #$30 TO #$39
0085 SBC #$30 ;CLEARS C FLAG
0087 SEC ;ELSE C IS SET
0088 SBC #$DO
008A RTS

CHRGET is stored in ROM at $E387; SYS 58276 from BASIC moves it back to
RAM. This may be useful if you've altered CHRGET, but note that it NEWs BASIC.
A call to CHRGET returns with A holding the next BASIC character, C clear if an
ASCII numeral was found, and the zero flag set if either a colon or null byte was
found. JSR $0073 followed by BCC or BEQ is common in ROM, and BCC applies
when a line number (made of ASCII numerals) is read from a GOTO or GOSUB
statement.

ROM also uses JMP $0073. In this case, RTS uses the address it finds on the
stack, and in fact BASIC keywords are executed in this way. The 6502 requires that
the return address - 1 be pushed on the stack.

CHRGET can be changed. Try POKEI29,234:POKEI28,234:POKE131,234:
POKE130,234 (without spaces between POKEs). This deletes the test for space
characters, replacing their ML by Nap commands, and BASIC runs exactly as nor
mal except that spaces outside quotes cause ?SYNTAX ERROR. The first SEC be
comes redundant, and SBC #$2F corrects for it. CHRGET shortened like this runs
BASIC faster than normal, as expected; but only by an unexciting one-half percent.

Before seeing how to insert a wedge, note the difference between CHRGET and
CHRGOT. CHRGET always increases the current address; it's normally called only
once per character. CHRGOT rereads the current BASIC character and sets the rele
vant flags; therefore, whenever processing loses track of the current BASIC character
in some way, CHRGOT is always available to recover it.

Wedge Demonstration
If you replace 0073 INC 7 A by 0073 JMP 033C, or some other jump address, all
ROM calls to BASIC characters can be intercepted before they are executed. This al
lows us to test for and use completely new commands in BASIC. A wedge, once in
serted, is quite durable; STOP-RESTORE, for example, leaves it unaltered. That can
be important. If your routine has an error, it may be impossible to POKE in the cor
rect values or enter a SYS call to replace the wedge, since BASIC itself is behaving
differently from usual.

Programmer's Aid (see end of Chapter 6) and the disk wedge (Chapter 15), as
well as the TRACE version of Chapter 6, all use wedges. This example puts JMP at
0073; note that 0073 or subsequent addresses can be used, and are sometimes better,
since they may allow another wedge to be used simultaneously. Some wedges test
for JMP at 0073 and allow for them. They also allow zero page RAM (typically
007F-008A) to be used in programs.

Program 8-3 adds the single command! to BASIC. When it executes, the screen
characters are reversed. When naming new commands, it's easiest to use a character
which doesn't appear in ordinary BASIC (like !, @' or &) as an identifier. If desired,

282

ML Methods Specific to the VIC-20

it is easy to add further commands, such as !R or !P (with specific functions of their
own) by getting the following BASIC character with JSR $0073 whenever! is found.
However, to keep the example shorter, it adds only a single command.

Program 8-3. BASIC Wedge Demonstration

Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 DATA
11 DATA
12 DATA
13 DATA
14 DATA
15 DATA
16 DATA
17 DATA
18 DATA
100 FOR

169,76,133,115,169,73,133,116,169 :rem 239
3,133,117,96,230,122,208,2,230 :rem 57
123,32,121,0,201,33,240,3,76,121 :rem 139
0,165,123,201,2,240,247,152,72 :rem 57
138,72,162,0,189,0,30,73,128,157 :rem 176
0,30,189,0,31,73,128,157,0,31,202 :rem 203
208,237,104,170,104,168,76,115 :rem 80
0,169,230,133,115,169,122,133,116 :rem 217
169,208,133,117 :rem 113
J=828 TO 906: READ X: POKE J,X: NEXT

: rem 65
Note that! is accepted only in program mode. A line like 100! works perfectly,

but! on its own is an error. This is deliberate. It avoids commands being executed
while a program is being written, when they may not be wanted, although you
could obviously create a wedge (like the disk wedge) that only works in direct mode.
There are several tests for direct mode; TSX then LOA $0102,X to recover the return
address is one; another is location $90, which usually holds #$80 in direct mode.
The test in the example simply checks the current address used by CHRGOT; if it's
around $0200, it must be a direct mode line.

The only peculiarity of BASIC syntax with wedges is the IF statement. IF X = 1
THEN: PRINT "ONE" is correct as far as BASIC is concerned, but the colon can be
omitted. With wedges, the colon can't be left out.

How the wedge works. Program 8-3 loads the following ML into the VIe:
SETUP 033C LDA #$4C iPUTS JMP $0349 INTO CHRGET

033E STA $73
0340 LDA #$49
0342 STA $74
0344 LDA #$03
0346 STA $75
0348 RTS

WEDGE 0349 INC $7 A
034B BNE $034F
034D INC $7B

iMIMIC CHRGET

034F JSR $0079 iA NOW HOLDS BASIC CHARACTER
0352 CMP #$21 iIS IT ! ?
0354 BEQ $0359
0356 JMP $0079
0359 LDA $7B
035B CMP #$02

iNO-JMP BACK TO CHRGOT. WEDGE UNUSED
iYES-CHECK FOR DIRECT MODE

035D BEQ $0356 ;DIRECT MODE-DON'T USE WEDGE
035F TYA iPROGRAM MODE-USE WEDGE

283

ML Methods Specific to the VIC-20

0360 PHA iSAVE X AND Y
0361 TXA
0362 PHA
0363 LDX #$00 iEXECUTE ! COMMAND TO
0365 LDA $1EOO,X iRE VERSE UNEXPANDED VIC CHARACTERS
0368 EOR #$80
036A STA $1EOO,X
036D LDA $lFOO,X
0370 EOR #$80
0372 STA $lFOO,X
0375 DEX
0376 BNE $0365
0378 PLA iPROCESSING OVER. RECOVER X AND Y
0379 TAX
037A PLA
037B TAY
037C JMP $0073 iAND CONTINUE WITH NEXT BASIC COMMAND
037F LDA #$E6 iDEACTIVATE WEDGE
0381 STA $73
0383 LDA #$7A
0385 STA $74
0387 LDA #$DO
0389 STA $75
038B BRK

SYS 828 activates the wedge. SYS 895 turns it off. Note that the entire routine is
relocatable, apart from the address in SETUP; long routines won't fit the tape buffer
but can be put at the top of BASIC memory.

Note that 035D jumps to CHRGOT, not CHRGET. This means that! in direct
mode is treated as normal, generating ?SYNTAX ERROR if entered as a command,
but included in BASIC otherwise. If 035D jumps to CHRGET there are no syntax er
rors, but the command becomes difficult to include in BASIC. Note as well that
037C jumps to 0073. Of course it immediately jumps back to 0349, but 0073 always
relocates.

Using Vectors in RAM to Modify BASIC
The main blocks of vectors start at $300. (0300) through (030A) are vectors from
BASIC. (0314), (0316), and (0318) are vectors from IRQ, BRK, and NMI. (031A)
through (0332) are vectors from Kernal routines, except (032E) which is unused.

Earlier RAM has a sprinkling of vectors, including (028F) (used by SCNKEY, the
keyboard-reading routine, which allows keys to be intercepted). USR's JMP instruc
tion is at the start of RAM, and floating-to-fixed (and vice versa) number conversion
is routed through (0003) and (0005).

There are six BASIC vectors, each called from the address just before its normal
destination. For example, C437 JMP (0300) is set to C43A. They will be examined
here in order.

284

ML Methods Specific to the VIC-20

(0300)
This is the error-message vector. X holds the number of the error; for instance, deci
mal 10 means NEXT WITHOUT FOR. Unless altered, this prints an error message,
then READY. See Chapter 6 for ONERR ... GOTO, a command included in some
BASICs, which allows an error routine to be specified at some line number.

Program 8-4 lists a single BASIC line which has been found incorrect; the text is
reversed at about the place the error is to be found. For example, 10 PRINT ((8) is
listed with the third parenthesis reversed. There's no way to point up the exact
position of the error, but an indication is often useful.

The modification will remain in effect as long as the POKEs stay in place, so a
new program can be loaded and tested. Because it has been kept short, the error
message is replaced by READY. If LIST is moved to RAM, the error can be printed
too.

Program 8-4. Error Detection
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 DATA 165,57,133,20,165,58,133,21,32 :rem 68
11 DATA 19,198,165,122,24,229,95,133,254 :rem 188
12 DATA 56,76,189,198,72,196,254,208,9 :rem 112
13 DATA 169,18,32,210,255,169,255,133,254 :rem 233
14 DATA 104,76,26,199, :rem 60
100 FOR J=828 TO 868: READ X: POKE J,X: NEXT

:rem 72
110 POKE 768,60: POKE 769,3: REM ALTER ERROR VECTO

R : rem 89
120 POKE 774,82: POKE 775,3: REM ALTER LIST VECTOR

:rem 10
Here is how the program works.

ERR 033C LDA $39
033E STA $14
0340 LDA $3A
0342 STA $15
0344 JSR $C613 jLISTS CURRENT LINE
0347 LDA $7 A jLOW BYTE OF CHRGET
0349 CLC
034A SBC $5F
034C STA $FE
034E SEC
034F JMP $C6BD

LIST 0352 PHA
0353 CPY
0355 BNE
0357 LDA
0359 JSR
035C LDA
035E STA

$FE
$0360
#$12
$FFD2
#$FF
$FE

;LESS LOW BYTE OF LINE START
;IS DISPLACEMENT OF ERROR. SAVE IT
;INDICATES LINE FOUND
;JUMP TO LIST ROUTINE
;SAVE CHARACTER TO BE LISTED
;COMPARE LIST POINTER WITH
;ERROR DISPLACEMENT.
;IF EQUAL, OUTPUT REVERSE CHR
;SO LIST REVERSES TEXT
;RESET DISPLACEMENT HIGH

0360 PLA jRECOVER CHARACTER
0361 JMP $C71A jCONTINUE LIST

285

ML Methods Specific to the VIC·20

Two vectors must be changed: (0300) from C43A to 033C, and (0306) from
C71A to 0352.

(0302)
This vector, sometimes called IMAIN, usually points to C483 and is called just after
READY prints, before input from the keyboard. Try POKEing these values into
828-835: 169,42,32,210, 255, 76, 131, and 196. Now POKE 770,60:POKE 771,3.
The effect is to move the vector here:
LOA #$2A iLOAO WITH *
JSK FF02 iOUTPUT IT
JMP C483 iCONTINUE AS USUAL

Now, the cursor expecting input is preceded by *. In fact, you can tell when the rou
tine is called by its presence.

IMAIN allows several possibilities, including automatic BASIC line numbering,
output of some message or prompt, and automatic LOAD and RUN, as Chapter 14
shows.

(0304)
This vector, sometimes called ICRNCH, tokenizes BASIC. It is scanned while in the
buffer from $200 and has keywords converted to tokens. This vector could be di
verted, so new keywords can be recognized and converted into tokens. If this is
done, (0308) and (0306) have to be altered too.

(0306)
(0306) is part of LIST. You have seen an example with (0300); here's another. POKE
these values from 828 to 846: 72, 201, 58, 208, 10, 169, 13, 32, 210, 255, 169, 32, 32,
210, 255, 104, 76, 26, and 199. Now POKE 774,60:POKE 775,3. This simple routine
compares the character to be listed with a colon; if it finds one, it starts a new line
and prints a space. In effect, it makes LIST separate individual lines. (It doesn't test
for colons within strings.) This sort of thing is useful with printers and could include
a test for output device (= 4).

(0308)
(0308) is analogous to CHRGET but points only at tokens. It is used just before a
statement is executed. If there's no token, LET is assumed. Bytes outside the range of
valid tokens trigger a ?SYNTAX ERROR. You can intercept the routine and process
your own tokens, or (as in Program 8-5) redefine a standard token.

Program 8-5. Redefining LET
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 DATA
11 DATA
12 DATA
20 DATA
100 FOR

286

32,115,0,201,136,240,6,32,121,0
76,231,199,32,155,215,142,15,144
76,234,199
169,3,141,9,3,169,60,141,8,3,96
J=828 TO 860: READ X: POKE J,X:

:rem 85
:rem 176
:rem 126
:rem 127

NEXT
:rem 64

ML Methods Specific to the VIC-20

11~ SYS 85~: REM CHANGES VECTOR IN ($03~8) TO POIN
T TO NEW ROUTINE :rem 2~7
Note that a SYS call is needed to alter the vector, because POKE is processed

using this and gets confused if one byte of the vector changes.
After RUN, LET is redefined so LET 123 sets the border cyan and background

yellow. This in effect POKEs $900F with 123, but it is much faster than POKE. FOR
J =0 TO 255: NEXT cycles the colors at great speed. LET X OR 8 cuts out the reverse
bit; the extra ML is given below:
HERE JSR 0073 iGET NEXT BASIC CHR

CMP #$88 iLOOK FOR LET TOKEN
BEQ LETFND iBRANCH IF FOUND
JSR 0079 iCHRGOT SETS FLAGS
JMP C7E7 iCONTINUE NORMALLY

LETFND JSR D79B ;CALCULATE I-BYTE BASIC PARAMETER
STX 900F ;PUT IT IN VIC REGISTER
JMP C7EA ;CONTINUE, AFTER EXECUTION POINT

LET (and GO) and many mathematical functions lend themselves to this treat
ment, which may be helpful in dealing with some of the more tiresome commands
needing POKEs and PEEKs. Chapter 13 has examples involving sound.

(030A)
(030A), normally CE86, points to the sub expression evaluator routine, which gets
and evaluates single terms of expressions at runtime (for example, the values of X
and 123 in the statement PRINT X + 123). The reason for its inclusion in the vectors
is to allow nonstandard terms, either string or numeric, to be defined. Thus, hex
numbers beginning & can be introduced into BASIC; so can binary numbers begin
ning %. Use the following:
HERE JSR $0073 ;GET FIRST CHR OF TERM

CMP #$26 ;IS IT &?
BEQ YES ;IF YES, BRANCH
LDA #$00 ;IF NO, SIMULATE
STA $OD ;NORMAL BEHAVIOR
JSR $0079
JMP $CE8D

YES JSR $0073 ;GET 1ST CHR AFTER &
;PROCESS. PUT IN FACI

JMP $0073

Set (030A) (that is, 778 and 779) to point to HERE.
Program 8-6 adds hex numbers to BASIC, using the principles just explained.

For example, POKE $900F,1 works correctly. PRINT $1234-$0055 subtracts one
number from another, printing the result in decimal.

Program 8-6. Adding Hex Numbers to BASIC
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

1~ DATA 169,71,141,10,3,169,3,141,11,3
11 DATA 96,169,0,133,13,32,115,0,201,36

:rem 55
:rem 106

287

ML Methods Specific to the VIC-20

12 DATA 240,6,32,121,0,76,141,206,162,2 :rem 100
13 DATA 32,115,0,201,64,144,2,105,8,10 :rem 45
14 DATA 10,10,10,133,254,32,115,0,201,64 :rem 137
15 DATA 144,2,105,8,41,15,5,254,72,202 :rem 61
16 DATA 208,224,104,168,104,133,98,132 :rem 78
17 DATA 99,162,144,56,32,73,220,76,115,0 :rem 180
100 FOR J=828 TO 905: READ X: POKE J,X: NEXT

:rem 64
110 SYS 828 :REM ALTERS (030A). THIS MUST BE DONE

{SPACE}FROM ML, NOT BASIC :rem 233

To compute results in the range 0-65535, a modified fixed-to-floating point rou
tine has to be used, as explained earlier.

IRQ, BRK, and NMI Vectors
IRQ interrupts are timed by a VIA (see Chapter 5 for notes on changing the fre
quency). If the interrupt isn't masked by SEI, a jump to $FF72 always occurs, and
from there the status register distinguishes IRQ and BRK interrupts. The latter aren't
of great interest; in fact, they're relevant only to ML monitors, where BRK typically
reenters the monitor. VICMON, for example, sets this vector automatically when it's
initialized, and future uses of BRK reenter VICMON.

IRQ interrupts are vectored through ($0314) to $EABF, where they process the
keyboard and a few other things. It is fairly simple to add ML elsewhere, ending
with JMP $EABF, then alter ($0314) to point to the new code. A complication is that
these interrupts are continually taking place, so the code must all be set up before
the vector is changed. Moreover, the vector can't safely be changed from BASIC in
case another interrupt occurs while only one byte in ($0314) is changed. This is why
the interrupts must be turned off as follows:
033C SEI
033D LDA #$03
033F STA $0315
0342 LDA #$49
0345 STA $0314
0348 RTS
0349 ML ending IMP $EABF

SYS 828 changes the vector to $0349; it remains changed until STOP-RESTORE
or reset.

NMI interrupts are unmaskable and can also be timed by a VIA. Thus they offer
the possibility of absolutely regular processing, unlike IRQs which may be masked
off at intervals. This is why they are used by the RS-232 software. They do have
some drawbacks: Disks and tape are made inactive while they operate, and the code
has to be a little longer. On the other hand, the vector is easy to move, and inter
rupts can be turned off with a simple POKE.

To use NMIV at ($0318), redirect the vector as follows:

PHA
TXA
PHA ~

288

ML Methods Specific to the VIC-20

TYA
PHA
ML PROCESSING
JMP $FEB2

Unlike IRQ, saving A, X, and Y is not built in ROM before the vector. The
easiest way to generate interrupts is to POKE $911E (37150) with #$CO (192), and to
set the timer in $9114 and $9115 (37140, 37141). The ML processing must reset this
timer, or interrupts will stop.

Kemal Vectors
All of these, except for ILOAD and ISAVE, are called immediately on entering the
Kernal jump table. LOAD and SAVE first store address parameters.

As a fairly simple example, intercept CHROUT and cause it to output an extra
asterisk. POKE these values into 828 to 837: 72, 169, 42, 32, 122, 242, 104, 76, 122,
and 242. Now POKE 806,60: POKE 807,3 to alter the vector to $033C. The ML is
given below:
PHA iSAVE OUTPUT CHARACTER
LOA #$2A ;LOAO ASTERISK
JSR $F27A ;OUTPUT ASTERISK, NOT WITH FF02 OF COURSE
PLA ;RECOVER CHARACTER
JMP $F27A ;OUTPUT IT, CONTINUE

Now, any use of CHROUT prints an asterisk. This includes all BASIC messages
like READY, which appears as *R*E* A *D*Y*.

Using Interrupts
As you have seen, two types of interrupts are vectored through RAM, and either can
be intercepted for your own background programs. Generally, IRQs are used. How
ever, Program 8-7 is a demonstration with NMIs.

Program 8-7. Using Interrupts with NMIs
Refer to the "Automatic Proofreader" article (Appendix C! before typing in this program.

o DATA 169,86,141,24,3,169,3,141,25,3,169 :rem 226
1 DATA 102,141,20,145,169,136,141,21,145 :rem 157
2 DATA 169,192,141,30,145,96,72,138,72 :rem 88
3 DATA 152,72,169,102,141,20,145,169,136 :rem 173
4 DATA 141,21,145,238,0,30,76,178,254 :rem 25
10 FOR J=828 TO 874: READ X: POKE J,X: NEXT:rem 21

After RUN, SYS 828 diverts the NMI vector and the background program runs.
It increments $lEOO, the top left screen position (with the unexpanded VIC). Loca
tions 860 (low) and 865 (high) control the interrupt rate. As with IRQ, if the number
of interrupts is large, most of the computer's time is spent on them, and LIST works
very slowly. For an example using IRQs, see Chapter 13's interrupt-driven music
program. It illustrates most of the aspects of interrupt programming.

It is helpful to summarize the steps needed to create interrupt-driven programs.
First, find a safe area of RAM to store the ML. Long routines are best stored at the

289

ML Methods Specific to the VIC-20

top of BASIC memory; the music program does this, lowering BASIC's top of mem
ory so pure BASIC can never touch the ML.

Second, write the initialization routine. Typically, it will be as follows:

SEI
LOA #HI
STA $0315
LOA #LO
STA $0314
RTS

A SYS call here alters the IRQ vector to point to ML; note that CLI isn't necessary.
Third, write the interrupt routine, keeping in mind a few important differences

from normal programming:

• A, X, and Y can be used completely independent of BASIC. The BASIC values at
the time the interrupt happened are saved automatically and restored on return
from interrupt, so your ML is self-contained.

• The simplest termination of an IRQ routine is JMP EABE This is the usual address
in (0314), and exit to it means that BASIC behaves exactly as normal apart from the
introduced ML. All exits must return properly, or BASIC will crash. It's not essen
tial to exit via EABE For instance, EAC2 exits omitting the time-updating routine
with STOP-key test, and EB18 exits omitting all of BASIC's normal interrupt opera
tions. But EABF is simplest.

• Keep in mind the effects of repeats. Time dependency is a little hard to get used to.
A command like DEC $FE in normal programs decrements the contents of $FE just
once, from (for example) 9 to 8. But in an interrupt-driven program, this command
decrements whenever interrupts occur, typically 60 times per second. This is how
the TI clock works (except that it increments). Clearly this is a valuable feature.

The music program relies on several counters. One, controlling tempo, counts
down at each interrupt. When zero, it's replaced by its original value, and a new
note is taken from a table and stored in a VIC sound register. If the constant in the
counter is 10, the note will be changed every 1/6 second at most. Longer notes
simply have the same note repeated in the note table, allowing durations of various
lengths.

The VIC polls, or tests, various locations during the interrupt (for example, the
keypress location $CS (197)) and acts on the results. Chapter 16 has examples which
automatically read the joystick while BASIC runs, using this principle. This is analo
gous to the use of a counter, except that the value is altered externally, not by
increasing or decreasing a value from within the interrupt routine.

Flags can be used to vary the interrupt sequence. As a simple example, consider
the following:

LOA #0
BNE ML
IMP EAFB

As it stands, at each interrupt the branch will never be taken, and the effect is
negligible. But a POKE into the location holding #0 will activate whatever ML has
been put in. Using this approach, a change of background color or a screen reversal

290

ML Methods Specific to the VIC-20

is easy to implement, and if the ML resets the flag to zero, the interrupt routine will
be called just once.

The following is a simplified version of the music program in Chapter 13.
INT LDA $FB ;FLAG TO PLAY SOUND

BNE PLAY ;O=OFF
EXIT JMP $EABF ;CONTINUE NORMAL IRQ PROCESSING
PLAY STA $900E ;SET VOLUME = VALUE IN FLAG

DEC $F9 ;TEMPO CONTROL. COUNTS DOWN
BNE EXIT ;TO ZERO
LDA $FA ;REPLACE TEMPO COUNTER
STA $F9 ;WHEN IT REACHES ZERO
LDX $FB ;POINTER TO NOTE TABLE
LDA $lDOO,X ;LOAD NOTE
STA $900C ;STORE IT IN SOUND REGISTER
INC $FB ;INCREMENT POINTER TO NOTE
JMP $EABF ;EXIT

This routine illustrates the important points of interrupt programming-except
for polling, which might be used in a program to play notes only when a key is
pressed. (See Chapter 13.)

$FB adjusts the volume of sound. When nonzero, $F9 counts down, controlling
the tempo. When it times out, $FA replaces $F9, so $FA controls the tempo at which
the notes are played. $F8 points to notes from a 256-byte note table; it simply cycles
through the table, starting over whenever it exceeds 255. The routine exits to $EABF.
The initializing routine, omitted here, simply points ($0314) to whatever address INT
is, perhaps $lCOO, after BASIC.

So far, we have discussed fast ML routines processed by interrupts. But suppose
you happen to have a relatively slow routine (perhaps to fill a screen with graphics
or perform a lot of calculations) which takes more time than about 1/60 second. Isn't
there a chance that the interrupt might itself be interrupted, and the program there
fore crash? In fact, the interrupt disable flag is set (in effect, SEI is executed) when
ever an IRQ-type interrupt occurs, so this should not be a problem; on RTI, which
returns to the preinterrupt state, the stored processor status flags are recovered, so
there's no need to CLI on exit.

291

Chapter 9

Mixing BASIC with Machine
Language

While most programmers are happy to use BASIC, subroutines and utilities in ML
offer increased speed and power. This short chapter explains the ways in which ML
can be combined with BASIC, to retain the convenience of BASIC's LOAD, SAVE,
and RUN commands.

BASIC Programs with Short ML Subroutines
Two fixed blocks of RAM (673-767 and 820-1023) are available for BASIC. Free
zero page RAM includes 246-254, assuming RS-232 isn't used.

The second block of RAM (used primarily by tape) is large enough for signifi
cant ML routines. Examples include the vector-processing techniques described in
the previous chapter; for consistency, all were written to start at 828. But all are
relocatable and can be put anywhere in the buffer. Provided the vector points to
their start, or SYS calls the correct address, they will still work.

The easiest way to mix ML routines with BASIC is to POKE them, reading the
values to be POKEd from DATA statements. Program 9-1 is designed to convert ML
into DATA statements and bypasses a lot of tedious typing.

Program 9-1. DATA Maker
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

100 INPUT "START"~A :rem III
110 INPUT "{2 SPACES}END"~E :rem 189
120 INPUT "FIRST LINE#"~L :rem 193
130 INPUT "LINE LENGTH"~LL :rem 37
140 PRINT "{CLR} :rem 215
150 PRINT "{HOME}" L "DATA "~ :rem 95
160 PRINT MID$(STR$(PEEK(A»,2) ","~ :rem 161
170 A=A+1: IF A>E THEN END :rem 70
180 IF POS(0)<LL THEN GOTO 160 :rem 110
200 PRINT "{LEFT} {HOME}{3 DOWN}L="L"+l:A="A"

{LEFT} :E="E" {LEFT} :LL="LL" :GOT0140" : rem 106
210 POKE 198,5: POKE 631,19: POKE 632,13: POKE 633

,13: POKE 634,13: POKE 635,13 :rem 180

To use "DATA Maker," suppose you have designed ML from 828 to about 900.
Load and run this program, enter 828 and 910 as start and end addresses, select an
initial line number (perhaps 0) and a suitable line length (so program listings can
have lines of length suited to you), and watch the program write its own lines of
DATA. If you weren't sure of the precise end address, edit the last few lines to re
move extra data.

Delete the program manually, and the lines left store your ML in portable form.
To POKE it back, you need FOR J=828 TO 900: READ X: POKE J,X: NEXT or some
thing similar.

295

Mixing BASIC with Machine Language

Several sets of ML (for example, PRINT USING and a joystick reader) can be
put in the buffer together and converted to data. This method has the great advan
tage of being independent of memory changes; regardless of where BASIC starts and
ends, SYS 828 remains fixed.

other Methods
DATA statements take up space, and use of the tape buffer is impossible if a pro
gram is loaded from tape after the buffer was filled with ML. Thus, it's sometimes
convenient to store data more economically within the program, or as a string of
bytes, which occupy less space than DATA. But generally it's easier to put ML in the
top of memory. There's also spare RAM from 1024 to 4095, if both 3K and 8K or
16K RAM cartridges are connected to the VIC-20. If you have this configuration,
you'll have plenty of room for ML.

To store ML as a program line, use 0 REMXXXXXXXXXX and POKE the ML into
the line itself. A SYS call will be able to run it as usual. There are a few complica
tions; one is that the ML must not contain any zero byte, or BASIC will ten9 to treat
it as an end-of-line and spoil the ML. Use LOX #1 then DEX in place of LOX #0,
and so on.

Another complication is that the position of BASIC varies with expansion mem
ory, so to make BASIC work for any VIC, you'll need to use SYS PEEK(43)+256*
PEEK(44)+5 to call the routine. This finds the position of what was the first X after
REM, to insure that the ML relocates.

A line treated in this way will list oddly, of course, and cannot be edited. You
may prefer to include double quotes after REM so that the line lists without
keywords.

Storing ML as a string (0 DATA 4C48D2AAD191D3 is typical) requires a few
modifications to DATA Maker. Add these lines:
160 P=PEEK(A): Q%=P/16: P=P-16*Q%: REM Q% HI, P LO
162 Q%=Q%+48: IF Q>S7 THEN Q%=Q%+7
164 PRINT CHR$(Q%);
166 P=P+48: IF P>S7 THEN P=P+7
168 PRINT CHR$(P);
190 PRINT

Decoding such data needs a similar loop, where (typically) the line
Q% = ASC(MID$(ML$,J)): P= ASC(MID$(ML$,J + 1) recovers values from the string
before each is converted to the range 0-15.

BASIC Programs with Long ML Subroutines
Long routines need a lot of RAM, and the only place to get it is usually at the top of
BASICs RAM. A few pointer changes are all that's necessary to convince VIC that
its memory is less than it was. Then, ML DATA can be POKEd into the safe space
after BASIC, or loaded directly as a block. The top of memory can vary, so to make
your routines work with any VIC, you'll need the routine shown in Program 9-2.

296

Mixing BASIC with Machine Language

Program 9-2. Changing VIC's RAM Pointers

100 T=PEEK(55) + 256*PEEK(56)
110 S=T-N
120 POKE 56,S/256:POKE 55,S-INT(Sj256)*256:CLR
130 S=PEEK(55) + 256*PEEK(56)

The variable N in line 110 represents the number of bytes to lower the top of mem
ory. Note that CLR sets all the pointers consistently. But it also deletes variables, so
line 130 is needed to recover S.

Simpler, but less general, versions are given in Program 9-3 and Program 9-4.

Program 9-3. Lowering Memory by 256 Bytes

100 POKE 56,PEEK(56)-1:CLR
110 S=PEEK(55) + 256*PEEK(56)

Program 9-4. Lowering Memory in the Unexpanded VIC by
256 Bytes

100 POKE 56,29:CLR:S=7424

POKEing ML data into the lowered memory is straightforward. A new program
can be loaded, leaving the ML intact. This is fine for ML which has been written to
be relocatable (that is, ML using only branches and fixed locations). For example,
JSR FFE4, followed by BEQ back to JSR FFE4, will work anywhere. But JSR $lEAO
or LDA $lEOO,X can work only if they're put into the correct RAM position. If such
commands are moved around in RAM, the absolute addresses no longer apply.

Relocating Loaders
To solve the problem, use a modified loader which alters addresses to fully relocate
the ML. This is not too difficult and is worth doing if several utilities or ML pro
grams are likely to be in RAM simultaneously. In that case, each can be stored
before the previous one, and the relocatable format insures that each can run. But it's
always simpler to make ML relocatable, if possible.

The loader is given in Program 9-5.

Program 9-5. Relocating Loader

Refer to tiIe "Automatic Proofreader" article (Appendix C) before typing in this program.

100 T=PEEK(55) + 256* PEEK(56) :rem 213
110 L=T-N :rem 234
120 FOR J=L TO T-1:READ X% :rem 117
130 IF X%<0 THEN Y=X%+T: X%=Y/256:Z=Y-X%*256:POKE

{SPACE}J,Z: J=J+1 :rem 33
140 POKE J,X%:NEXT :rem 48
150 POKE 55,L-INT(L/256)*256:POKE 56,L/256:CLR

:rem 34

297

Mixing BASIC with Machine language

To convert code into DATA which the relocating loader can use, follow these
steps:

Enter the code into RAM and preferably test it.
Print (or write out) the disassembled version. A disassembler giving decimal

values of locations is helpful.
Mark all the absolute addresses which need changing during relocation.
Replace each of them with its offset from the end of the program. Count from

the end of program plus one backwards; the result will be a negative number from
-1 to - 30000 or so. The example shows how this is done; it is easier than you
might think.

Convert the bytes into DATA statements and enter them. Note that, as a rule,
each new negative value replaces two bytes.

Enter the value of N in line 110.
Test the loader. Run it several times, and check that each routine is independent

and correctly set up.
The example shown in Figure 9-1 has a subroutine call, a table of byte values,

and a branch. The branch, because of its relative addressing mode, relocates; so do
the table, the implied-mode instructions, and the immediate-mode instruction. The
only addresses to be relocated are those circled.

Figure 9- 1. Relocatable Loader Example
32 126 2 027A JSR C]tiE:)
96 0270 RTS

162 2 027E LDX #2
221 134 2 0280 eMP ~,X
202 0283 OEX
208 250 0284 BNE 0280
96 0286 RTS
65 66 0287 .BYTE $41, $42

Counting back from the end, note that 027E is the eleventh byte and 0286 is the
third. Thus, -11 and - 3 respectively replace all occurrences of those two addresses.
The DATA statement is therefore
o 0 AT A 32, -11,96,162,2,221, - 3,202,208,250,96,65,66

The number of bytes in the program is 15, so line 110 becomes
110 L=T-15

BASIC Which Is Mainly Machine Language
This section looks at programs which load normally but list as something like 0
SYS4624. Such programs (sometimes called hybrids) contain ML, packaged to imi
tate BASIC so they can be run in the usual way. They are structured with a line of
BASIC followed by ML and are saved with pointers altered to straddle the whole
program, BASIC and ML. The ML isn't visible on LIST because zero bytes after the
SYS command cause LIST to act as though the end of the program had been found.

Before seeing how this is done, consider how it works in several examples.

298

Mixing BASIC with Machine Language

Unlisted programs. The methods described in Chapter 6 allow BASIC to be
converted to appear as a single SYS call. In these examples, ML is not of course the
bulk of the program, but for security purposes it looks as though it might be. There's
no way to tell without PEEKing around.

VIC TERM. This pure ML program sits in memory at one place, just after the
unexpanded VIC's LOAD address; it is not designed to be moved in memory. Many
game programs are like this; LOAD simply puts the ML in memory, where it runs.

Disk Wedge. This is also pure ML, but like some BASIC utilities, it moves itself
to the top end of memory, lowering pointers for security, and adding a wedge to
BASIC to allow some disk commands to be simplified. After running, it returns to
BASIC, with the utility installed.

"Tinymon" and "Super VIC MON." These utilities move into the top of mem
ory, too, and look exactly similar in operation to Disk Wedge. In fact, though they are
not relocatable with simple POKEs, the necessary programming technique is more
subtle. The hybrid program is BASIC with its SYS, followed by a loader, followed by
the ML to be moved.

An Example of Mostly ML BASIC
In the following example, you'll see how VICMON itself can be saved as a BASIC
program. The result needs some adaptations to work satisfactorily, and may not
leave much RAM, but it shows the principles involved.

First, you need expansion RAM, say 8K, which makes BASIC start at $1200.
Then enter the monitor and use the following steps

.T 6000 7000 1210

.N 1210 2210 B2106000 7000

.N 208F 20DO B210 6000 7000
W

to transfer the ML into the region $1210-$220F, altering addresses and tables where
necessary. Now, a call to $1210, or SYS 4624 in BASTC, produces results like those
you get with the monitor.

The next step is to put 0 SYS4624 in BASIC. Enter the following
.M 1200 1210
.1200 00 OA 12 00 00
.1205 9E 34 36 32 34
.120A 00 00 00 00 00
.120F 00 ---ML------

which represents a zero byte, the link address (120A), the line number (0), and
SYS4624 as it is stored in BASIC. 9E is the token for SYS. This is followed by zero
bytes, to simulate end-of-program, and the ML itself begins at $1210, ready to be
called by SYS4624.

The only remaining step is to save this correctly, and the trick here is not to save
the zero byte at the start. The format .s "MLM IN BASIC", 01,1201,2210 is correct;
note the start address of $1201.

The same principles hold with any ML: Store it in memory, preferably near the
start of BASIC, then add the BASIC line. If you have no monitor, you can enter
BASIC, then alter locations 45 and 46 to include ML.

299

Mixing BASIC with Machine language

The method assumes that BASIC will be loaded back into the region it came
from. Different memory arrangements may not work without a reconfiguring loader.
Alternatively, SYS PEEK(43)+256*PEEK(44)+30 (or a similar expression) will find
the ML whatever the LOAD address of BASIC, so if the ML is relocatable, it will
always work.

Relocating Loaders
ML utilities can be moved in RAM just as BASIC ones can, and with negligible loss
of time. The technique used in Program 9-6 is similar to that for BASIC. First, mark
the absolute addresses needing relocation. Then add a zero byte immediately after
each such address, and also after every genuine zero byte. This is much easier to do
with an assembler.

Third, replace the addresses by their displacement from the end of the program
(they convert to commands like LDA $FFD6 or JSR $FF65). Finally, put the BASIC
call, the relocater (Program 9-6 gives the data for this), and the ML (preceded by a
unique marker byte not found anywhere in the modified ML and which terminates
the program) together in RAM, and save.

Program 9-6. Relocating ML
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

2 REM LINE 16'S 255 MARKS START BYTE OF ML :rem 41
10 DATA 165,45,133,34,165,46,133,35,165,55,133,36,

165,56,133 :rem 143
11 DATA 37,160,0,165,34,208,2,198,35,198,34,177,34

,208,60 :rem 253
12 DATA 165,34,208,2,198,35,198,34,177,34,240,33,1

33,38,165 :rem 103
13 DATA 34,208,2,198,35,198,34,177,34,24,101,36,17

0,165,38 :rem 50
14 DATA 101,37,72,165,55,208,2,198,56,198,55,104,1

45,55,138 :rem 108
15 DATA 72,165,55,208,2,198,56,198,55,104,145,55,5

6,176,184 :rem 123
16 DATA 201,255,208,237,165,55,133,51,165,56,133,5

2,108,55,0 :rem 137
19 DATA 55,56,176,184,201,255,208,237,165 :rem 245
20 DATA 55,133,51,165,56,133,52,108,55 :rem 75

300

Chapter 10

Vocabulary of the 6502 Chip

This chapter lists each opcode with full details and helpful examples. The following
conventions have been used:

Read as "becomes." For example, A:=X means that the value in A becomes that cur
rently in X.
x, 0, and 1
Show the effect of an opcode on the status flags. x means that the flag depends on
the operation's result. 0 and 1 represent flags which an opcode always sets to 0 or 1
respectively. All other flags are left unchanged.
$ and %
Prefix hexadecimal and binary numbers; where these are omitted, a number is
decimal.
A, X, and Y
The accumulator and the two index registers, X and Y.
M
Memory. This may be ROM in the case of LOAD instructions. Note that immediate
addressing mode (#) loads from the byte immediately following the opcode in
memory. All other addressing modes load from elsewhere in memory.
PSR (or SR)
The processor status register.
S
The location within the processor stack (locations $OlOO-$OlFF) currently referenced
by the stack pointer.
SP
The stack pointer.
PC
The program counter; this is composed of two eight-bit registers, PCL (program
counter low byte) and PCH (program counter high byte).

303

Vocabulary of the 6502 Chip

ADC
Add memory plus carry to the accumulator. A: = A + M + C

Instruction Addressing Bytes Cycles

$61 (97 %0110 0001) ADC (zero page, X) 2 6
$65 (101 %0110 0101) ADC zero page 2 3
$69 (105 %0110 1001) ADC # immediate 2 2
$6D (109 %0110 1101) ADC absolute 3 4
$71 (113 %0111 0001) ADC (zero page),Y 2 5'
$75 (117 %0111 0101) ADC zero page,X 2 4
$79 (121 %0111 1001) ADC absolute,Y 3 4'
$7D (125 %0111 1101) ADC absolute, X 3 4*

• Add 1 if page boundarv crossed.

Flags:

Operation: Adds together the current contents of the accumulator, the byte ref
erenced by the opcode, and the carry bit. If the result is too large for a single byte, C
is set to 1. If A holds zero (each bit equals zero), the Z flag is set to 1; otherwise, it is
O. If bit 7 in A is 1, the N flag is also set 1, to denote a negative value in A.
Uses:
1. Single-, double-, and multiple-byte additions. The carry bit automatically provides

for overflow from one byte to the next. For example:

CLC ; INSURES CARRY BIT IS 0
LDA $4A ; WE WISH TO ADD #$OA (10 DECIMAL) TO THE CONTENTS
ADC #$OA ; OF ($4A), I.E., THE DOUBLE-BYTE ADDRESS WHERE $4A
STA $4A ; IS THE LOW BYTE AND $4B THE HIGH BYTE
LDA $4B
ADC #$00 ; ADDS THE CARRY BIT WHERE APPLICABLE
STA $4B ; RESULT MUST BE STORED, ELSE IT WILL REMAIN ONLY IN A

2. Increasing or decreasing the accumulator. There is no INC A opcode.

CLC
ADC #$01 ; INCREMENTS A; FF BECOMES O.

3. In binary-coded decimal mode, obtained by set:ing D to 1, each nybble represents
0-9 and addition is corrected for this basis. This example adds 123 (decimal) to
the contents of locations 0 and 1, which are assumed to contain, in ascending
order, four binary-coded digits.

SED ; SET THE DECIMAL FLAG
CLC ; CLEAR CARRY FLAG
LDA $01 ; WE'VE ASSUMED THE BCD DATA IS STORED IN NORMAL ORDER
ADC #$23 ; WITH LOW BYTES FOLLOWING HIGHER ONES, NOT 6502 ORDER
STA $01 ; ADD 23 DECIMAL

304

Vocabulary of the 6502 Chip

LDA $00
ADC #$01 ; ADD 01 DECIMAL PLUS POSSIBLY CARRY BIT EQUIVALENT TO 100
STA $00
CLD ; CLEAR THE DECIMAL BIT, UNLESS MORE DECIMAL MATH

NEEDED

Notes: In decimal mode, the zero flag doesn't operate normally with ADC because
of the automatic correction (adding 6) which the 6502 carries out. Testing for a zero
result requires (for example) CMP #$00/ BEQ-which is an extra step not required
in hexadecimal arithmetic.

The V flag is important if the twos complement convention is in use, and is set
if the apparent sign of the result (bit 7) is not the true sign. In decimal mode, V is
not used.

AND
Logical AND of memory with the accumulator. A: = A AND M

Instruction Addressing

$21 (33 %0010 0001) AND (zero page, X)
$25 (37 %0010 0101) AND zero page
$29 (41 %0010 1001) AND # immediate
$2D (45 %0010 1101) AND absolute
$31 (49 %0011 0001) AND (zero page),Y
$35 (53 %0011 0101) AND zero page,X
$39 (57 %0011 1001) AND absoiute,Y
$3D (61 %0011 1101) AND absolute,X

• Add 1 if page boundary crossed.

Flags:

I ~V-BDI~C I

Bytes Cycles

2 6
2 3
2 2
3 4
2 5
2 4
3 4*
3 4*

Operation: Performs AND of the eight bits currently in the accumulator and the
eight bits referenced by the opcode. When both bits are 1, the result is 1, but if
either or both bits are zero, the result is O. The resulting byte is stored in A. If A
now holds O-that is, all its bits are zero-the Z flag is set to 1; and if the high bit is
set (bit 7 is 1), the negative flag N is set to 1. Otherwise, the flag is O.
Uses:
1. Masking off unwanted bits, typically to test for the existence of a few high bits, or

to test that some bits are zero:

LDA $E081,X; LOADS ACCUMULATOR FROM A TABLE OF CODED VALUES
AND #$3F ; TURNS OFF BITS 6 AND 7, LEAVING ALPHABETIC ASCII.

2. AND #$FF resets flags as though LDA had just occurred.
AND #$00 has the same effect as LDA #$00.

305

Vocabulary of the 6502 Chip

ASL
Shift memory or accumulator left one bit.

~76543210~

Instruction Addressing Bytes Cycles

$06 (6 %0000 0110) ASL zero page 2 5
$OA (10 %0000 1010) ASL accumulator 1 2
$OE (14 %0000 1110) ASL absolute 3 6
$16 (22 %0001 0110) ASL zero page,X 2 6
$IE (30 %0001 1110) ASL absolute,X 3 7

Flags:

I NV-BDlle
x x x

Operation: Moves the content of memory or the accumulator left by one bit po
sition, moving 0 into low bit, and the high bit intO' the carry flag. The carry bit there
fore is set to 0 or 1 depending on bit 7 previously being 0 or 1. Z and N are set
according to the result; thus Z can be true (that is, 1) only if the location or A held
$00 or $80 before ASL. The N bit can be set true if bit 6 was previously 1.
Uses:
1. Doubles a byte (though not in decimal mode). If signed arithmetic is not being

used, the result can safely reach values not exceeding 254, after which the carry
must be taken into account, often with ROL. This example uses A from 1 to 127
to load two bytes from a table of address pointers and store them on the stack:

ASL A
TAY
LDA ADDHI,Y
PHA
LDA ADDLO,Y
PHA

The following example multiplies the contents of location $20 by 3, provided
that the value it originally held was no greater than 85 decimal. In this case, the
carry bit is automatically cleared by the shift:

LDA $20
ASL A
ADC $20

2. Tests a bit by moving it into Z or N, to be followed by an appropriate branch.
Note that four ASLs move the low nybble into the high nybble.

306

Vocabulary of the 6502 Chip

Bee
Branch if the carry bit is O. PC:= PC + offset if C=O

Instruction Addressing Bytes

$90 (144 %1001 0000) BCC relative

"Add 1 if branch occurs; add 1 more if the branch crosses a page.

Flags:

I NV-BDIZC I

2

Cycles

2*

Operation: If C holds 0, the byte following the opcode is added to PC to calculate
the address of the next opcode. If C holds 1, the program counter is unaffected. The
effect is to cause a jump to the offset address when C is clear.
Uses:
1. As "branch always." If the carry bit is known to be clear, this command becomes

effectively a "branch always" instruction. The flag may be set in a purely sig
naling sense, with no significance other than to show that one of two conditions
applies. Many Kernal routines return with C clear if there were no errors, allowing
JSR KERNAL/BCC OK followed by error-handling routines.

2. After previous operations. Usually the test is concerned with the result of a pre
vious operation which mayor may not set the carry flag. This compare routine is
an example:
JSR GETCHAR; LOAD THE ACCUMULATOR WITH SOME VALUE, THEN
CMP #$OA ; COMPARE IT WITH DECIMAL 10.
BCC LOW ; BRANCH TO PROCESS VALUES 0-9,

; CONTINUE HERE WITH VALUES, 10-225

After any comparison, C is clear with a smaller value but is set with an equal or
greater value. Bit 7 is irrelevant.

Bes
Branch if the carry bit is 1. PC: = PC + offset if C = 1

Instruction Addressing

$BO (176 %1011 0000) BCS relative

"Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

I NV-BDIZC I

Bytes

2

Cycles

2*

Operation: Identical to BCC, except that the branch is taken if C=1 and not C=O.
Uses: Identical to BCe. The choice between BCC and BCS at a branch point depends
on convenience. For example, suppose a hardware port is to be read until bit 0 is set
to O. This routine:

307

Vocabulary of the 6502 Chip

LOOP LDA PORT; READ LOCATION UNTIL XXXXXXXO
LSR A
BCS LOOP

is obviously tidier than:

LOOP LDA PORT
LSR A
BCC NEXT
BCS LOOP

Similarly, JSR KERNAL/BCS ERROR followed by the normal processing path is
probably preferable to the BCC version.

IEQ
Branch if zero flag is 1. PC: = PC + offset if Z = 1

Instruction Addressing

$FO (240 % 1111 0000) BEQ relative

"Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

I NV-BDIZC I

Bytes Cycles

2 2*

Operation: If Z = I, the byte following the opcode is added, in twos complement
arithmetic, to the program counter, which currently points to the next opcode. The
effect is to cause a jump, forward or backward, up to a maximum of + 127 or -128
loca tions if the zero flag is set. If Z = 0 the branch is ignored.
Uses:
1. Common as an unconditional branch. It may be used to make routines relocatable,

where the branch command isn't wide-ranging enough to span the program with
out an intermediate hop. The example inserts a couple of branches at a point
where they will never be taken by the ML immediately before, and so are avail
able as long branches.
LDA #$F5 ; NONZERO VALUE
BEQ BACK ; THESE TWO BRANCHES
BEQ FWRD ; RELY ON Z=l

2. To end a loop, either when a counter is decremented to zero, or because a zero
byte is deliberately used as a terminator:

LOOP LDA TABLE,X ; LOAD A WITH THE NEXT CHARACTER
BEQ EXIT ; EXIT LOOP WHEN ZERO BYTE FOUND
... CONTINUE, E.G., STA OUTPUT,X/ INX/ BNE LOOP

3. After comparisons. BEQ is popular after comparisons because it's easy to use. For
example, J5R GETCHR/ CMP #$2C/ BEQ COMMA looks for a comma in BASIC.

Notes: When a result is zero, the zero flag Z is made true (1). This point can be
confusing. BEQ is usually read "branch if equal to zero," but when comparisons are

308

Vocabulary of the 6502 Chip

being made it could read "branch if equal." The zero flag cannot be set directly
(there is no SEZ instruction), but can be set only as the result of a location, register,
or difference becoming zero.

BIT
Test memory bits. Z flag set on A AND M; N flag: = M7; V flag: = M6

Instruction Addressing Bytes Cycles

$24 (36 %0010 0100) BIT zero page 2 3
$2C (44 %0010 1100) BIT absolute 3 4

Flags:

I NV-BDtze

M7M6 x

Operation: BIT affects only three flags, leaving registers and data unchanged. Z is
set as if A AND M had been performed. If no bit position is 1 in both the memory
location and A then A AND M is zero and Z= 1. Also, bits 6 and 7 are copied from
memory to the V and N flags.
Uses:
1. Multiple entry points for subroutines. The three-byte absolute address BIT is the

only instruction regularly used to provide alternate entry points for a routine. The
example loads A with RETURN, space, or a cursor right depending on the entry
point into the routine.
033C LDA #$OD A9 OD ; LDA #$OD
033E BIT #20A9 2C A9 20 ; LDA #$20
0341 BIT $1OA9 2C A9 1D ; LDA #$10

If the routine is entered with JSR $033C the accumulator is loaded with $OD and
the two BIT operations are then performed. These will change the settings of the
status register flags, but will not affect the contents of the accumulator. If the rou
tine is entered with JSR $033F, the routine begins with the A9 20 (LDA #$20) op
eration, and the contents of the accumulator will not be affected by the following
BIT operation. A JSR $0342 will leave $1 D in the accumulator.

This is a compact way to load values into A (or X or Y). BIT $18, in the same
way, alters three flags, but if entered at the $18 byte clears the carry flag. Both
constructions are common in Commodore ROM, which explains why you may fre
quently see BIT instructions when you disassemble ROM.

2. Testing bits 7 and 6. BIT followed by BMI/BPL or BVC/BVS tests bits 7 and 6.

BIT $OD
BMI ERR

This example tests location $OD, with a branch taken if it holds a negative twos
complement value. Location $OD is in fact used to check for type mismatches. A
value of $FF there denotes a string, $00 a numeric variable, so BMI occurs with
strings.

309

Vocabulary of the 6502 Chip

3. Used as AND without affecting the accumulator. The following example shows
the AND feature in use. CHRFLG holds 0 if no character is to be output, and $FF
otherwise. Assuming the accumulator holds a nonzero value, BIT tests whether to
branch past the output routine, while retaining A's value.

LDA VALUE
BIT CHRFLG
BEQ NOTOUT

BMI
Branch if the N flag is 1. PC: = PC + offset if N = 1

Instruction Addressing

$30 (48 %0011 0000) BMI relative

*Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

I NV-BDIZC I

Bytes

2

Cycles

2*

Operation: If the N flag is set, the byte following the opcode is added to the pro
gram counter in twos complement form. The effect is to force a jump to the new ad
dress. The maximum range of a branch is -128 to + 127 locations. When N is clear,
the branch command is ignored.
Uses:
1. Testing bit 7 of a location. For example:

LOOP BIT PORT ;TEST BITS OF A HARDWARE PORT (PRESERVING VALUE
IN A)

BMI LOOP ;WAIT UNTIL BIT 7 OF THE PORT IS 0

2. Conventional use. Like the other flags, N may be used in a purely conventional
sense. As an example, consider BASIC's keyword tokens. All have values, in deci
mal, of 128 or more, which keeps keywords logically separate from other BASIC
and also permits instructions like this:

LDA NEXT ; LOAD NEXT CHR INTO ACCUMULATOR
BMI TOKEN ; BRANCH TO PROCESS A KEYWORD

; OTHERWISE, PROCESS DATA AND EXPRESSIONS

Notes:
1. It's important to realize that the minus in BMI refers only to the use of bit 7 to de

note a negative number in twos complement arithmetic. Comparisons (for exam
ple, with CMP) followed by BMI implicitly use bit 7. Mostly it is easier to think of
this operation as "branch if the high bit is set."

2. BPL is exactly the opposite of BM!. Where one branches, the other does not.

310

Vocabulary of the 6502 Chip

BNE
Branch if Z is O. PC:= PC + offset if Z=O

Instruction Addressing

$DO (208 %1101 0000) BNE relative

"Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

I NV-BOIZC I

Bytes Cycles

2 2"

Operation: BNE operates exactly like BEQ, except that the condition is opposite. If
Z=O the offset contained in the byte after BNE is added to the program counter, so
the branch takes place. If Z = 1 the branch is ignored.
Uses:
1. In unconditional branches. BNE may be used in unconditional branches in circum

stances like those which apply to BEQ.
2. In a loop, where a counter is being decremented. BNE is very often used in a

loop in which a counter is being decremented. This is probably the easiest type
of loop to write. Watch the data's starting address, as offset 0 isn't executed by a
loop like this. The example prints ten characters from a table, their offsets being
10,9, 8, ... 2, 1.

LOX
LOOP LOA

JSR
OEX
BNE

#$OA
TABLE,X
OUTPUT

LOOP

3. After comparisons. BNE, like BEQ, is popular after comparisons:
B4CO LOA $CI ;CHECK CONTENTS OF $CI
B4C2 CMP #$42 ;IS IT B?
B4C4 BNE $B4C9 ;BRANCH IF NOT

Notes: When a result is nonzero, the zero flag Z is made false (set to 0). This can be
confusing. BNE is usually read "branch if not equal to zero." The result of a
comparison is zero if both bytes are identical, because one is subtracted from the
other, so "branch if not equal" is an optional alternative.

BPL
Branch if the N flag is O. PC: = PC + offset if N = 0

Instruction Addressing Bytes Cycles

$10 (16 %0001 0000) BPL relative 2 2*

"Add 1 if branch occurs; add 1 more if branch crosses a page.

311

Vocabulary of the 6502 Chip

Flags:

I NV-BDIZC

Operation: BPL operates exactly like BMI, except that the condition is opposite. The
branch is taken to the new address given by program counter plus offset if N = O.
This means that if the result was positive or zero, the branch is taken.
Uses:
1. In testing bit 7 of a memory location. This code, for example waits until the accu

mulator holds a byte with bit 7 on. Such a location must be interrupt- or hardware
controlled, not just RAM.
LOOP LDA TESTLOCN

BPL LOOP

2. Testing for the end of a loop. Where a counter is being decremented, and the
counter's value 0 is needed, this command can be useful. This simple loop prints
ten bytes to screen:

LDX #$09
LOOP LDA BASE,X

STA $lEOO,X
DEX
BPL LOOP

BRK

;X REGISTER WILL COUNT 9,8,7, ... ,1,0
;"BASE" IS THE STARTING ADDRESS OF THE 10 BYTES
;START OF SCREEN (UNEXPANDED VIC)
; DECREMENT X
; BRANCH WHEN POSITIVE OR ZERO

Force break. S:= PCH, SP:= SP-l, S:= PCL, SP:= SP-I, S:= PSR, SP:= SP-I,
PCL:= $FFFE, PCH:= $FFFF

Instruction Addressing Bytes Cycles

$00 (0 %0000 0000) BRK implied 1 7

Flags:

I NV-~D:ZC
Operation: BRK is a forced interrupt, which saves the current program counter and
status register values and jumps to a standard address. Note that the value saved for
the program counter points to the BRK byte plus two (like a branch) and that the
processor status register on the stack has flag B set to 1.

The IRQ service routine behaves like BRK. The break flag is a sort of designer's
patch so that BRK can be recognized as different from IRQ interrupts.
Uses:
1. With ML monitors. BRK is mainly used with ML monitors. The ML stops when

BRK is encountered, and the vector points back to the monitor, typically printing
the current values of the program counter, flags' status register, A, X, Y, stack
pointer, and possibly other ML variables.

312

Vocabulary of the 6502 Chip

In the VIC's ROM, locations $FFFE and $FFFF point to a routine beginning
at $FF72. If the B flag is set, a jump is made through a vector at location $0316, so
the BRK handling routine can be modified by changing the values in $0316 and
$0317. Altering these locations to point to the monitor is a function of initializa
tion of the monitor; it isn't inherent in the system that BRK behaves like that. BRK
is valuable when developing ML programs.

2. Monitors can be entered from BASIC if $0316/0317 points to their start. POKE
790,0: POKE 791,96, for example, points this vector to $6000, and SYS 13 (or a
SYS to any location containing a zero byte) enters a monitor there. Usually
$0316/0317 points to a ROM routine used by STOP-RESTORE which resets I/O
and Kernal pointers. BRK is not widely used in ML that must interact directly with
BASIC.

Bve
Branch if the internal overflow flag (V) is O. PC: = PC + offset if V = 0

-
Instruction Addressing Bytes Cycles

$50 (80 %0101 0000) BVC relative 2 2*

"Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

I NV-BDIZC I
Operation: If V is clear, the byte following the opcode is added, as a twos com
plement number, to the program counter, set to point at the following instruction.
The effect is to jump to a new address. If V = 1, the next instruction is processed and
the branch ignored.
Uses:
1. As a "branch always" instruction. For instance:

CLV
BVC LOAD

2. With signed arithmetic, to detect overflow from bit 6 into bit 7, giving a spurious
negative bit. This is rarely used since the sign of a number can be held elsewhere,
so that ordinary arithmetic can be used without the complication of the V bit.

The following routine adds two numbers in twos complement form; the
numbers must therefore be in the range -128 to 127. CLC is necessary; other
wise, it may add 1 to the result. Overflow will occur if the total exceeds 127 or is
less than -128.

LDA ADD!
CLC
ADC ADD2
BVC OK
IMP OVERFL

313

Vocabulary of the 6502 Chip

3. Testing bit 6. BIT copies bit 6 of the specified location into the V flag of the
processor status register, so BVC or BVS can be used to test bit 6. For example,
the following routine waits until the hardware sets bit 6 of hardware location
PORT to 1.

FI03 BIT PORT
FI06 BVC $FI03

BVS
Branch if the mterna overflow flag (V) is 1 PC - PC + offset if V = 1

Instruction Addressing Bytes Cycles

$70 (112 %0111 0000) BVS relative 2 2*

• Add 1 if branch occurs; add 1 more if branch crosses a page.

Flags:

I NV-BDIZC I
Operation: This branch is identical to BVC except that the test logic to decide
whether the branch is taken is opposite.

CLC
Cl h ear t e carry f1 a&- C 0 -

Instruction Addressing Bytes Cycles

$18 (24 %0001 1000) CLC implied 1 2

Flags: I NV-BDIZ~
Operation: The carry flag is set o. All other flags are unchanged.
Uses: The carry bit is automatically included in add and subtract commands (ADC
and SBC), so that accurate calculations require the flag to be in a known state. CLC
is the usual preliminary to additions:

CLC
LDA
ADC
J5R

#$02
#$02
PRINT

After CLC, this routine adds 2 and 2 and prints the resulting byte 4. In multiple
byte additions, C is cleared at the start but is subsequently used to carry through the
overflows, if they exist.

314

Vocabulary of the 6502 Chip

CLD
Clear the decimal flag. D: = 0

Instruction Addressing Bytes Cycles

$D8 (216 %1101 1000) CLD implied 1 2

Flags: I NV-B~IZC
Operation: The decimal flag is set 0; all other flags are unchanged.
Uses: Resets the mode for ADC and SBC so that hexadecimal arithmetic is per
formed, not binary-coded decimal. Typically, SED precedes some decimal calculation,
with CLD following when this is finished.
Notes: BASIC uses no decimal mode calculations; on switching the machine on, CLD
is executed and the flag is left off. ML monitors clear the flag on entry too.

CLI
Cl ear th . t t d' bl fl e In errup1 Isa e ago .= o

Instruction Addressing Bytes Cycles

$58 (88 %0101 1000) CLI implied 1 2

Flags:

I NV-BD:ZC

Operation: The interrupt disable flag is set to O. From now on, IRQ interrupts will
take place and be processed by the system.
Notes:
1. Interrupts through the NMI line (non-maskable interrupts) take place irrespective

of the I flag.
2. Typically, CLI is used after SEI plus changes to interrupt vectors. Often, CLI isn't

needed when used with BASIC, as a number of BASIC routines themselves use
CLI.

CLV
Cl h fl ear t e interna over ow fl V 0 ago .=

Instruction Addressing Bytes Cycles

$B8 (184 %10111000) CLV implied 1 2

315

Vocabulary of the 6502 Chip

Flags: I N;-BDIZC

Operation: Sets V to O.
Notes: CLV is used only in "branch always" instructions (for example, CLV jBVC).
Unlike C, V isn't added to results, so clearing is not necessary before calculations.

eMP
C 'th th ompare memory WI t t f th e con en so I t PSR t b A-M e accumu a or. se 'y

Instruction Addressing

$C1 (193 %11000001) CMP (zero page,X)
$C5 (197 %1100 0101) CMP zero page
$C9 (201 %1100 1001) CMP # immediate
$CD (205 %1100 1101) CMP absolute
$D1 (209 %1101 0001) CMP (zero page),Y
$D5 (213 %1101 0101) CMP zero page,X
$D9 (217 %11011001) CMP absolute,Y
$DD (221 %1101 1101) CMP absolute, X

• Add 1 if page boundary is crossed.

Flags:

I :V-BDI~~ I

Bytes Cycles

2 6
2 3
2 2
3 4
2 5*
2 4
3 4*
3 4*

Operation: CMP affects three flags only, leaving registers and data intact. The accu
mulator is not changed. The byte at the address specified by the opcode is subtracted
from A, and the three flags N, Z, and C are set depending on the result. Thus, if the
accumulator holds the same value as the memory location, the result is zero and the
zero flag is set.

Within the chip, what happens is that the value in the accumulator is added to
the twos complement of the data. The result of this determines how the flags are set.
Uses:
1. With the zero flag, Z. This is the easiest flag to use with CMP. Z=O after a CMP

means the two values were equal.

FF22 JSR $FFCF iINPUT A CHARACTER
FF25 CMP #$20 iIS IT A SPACE?
FF27 BEQ $FF22 iYES. INPUT AGAIN
FF29 CMP #$OD iIS IT C.RETURN?
FF2B BEQ $FF47 iYES. BRANCH ...
FF2D CMP #$22 i .. NO. IS IT QUOTES? ETC.

316

Vocabulary of the 6502 Chip

This is part of a ROM routine to search through BASIC lines from the keyboard
buffer for particular characters such as spaces, RETURNs, and quotes, which re
quire special handling.

2. With the carry flag, C. If the value of the byte is less than A, or equal to A, the
carry flag is set; that is, C = 0 (tested with BCC) after a CMP means that A<M,
while C = 1 (tested with BCS) indicates that A~M. Here, "less than" is in the ab
solute sense, not the twos complement sense. Thus, 100 is less than 190, although
in twos complement notation, 190 (being negative) would count as the smaller
number of the two.

The following example shows how a range of values may be tested for and
processed. Starting with the lowest ranges, comparisons are carried out until the
correct range is found. Each comparison is followed by a branch to B1, B2, etc.,
where processing is carried out for O-$lF, $20-$3F, and so on.

LDY #$00
LDA (PTR),Y
CMP #$20
BCC Bl
CMP #$40
BCC B2

3. With the negative flag, N. This is the trickiest flag to use with CMP. The reason is
that twos complement numbers are assumed, and if you are working with these,
CMP operates as expected, subtracting the memory from the accumulator. If both
numbers are positive, or both negative, the N flag is set as though absolute
subtraction were being used, and in these circumstances BMI/BPL can be used.
But if the two data items have different signs, the comparison process is com
plicated by the fact that the V bit may register internal overflow. Generally, use
the carry flag.

CPX
C . h th ompare memory WIt

Instruction

$EO (224 %11100000)
$E4 (228 %1110 OlDO)
$EC (236 %1110 1100)

Flags:

I NV-BDIZC

_ x x x

t t f th X e con en s 0 e
Addressing

CPX # immediate
CPX zero page
CPX absolute

re Ister. PSR t b X M se 'y -

Bytes Cycles

2 2
2 3
3 4

Operation: CPX affects three flags only, leaving the registers and data intact. The
byte referenced by the opcode is subtracted from the contents of the X register, and
the flags N, Z, and C are set depending on the result. The value in X is not affected.
Within the chip, X is added to the twos complement of the data, and the result
determines how the flags are set.

317

Vocabulary of the 6502 Chip

Uses:
1. With the zero flag, Z. This flag tests equality.

LDX #$00
LOOP LDA $0278,X

STA $0277,X
INX
CPX $C6
BNE LOOP

The loop in this example is part of the keyboard buffer processing, showing
how the contents of the buffer are shifted one character at a time. $C6 is a zero
page location, updated whenever a new character is keyed in, which holds the
current number of characters in the buffer. The comparison provides a test to end
the loop.

2. With the carry flag, C. This flag tests for X:e:M and X<M.

LDX $FE
CPX #$15
BCS EXIT; IF X>21

The test routine is part of a graphics plot program; location $FE holds the
horizontal coordinate, which is to be in the range 0-21 to fit the screen. The
comparison causes exit, without plotting, when X holds 22-255.

3. With the negative flag, N. When X and the data have the same sign (both are 0-
127 or 128-255), then BMI has the same effect as BCe, and vice versa. When the
signs are opposite, the process is complicated by the possibility of overflow into
bit 7. For example, 78 compared with 225 sets N = 0, but 127 compared with 255
sets N=1. (Note that 225=-31 as a twos complement number; thus
78+31=109 with N=O, but 127+31=158 with N=1.)

Cpy
C 'th th ompare memory WI

Instruction

$CO (192 % 1100 0000)
$C4 (196 %1100 0100)
$CC (204 %1100 1100)

Flags:

I NV-BDIZe

. x x x

t t f th Y e con en so e

Addressing

Cpy # immediate
Cpy zero page
Cpy absolute

re Ister. PSR b Y M. set)y -

Bytes Cycles

2 2
2 3
3 4

Operation: CPY affects three flags only, leaving the registers and data intact. The
byte referenced by the opcode is subtracted from Y, and the flags N, Z, and C are set
depending on the result. Apart from the use of Y in place of X, with the resulting
symmetry in the implementation of addressing, this opcode is identical in its effects
to CPX.

318

Vocabulary of the 6502 Chip

Notes: The major difference in addressing between X and Y is the fact that post
indexing of indirect addresses is available only with Y. This type of construction, in
which a set of consecutive bytes (perhaps a string in RAM or an error message) is
processed up to some known length, tends to use the Y register.

LDY #$00
LOOP LDA (PTR),Y

JSR OUTPUT
INY
CPY LENGTH
BNE LOOP

DEC
D f M M 1 ecrement contents 0 memory ocahon. - -

Instruction Addressing Bytes

$C6 (198 %1100 0110) DEC zero page 2
$CE (206 %1100 1110) DEC absolute 3
$D6 (214 %1101 0110) DEC zero page,X 2
$DE (222 %11011110) DEC absolute,X 3

Flags: I ~V-BDI~C

Cycles

5
6
6
7

Operation: The byte referenced by the addressing mode is decremented by 1,
conditioning the N flag and the Z flag. If the byte contains a value from $81 to $00
after DEC, the N flag will be set. The Z flag will be 0 except for the one case where
the location held $01 before the decrement. DEC is performed within the chip itself
by adding $FF to the contents of the specified location, setting Nand Z on the
result.

The carry bit is unchanged regardless of the outcome of DEC.
Uses:
1. To decrement a double-byte value.

LDA $93
BNE +2
DEC $94
DEC $93

This short routine shows an efficient method to decrement a zero page
pointer or any other double-byte value. It uses the fact that the high byte must be
decremented only if the low byte is exactly zero.

2. Implementing other counters. Counters other than the X register and Y register
can easily be implemented with this command (or INC). Such counters must be in
RAM. DEC cannot be used to decrement the contents of the accumulator. This
simple delay loop which decrements locations $FB and $FC shows an example:

319

Vocabulary of the 6502 Chip

AND #$00 iFOR A CHANGE
STA $FB iSET THESE BOTH
STA $FC iTO ZERO

LOOP DEC $FB
BNE LOOP i255 LOOPS ...
DEC $FC
BNE LOOP i ... BY 255

A zero page decrement takes five clock cycles to carry out; a successful
branch takes three (assuming a page boundary isn't crossed). The inside loop
therefore takes 8*255 cycles to complete, and the whole loop requires a little more
than 8*255*255 cycles. Divide this by a million to get the actual time in seconds,
which is about half a second.

DEX
D h f h X ecrement t e contents 0 t e regIster . X X 1 . = --

Instruction Addressing Bytes Cycles

$CA (202 %1100 1010) DEX implied 1 2

Flags:

I ~V-BDI~C
Operation: The value in the X register is decremented by 1, setting the N flag if the
result has bit 7 set, and setting the Z flag if the result is O. As with DEC, the carry
bit is unaltered.
Uses: To count X in a loop. DEX is almost exclusively used to count X in a loop. Its
maximum range, 255 bytes, is often insufficient, so several loops may be necessary.
This routine moves 28 bytes from ROM to RAM, including the CHRGET routine.

LDX #$lC
NEXT LDA E378,X

STA $73,X
DEX
BNE NEXT

DEY
D t th t t f th Y . t Y Y 1 ecremen e con en s 0 e regIs er. - -

Instruction Addressing Bytes

$88 (136 % 1000 1000) DEY implied 1

320

Cycles

2

Vocabulary of the 6502 Chip

Flags:

I ~V-BDI~C
Operation: The value in the Y register is decremented by 1, setting the N flag if the
result has bit 7 set (that is, is greater than 127), and setting the Z flag if the result is
O. As with DEC, the carry bit is unaltered.
Uses: Counting within loops. DEY, like DEX, is almost exclusively used to count
within loops. There are more opcodes which have indexing by X than by Y, so X is
more popular for this purpose. The example uses Y to count from 2 to O.

LDY #$02
LDA (PTR),Y iLOAD 2ND BYTE
DEY
ORA (PTR), Y iORA 1ST BYTE
DEY
ORA (PTR), Y iORA OTH BYTE
BNE CONT iENDIFZERO

This inclusively ORs together three adjacent bytes; if the result is 0, each of the
three must have been a zero.

EOR
The byte in the accumulator is exclusively ORed bitwise with the contents of
memory . . = A AEORM

Instruction Addressing

$41 (65 %01000001) EOR (zero page,X)
$45 (69 %0100 0101) EOR zero page
$49 (73 %0100 1001 EOR # immediate
$4D (77 %0100 1101) EOR absolute
$51 (81 %0101 0001) EOR (zero page),Y
$55 (85 %0101 0101) EOR zero page,X
$59 (89 %0101 1001) EOR absolute,Y
$5D (93 %0101 1101) EOR absolute,X

* Add 1 if page boundary is crossed.

Flags:

I ~V-BDI~C I

Bytes Cycles

2 6
2 3
2 2
3 4
2 5*
2 4
3 4*
3 4*

Operation: An exclusive OR (compare ORA for a description of an inclusive OR) is a
logical operation in which bits are compared, and EOR is considered to be true if A
or B-but not both or neither-is true. For example, consider $AB EOR $5F. The
byte $AB is %1010 1011, and $5F is %0101 1111. So the EOR of these two is

321

Vocabulary of the 6502 Chip

%1111 0100, or $F4. You get this result by a process of bit comparisons, where bit 7
is 0 EOR 1 =1, and so on.
Uses:
1. Reversing a bit. EORing a bit with 0 leaves the bit unaffected; EORing a bit with 1

flips the bit.
LDA LOCN
EOR #$02 ;FLIPS BIT 1
STA LOCN

The example shows how a single bit can be reversed. To reverse an entire
byte, use EOR #$FF; to reverse bit 7, use EOR #$80.

2. In hash totals and encryption algorithms. Hash totals and encryption algorithms
often use EOR. For example, if you have a message you wish to conceal, you can
EOR each byte with a section of ROM or with bytes generated by some repeatable
process. The message is recoverable with the same EOR sequence.

INC
ncrement con en s 0 memory oca IOn . t t f f . = M M+l
Instruction Addressing Bytes Cycles

$E6 (230 %11100110) INC zero page 2 5
$EE (238 % 1110 1110) INC absolute 3 6
$F6 (246 %1111 0110) INC zero page,X 2 6
$FE (254 % 1111 1110) INC absolute,X 3 7

Flags: I ~V-BDI~C
Operation: The byte referenced by the addressing mode is incremented by I, setting
the N flag and the Z flag. The N flag will be 1 if the high bit of the byte is 1 after
the INC, and otherwise O. The Z flag will be 1 only if the location held $FF before
the INC. The carry bit is unchanged.
Uses:
1. Incrementing a double-byte value. This short routine shows an efficient method to

increment a zero page pointer or any other double-byte value. The high byte is in
cremented only when the low byte changes from $FF to $00.
INC $FB
BNE CONT
INC $FC CONT

2. Implementing counters in RAM. INC may be used to implement counters in RAM
where the X and Y registers are insufficient. Suppose we use the IRQ interrupt
servicing to change a tune regularly.

322

Vocabulary of the 6502 Chip

IRQ INC $FE
BEQ +3
JMP IRQCONT
LOA #20
STA $FE

Where IRQCONT is the interrupt's usual routine, this allows some periodic rou
tine to be performed. Here, the zero page location $FE is used to count from $20
up to $FF and $00, so the processing occurs every 255-32=223 jiffies-about
every 3.7 seconds.

Notes:
1. The accumulator can't be incremented with INC. CLC/ ADC #$01 or SEC/ ADC

#$00 must be used. TAX/ INX/ TXA or some other variation may also be used.
2. Remember that INC doesn't load the contents of the location to be incremented

into any of the registers. If the incremented value is wanted in A, X, or Y, then
INC $C6 must be followed by LDA $C6, LDX $C6, or LDY $C6.

INX
h ncrement t e contents 0 f h X t e regIster. X X+1 -

Instruction Addressing Bytes Cycles

$E8 (232 % 1110 1000) INX implied 1 2

Flags: I ~V-BDI:C
Operation: The byte in the X register is incremented by 1, setting the N flag if the
result has bit 7 set, and the Z flag if the result is zero. These flags may both be 0, or
one of them may be 1; it is impossible for both to be set 1 by this command. The
carry bit is unchanged.
Uses: As a loop variable. INX is common as a loop variable. It is also often used to
set miscellaneous values which happen to be near each other, for example:
LOX #$00
STX $033A
STX $033C
INX
STX $10

Stack-pointer processing tends to be connected with the use of the X register,
because TXS and TSX are the only ways of accessing SF.

323

Vocabulary of the 6502 Chip

INY
h Increment t e contents 0 f h Y t e regIster. .= Y Y+l

Instruction Addressing Bytes Cycles

$C8 (200 % 1100 1000) INY implied 1 2

Flags:

I :V-BDI:C
Operation: The byte in the Y register is incremented by I, setting N = 1 if the result
has bit 7 = 1 (and vice versa) and setting Z = 1 if the result is zero (and vice versa). A
zero result is obtained by incrementing $FF. Note that the carry bit is unchanged in
all cases.
Uses: To control loops. Like DEX, DEY, and INX, this command is often used to con
trol loops. It is often followed by a comparison, CPY, to check whether its exit value
has been reached.

JMP
J h ump to a new ocat1On anyw ere In memory. PC M -

Instruction Addressing Bytes Cycles

$4C (76 %0100 1100) JMP absolute 3 3
$6C (108 %0110 1100)]MP (absolute) 3 5

Flags:

I NV-BDIZC

Operation: JMP is the 6502 equivalent of a GOTO, transferring control to some
other part of the program. An absolute JMP, opcode $4C, transfers the next byte to
the low byte of PC, and the next to highest byte of Pc, causing an unconditional
jump.

The indirect absolute jump is more elaborate and takes longer. PCl and PCH
are loaded from the address following JMP and from the next address respectively.
This is the only absolute indirect command available on the 6502.
Uses: JMP, unlike J5R, keeps no record of its present position; control is just shifted
to another part of a program. Branch instructions are preferable if Ml is required to
work even when moved around in memory, except for JMPs to fixed locations like
ROM.

CMP #$2C ; IS IT COMMA?
BEQ +3
JMP ERROR

324

Vocabulary of the 6502 Chip

The example is part of a subroutine which checks for a comma in a BASIC line; if
the comma has been omitted, an error message is printed.
Notes:
1. Indirect addressing. This is a three-byte command that takes the form JMP ($0072)

or]MP ($7FFO). A concrete example is the IRQ vector. When a hardware interrupt
occurs, an indirect jump to ($3014) takes place. A look at this region of RAM with
a monitor reveals something like this:

0314 3C 03 97 FF 47 FE

SO JMP ($0314) is equivalent to JMP $033C in this instance. Pairs of bytes can be
collected together to form an indirect jump table. Note that this instruction has a
bug; JMP ($02FF) takes its new address from $02FF and $0200, not $0300.

2. A subroutine call followed by a return is exactly identical to a jump, except that
the stack use is less and the timing is shorter. Replacing JSR CHECK/ RTS by
JMP CHECK is a common trick.

JSR
Jump to a new memory location, saving the return address. S: = PC + 2 H, SP: =
SP-l, S:= PC+2 L, SP:= SP-I, PC:= M

Instruction Addressing Bytes Cycles

$20 (32 %0010 0000) JSR absolute 3 6

Flags:

I NV-BDIZC

Operation: JSR is the 6502 equivalent of a COSUB, transferring control to another
part of the program until an RTS is met, which has an effect like RETURN. Like
BRK, this instruction saves PC + 2 on the stack, which points to the last byte of the
JSR command. RTS therefore has to increment the stored value in order to execute a
correct return. Note that no flags are changed by J5R. RTS also leaves flags un
altered, making J5R $FFCO/ BCe, for example, feasible.
Uses:
1. Breaking programs into subroutines. JSR allows programs to be separated into

subroutines, which is a very valuable feature. The Kernal commands, all of which
are called as subroutines by JSR, illustrate the convenience which subroutines
bring to programming. Neither J5R nor RTS sets flags, so LDA #$OD / JSR $FFD2
(Kernal output routine) successfully transfers the accumulator contents-in this
case, a RETURN character-since the carry flag status is transferred back after
RTS.
LOOP JSR $FFE4 ;GET RETURNS A = 0

BEQ LOOP ;IF NO KEY IS PRESSED
STA BUFFER ;WE HAVE A KEY: PROCESS IT

The example uses a Kernal subroutine which gets a character, usually from
the keyboard. The subroutine is a self-contained unit. Chapter 8 has examples in

325

Vocabulary of the 6502 Chip

which several JSR calls follow each other, performing a series of operations be
tween them.

2. Other applications. See RTS for the PLA/ PLA construction which pops one sub
routine return address from the stack. RTS also explains the special construction in
which an address (minus 1) is pushed onto the stack, generating a jump when
RTS occurs. Finally, see JMP for a note on the way in which JSR/RTS may be re
placed by JMP.

LDA
Loa d h . h b f t e accumu ator WIt a 'yte rom memon.

Instruction Addressing

$A1 (161 %1010 0001) LOA (zero page,X)
$A5 (165 %1010 0101) LOA zero page
$A9 (169 %1010 1001) LOA # immediate
$AO (173 %1010 1101) LOA absolute
$B1 (177 %10110001) LOA (zero page),Y
$B5 (181 %1011 0101) LOA zero page,X
$B9 (185 %1011 1001) LOA absolute,Y
$BO (189 %1011 1101) LOA absolute,X

• Add 1 if page boundary crossed.
Flags:

I ~V-BDI~C I

.= A M

Bytes Cycles

2 6
2 3
2 2
3 4
2 5*
2 4
3 4*
3 4*

Operation: Loads the accumulator with the contents of the specified memory loca
tion. The zero flag Z is set to 1 if the accumulator now holds zero (all bits loaded
are Os). Bit 7 is copied into the N (negative) flag. No other flags are altered.

Uses:
1. General transfer of data from one part of memory to another. Such transfer needs

a temporary intermediate storage location, which A (or X or Y) can be. As an
example, this program transfers 256 consecutive bytes of data beginning at $7000
to an area beginning at $8000. The accumulator is alternately loaded with data
and written to memory.
LDX #00
LDA $7000,X
STA $8000,X
DEX
BNE -9

2. Binary operations. Some binary operations use the accumulator. ADC, SBC, and
CMP all require A to be loaded before adding, subtracting, or comparing. The
addition (or whatever) can't be made directly between two RAM locations, so
LDA is essential.

326

Vocabulary of the 6502 Chip

LDA $C5
CMP #$40
BNE KEY

; WHICH KEY?
; PERHAPS NONE?
; BRANCH IF KEY

3. Setting chip registers. Sometimes a chip register is set by reading from it; this ex
plains some LDA commands in initialization routines with no apparent purpose.

LDX
L d h X oa t e . h b f regIster WIt a l~te rom memory.

Instruction Addressing

$A2 (162 %1010 0001) LOX # immediate
$A6 (166 %1010 0101) LOX zero page
$AE (174 %1010 1110) LOX absolute
$B6 (182 %1011 0101) LOX zero page,Y
$BE (190 %1011 1110) LOX absolute,Y

• Add 1 if page boundary crossed.
Flags:

I ~V-BDI~C I

.= X M
Bytes Cycles

2 2
2 3
3 4
2 4
3 4*

Operation: Loads X from memory and sets Z= 1 if X holds zero. Bit 7 from the
memory is also copied into N. No other flags are altered.
Uses:
1. Transfer of data and holding temporary values. These applications clcsely re

semble LDA.
2. Offset with indexed addressing. X has two characteristics which distinguish it from

A: It is in direct communication with the stack pointer, and it can be used as an
offset with indexed addressing. There are other differences too. Constructions like
LDX #$FF/ TXS and LDX #$00/ ... / DEX/ BNE are common.

LDY
L d h Y oa t e . h b f regIster WIt a lyte rom memory. .= Y M

Instruction Addressing Bytes Cycles

$AO (160 %1010 0000) LOY # immediate 2 2
$A4 (164 %1010 0100) LOY zero page 2 3
$AC (172 %1010 1100) LOY absolute 3 4
$B4 (180 %1011 0100) LOY zero page,X 2 4
$BC (188 %1011 1100) LOY absolute,X 3 4*

• Add 1 if page boundary crossed.

327

Vocabulary of the 6502 Chip

Flags: I ~V-BD[:C
Operation: Loads Y from memory and sets Z= 1 if Y now holds zero. Bit 7 from
memory is copied into N. No other flags are altered.
Uses:
1. Transfer of data and storage of temporary values.
2. Loops. Since Y can be used as an index, and can be incremented or decremented

easily, it is often used in loops. However, X generally has more combinations of
addressing modes in which it is used as an index. Therefore, X is usually reserved
for indexing, while A and Y between them process other parameters. When in
direct addressing is used, this preference is reversed, since LDA (addr,X) is usually
less useful than LDA (addr),Y.

LDY #$00 ;X HOLDS LENGTH
LOOP DEX ;DECREMENTIT

BEQ EXIT ;EXIT WHEN 0
LDA (PTR),Y ;LOAD ACCUMULATOR
JSR PRINT ;PRINT SINGLE CHR
CMP #$OD ;EXIT IF
BEQ EXIT ; RETURN
BNE LOOP ;CONTINUE LOOP

This admittedly unexciting example shows how A, X, and Y have distinct
roles. The ROM routine to print the character is assumed to return the original X
and Y values, as in fact it does.

LSR
Shift memory or accumulator right one bit.

~76543210~

Instruction Addressing Bytes Cycles

$46 (70 %0100 0110) LSR zero page 2 5
$4A (74 %0100 1010) LSR accumulator 1 2
$4E (78 %0100 1110) LSR absolute 3 6
$56 (86 %0101 0110) LSR zero page,X 2 6
$5E (94 %0101 1110) LSR absolute, X 3 7

Flags:

328

Vocabulary of the 6502 Chip

Operation: Moves the contents of a memory location or the accumulator right by
one bit position, putting ° into bit 7 and the N (negative) flag and moving the
rightmost bit, bit 0, into the carry flag. The Z flag is set to 1 if the result is 0, and
cleared if not. Z can therefore become 1 only if the location held either $00 or $01
before LSR.
Uses:
1. Similar to ASL. This might well have been called arithmetic shift right. A byte is

halved by this instruction (unless D is set), and its remainder is moved into the
carry flag. With ASL, ROL, ROR, ADe, and SBe, this command is often used in
ML calculations.

2. Other applications. LSRj LSRj LSRj LSR moves a high nybble into a low nybble;
LSRj Bee tests bit 0, and branches if it was not set to 1. In addition, LSR turns
off bit 7, giving an easy way to convert a negative number into its positive equiva
lent, when the sign byte is stored apart from the number's absolute value.

NOP
N f o orera IOn.

Instruction Addressing Bytes Cycles

$EA (234 % 1110 1010) NOP implied 1 2

Flags:

I NV-BOlZC

Operation: Does nothing, except to increment the program counter and continue
with the next opcode.
Uses:
1. Filling unused portions of program. This is useful with hand assembly and other

methods where calculation of branch addresses cannot be done easily.
2. When writing machine code. A large block of Naps (or an occasional sprinkling

of them) can simplify the task of editing the code and inserting corrections. Nap
can also be used as part of a timing loop.

329

Vocabulary of the 6502 Chip

ORA
Logical inclusive OR of memory with the accumulator A: = A OR M

Instruction Addressing

$01 (1 %0000 0001) ORA (zero page,X)
$05 (5 %0000 0101) ORA zero page
$09 (9 %0000 1001) ORA # immediate
$OD (13 %0000 1101) ORA absolute
$11 (17 %0001 0001) ORA (zero page),Y
$15 (21 %0001 0101) ORA zero page,X
$19 (25 %0001 1001) ORA absolute,Y
$10 (29 %0001 1101) ORA absolute,X

• Add 1 if page boundary crossed.

Flags:

I ~V-BD[~C I

Bytes Cycles

2 6
2 3
2 2
3 4
2 5
2 4
3 4*
3 4*

Operation: Performs the inclusive OR of the eight bits currently in the accumulator
with the eight bits referenced by the opcode. The result is stored in A. If either bit is
1, the resulting bit is set to 1, so that, for example, %0011 0101 ORA %0000 1111 is
%0011 1111. The negative flag N is set or cleared depending on bit 7 of the result.
The Z (zero) flag is set if the result is zero, and clear otherwise.
Uses:
1. Setting a bit or bits. This is the opposite of masking out bits, as described under

AND.
LDA #ERROR
ORA $90
STA $90

The example shows the method by which an error code of 1, 2, 4, or whatever,
held in A, is flagged into the VIC's BASIC I/O status byte ST, stored in location
$90, without losing the value currently in that location. For example, if ERROR is
4 and the current contents of ST is 64, then ORA $90 is equivalent to $04 OR
$40, which gives $44. If ERROR is 0, then ORA $90 leaves the current value from
location $90 unchanged. Note the necessity for STA $90; without it, only A holds
the correct value of ST.

2. Other uses. These include the testing of several bytes for conditions which are in
tended to be true for each of them-for instance, that three consecutive bytes are
all zero or that several bytes all have bit 7 equal to zero. LDY #00/ LDA (PTR),Y/
INY/ ORA (PTR),Y/ INY/ ORA (PTR),Y/ BNE ... branches if one or more bytes
contains a nonzero value.

330

Vocabulary of the 6502 Chip

PHA
Push the accumulator's contents onto the stack. S:= A, SP:= SP-1

Instruction Addressing Bytes Cycles

$48 (72 %0100 1000) PHA implied 1 3

Flags:

I NV-BDIZC

Operation: The value in the accumulator is placed into the stack at the position cur
rently pointed to by the stack pointer; the stack pointer is then decremented. Figure
10-1 illustrates the position before and after the push:

Figure 1 0- 1. Effect of PHA
$0100 $OlFF

t I STACK IN USE

SP (STACK POINTER)

t I A I STACK IN USE

SP (STACK POINTER)

Uses: This instruction is used for temporary storage of bytes. It may be used to hold
intermediate values of calculations produced during the parsing of numeric ex
pressions, to temporarily store values for later recovery while A is used for other
processing, for storage when swapping bytes, and for storage of A, X, and Y registers
at the start of a subroutine.

The example shows a printout routine which is designed to end when the high
bit of a letter in the table is 1. The output requires the high bit to be set to 0; but the
original value is recoverable from the stack and may be used in a test for the
terminator at the end of message.

LOOP JSR GETC iGET NEXT CHR
PHA iSTORE ON STACK
AND #$7F ;REMOVE BIT 7
JSR PRINT ;OUTPUT A CHARACTER
PLA iRECOVER WITH BIT 7
BPL LOOP iCONTINUE IF BIT 7=0

PHP
Push the processor status register's contents onto the the stack. S: = PSR, SP: =
SP-1

Instruction Addressing Bytes Cycles

$08 (8 %0000 1000) PHP implied 1 3

331

Vocabulary of the 6502 Cllip

Flags:

I NV-BDIZC

Operation: The operation is similar to PHA, except that the processor status register
is put in the stack. The PSR is 'lnchanged by the push.
Uses: Stores the entire set of flags, usually either to be recovered later and displayed
by a monitor program or for recovery followed by a branch. PHP / PLA leaves the
stack in the condition it was found; it also loads A with the flag register, SR, so the
flags' status can be stored for use later.

PLA
Pull the stack into the accumulator. SP: = SP + 1, A: = S

Instruction Addressing Bytes Cycles

$68 (104 %0110 1000) PLA implied 1 4

Flags:

I ~V-BDI~C
Operation: The stack pointer is incremented, then the RAM address to which it
points is read and loaded into A, setting the Nand Z flags accordingly. The effect is
similar to LDA. This diagram illustrates the position before and after the pull:

Figure 10-2. Effect of PL~l
$0100 $OlFF

~ ________ ~I~i~I_A~I __ ST_A_C_K_IN __ U_SE ___ ~
SP (STACK POINTER)

~ __________ ~I_i~I_S_T_A_C_K_IN __ U_SE ___ ~
SP (STACK POINTER)

Uses:
1. PLA is the converse of PHA. It retrieves values put on the stack by PHA, in the

reverse order. PLA/ PHA leaves the stack unchanged, but leaves A holding the
contents of the current top of the stack. Flags Nand Z are set as though by LDA.

2. To remove the top two bytes of the stack. This is a frequent use of PLA; it is
equivalent to adding 2 to the stack pointer. This is done to "pop" a return address
from the stack; in this way, tre next RTS which is encountered will not return to
the previous JSR, but to the one before it (assuming that the stack has not been
added to since the JSR).
PLA ;DISCARD ADDRESS STORED
PLA ;BY JSR
RTS ;RETURN TO EARLIER iiUBROUTINE CALL

332

Vocabulary of the 6502 Chip

PLP
P 11 th t k· t th t t SP SP+l PSR S u e s ac InO e processor s a us regIster. .= -,

Instruction Addressing Bytes Cycles

$28 (40 %0010 1000) PLP implied 1 4

Flags:

NV-BDIZC

xx xxxxx

Operation: The operation of PLP is similar to that of PLA, except that the processor
status register, not the accumulator, is loaded from the stack.
Uses: Recovers previously stored flags with which to test or branch. See the notes on
PHP. This can also be used to experiment with the flags, to set V, for example.

ROL
Rotate memory or accumulator and the carry flag left one bit.

~76543210~
Instruction Addressing Bytes Cycles

$26 (38 %0010 0110) ROL zero page 2 5
$2A (42 %0010 1010) ROL accumulator 1 2
$2E (46 %0010 1110) ROL absolute 3 6
$36 (54 %0011 0110) ROL zero page,X 2 6
$3E (62 %0011 1110) ROL absolute,X 3 7

Flags: I NV-BDIZC
x x x

Operation: Nine bits, consisting of the contents of the memory location referenced
by the instruction or of the accumulator, and the carry bit, are rotated as the diagram
shows. In the process, C is changed to what was bit 7; bit 0 takes on the previous
value of C; and the negative flag becomes the previous bit 6. In addition, Z is set or
cleared depending on the new memory contents.
Uses:
1. Doubles the contents of the byte that it references. In this way, ROL operates like

ASL, but in addition the carry bit may be used to propagate the overflow from
such a doubling. Multiplication and division routines take advantage of this prop
erty where a chain of consecutive bytes has to be moved one bit leftward. ROR is
used where the direction of movement is rightward.

333

Vocabulary of the 6502 Chip

A5L $4000/ ROL $4001/ ROL $4002 moves the entire 24 bits of
$4000-$4002 over by one bit, introducing 0 into the rightmost bit; if there is a
carry, the carry flag will be 1.

2. Like A5L, ROL may be used before testing N, Z, or C, especially N.
ROL A ;ROTATE] BIT LEFTWARD
BMI BRANCH ;BRANCHES IF BIT 6 WAS ON

ROR
Rotate memory or accumulator and the carry flag right one bit.

~76543210~
Instruction

$66 (102 %0110 0110)
$6A (106 %0110 1010)
$6E (110 %0110 1110)
$76 (118 %0111 0110)
$7E (126 %0111 1110)

Flags:

I NV-BOlZe

. x x x

Addressing

ROJ{ zero page
ROJ{ accumulator
ROJ{ absolute
ROJ{ zero page,X
ROn absolute,X

Bytes Cycles

2 5
1 2
3 6
2 6
3 7

Operation: Nine bits, consisting of the contents of memory referenced by the
instruction and the carry bit, are rotated as the diagram shows. C becomes what was
bit 0, bit 7 and the N flag takE' on the previous value of C, and Z is set or cleared
depending on the byte's current contents. For applications, see ROL.

RTI
Return from interrupt. 5P:= SP+1, P5R:= 5,51':= 5P+1, PCL:= 5, 5P:= 5P+1,
PCH:= 5

Instruction Adci.ressing Bytes Cycles

$40 (64 %0100 0000) RTI implied 1 6

Flags:

NV-BDIZC

xx xxxxx

Operation: RTI takes three by:es from the stack, deposited there by the processor it
self when the hardware triggered the interrupt. The processor status flags are re
covered as they were when thl~ interrupt occurred, and the program counter is

334

Vocabulary of the 6502 Chip

restored so that the program resumes operation at the byte at which it was inter
rupted. Note that the contents of A, X, and Yare not saved or recovered automati
cally in this way, but must be saved by the interrupt processing and restored
immediately before RTI. If you follow the vector stored in ROM at $FFFE/FFFF, you
will see how this works.
Uses:
l. To resume after an interrupt. The techniques presented in Chapter 8 use the

interrupt-processing routine in ROM, which is the simplest approach; it's not nec
essary even to understand RTI. The routines invariably end PLAI TAY I PLAI
TAXI PLAI RTI because the contents of A, X, and Yare pushed on the stack in
A, X, Y order by CBM ROMs when interrupt processing begins.

2. To execute a jump. It is possible, as with RTS, to exploit the automatic nature of
this command to execute a jump by pushing three bytes onto the stack, imitating
an interrupt, then using RTI to pop the addresses and processor status. By
simulating the stack contents left by an interrupt, the following routine jumps to
256*HI + La with its processor flags equal to whatever was pushed on the stack
as PSR.
LDA HI
PHA
LDA LO
PHA
LDA PSR
PHA
RTI

RTS
Return from subroutine. SP:= SP+l, PCL:= 5, SP:= SP+l, PCH:= 5, PC:=
PC+l

Instruction Addressing Bytes Cycles

$60 (96 %0110 0000) RTS implied 1 6

Flags:

I NV-BDIZC

Operation: RTS takes two bytes from the stack, increments the result, and jumps to
the address found by putting the calculated value into the program counter. It is
similar to RTI but does not change the processor flags, since an important feature of
subroutines is that, on return, flags should be usable. Also, unlike RTI in which the
address saved is the address to return to, RTS must increment the address it fetches
from the stack, which points to the second byte after a JSR.
Uses:
1. Return after a subroutine. This is straightforward; a batch of ML to be callable by

JSR is simply ended or exited from with RTS. This also applies to ML routines

335

Vocabulary of the 6502 Chip

callable from BASIC with SYS calls; in this case the return address to the loop
which executes BASIC is pul on the stack first by the system.

2. As a form of jump. RTS is used as a form of jump which takes up no RAM space
and can be loaded from a ta ::lIe. For example, the following routine jumps to the
address $HILO+l, so put the desired address--l on the stack.

LDA #$HI
PHA
LDA #$LO
PHA
RTS

Notes: See PLA for the technic ue of discarding (popping) return addresses. JSR
SUB/ RTS is identical in effect to JMP SUB, since SUB must end with an RTS. This
point can puzzle programmers.

sac
Subtract memory with borrow from accumulator. A:= A - M -(l-C)

Instruction Addressing

$E1 (225 %1110 0001) SBe (zero page,X)
$E5 (229 %1110 0101) SBe zero page
$E9 (233 %1110 1001) SBe # immediate
$ED (237 %1110 1101) SBe absolute
$F1 (241 %1111 0001) SBe (zero page),Y
$F5 (245%11110101) SBe zero page,X
$F9 (249 %1111 1001) SBe absolute,Y
$FD (253 %11111101) SBe absolute,X

• Add 1 if page boundary crossed.
Flags:

I ~:-BD[~~ I

Bytes Cycles

2 6
2 3
2 2
3 4
2 5*
2 4
3 4*
3 4*

Operation: It is usual to set the carry bit before this operation, or to precede it by an
operation which is known to leave the carry bit set. Then SBC appears to subtract
from the accumulator the data referenced by the addressing mode. If the carry flag is
still set, this indicates that the result did not borrow (that is, that the accumulator's
value is greater than or equal to the data). When C is clear, the data exceeded the
accumulator's contents; C shows that a borrow is needed. Within the chip, A is
added to the twos complement of the data and to the complement of C; this con
ditions the N, V, Z, and C flag~,.
Uses:
1. Single-byte subtraction. The following example is a detail from PRINT. When

processing the comma in a PRINT statement, the cursor is moved to position 0,
10, 20, etc. Suppose the cursor is at 17 horizontally; subtract lO's until the carry
flag is clear, when A will ho Id - 3. The twos complement is 3, so three spaces or

336

Vocabulary of the 6502 Chip

cursor-rights take you to the correct position on the screen. Note that ADC #$01
adds 1 only; the carry flag is known to be 0 by that stage.

LDA HORIZ iLOAD CURRENT CURSOR POSN
SEC iCARRY FLAG SET DURING LOOP

LOOP SBC #$OA iSUBTRACT 10 UNTIL CARRY ...
BCS LOOP i .. .IS CLEAR (A IS NEG)
EOR #$FF ;FLIP BITS AND ADD 1 TO
ADC #$01 ;CONVERT TO POSITIVE.

2. Double-byte subtraction. The point about subtracting one 16-bit number from an
other is that the borrow is performed automatically by SBC. The C flag is first set
to 1; then the low byte is subtracted; then the high byte is subtracted, with borrow
if the low bytes make this necessary.

In the following example $026A is subtracted from the contents of addresses
(or data) LO and HI. The result is replaced in LO and HI. Note that SEC is per
formed only once. In this way, borrowing is performed properly. For example,
suppose the address from which $026A is to be subtracted holds $1234. When
$6A is subtracted from $34, the carry flag is cleared, so that $02 and 1 is sub
tracted from the high byte $12.
SEC
LDA LO
SBC #$6A
STA LO
LDA HI
SBC #$02
STA HI

SEC
S h et t e carry fl ag to 1 C 1 -

Instruction Addressing Bytes Cycles

$38 (56 %0011 1000) SEC implied 1 2

Flags: I NV-BD[Z~
Operation: Sets the carry flag. This is the opposite of CLC, which clears it.
Uses: Used whenever the carry flag has to be put into a known state; usually SEC is
performed before subtraction (SBC) and CLC before addition (ADC) since the nu
meric values used are the same as in ordinary arithmetic. Some Kernal routines re
quire C to be cleared or set, giving different effects accordingly. SEC/BCS is
sometimes used as a "branch always" command.

337

Vocabulary of the 6502 Chip

SED
S h d et t e eClma d fl mo e a to 1 D - 1

Instruction Add:~essing Bytes Cycles

$F8 (248 % 1111 1000) SED implied 1 2

Flags: I NV-B~IZC
Operation: Sets the decimal flag. This is the opposite of CLD, which clears it.
Uses: Sets the mode to BCD (binary-coded decimal) arithmetic, in which each nybble
holds a decimal numeral. For example, ten is held as 10 and ninety as 90. Two thou
sand four hundred fifteen is 2415 in two bytes. ADC and SBC are designed to op
erate in this mode as well as in binary, but the flags no longer have the same
meaning, except C. The result is not much different from arithmetic using individual
bytes for each digit 0-9, but it takes up only half the space and is faster.

SEI
S t th . t t d' bl fl tIl 1 e e In errupl Isa e ag 0 .=

Instruction Addressing Bytes Cycles

$78 (120 %0111 1000) SEI implied 1 2

Flags:

I NV-BD:ZC

Operation: Sets the interrupt disable flag. This is the opposite of CLI, which clears it.
Uses: When this flag has been ,et, no interrupts are processed by the chip, except
non-maskable interrupts (which have higher priority), BRK, and RESET. IRQ inter
rupts are processed by a routinl~ vectored through locations $FFFE/FFFF, like BRK. If
the vector in the very top locations of ROM is followed, the interrupt servicing
routines can be found. In the VIC, these are not all in ROM: The vectors use an ad
dress in RAM before jumping back to ROM.

The example here is a typical initialization routine to redirect the VIC's RAM
IRQ vector into the user's own program at $0345 (where it may set a musical tone or
whatever). See Chapter 8 for other examples.

338

Vocabulary of the 6502 Chip

033A SEI
033B LDA #$45
033D STA $0314
033F LDA #$03
0341 STA $0315
0343 CLI
0344 RTS

STA
s tore th e con en s 0 f th I t e accumu a or mto memory. M A -

Instruction Addressing Bytes Cycles

$81 (129 %1000 0001) STA (zero page,X) 2 6
$85 (133 %1000 0101) STA zero page 2 3
$80 (141 %1000 1101) STA absolute 3 4
$91 (145 %1001 0001) STA (zero page),Y 2 6
$95 (149 %1001 0101) STA zero page,X 2 4
$99 (153 %1001 1001) STA absolute,Y 3 5
$90 (157 %1001 1101) STA absolute,X 3 5

Flags:

I NV-BDIZC

Operation: The value in A is sent to the address referenced by the opcode. All reg
isters and flags are unchanged.
Uses:
1. Intermediate storage. Transfer of blocks of data from one part of memory to an

other needs a temporary intermediate store, usually in A, which is alternately
loaded and stored. See LDA,

2. Saving results of binary operations. Binary operations using the accumulator,
notably ADC and SBC, are performed within the accumulator; a common bug in
machine language programs is forgetting to save the result.

LDA $90 ; ST BYTE
AND #$FD ; BIT 1 OFF
STA $90 ; REMEMBER THIS!

3. Setting the contents of certain locations to known values.

LDA #$89
STA $22 ; SETS VECTOR AT $22/23
LDA #$C3
STA $23 ; TO $C389

339

Vocabulary of the 6502 Chip

STX
S h tore t e contents 0 f h X t e reJ;Lster mto memor M X -

Instruction Addressing Bytes Cycles

$86 (134 %1000 0110) STX zero page 2 3
$8E (142 %1000 1110) STX absolute 3 4
$96 (150 %1001 0110) STX zero page,Y 2 4

Flags:

I NV-BDIZC

Operation: The byte in the X register is sent to the address referenced by the
opcode. All registers and flags are unchanged.
Uses: The uses are identical to those of STA. There is a tendency for X to be used as
an index, so STX is less used t'1an STA.

STY
S h tore t e contents 0 f h Y t e regIster mto memor .= M Y

Instruction Addressing Bytes Cycles

$84 (132 %10000100) STY zero page 2 3
$8C (140 %1000 1100) STY absolute 3 4
$94 (148 %1001 0100) STY zero page,X 2 4

Flags:

I NV-BDIZC

Operation: The byte in the Y register is sent to the address referenced by the
opcode. All registers and flags are unchanged.
Uses: STY resembles STX; the comments under STX apply.

TAX
T f th rans er t t f th e con en s 0 It' t th X e ac:umu a or m 0 e . t X A regIs er. .=

Instruction Addressing Bytes Cycles

$AA (170 %1010 1010) TAX implied 1 2

Flags:

340

Vocabulary of the 6502 Chip

Operation: The byte in A is transferred to X. The Nand Z flags are set as though
LDX had taken place.
Uses: This transfer is generally used to set X for use as an index or a parameter, or to
temporarily hold A. The example is from a high-resolution screen-plotting routine; it
plots a black dot in a location with a coded value of 1, 2, 4, or 8 in $FB. X on entry
holds the position of the current X in a table. On exit X holds the position of the new
character. Intermediate calculations use the accumulator because there is no "EOR
with X" instruction.
TXA
EaR #$FF
ORA $FB
EaR #$FF
TAX
LDA TABLE,X

Note that registers A, X, Y, and the stack pointer are interchangeable with one
instruction in some cases but not in others. The connections are shown below:

Y = A = X = s.

TAY
Transfer the contents of the accumulator into the Y register. Y: = A

Instruction Addressing Bytes Cycles

$A8 (168 %1010 1000) TAY implied 1 2

Flags: I ~V-BDI~C
Operation: The byte in A is transferred to Y. The Nand Z flags are set as though
LDY had taken place.
Uses: See TAX.

TSX
T f h rans er testae k h X pomter mto t e regIster. .= X SP

Instruction Addressing Bytes Cycles

$BA (186 %1011 1010) TSX implied 1 2

Flags:

341

Vocabulary of the 6502 Chip

Operation: The stack pointer i:; transferred to X. Note that the stack pointer is al
ways offset onto $0100, so when the stack is accessed, the high byte of its memory
location is $01. The pointer itsdf is a single byte.
Uses:
1. To look at current values on the stack. TSX/ LDA $0100,X loads A with the con

tents presently at the top of the stack; LDA $OlOl,X loads the last item pushed on
the stack (one byte higher) into A, and so on. BASIC tests for BRK or interrupt
with PHA/ TXA/ PHA/ T'tA/ PH A/ TSX/ LDA $0104,X/ AND #$10 because
the return-from-interrupt ad:iress and the SR are pushed by the interrupt before
the system saves its own three bytes. LDA $0104,X loads the flags saved when
the interrupt or BRK happered.

2. To determine space left on tne stack. BASIC does this and signals ?OUT OF
MEMORY ERROR if there are too many GOSUBs, FOR-NEXT loops, or complex
calculations with intermediate results.

3. Processing. Sometimes the stack pointer is stored and a lower part of the stack
temporarily used for processing.

TXA
T f h rans er t e contents 0 f h X t e regIster Into t h e accumu ator. .= A X

Instruction Addressing Bytes Cycles

$8A (138 %1000 1010) TXA implied 1 2

Flags: I ~V-BDI:C
Operation: The byte in X is transferred to A. The N flag and Z flag are set as though
LDA had taken place.
Uses: See TAX.

TXS
T f th X rans er e ·t °tth tk regIs er In 0 e s ac pOInter. SP X -

Instruction Addressing Bytes Cycles

$9A (154 %1001 1010) TXS implied 1 2

Flags:

I NV-BDIZC

Operation: X is stored in the stack pointer. PHA or PHP will place a byte onto the
stack at $0100 plus the new sLl.ck pointer, and PLA or PLP will pull from the next

342

Vocabulary of the 6502 Chip

byte up from this. In addition, RTI and RTS will return to addresses determined by
the stack contents at the new position of the stack.
Uses:
1. As part of the RESET sequence. TXS is always part of the RESET sequence; other

wise, the stack pointer could take any value. CBM computers use the top bytes of
the stack for BASIC addresses. When the VIC is turned on, LDX #$FF / TXS sets
the pointer to the top of the stack, but if BASIC is to run (that is, if no autorun
cartridge is in place), SP is moved to leave locations $OlFA-$OlFF ready for use
by the RUN command.

SP has high values to start with because it is decremented as data is pushed
on the stack. If too much data is pushed, perhaps by an improperly controlled
loop, SP decrements right through $00 to $FF again, crashing its program.

2. Switching to a new stack location. This is a rarely seen use of TXS. As a simple
example, the following routine is an equivalent to PLA/ PLA which you have
seen (under RTS) to be a "pop" command which deletes a subroutine's return ad
dress. Incrementing the stack pointer by 2 has the identical effect.
CLC
TSX
TXA
ADC #$02
TAX
TXS

TVA
Transfer the contents of the Y register into the accumulator. A:= Y

Instruction Addressing Bytes Cycles

$98 (152 % 1001 1000) TYA implied 1 2

Flags: I :V-BD[~C
Operation: The byte in Y is transferred to A. The N flag and Z flag are set as though
LDA had taken place.
Uses: See TAX. The transfers TAX, TAY, TXA, and TYA all perform similar
functions.

343

Chapter 11

VIC-20 ROM Guide

VIC-20 Memory Map
This chapter maps in detail the first few hundred RAM locations, the BASIC ROM,
and the Kernal ROM. It will be especially valuable to programmers who want to
make full use of VIC-20 BASIC.

Locations are listed for both the VIC and the Commodore 64, since many loca
tions are the same on the two computers.

BASIC is stored in ROM from $COOO to $DFFF. The computer's operating system,
the ML that controls input/output and related operations, is stored in ROM from
$EOOO to $FFFF, called the Kernal ROM. It contains large numbers of routines, but
generally Kernal routines are taken to be only those which are called through the
Kernal jump table.

Commodore recommends that ML programmers use only Kernal routines. That,
however, rules out most of BASIC. Moreover, transportability between machines is
likely to be very difficult even with the Kernal. Generally, you should use any of
these routines where they are likely to make better programs.

There is a potential problem between machines of the same type. For example,
several 64 ROM versions exist, with Kernal ROM variations. In practice this is rarely
a problem. But if you want to be certain, relocate your routines into RAM as far as
possible.

A number of routines are vectored through RAM; Chapter 8 explains how to
take advantage of this.

Free RAM, available for programming, is listed in Chapter 6.

Notation
Labels have been included as reference points.

BASIC number-handling is a bit complex. FACI and FAC2 refer to Floating
Point Accumulators 1 and 2. They hold two numbers during addition, multiplication,
etc., which is done in a six-byte format (EMMMMS, consisting of exponent/mantissa
or data/sign), called FLPT for short. MFLPT refers to the way numbers are stored in
memory after BASIC, in a five-byte format with one bit of data less than FLPT.
MFLPT format is explained in Chapter 6. BASIC of course has routines to inter
convert these. INT or FIX format is the simpler format with bytes in sequence.

A, X, and Yare the 6502's registers. A/X means the two-byte value with A
holding the low byte and X the high byte. (A/Y) is a two-byte pointer held in A and
y, with A holding the low byte and Y the high byte. String descriptors are three
bytes of data, the first holding the string's length, the second and third the low and
high bytes of the pointer to the start of the string.

The following listings consist of three columns. The first column gives the label.
The second column lists the VIC and 64 addresses; where one address is given it
applies to both computers, but where two are given the VIC address comes first.
Finally, a description of the use of the location, or of the routine that begins at the
specified address, is given.

347

VIC-20 ROM Guide

Page 0: RAM $OOOO-$OI[)FF
Label

FACINT

INTFAC

CHARAC

INTEGR
ENDCHR
TRMPOS
VERCHK
COUNT
DIMFLG
VALTYP

INTFLG

GARBLF
SUBFLG

INPFLG

TANSGN

CHANNL
LINNUM

TEMPPT

LASTPT
TEMPST
INDEX1
INDEX2
RESHO
TXTTAB

VARTAB

ARYTAB
STREND

FRETOP

FRESPC
MEMSIZ

348

VICj64
$000/$310
$001-$002/
$311-$312
$003-$004

$005-$006

$007

$007-$008
$008
$009
$OOA
$OOB
$OOC
$OOD

$OOE

$OOF
$010

$011

$012

$013
$014-$015

$016

$017-$018
$019-$021
$022-$023
$024-$025
$026-$02A
$02B-$02C

$02D-$02E

$02F-$030
$031-$032

$033-$034

$035-$036
$037-$038

Descriptions
USR function JMP instruction ($4C).
USR function address (low byte/high byte). Initialized to point to
routine to print ILLEGAL QUANTITY ERROR ($D248).
Vector to routine to convert FAC to integer in A/Y (usually
$D1AA).
Vector to routine to convert integer in A/Y to floating point in
FAC (usually $D391).
Delimiting character used when scanning. Also temporary integer
(0-255) used during INT.
Intermediate integer used during OR/AND.
Delimiter used when scanning strings.
Temporary location used for calculating TAB and SPC column.
Flag to indicate LOAD (0) or VERIFY (1).
Temporary pointer used with BASIC input buffer.
Flag: default array dimension.
Curren t variable data type nag; 0 means numeric, $FF means
string.
Current variable data type flag; 0 means floating point; $80 means
integer.
Flag: used in garbage collection, LIST, DATA, error messages.
Flag to indicate integers or array elements (flag=$80), used to for
bid thE'ffi in FOR loops and function definitions.
Flag wied by READ routine; $00 means INPUT, $40 means GET,
$98 means READ.
Sign byte used by TAN, SIN. Also set according to any compari
son being performed: > sets $01, = sets $02, < sets $04.
Current IjO device number; prompts suppressed if not O.
Line nlmber integer (0-63999) or standard two-byte integer used
by GOrO, GOSUB, POKE, PEEK, WAIT, and SYS.
Index 10 next entry on string descriptor stack (may be $19, $1C,
$lF, or $22).
Pointer to current entry on string descriptor stack.
Stack lor three temporary string descriptors.
General-purpose pointer, for example, for memory moves.
General-purpose pointer, for example, for number movements.
Floating point workspace used by multiply and divide.
Pointer to first byte of BASIC program (usually 4097 for the
unexp<lnded VIC, 1025 for VIC with 3K, or 4609 for VIC with 8K
or more).
Pointer to start of program variables; first byte beyond end of

Pointer to start of arrays; first byte beyond end of variables.
Pointe:: to start of free RAM available for strings; first byte beyond
end of arrays.
Pointe:: to current lower boundary of string area. (Set to MEMSIZ
on CLR, RUN.)
Utility pointer used when new string is being added to string area.
Pointe" to one byte beyond the top of RAM available to BASIC.

CURLIN $039-$03A

OLDLIN $03B-$03C

OLDTXT $03D-$03E
DATLIN $03F-$040

DATPTR $041-$042

INPTR $043-$044

VARNAM $045-$046

VARPNT $047-$048

FORPNT $049-$04A

OPPTR $04B

OPMASK $04D

DEFPNT $04E-$04F

TEMPF3 $04E-$052
DSCPNT $050-$051

SIZE $052
FOUR6 $053
JMPER $054-$056

TEMPFl $057-$05B

HIGHDS $058-$059
ARYPNT $058-$059
HIGHTR $05A-$05B
TEMPF2 $05C-$060
DECCNT $05D

TENEXP $05E

DPTFLG $05F

LINPTR $05F-$060

EXPSGN $060

VIC-20 ROM Guide

BASIC line number being interpreted ($FF in $03A indicates
immediate mode).
If STOP/END /BREAK occurs, this holds the previous BASIC line
number for CO NT.
Pointer to beginning of current BASIC line for CaNT.
Line number of current DATA statement. Initialized to $0000 on
RUN.
Pointer to one byte beyond the DATA item read by the last READ
statement. Initialized to BASIC start on RUN.
Temporary storage of DATPTR during READ statement; also
pointer within input buffer during INPUT (points to last character
entered).
Current BASIC variable; two-character name with most significant
bit (bit 7) of each byte used to indicate variable type: floating point
= bit 7 clear in both bytes, integer = bit 7 set in both, string =
bit 7 set in $46, function = bit 7 set in $45.
Pointer to current variable's address in RAM. Points one byte be
yond variable name.
Temporary pointer to variables in memory for INPUT, assign
ments, etc., and for loop variable in FOR loops. Also holds the two
parameters for WAIT statements.
Pointer within operator table during expression evaluation in rou
tine FRMEVL.
Comparison mask used in FRMEVL: > sets $02, = sets $04, < sets
$08.
Pointer to variable in function definition, within variable table in
RAM. Also used by garbage collection routine GARBAG.
Temporary storage for a MFLPT item.
Pointer to descriptor in variable list or to string in dynamic string
area; used during string operations.
Length of the current BASIC string.
Length of string variable during garbage collection.
Jump vector for function evaluations, JMP ($4C) followed by func
tion address from function vector table.
Temporary pointers (for example, in memory move); temporary
floating point accumulator.
Pointer used by block transfer routine BLTU.
Pointer used when initializing arrays (when DIM encountered).
Pointer used by block transfer routine BLTU.
Temporary floating point accumulator.
Number of digits after/before decimal point in ASCII-to-FLPT and
FLPT -to-ASCII conversion for FIN /FOUT.
Exponent used in ASCII-to-FLPT and FLPT-to-ASCII conversion
in FIN /FOUT.
Flag used by FIN when inputting numbers; $80 if string contains
decimal point.
Pointers used when searching for line numbers, searching for vari
ables in variable list, doing block transfers.
Sign of exponent of number being input by FIN; $80 signifies
negative.

349

VIC-20 ROM Guide

FAC1 $061-$066

SGNFLG $067

BITS $068
FAC2 $069-$06E

ARISGN $06F

FACOV $070
TEMPTX $071-$072

CHRGET $073-$08A

CHRGOT $079

TXTPTR $07A-$07B
RNDX $08B-$08F

STATUS $090
STOPFL $091
TSERVO $092
VERCK $093
ICHRFL $094
!DATO $095
TEOB $096
TEMPXY $097
NFILES $098
DFLTI $099
DFLTO $09A
TPARIT $09B
TBYTFL $09C
MSGFLG $09D
HDRTYP $09E
PTR1 $09E
PTR2 $09F
TIME $OAO-$OA2

TSFCNT $OA3
TBTCNT $OA4
CNTDN $OA5
BUFPNT $OA6
INBIT $OA7
PASNUM $OA7
BITCI $OA8

RINONE $OA9
TBITER $OA9

350

Floating Point Accumulator #1. Consists of exponent byte, four
mantissa bytes, and a sign byte. (The results of most arithmetic
operati,)ns are placed here.) Integer results in two bytes FACI + 3,
FACl +4.
Flag used by FIN when inputting numbers; $FF if number is neg
ative. Also stores count of terms in polynomial series when
evaluating trig functions.
Bit overflow area on normalizing FAC1.
Floating Point Accumulator #2; used with FACI in evaluation of
produc:s, sums, differences, etc.
Sign comparison between FACI and FAC2; $00 means same sign,
$FF mEans opposite.
Rounding/overflow byte for FAC1.
General pointer used in CRUNCH, VAL, series evaluation, with
tape bdfer, etc.
Fetch next BASIC character into A (spaces are skipped) and set
flags; c: cleared if ASCII numeral 0-9; Z set if end-of-line or colon
(:).
Entry point within CHRGET to re-get current BASIC character and
set flags as CHRGET does. Does not increment TXTPTR first.
Pointer into BASIC text used by CHRGET and CHRGOT routines.
Floating point random number seed and subsequent pseudo
random values.
Status :3T for serial devices and cassette.
Flag: contains $FE (254) if STOP key pressed.
Tape tining constant.
Flag to indicate LOAD (0) or VERIFY (1).
Serial flag: $FF indicates a character is awaiting output.
Serial character to be output; $FF indicates no character.
Flag: end of data block from tape.
Temporary X,Y storage during cassette read/RS-232 get.
Number of files open (maximum of 10); index to file table.
Curren" input device number; default = 0 (keyboard).
Curren: output device number; default = 3 (screen).
Parity of byte written to tape.
Flag: byte read from tape is complete.
Flag: $00 means program mode, $80 means direct mode.
Tape buffer header !D.
Cassette pass 1 read errors.
Cassette pass 2 read errors.
Three-byte jiffy clock for TI, updated 60 times per second. Bytes
arranged in order of decreasing significance.
Tape rEad/write bit counter.
Tape read/write pulse counter.
Tape synchronization write countdown.
Count of bytes in tape I/O buffer.
RS-232 temporary storage for received bits.
General temporary store for cassette read/write.
RS-232 received bit count. Also temporary store for cassette read/
write.
RS-232 receive: check for start bit.
Write s:art bit/read bit sequence error.

RIDATA

RIDATA
TCKS
RPRTY
SAL

EAL

CMPO
TAPEl
BITTS
TTIX
NXTBIT
TEOT
RODATA
TERRR
FNLEN
LA
SA
FA
FINADR
ROPRTY
TCHR
FSBLK
MYCH
CASl
STAL
MEMUSS
LSTX

NDX
RVS
INDX
LXSP
LYSP
KEYVAL

BLNCT
GDBLN

BLNON
CRSW
PNT
PNTR
QTSW

LNMX
TBLX
TMPD7

$OAA

$OAA
$OAB
$OAB
$OAC-$OAD

$OAE-$OAF

$OBO,$OBl
$OB2-$OB3
$OB4
$OB4
$OB5
$OB5
$OB6
$OB6
$OB7
$OBS
$OB9
$OBA
$OBB-$OBC
$OBD
$OBD
$OBE
$OBF
$OCO
$OCl-$OC2
$OC3-$OC4
$OC5

$OC6
$OC7
$OCS
$OC9
$OCA
$OCB

$OCD
$OCE

$OCF
$ODO
$OO1-$OD2
$OD3
$OD4

$OD5
$OD6
$OD7

VIC-20 ROM Guide

Tape read mode; 0 = scan, 1-15 = count, $40 = LOAD, $80 =
end-of-tape marker.
RS-232 received byte buffer.
Counter of seconds before tape write. Also checksum.
RS-232 received byte parity.
Start address for LOAD/SAVE. Pointer also used by scroll and
INSert.
End address for LOAD/SAVE. Also used as pointer to color RAM
used by INSert.
Timing constants for tape.
Pointer to start of cassette buffer, usually $033C.
RS-232 transmit bit count.
Tape read timer flag.
RS-232 transmit: next bit to send.
End of tape read.
RS-232 transmit: byte to be sent.
Tape read error flag.
Number of characters in filename; 0 = no name.
Current logical file number.
Current secondary address as used.
Current device number; for example, 3 = screen, 4 = printer.
Pointer to start of current filename.
RS-232 output parity.
Byte to be written to/read from tape.
Number of blocks remaining to read/write.
Serial word buffer where byte is assembled.
Cassette motor control flag.
Start address for LOAD and cassette write.
Pointer for general use, for example, calculating LOAD address.
Matrix value of key pressed during last keyboard scan; $40 = no
key pressed.
Number of characters in keyboard buffer.
Flag: print reverse characters; 0 = normal, $12 = reverse.
Count of characters in line input from screen.
Cursor Y value (row) at start of INPUT.
Cursor X value (column) at start of INPUT.
Copy of keypress LSTX checked by interrupt so that a held key
registers only once.
Countdown to next cursor toggle (from $14).
Character (screen code) at cursor position (never reverse of
character).
Flag: 1 = cursor in blink phase, 0 = not in blink phase.
Flag: 3 = input from screen, 0 = input from keyboard.
Address of start of current line on-screen.
Cursor position (X value) along current logical line (0-$57).
Quotes mode flag: flips each time quotes are encountered; 0 =
move cursor, etc.; 1 = print reverse characters.
Length of current logical screen line (21, 43, 65, or 87).
Row of cursor.
CHR$ value of last character input/output to screen; tape tem
porary I/O storage and checksum.

351

VIC-20 ROM Guide

INSRT $OD8
LDTB1 $OD9-$OFO

USER $OF3-$OF4

KEYTAB $OF5-$OF6
RIBUF $OF7-$OF8
ROBUF $OF9-$OFA

$OFB-$OFE
BASZPT $OFF

Number of keyboard inserts outstanding.
Table (If 23 high bytes of pointers to the start of screen lines in
RAM. IThe low bytes are held in ROM from $EDFD.) Lines with
wraparound have bit 7 = 0; otherwise, bit 7 = 1.
Pointer to byte in color RAM corresponding to beginning of
current line onscreen.
Address of current keyboard decoding table.
RS-232: pointer to start of receive buffer.
RS-232: pointer to start of transmit buffer.
Unused; available for user programs.
Temporary storage area for FLPT -to-ASCII conversion.

Page 1 (Stack Area): RJ~M $0100-$01 FF
Label
ASCWRK

BAD
STACK

VICj64
$OFF-$10A

$100-$13E
$140-$1FF

Descr:iptions
Area for conversion of numerals into ASCII string format for
printing.
Table of tape read errors.
BASIC stack area.

Page 2: RAM $0200-021=F
Label
BUF
LAT
FAT
SAT
KEYD

LORAM

HIRAM

TlMOUT
COLOR

GDCOL
HIBASE
XMAX

RPTFLG

KOUNT
DELAY
SHFLAG

LSTSHF
KEYLOG

MODE

352

VICj64
$200-$258
$259-$262
$263-$26C
$26D-$276
$277-$280

$281-$282

$283-$284

$285
$286

$287
$288
$289

$28A

$28B
$28C
$28D

$28F
$28F-$290

$291

Descriptions
System input buffer; all keyboard input is read into here.
Table (If up to 10 active logical file numbers.
Table (if up to 10 corresponding device numbers.
Table (if 10 corresponding secondary addresses as used by system.
Keyboclrd buffer: maximum of 10 characters are read from key
board ilnd placed here by the interrupt routine.
Pointer to lowest available BASIC RAM byte (initialized on power
up; value varies with RAM expansion).
Pointer to highest available BASIC RAM byte (initialized on
power-up).
Serial hmeout flag.
Current color code: POKEd into color RAM when printing charac
ters to screen.
Color of character under cursor.
High byte of screen memory address.
Maximum number of characters storable in keyboard buffer
(initialized to 10).
Flag cc'ntrolling key repeats; $00 = repeat cursor move and space
keys; $80 = repeat all keys: $40 = repeat no keys. $00 is default.
Delay Jefore repeat operates (system resets this).
Delay Jetween repeats.
Detect SHIFT, Commodore, CTRL keypress: $01 = SHIFT, $02 =

Commodore, $04 = CTRL. These are additive: $05 = SHIFT and
CTRLkeys together, etc.
Last SHIFT key pattern; used for debouncing.
Vector to routine to check SHIFT pattern; used by SCNKEY Kernal
routinE.
Flag: $00 = enable upper/lowercase toggle using SHIFT and
Commodore; $80 = disable.

AUTODN $292
M51CTR $293
M51CDR $294
M51AJB $295-$296
RSSTAT $297
BITNUM $298
BAUDOF $299-$29A
RIDBE $29B

RIDBS $29C

RODBS $29D
RODBE $29E
IRQTMP $29F-$2AO

$2Al-$2FF

VIC-20 ROM Guide

Flag: autoscroll down during input; 00 = disable.
RS-232: control register.
RS-232: command register.
RS-232: nonstandard transmission rate value-not used.
RS-232: status register ST.
RS-232: number of bits to send/receive.
RS-232: baud rate timing constant.
RS-232: input buffer pointer; points to latest character input (end
of buffer).
RS-232: input buffer pointer; points to first available character
(start of buffer).
RS-232: output buffer pointer: start of buffer.
RS-232: output buffer pointer: end of buffer.
Temporary store for IRQ vector during tape operations.
Free RAM available to user. (The Commodore 64 uses
$02Al-$02A6.) The Super Expander cartridge and other utilities
use part of this area.

Page 3: RAM $0300-$03FF
Label
IERROR

IMAIN

ICRNCH
IQPLOP
IGONE
IEVAL

SAREG

VIC/64 Descriptions
$300-$301 Vector to BASIC print error message (normally $C43A); X register

holds error message number.
$302-$303 Vector to routine to input or execute line of BASIC (normally

$304-$305
$306-$307
$308-$309
$30A-$30B

$30C

$C483).
Vector to BASIC tokenizing routine (normally $C57C).
Vector to BASIC LIST routine (normally $C71A).
Vector to BASIC RUN routine (normally $C7E4).
Vector to BASIC single-expression evaluation routine (normally
$CE86).
6502 Accumulator storage for SYS; A is loaded from this location
on SYS call and stored back into it when SYS call ends.

SXREG $30D 6502 X register storage for SYS; handling as above.
SYREG $30E 6502 Y register storage for SYS; handling as above.
SPREG $30F 6502 Status register storage for SYS; handling as above.

(Note: The vectors from $314 to $333 are reinitialized each time STOP-RESTORE is pressed,
assuming NMINV holds its normal value.)

CINV $314-$315 Vector for IRQ interrupt (normally $EABF). Called from $FF82.
CBINV $316-$317 Vector for BRK (normally $FED2). Called from $FF7F.
NMINV $318-$319 Vector for NMI (normally $FEAD).
IOPEN $31A-$31B Vector to Kernal OPEN routine (normally $F40A). Called from

ICLOSE

ICHKIN

ICKOUT

ICLRCH

$FFCO.
$31C-$31D Vector to Kernal CLOSE routine (normally $F34A). Called from

$FFC3.
$31E-$31F Vector to Kernal CHKIN routine (normally $F2C7). Called from

$FFC6.
$320-$321 Vector to Kernal CHKOUT routine (normally $F309). Called from

$FFC9.
$322-$323 Vector to Kernal CLRCHN routine (normally $F3F3). Called from

$FFCC.

353

VIC-20 ROM Guide

IBASIN $324-$325

IBSOUT $326-$327

ISTOP $328-$329

IGETIN $32A-$32B

ICLALL $32C-$32D

USRCMD $32E-$32F

ILOAD $330-$331
ISAVE $332-$333

$334-$33B
TBUFFR $33C-$3FB

$3FC-$3FF

Vector to Kernal CHRIN routine (normally $F20E). Called from
$FFCF.
Vector to Kernal CHROUT routine (normally $F27 A). Called from
$FFD2.
Vector to Kernal STOP routine (normally $F770). Called from
$FFEl.
Vector to Kernal GETIN routine (normally $F1 F5). Called from
$FFE4.
Vector to Kernal CLALL routine (normally $F3EF). Called from
$FFE7.
Unused vector: may be defined by user; initialized to BRK vector
($FEm).
Vector to Kernal LOAD routine (normally $F549).
Vector to Kernal SAVE routine (normally $F685).
Eight Lnused bytes.
Tape I/0 buffer (192 bytes long). Can be used for ML programs
but taFe use will overwrite.
Four u:1Used bytes.

Addresses from $8000 to $BFFF
The block of memory from $8(100 to $97FF is used by the VIC-20 as follows (all else
up to $BFFF is available for plug-in RAM or ROM):

$8000-$8FFF Character generator ROM (see Chapter 12)
$9000-$900F VIC chip (see Chapt~r 5 for registers; Chapter 12 for programs)
$9110-$911F VIA#l (see Chapter 5 for description and programs)
$9120-$912F VIA#2 (see Chapter 5 for description and programs)
$9400-$97FF Color RAM (see Chclpter 12)

BASIC and Kernal ROM
VIC-20 and Commodore 64 BASIC and Kernal ROMs are similar. VIC's BASIC ROM
starts at $COOO and is exactly $2000 bytes up from the 64 BASIC ROM, which starts
at $AOOO. Both Kernal ROMs s'art at $EOOO, but the 64 has an extra JMP instruction
to bridge the gap between BASIC and the Kernal, so the addresses of routines in the
Kernal initially differ by three bytes between these machines.

Label VICj64 Descriptions
BCOLD $COOO/$AOOO BASIC cold start vector ($E378). NEWs BASIC, prints BYTES

FR EE and READY. Part of the reset sequence; see routines at
$E378 and $FD22.

BWARM $C002/$A002 BASIC warm start vector ($E467). CLRs BASIC, prints
READY. Part of the NMI sequence; see routines at $E467 and
$FEA9.

354

$C004/$A004 CBM BASIC message.
$COOC/$AOOC Table of addresses -1 of routines for handling BASIC state

ments (FOR, RUN, PRINT, REM, CONT, etc.). (Address-1
because of the way they are utilized.)

$C052/$A052 Table of true addresses of routines for handling numeric and
string functions (FRE, POS, SQR, etc.).

$C080 /$A080

$C09E/$A09E

$C129/$A129

$C140/$A140

$C14D /$A14D

$C19E/$A19E

$C328/$A328
$C364/$A364

FNDFOR $C38A/$A38A

BLTU $C3B8/$A3B8

BLTUC $C3BF /$A3BF

GETSTK $C3FB/$A3FB

REASON $C408/$A408

ERROR $C437/$A437

READY $C474/$A474
MAIN $C480/$A480

MAINl $C49C/$A49C
INSUN $C4A4/$A4A4

FINI $C52A/$A52A

LNKPRG $C533/$A533

INUN $C560 /$A560

CRUNCH $C579/$A579

VIC-20 ROM Guide

Table of addresses-1 of routines for handling BASIC op
erators (add, subtract, divide, etc.); each address is followed by
a byte indicating the operator priority.
BASIC keywords as CBM ASCII strings with bit 7 of final
character set high.
Table of miscellaneous keywords (TAB, STEP, etc., with no ac
tion address) with bit 7 of final character set high.
Table of operator tokens; also AND, OR as strings with bit 7
of final character set high.
Table of function keywords (SGN, INT, ABS, etc.) with bit 7
of final character set high.
Table of 28 error messages (TOO MANY FILES, FILE OPEN,
etc.) with bit 7 of final character set high.
Table of pointers to error messages.
Table of other messages OK, ERROR IN, READY, BREAK.
Check stack for FOR entry. Called by NEXT; if FOR not
found, ?NEXT WITHOUT FOR results. Also clears stack of a
FOR data block if called by RETURN.
Open up a gap in BASIC text to allow insertion of new BASIC
line. Check whether there is enough room.
Move block starting at address pointed to by $5F/60 and
ending at address pointed to by $5A/5B-1 up to a new block
ending at the address pointed to by $58/59-I.
Test to see whether stack will accommodate A *2 bytes: ?OUT
OF MEMORY if not.
Check whether address pointed to by A (low byte) and Y
(high byte) is below FRETOP (current bottom of string area). If
yes, exit; otherwise, do garbage collection and check again. If
still not, then print ?OUT OF MEMORY.
Print error message; X holds error number (half of offset
within error message address table). Vectored via ($0300) to
$C43A. Then set keyboard input and screen output, reset
stack and print IN with line number if in program mode.
Restart BASIC; print READY, set direct mode.
Receive a line into input buffer and add a terminating 0 byte.
Check for program line or immediate mode command; if im
mediate mode command, execute it. MAIN is vectored via
($0302) to $C483.
If program line, tokenize it.
If the line number already exists, replace it. If it's new, insert
it. Line number is in $14,$15 on entry, length+4 is in Y. If the
first byte in buffer is 0, the line is null; delete it.
Having inserted a new line, do RUNC (thus variables are lost
on editing, and you cannot CONT after editing) and LNKPRG;
then jump to MAIN.
Chain link pointers in BASIC program using end-of-line 0
markers.
Input a screen line into the BASIC text buffer at $200, and add
o terminating byte.
Tokenize keywords in input buffer. Vectored via ($0304) to
$C57C.

355

VIC-20 ROM Guide

FNDLIN

FNDLNC

NEW

SCRTCH

RUNC

CLEAR

STXPT

LIST
LISTl
QPLOP

FOR

NEWSTT

CKEDL

GONE

EXCC

RESTOR

STOP

CONT

RUN

356

$C613/$A613

$C617/$A617

$C642/$A642

$C644/$A644

$C659/$A659

$C65E/$A65E

$C68E/$A68E

$C69C/$A69C
$C6C9/$A6C9
$C717/$A717

$C742/$A742

$C7 AE/$A7 AE

$C7C4/$A7C4

$C7El/$A7El

$C7ED /$A7ED

Search BASIC text from beginning for line number in $14/15.
Carry set if line found. Locations $5F /60 point to link address.
Search BASIC text from address in A (low byte) and X (high
byte) for line number in $14/15.
NEW routine enters here; check syntax, and continue with
SCRTCH.
Reset first two bytes of text (first link pointer) to 0; load start
of-variables pointer $2D /2E with start-of-BASIC + 2, and
continue with RUNe.
Set pointer within CHRGET to start of BASIC text, using
STXPT, then continue with CLEAR.
BASIC CLR routine; eralse variables by resetting end-of
variables pointers to coincide with end-of-program pointer;
appropriate string variable pointers are also reset. Abort I/O
activity and reset stack.
Re;et pointer within CHRGET routine to beginning of BASIC
text ($2B/2C -1 is loaded into $7 A/7B).
Entry point of routine to process LIST command.
List one line of BASIC; line number, then text.
Handle character to be listed; if ordinary character or control
character in quotes, print it; expand and print tokens. Vectored
via ($0306) to $C71A.
Entry point for routine to handle FOR statement. Push 18
by:es onto stack: pointer to following statement, current line
number, upper-loop value, step value (default I), loop variable
na:ne, and FOR token.
Execute BASIC; test for STOP key and check for end-of-line
zero byte or colon.
If at end of text, stop; otherwise, set pointer within CHRGET
to beginning of next line.
Handle the BASIC statement in the current line. Vectored via
($0308) to $C7E4, loop back to NEWSTT.
EXI~cute a BASIC keyword. Uses address for start of routine
from table at $COOe. Assumes LET if a token is not the first
by:e in the statement. Address pushed on stack so RTS of
GETCHR jumps to it.

$C81D/$A81D Entry point for routine to handle RESTORE; set the data
pointer at $41/42 to start of BASIC text.

$C82C/$A82C Entry point for routine to handle STOP; also END and break
in program. Information for CONT (pointer in BASIC text, line
number) is stored. STOP prints BREAK IN nnn while END
skips this to READY. The STOP key invokes STOP. Reaching
the end of BASIC program-text calls END.

$C857/$A857 Entry point for routine to handle CONT; performs this by set
ting current line number (stored in $39/3A) and the pointer
wi:hin CHRGET to values stored by STOP. ?CANNOT CON
TINUE ERROR occurs if the high byte of the pointer has been
set to 0 on syntax error.

$C871/$A871 Entry point for routine to handle RUN; if RUN is encountered
alene, then CLR variablles and reset stack, set CHRGET to
start of BASIC, and begin execution. If RUN nnn, CLR vari
ab:.es and reset stack, then do GOTO nnn.

GOSUB

GOTO

RETURN

DATA

DATAN

REMN
IF

REM

DOCOND

ONGOTO

LINGET

LET

PUTINT

PTFLPT
PUTTIM
ASCADD
GETSPT

PRINTN

CMD

VIC-20 ROM Guide

$C883/$A883 Entry point for routine to handle GOSUB; push five bytes
onto stack: pointer within CHRGET (two bytes), current line
number (two bytes), and the GOSUB token. The GOTO rou
tine is then called.

$C8AO/$A8AO Entry point for routine to handle GOTO; fetch the line num
ber following the GOTO command and search BASIC text for
this line. If high byte of destination is higher than high byte of
current line number, search from position of current line on
wards to shorten search time; otherwise, search from begin-

$C8D2/$A8D2

$C8F8/$A8F8

$C906/$A906

$C909/$A909
$C928/$A928

$C93B/$A93B

$C940/$A940

$C94B/$A94B

$C96B/$A96B

$C9A5/$A9A5

$C9C4/$A9C4

$C9D6/$A9D6
$C9E3/$A9E3
$CA27/$AA27
$CA2C/$AA2C

$CA80 /$AA80

$CA86/$AA86

ning. Put pointer to found line into CHRGET pointer.
Entry point for routine to handle RETURN; stack is cleared up
to GOSUB token (?RETURN WITHOUT GOSUB if not found);
then the caIling line number and pointer are reinstated, and
execution continues.
Entry point for routine to handle DATA statements; routine to
let CHRGET skip DATA statement up to terminating byte or
colon.
Search for statement terminator; exits with Y containing
displacement to end of line from CHRGET's pointer.
Search for end of BASIC line.
Entry point for routine to handle IF statement. Evaluate the
expression; if result is false (0), skip the THEN or GOTO
clause by doing REM.
Entry point for routine to handle REM; scan for end of line
and update pointer in CHRGET, to ignore contents of REM
statement.
Continue IF; if expression true, then execute next command, or
do GOTO if digit follows.
Entry point for routine to handle ON-GOTO and ON-GOSUB
statements; evaluate expression, test for GOTO or GOSUB
token, scan line number list, skipping commas for specified
line number, and GOTO or GOSUB it.
Read an integer (usually a line number) from the BASIC text
into locations $14 and $15; must be in range 0-63999.
Entry point for routine to handle LET statement; find target
variable in variable list (or create it if it doesn't exist), test for
= token, evaluate expression, and move result or string
descriptor into the variable list.
Round FACI and put, as integer, into variable list at current
variable position, pointed to by $49/ 4A.
Put FACI into variable list at location pointed to by $49/ 4A.
Assign the system variable TI$.
Add ASCII digit to FACI.
LET for strings; put string descriptor pointed to by
FACI +3/FACI +4 into variable list at location pointed to by
$49/4A.
Entry point for routine to handle PRINT# statement; call
CMD, then clear I/O channels and restore default I/O device
numbers.
Entry point for routine to handle CMD; set output device from
file table using Kernal CHKOUT routine, then call PRINT.

357

VIC-20 ROM Guide

STRDON $CA9A/$AA9A

PRINT $CAAO/$AAAO

VAROP $CABS/$AAB8
CRDO $CAD7/$AAD7

STROUT $CBIE/$ABIE

STRPRT $CB21/$AB21
OUTSTR $CB24/$AB24
OUTSPC $CB3B/$AB3B

PRTSPC $CB3F /$AB3F
OUTSKP $CB42/$AB42
OUTQST $CB45/$AB45
OUTDO $CB47/$AB47
TRMNOK $CB4D /$AB4D

GET $CB7B /$AB7B

INPUTN $CBA5/$ABA5

INPUT $CBBF /$ABBF

QINLIN $CBF9/$ABF9

READ $CC06/$AC06

INPCON $CCOD /$ACOD

INPCOI $CCOF /$ACOF

DATLOP $CCB8/$ACB8
VAREND $CCDF /$ACDF

EXINT $CCFC/$ACFC
NEXT $CDIE/$ADIE

Part of PRINT routine; print string and continue with punctua
tion of PRINT.
Entry point for routine to handle PRINT statement; identify
PRINT parameters (TAB, SPC, comma, semicolon, etc.), and
evaluate expression.
Prnt variable; if numeral, convert to string before printing.
Prnt carriage return (ASCII 13) followed (if channel <12S) by
line feed (ASCII 10).
Prnt string beginning at address specified in A (low byte) and
Y ':high byte), and terminated by a zero byte or quotes.
Prnt string; FACI + 3/FACI + 4 points to string descriptor.
Output string; locations. $22/23 point to string, length in A.
Output cursor right (or space if the screen is not the current
output device).
Output space.
Output cursor right.
Output question mark for error messages.
Output the character in A.
Output appropriate error messages for GET, READ, and
INPUT.
Entry point for routine to handle GET and GET# statements;
te,t for direct mode (illegal) and fetch one character from key
board or file.
Entry point for routine to handle INPUT# statement; fetch file
number, turn the device on, call INPUT, and then turn the
device off.
Entry point for routine to handle INPUT statement; output
user's prompt string if present, then continue with QINLIN
routine.
Pr:nt ? prompt and receive line of text (terminated by RE
TURN) into input buffer.
Entry point for routine to handle the READ statement. GET
and INPUT also share this routine, but are distinguished by a
flag in location $11.
Entry point into READ routine for INPUT; set flag and call
READ, with buffer at the address specified in X (low byte) and
Y I high byte).
Entry point into READ routine for GET; set flag and call
READ, with buffer at the address specified in X (low byte) and
Y I high byte).
Scan text and read DATA statements.
Te:;ts for 0 at end of input buffer; if not found, print ?EXTRA
IGNORED.
Messages ?EXTRA IGNORED and ?REDO FROM START.
Entry point for routine to handle NEXT; check for FOR token
ani matching variable on stack, and print ?NEXT WITHOUT
FOR if not found; calculate next value. If the loop increment is
stiJI valid, reset current line number and the pointer in
CHRGET and continue.

FRMNUM $CD8A/$ADSA Evaluate a numeric expression for BASIC by calling FRMEVL,
then CHKNUM.

358

CHKNUM $CD8D /$AD8D

CHKSTR

FRMEVL

EVAL

PIVAL
PARCHK
CHKCLS

CHKOPN

CHKCOM

SYNCHR

SYNERR
DOMIN
TSTROM

ISVAR

TISASC
ISFUN
OROP

ANOOP

OOREL

NUMREL
STRREL

$CD8F /$A08F

$CD9E/$A09E

$CE83/$AE83

$CEA8/$AEA8
$CEF1/$AEF1
$CEF7/$AEF7

$CEFA/$AEFA

$CEFO /$AEFO

$CEFF /$AEFF

$CF08/$AF08
$CFOO /$AFOD
$CF14/$AF14

$CF28/$AF28

$CF48/$AF48
$CFA7/$AFA7
$CFE6/$AFE6

$CFE9/$AFE9

$0016/$B016

$0018/$B01B
$002E/$B02E

VIC·20 ROM Guide

Check that FRMEVL has returned a number by testing flag at
location SOD. If a number was not returned, issue a ?TYPE
MISMATCH ERROR message.
Check that FRMEVL has returned a string by testing flag at
location SOD. If a string was not returned, issue a ?TYPE MIS
MATCH ERROR message.
Evaluate any BASIC expression in text and report any syntax
errors; set SOD (VALTYP) to $00 if the expression is numeric
and $FF if it is a string. For numeric expressions, location $OE
(INTFLG) is set to $00 if the expression is floating point, and
the value is placed in FACl. If the variable type is integer, set
INTFLG to $80, but leave the result in floating point format in
FACI. Complicated expressions may need simplifying to re
tain stack space and prevent ?OUT OF MEMORY.
Evaluate a single term in an expression; look for ASCII
numeral strings, variables, pi, NOT, arithmetic functions, etc.
VaJue of pi in five-byte floating point format.
Evaluate expression within parentheses.
Check whether CHRGET points to a) character; issue a
?SYNTAX ERROR message if not.
Check whether CHRGET points to a (character; issue a
?SYNTAX ERROR message if not.
Check whether CHRGET points to a comma; issue a
?SYNTAX ERROR message if not.
Check whether CHRGET points to byte identical to that in A;
if it does, routine exits with next byte in A; otherwise, a
?SYNTAX ERROR message is issued.
Output a ?SYNTAX ERROR message and return to READY.
EvaJuate NOT.
Set carry flag to 1 if FAC1 +3/FAC1 +4 point to the ROM
area indicating reserved variables TI$, TI, ST.
Search variable list for variable named in locations $45/46; on
exit FAC1 will hold numeric value in FLPT format (whether
integer or floating point variable); FAC1 +3jFACl +4 will
point to the descriptor if it's a string variable.
Read clock and set up string containing TI$.
Identify function type and evaluate it.
Entry point for routine to handle the OR function; set flag and
do OR between two two-byte integers in FAC1 and FAC2.
Entry point for routine to handle the AND function. Both
AND and OR are performed by one routine; a flag (in Y)
holds $FF for OR, $00 for AND. Convert FLPT to integer (and
give an error message if the result is out of range). The result
in FLPT format is left in FACt.
Entry point for routine to handle string and numeric compari
sons « = ». Check variable types, then continue with
NUMREL or STRREL, as appropriate.
Perform numeric comparison, using FCOMP at $DCSB.
Perform string comparison; exit with X holding $00 if strings
equal, $01 if the first string is greater than the second, and $FF
if the second is greater than the first.

359

VIC·20 ROM Guide

DIM

PTRGET

OROVAR

ISLETC
NOTFNS

FMAPTR

N32768
FACINX

INTIDX

AYINT

ISARY

FNOARY

BSERR

NOTFOD

INPLN2

UMULT

FRE

GIVAYF

POS

360

$0081/$B081

$008B /$B08B

$00E7/$BOE7

$0113/$Bl13
$0110/$B110

$0194/$B194

$01A5/$B1A5
$01AAJ$B1AA

$01B2/$B1B2

$OlBF /$B1BF

$0101/$B101

$0218/$B218

$0245/$B245

$0261/$B261

$030E/$B30E

$034C/$B34C

$0370/$B370

$0391/$B391

$D39E/$B39E

En:ry point for routine 'to handle the DIM statement; set up
each array element using the PTRGET routine.
Validate a variable name in BASIC text; the first character
must be alphabetic, the second may be either alphabetic or
numeric; subsequent alphanumerics are discarded. Set
VALTYP (location $OD) to $FF to indicate a string variable if $
is found; otherwise, set VALTYP to $00 to indicate a numeric
variable. Set INTFLG (location $OE) to $80 to indicate an inte
ger variable if % is found. The name is stored in VARNAM
(locations $45/46) with high bits set to indicate the variable
tYl:;e, as described in Chapter 5.
Search variable list for variable whose name is in VARNAM
(locations $45/46) and set VARPNT (locations $47/48) to
point to it. Create new variable if the name is not currently in
the list.
Set the carry flag if the accumulator holds A-Z.
Create a new simple (not array) variable in variable list im
mediately before arrays; name is in VARNAM ($45/46). Any
arrays have to be moved up by seven bytes to accommodate
the new variable. Exit with locations $5F /60 pointing to newly
created variable.
Calculate pointer value in $5F/60, to be used when setting up
space for arrays.
Holds -32768 as a five-byte floating point number.
Convert contents of FACI to two-byte integer (- 32767 to
+32768) in A/Y.
Fet:h and evaluate a positive integer expression from the next
part of BASIC text; if result is 0 to 32767, store in FACI + 3
anel FACI +4.
Convert the contents of FACI to integer in range 0 to 32767;
lea'le the result in FACI +3/FACI +4.
Gel array parameters from BASIC text (number of dimensions
anc! number of elements) and push the values onto the stack.
Fin:! array named in VARNAM ($45/46), with other details of
the array stored on the stack.
BA) SUBSCRIPT error. BSERR + 3 will print ILLEGAL
QUANTITY error message.
If the specified array is not found, create it using details on
stack with DIMension 10.
Locate specified element within array and point VARPNT
($47/48) to it.
Compute offset of specified array element relative to array
pointed at by VARPNT ($47/48); put in X/Y.
Entry point for routine to handle FRE function; perform gar
bage collection and set Y 1 A to point to lowest string minus
pointer to end of arrays; then place in FACI by calling.
Convert two-byte integer in Y/A (range -32768 to +32767)
to FLPT in FACI.
Entry point for routine to handle pas function; calls Kernal
routine PLOT to fetch cursor position, then loads it into FACI
using SNGET.

SNGET
ERRDIP

DEF

GETFNM

FNDOER

STRD

STRINI

STRUT

GETSPA

GARBA2

DVARS

CAT
MOVINS

FRESTR

FRETMS
CHRD

LEFTD
RIGHTD
MIDD
PRE AM

LEN

$D3A2j$B3A2
$D3A6j$B3A6

$D3B3j$B3B3

$D3Elj$B3El

$D3F4j$B3F4

$D465 j$B465

$D475j$B475

$D487 j$B487

$D4F4j$B4F4

$D526j$B526

$D606 j$B606

$D63D j$B63D
$D67Aj$B67A

$D6A3j$B6A3

$D6DBj$B6DB
$D6ECj$B6EC

$D700 j$B700
$D72Cj$B72C
$D737 j$B7D7
$D761j$B761

$D77Cj$B77C

VIC-20 ROM Guide

Convert byte in Y to FLPT in FACI (0 to 255).
Test that command was not entered in direct mode;
CURLIN + 1 ($3A) containing $FF indicates direct mode.
?ILLEGAL DIRECT ERROR if it was. Called by routines that
may not be used in direct mode (for example, GET).
Entry point for routine to handle DEF statement; create func
tion definition and find or set up dependent variable. When a
FN is invoked, the pointer within CHRGET is set to the begin
ning of the FN definition in the BASIC text and the expression
found there is evaluated; it is then switched back. Information
to enable it to do this is stored within the function variable set
up in GETFNM.
Check syntax of FN; find or set up variable with function
name and set DEFPNT ($4Ej4F) to point to it (must be
numeric, not string, variable).
Evaluate function; evaluate expression within parentheses in
statement invoking function, leaving it in FACl, then evaluate
the FN expression (see DEF).
Entry point for routine to handle STR$ function; evaluate ex
pression and convert to ASCII string.
Make room in string space for a string to be inserted: A con
tains length and (FACI +3) points to the string. On exit $61-
$63 contains descriptor for new string. CHR$, LEFT$, and so
on all use this routine.
Copy a string into string space at top of memory; AjY points
to the start of the string. Scans for ", : or 0 byte as terminator
to determine length. Exit with descriptor in $61-$63.
Allocate space for string, length in A, in dynamic string space
at top of memory; do garbage collection if space exhausted.
Called by STRINI.
Do garbage collection; eliminate unwanted strings in string
area and collect together valid strings. The garbage collection
routine is slow for large numbers of strings.
Search variables and arrays for next string to be saved by gar
bage collection.
Concatenate two strings.
Move string to string area high in RAM; entered with $6F j70
pointing at the descriptor of the string to be stored.
Discard string; entered with pointer to string descriptor in
FACl +3jFACl +4, exits with new string length and pointer
in INDEXI.
Clean the descriptor stack.
Entry point for routine to handle CHR$ function; sets up a
one-byte string.
Entry point for routine to handle LEFT$.
Entry point for routine to handle RIGHT$.
Entry point for routine to handle MID$.
Pull string descriptor pointer to $50 j51, length to A (also in
X).
Entry point for routine to handle LEN function; floating point
value of string length parameter placed in FACl.

361

VIC-20 ROM Guide

LENl $D782/$B782

ASC $D78B /$B78B

GTBYTC $D79B/$B79B

VAL $D7 AD /$B7 AD

GETNUM $D7EB/$B7EB

GETADR $D7F7/$B7F7

PEEK $$D80 /$B80D

POKE $D824/$B824

WAIT $D82D /$B82D

FADDH $D849/$B849
FSUB $D850 /$B850

FSUBT $D853/$B853

FADD $D867/$B867

FADDT $D86F /$B86F

COMPLT $D947/$B947

OVERR $D97E/$B97E
MULSHF $D983/$B983
FONE $D9BC/$B9BC

LOG $D9EA/$B9EA

FMULT $DA28/$BA28

FMULTT $DA30/$BA30

MLTPLY $DA59/$BA59
CONUPK $DA8C/$BA8C

MULDIV $DAB7/$BAB7

362

Exract length of string, put in Y, leave string mode, and enter
numeric mode. Called by LEN, VAL.
ASC function; get first character of string and convert to float
inE; point in FACl. String of length zero gives ?SYNTAX
ERROR.
Reid and evaluate an expression from BASIC text; must eval
uate to a one-byte value; value left in X and FAC1 +4.
En try point for routine to handle VAL function; convert value
to floating point value in FACl.
Read parameters for WAIT and POKE from BASIC text; put
fir~t (two-byte integer) in $14/15, second in X.
Convert FAC1 to two-byte integer (range 0-65535) in $14/15
and Y/A.
En:ry point for routine to handle PEEK function; on entry
FAC1 contains address to be PEEKed in FLPT form; exit with
PE EKed value in Y,
En :ry point for routine co handle POKE statement; fetch two
parameters from BASIC text; do POKE.
En':ry point for routine to handle WAIT statement; fetch two
parameters from text, plus optional third, which is 0 if none
found; do WAIT loop.
Add 0.5 to contents of FAC1; used when rounding.
Floating point subtraction; FAC1 is replaced by MFLPT value
pointed to by A/Y, minus FACl.
Eniry point for routine to handle floating point subtraction;
FAC1 is replaced by FAC2 minus FACl.
Floating point addition; FACI is replaced by MFLPT value
pointed to by A/Y, plus FACl.
Enlry point for routine to handle floating point addition; FAC1
is replaced by FAC2 plus FACl. On entry, A holds FACl's
eXFonent (contents of $61) to speed the addition in the event
that FAC1 contains zero.
Replace FAC1 with twos complement of the value currently
there.
Output ?OVERFLOW ERROR message, then READY.
Mu ltiply by a byte.
Table of constants in MFLPT format: first 1, then constants for
LOC:; evaluation; SQR(0.5), SQR(2), -0.5, and LOG(2).
Entry point for routine to handle the LOG function; compute
loprithm to the base e of FACl.
Fl03ting point multiply; FAC1 is replaced by MFLPT value
pointed to by A/Y times FACl.
Entry point for routine to handle floating point multiplication;
FAG is replaced by FAC1 times FAC2.
Multiply FACl by a byte and store in $26-$2A.
Lac d FAC2 from MFPLT value pointed to by A/Y, unpacking
sign bit and storing it s€parately, forming FLPT format. On
exit A holds FAC1's first byte.
Test floating point accumulators for multiply and divide; if
FAC2 is 0, set FACI to 0; if exponents together are too large
then ?OVERFLOW ERROR. If they are too small, force the re
sult to 0 without an underflow message.

MULlO
TENC
DIV10
FDIVF

FDIV

FDIVT

MOVFM

MOV2F

MOV1F

MOVVF

MOVMF

MOVFA
MOVAF
ROUND
SIGN

SGN

ABS

FCOMP

QINT

INT

FIN

AADD
STCONS

INPRT

LINPRT
FOUT

FOUTIM

$DAE2/$BAE2
$DAF9/$BAF9
$DAFE/$BAFE
$DB07/$BB07

$DBOF /$BBOF

$DB14/$BB14

$DAB2/$BBA2

$DBC7/$BBC7

$DBCA/$BBCA

$DBDO/$BBDO

$DBD4/$BBD4

$DBFC/$BBFC
$DCOC/$BCOC
$DCIB/$BC1B
$DC2B /$BC2B

$DC39/$BC39

$DC58/$BC58

$DC5B /$BC5B

$DC9B /$BC9B

$DCCC/$BCCC

$DCF3/$BCF3

VIC-20 ROM Guide

Multiply FACI by 10 and put result in FACI.
The value 10 in MFLPT format.
Divide FACI by 10 and put result in FACl.
Floating point division; FACI is replaced by FAC2 divided by
MFLPT value pointed at by A/Y; on entry X contains sign of
result.
Floating point division; FACI is replaced by MFLPT divided
by FACI.
Entry point for routine to handle floating point division; FACI
is replaced by FAC2 divided by FACl. On entry, A holds
FACI's first byte.
Load FACI from MFLPT value pointed to by A/Y, unpacking
sign bit and storing it separately, forming FLPT format.
Convert FACI to MFLPT format and store at $5C-$60,
TEMPFP2.
Convert FACI to MFLPT format and store at $57-$58,
TEMPFPl.
Convert FACI to MFLPT format and store at address pointed
to by $49/ 4A.
Convert FACI to MFLPT format and store at address pointed
to by A/Y .
Copy FAC2 into FACI.
Round FACI by calling ROUND, then copy into FAC2.
Round FACI.
Get sign of FACl; on exit A = 0 if value is 0, A = 1 if value is
positive, A = $FF if value is negative.
Entry point for routine to handle SGN function; calls SIGN,
then converts A into floating point form in FACl.
Entry point for routine to handle ABS function; replace FAC1
with the absolute value of the current contents of FACl.
Compare FAC1 with MFLPT value pointed to by A/Y; on exit
A=O if values were equal, A=1 if FAC1>MFLPT, A=$FF if
FACI <MFLPT.
Convert FAC1 to four-byte integer in FACI + 1 to :FAC1 + 4,
highest byte first.
Entry point for routine to handle INT function; round down
FAC1 but leave it in FAC1 in FLPT form.
Convert an ASCII string (for example, "-99.375") to a float
ing point value in FACI. On entry, TXTPTR points to the start
of the string, then JSR GETCHR/JSR FIN accomplishes the
conversion.

$DD7E/$BD7E Add contents of A to FACI.
$DDB3/$BDB3 Three constants used in string conversions, in MFLPT form:

99999999.9, 999999999, 1000000000.
$DDC2/$BDC2 Print IN followed by current line number in CURLIN

($39/3A).
$DDCD/$BDCD Output integer in A/Y, range 0-65535.
$DDDD/$BDDD Convert contents of FAC1 to ASCII string starting at location

$100 and ending with 0 byte. On exit, A/Y holds start ad
dress, so STROUT can print string.

$DE68/$BE68 Convert TI to ASCII string starting at $100 and ending with 0
byte.

363

VIC-20 ROM Guide

TICONS

SQR

FPWRT

NEGOP
EXCONS
EXP

POLYX

RMULC

RADDC

RND

RNDO

QSETNR

RNDI

RNDRNG
BIOERR

BCHOUT
BCHIN
BCKOUT
BCKIN
BGETIN
SYS

SAVET

VERFYT

LOADT

364

$DFll/$BFll

$DF71/$BF71

$DF7B/$BF7B

$DFB4/$BFB4
$DFBF /$BFBF
$DFED /$BFED

$E056/$E059

$E08A/$E08D

$E08F /$E092

$E094/$E097

$E09B /$E09E

$EOBB/$EOBE

$EODO /$EOD3

$EOEO/$EOE5
$EOF6/$EOF9

$EI09/$EI0C
$EIOF /$EIl2
$EIl5/$EIl8
$EllB/$EllE
$E121/$E124
$E127/$E12A

$E153/$E156

$E162/$E165

$E165/$E168

String and TI conversion constants: .5 in MFLPT form, then 15
four-byte integer constants.
Entry point for routine to handle SQR function; FACI is re
plilced by square root of FAC 1.
Entry point for routine to perform power calculation; FACI is
replaced by FAC2 raised to the power of FACl. On entry, A
mllst hold contents of FAC2 so powers of 0 are correct.
N~'gate FACl.
Table of eight constants for evaluating EXP series.
Entry point for routine to handle EXP function; FACI is re
plilced by e raised to FACl.
Series evaluation routine. Entered with A/Y pointing to the
counter at the beginning of the table of constants used in the
power series evaluation.
The value 11879546.4 in MFLPT format; multiplicative con
stant for RND evaluation.
The value 3.92767778E-8 in MFLPT format; additive con
stant for RND evaluation.
Entry point for routine to handle RND function; set FACI to a
number according to sign of FACI by branching to either
RNDO, QSETNR, or RNDl.
If:;ACl = 0, load FACI from VIA timer registers; a simple way
of reseeding it with a random number.
If:;ACl>O, load FACI with the result of multiplying the
stored random number (in $88-$8C) generated by previous
calls, by RMULC, and adding RADDe.
If~ACl<O, load FACI with mixed digits from FACl itself, so
RND with a negative argument is constant and therefore
repeatable. After any of these three conditions, FACI is stored
in $88-$8e.
Force the value in FACI into the range 0-1 excluding 0 and 1.
I/0 error message routine if any of the following calls return
error flags:.
Output character; uses CHROUT.
Input character; uses CHRIN.
Se: up for output; uses CHKOUT.
Se: up for input; uses CHKIN.
GEt one character; uses GETIN.
Entry point for routine to handle SYS statement; load A, X, Y,
and SR from locations $30C to $30F, call machine language
routine at address specified by the argument, then reload the
register contents into $30C-$30F on return from the routine.
Entry point for routine to handle SAVE; save a BASIC pro
gram. Set A to point to address in zero page pointing to start
address, set X/Y to the value in $2D/2E (end-of-program
pointer). Then Kernal routine SAVE is called via vector at
$FFD8.
Entry point for routine to handle VERIFY; set flag in A to in
dicate VERIFY operation, enter LOADT and check for errors.
Entry point for routine to handle LOAD; fetch parameters
from BASIC text and set them up, call Kernal routine LOAD
vic. vector at $FFD5 .

VIC-20 ROM Guide

LOADR $E177/$E16F Load from device already set, into RAM starting at start of
BASIC address pointed to by $2B/2C.

LDFIN $E195/$E195 Finish LOAD; if LOAD was called in direct mode, set top-of-
BASIC pointer ($2D/2E) to address of last byte loaded. This
step is omitted if the routine is called from within a program,
so variable list is preserved. Finally, reset pointer in CHRGET
and warm start BASIC to run the new program.

OPENT $E1BB/$E1BE Entry point for routine to handle OPEN; read parameters from
text and set them up via appropriate Kernal calls; call Kernal
OPEN routine via vector at $FFCO.

CLOSET $E1C4/$E1C7 Entry point for routine to handle CLOSE; read parameters
from text and set them up; call Kernal CLOSE routine via vec-
tor at $FFC3.

SLPARA $EID1/$E1D4 Fetch parameters for LOAD, SAVE, and VERIFY from BASIC
text; set defaults if not supplied. Set up file by a call to
SETLFS via vector at $FFBA.

COMBYT $ElFD /$E200 Check for comma and evaluate the following one-byte param-
eter, which is put in X.

CMMERR $E20B/$E20E Check for comma followed by anything other than end of
statement; otherwise, issue a ?SYNTAX ERROR message.

OCPARA $E216/$E219 Get parameters from BASIC text for OPEN/CLOSE calls; set
defaults if not supplied.

COS $E261/$E264 Entry point for routine to handle the COS function; the value
in FAC1 is replaced by the cosine of that value.

SIN $E268/$E26B Entry point for routine to handle the SIN function; the value
in FAC1 is replaced by the sine of that value.

TAN $E2B1/$E2B4 Entry point for routine to handle the TAN function; the value
in FACl is replaced by the tangent of that value.

$E2DD /$E2EO Table of constants in MFLPT format: 7r /2, 7r"2, and 0.25. Then
comes a counter value (5) and six MFLPT constants used in
evaluating SIN, COS, and TAN.

ATN $E30B /$E30E Entry point for routine to handle ATN; the value in FAC1 is
replaced by the arc tangent of that value.

$E33B/$E33E A counter value (11) and table of 12 constants in MFLPT for-
mat for ATN evaluation.

INIT $E378/$E394 BASIC cold start routine, entered on IMP ($COOO); part of the
reset sequence. Performs INITY, INITCZ, INITMS; sets stack
and jumps to READY.

CHRCPY $E387/$E3A2 CHRGET routine and RND seed in ROM for relocation into
RAM.

INITCZ $E3A4/$E3BF Initialize USR jump instruction and default vector, vectors
from $003 to $006; transfer CHRGET and RND seed to RAM;
call Kernal routines MEMBOT and MEMTOP to set start-of-
BASIC and top-of-memory pointers ($2B/2C and$37/38) from
the pointers at $282-$285 initialized on power-up. Set end-of-
program 0 byte at 4096.

INITMS $E404/$E422 Output start-up message:"*** CBM BASIC V2 ****, then num-
ber of free bytes, then BYTES FREE

INITV $E45B/$E453 Initialize vectors for ERROR, MAIN, etc., at $0300-$030B.

365

VIC-20 ROM Guide

BASSFT $E467/$E37B BASIC warm start routine, entered on JMP ($C002); part of
the break sequence performed if BRK instruction encountered
or STOP-RESTORE keys are pressed. Close al! I/0 channels,
initialize stack, output ?BREAK ERROR, and jump to READY.

CINT $E518/$E518 General screen and VIC chip initialization; set up screen
editing tables at $D9-$FO, initialize VIC chip, set character
cclor to blue, do CLR and HOME, reset default I/0 device

HOME $E581/$E566
INITVC $E5C3/$E5A8

GETKBC $E5CF /$E5B4

INPPRO $E5E5/$E5CA
QTSWC $E6B8/$E684
PRT $E742/$E716

CHKCOL $E912/$E8CB

COLTAB $E921/$E8DA

SCROL $E975/$E8EA

numbers at $99 and $9A.
H::>me the cursor.
Initialize the VIC chip from table of values at $EDE4-$EDF3
(in terna tional variations).
Get character from keyboard queue and move remaining
d"caracters along; queue must contain at least one character
OIl entry (queue size is stored in $C6). On exit the character
is in A.
Input and process SHIFT-STOP, RETURN, etc.
Flip quotes flag ($D4) if A contains quotes on entry.
Print character in A to screen, like PRINT CHR$; handles such
d.aracters as home cursor, clear screen, delete, etc.
Test A for character color code; change color in $286 if one is
found.
Te.ble of color-change codes, arranged Black, White, Red,
Cyan, etc.
SeTol! screen up. If the top line is more than 22 characters
long, the routine scrolls up appropriate number of lines to
ccmpletely remove it. The CTRL key is tested for by directly
interrogating the VIA chip, and a slight delay is performed if it
is held down.

DSPP $EAAl/$EA13 Put the character in A onto the screen at the current cursor
position; no checking for control characters, etc., is performed.
The color for the character is held in X.

KEY $EABF /$EA31 Interrupt servicing routine: All IRQ interrupts are processed by
this routine unless the vector in $0314/0315 has been altered.
The functions of KEY are to update the clock and location $91
ming Kernal routine UDTIM, maintain flashing cursor if
ct:rsor is enabled (see $CC-$CF), set the cassette motor on or
off according to the flags at $CO, and test the keyboard for
new character using Kernal routine SCNKEY. Finally, the A,
X, and Y registers are pulled from the stack and restored (they
are pushed there by the routine at $FF72) and a return from
interrupt instruction (RTI) continues processing the main
program.

KBDTBL $EC46/$EB81 Tcbles to convert keyboard matrix values to CBM ASCII
vclues.

VICINT $EDE4/$ECB9 Table of values from which VIC chip is initialized (the exact
v2lues vary internationally, depending on the local television
standards).

LDRUN $EDF4/$ECC9 The characters LOAD <RETURN> RUN <RETURN>, trans
ferred to the keyboard queue when SHIFT-RUN.

RSTRAB $EFA3/$EEBB Part of the routine used by NMI when servicing RS-232
output.

366

SPMSG

FAH

READ
WRITE
START

RAMTAS

lOIN IT
NMI

PULS

$F09F/$EF2E
$FOED/$F017
$F14F/$F086
$F17F /$FOCA
$FIE2/$F12B

$F230/$F179
$F290/$F1DD
$F44B/$F38B
$F495/$F3D5
$F4C7/$F409
$F563/$F4BF
$F5Dl/$F539
$F692/$F5FA
$F6F8/$F65F
$F77E/$F6FB
$F7 AF /$F72C
$F7EF /$F76A
$F867/$F7EA
$F8C9/$F84A
$F8E6/$F867
$F98E/$F92C
$FBEA/$FBA6
$FD22/$FCE2

$FD8D /$FD50

$FDF9/$FDA3
$FEA9/$FE43

$FF5C/$FEC2
$FF72/$FF48

VIC-20 ROM Guide

Flag RS-232 errors into ST byte.
Output RS-232 character.
Get RS-232 character.
Tape messages.
Output Kernal message from table starting at $F174 if flag at
$9D is set.
Get character from tape.
Output character to tape.
Open tape file.
Open serial device (printer, disk) file.
Open RS-232 file.
Load from disk.
Load from tape.
Save to disk.
Save to tape.
Table of I/O error numbers (1-9) and messages.
Load next tape header.
Write tape header.
Load named tape header.
Load tape.
Write tape.
Routines for tape reading.
Routines for tape writing.
Reset routine; entered from the 6502 RESET vector at $FFFC.
If a ROM cartridge is present, JMP ($AOOO) runs it. Otherwise,
the routine calls RAMTAS, RESTOR, IOINIT, CINT, and NEW.
Note that all other RAM is unaltered, so BASIC programs can
be recovered after reset.
Fill low RAM (except for the stack area) with zeros, find the
start and end of contiguous RAM for BASIC, and set the
appropriate screen position according to the amount of mem
ory present.
Initialize VIA chips on power-up.
NMI routine; entered from the 6502 NMI vector at $FFFA.
JMP ($318) at $FEAA routes control back to $FEAD; altering
this vector is one way to modify STOP-RESTORE. If a ROM
cartridge is present, the routine will warm start it by JMP
($A002). If the STOP key is down, Kernal routines RESTOR,
IOINIT, and CINT are called, and a warm start of BASIC is
performed by doing a JMP ($C002). This sequence is also
performed on BRK. Otherwise, the interrupt is the result of
RS-232 activity.
RS-232 baud rate table (22 bytes; varies internationally).
IRQ or BRK routine; entered from the 6502 IRQ vector at
$FFFE. Save the contents of A, X, and Y on the stack, and
examine the status register already pushed onto the stack to
determine whether a hardware IRQ interrupt or the execution
of a BRK instruction occurred. If it was a standard IRQ inter
rupt, perform JMP ($314), usually to KEY at $EABF; if it was a
BRK operation,]MP ($316), usually to part of the NMI se
quence at $FED2, which resets chips and restarts BASIC.

367

VIC-20 ROM Guide

Kernal Jump Table Routines
In Commodore computers, the uppermost half-page of ROM contains a very im
portant collection of vectors known as the Kernal jump table. Each three-byte table
entry consists of a JMP instruction and a two-byte address. The JMP may be either a
direct JMP to an absolute address in ROM, or an indirect JMP through a RAM vec
tor, such as those in locations $314-$333. The significance of the table is that the
location of table entries should remain fixed regardless of future revisions of the
ROM routines. Also, many of the locations for table entries are common to all the
different Commodore computers.

For example, if you wish to use the Kernal routine which prints a character
(held in the accumulator) to the screen, you could go directly to that routine with
JMP $F27 A, but then your program would work only on the VIC, and might not
work with future VICs if the ROMs are revised. However, if you use JMP $FFD2, the
jump table entry for the CHROUT routine, you could have some assurance that your
program would still work on future VICs; moreover, that jump table entry would
also work on the Commodore 64 and PET /CBM computers as well, even though the
printing routines for those models are at different locations. On the VIC, JMP $FFD2
arrives at $F27 A via an indirect jump through the RAM vector in locations
$326/327.

The VIC's Kernal Jump Table begins at location $FF8A. Note that the table en
tries have their own labels, which may be different from the labels of the routines
they point to. Both the table entry label and the Kernal routine label are shown in
the list that follows.

Label VIC/64

RESTOR
VECTOR
SETMSG
SECNDK

TKSAK

MEMTOP
MEMBOT
SCNKK
SETTMO
ACPTRK

CIOUTK

UNTLKK

UNLSNK

LISTNK

368

$FD52/$FD15
$FD57/$FDIA
$FE66/$FE18
$EECO/$EDB9

$EECE/$EDC7

$FE73/$FE25
$FE82/$FE34
$EBIE/$EA87
$FE6F/$FE21
$EF19/$EE13

$EEE4/$EDDD

$EEF6/$EDEF

$EF04/$EDFE

$EE17/$EDOC

Jump Table
Entry
$H8A RESTOR
$H8D VECTOR
$H90 SETMSG
$F]193 SECOND

$FI'96 TKSA

$FI'99 MEMTOP
$FI'9C MEMBOT
$FI'9F SCNKEY
$FI'A2 SETTMO
$FI'A5 ACPTR

$FI'A8 ClOUT

$FI'AB UNTALK

$FI'AE UNLSN

$FI'BI LISTN

Descriptions

Restore standard input/output vectors.
Store/set input/output vectors.
Enable/disable message output to screen.
Send secondary address for LISTEN com
mand on serial bus; LISTEN must be called
before using this routine.
Send secondary address for TALK com
mand on serial bus; TALK must be called
before using this routine.
Read/set BASIC top-of-memory limit.
Read/set BASIC bottom-of-memory limit.
Scan keyboard.
Set serial bus timeout.
Get a byte from a serial device (usually
disk).
Output a byte to a serial device (usually a
printer or disk).
Send an UNTALK command to devices on
the serial bus.
Send an unlisten command to devices on
the serial bus.
Cause a device on the serial bus (usually a
printer or disk) to listen.

VIC-20 ROM Guide

TALKK $EE14/$ED09 $FFB4 TALK Cause a device on the serial bus (usually a
disk drive) to talk.

READSS $FE57/$FE07 $FFB7 READST Read status byte into A.
SETLFS $FE50/$FEOO $FFBA SETLFS Set file number, device number, and

secondary address.
SETNAM $FE49/$FDF9 $FFBD SETNAM Set filename.
NOPEN $F40A/$F34A $FFCO OPEN Open a file for reading or writing.
NCLOSE $F34A/$F291 $FFC3 CLOSE Close a file.
NCHKIN $F2C7/$F20E $FFC6 CHKIN Prepare a file for input.
NCKOUT $F309/$F250 $FFC9 CHKOUT Prepare a file for output.
NCLRCH $F3F3/$F333 $FFCC CLRCHN Restore default I/O devices.
NBASIN $F20E/$F157 $FFCF CHRIN Get a character from the designated input

device.
NBSOUT $F27 A/$FICA $FFD2 CHROUT Send a character to the designated output

device.
LOADSP $F542/$F49E $FFD5 LOAD Load data into memory from disk or tape.
SAVESP $F675/$F5DD $FFD8 SAVE Save memory block to disk or tape.
SETTMK $F767/$F6E4 $FFDB SETTIM Set TI clock.
RDTIMK $F760/$F6DD $FFDE RDTIM Read TI clock.
NSTOP $F770/$F6ED $FFEI STOP Test whether STOP key is pressed.
NGETIN $FIF5/$F13E $FFE4 GETIN Get a character, usually from the keyboard.
NCLALL $F3EF/$F32F $FFE7 CLALL Abort all I/O and close all files.
UDTIMK $F734/$F69B $FFEA UDTIM Add 1 to TI clock; reset to 0 if the count

reaches 240000.
SCRENK $E505/$E505 $FFED SCREEN Return the maximum number of screen col-

umns and rows (for the VIC, 22 and 23).
PLOTK $ESOA/$E50A $FFFO PLOT Move the cursor to a specified row and col-

umn, or read the current row and column
position of the cursor.

IOBASK $E500/$E500 $FFF3 IOBASE Find the starting address of the keyboard
VIA chip registers.

6502 Hardware Vectors
The 6502 microprocessor chip reserves the highest six bytes of the address space
(locations $FFFA-$FFFF) for use as vectors. These three vectors point to routines that
handle processing under three special sets of circumstances. The chip automatically
causes a JMP through one of these vectors when external hardware sends a signal on
the 6502's NMI, RESET, or IRQ lines.

The list below shows the label of the vector, the address of the first byte of the
vector, and the address to which the vector points in the VIC and 64.
Label Vector VIC/64 Descriptions
NMI $FFFA $FEA9/$FCE2 When the 6502 receives a NMI (Non-Maskable Inter-

rupt) Signal, it causes a jump to the address held here.
RESET $FFFC $FD22/$FE43 When the 6502 receives a RESET signal, it causes a

jump to the address held here.
IRQ $FFFE $FF72/$FF48 When the 6502 receives an IRQ (Interrupt ReQuest) sig

nal or processes a machine language BRK instruction, it
causes a jump to the address held here.

369

Chapter 12

Graphics

This chapter begins with the simplest types of graphics using only ordinary BASIC
and progresses to user-defined graphics with motion. It is divided into eight sections.

Graphics using VIC's built-in characters. This section looks at the way the
character sets are designed and stored and at BASIC methods for using them.

Machine language subroutines. Discusses subroutines that perform graphics
tasks-for instance, reversing characters or plotting 44 X 46 double-density
graphics.

Graphics and the VIC chip. Beginning with the easier aspects (color, color
RAM, and multicolor mode), this section moves on to topics like position and
dimensions of the TV display. Applications include defining extra-large screens, and
smooth screen scrolling.

The VIC chip and user-defined characters. Topics covered include the position
of screen memory and the position of character definitions, as well as methods for
saving and reloading your own character sets.

Utility programs. Several graphics utility programs are presented, including 3
X 3 editors in high-resolution and multicolor modes and full-screen editors.

Other techniques. Subjects covered include user-defined lettering, use of the
interrupt in split-screen graphics, the interrupt and flags, and achieving motion with
graphics.

Notes on game graphics. A discussion of graphics techniques in games.
The Super Expander. A critical look, with detailed notes, at the graphics

capabilities of the Super Expander.

Graphics with Ordinary BASIC
Effective graphics can be obtained on the VIC with ordinary BASIC. The range of ef
fects is similar to that found on PET ICBM machines, with the addition of color.
Before going into programming details, however, it is helpful to look at the internal
structure of the VIC-20's graphics system.

How Standard Characters Are Stored in the VIC-20
On the screen, each character is made up from a matrix of 8 X 8 dots. The actual
pattern of dots for each character is stored in ROM from $8000 (32768) to $8FFF
(36863), occupying a total of 4K of memory. In the non-Japanese VIC-20, there are
four subdivisions of this ROM:
$8000 (32768)-$83FF Uppercase plus extended graphics
$8400 (33792)-$87FF Reversed uppercase plus extended graphics
$8800 (34816)-$8BFF Lowercase with uppercase and some graphics
$8COO (35840)-$8FFF Reversed lowercase with uppercase and some graphics

Each byte is made up of eight bits, which correspond to a single row of dots. Thus,
every character is defined by exactly eight bytes. To show how this works, type FOR
J =32768 TO 32775: PRINT PEEK(J): NEXT and press RETURN. These eight values
define the first character, which is @' as follows:

373

Graphics

PEEK Value

28 ($1C)
34 ($22)
74 ($4A)
86 ($56)
76 ($4C)
32 ($20)
30 ($lE)
o ($0)

Bit Equivalent
Which Defines the Character

000 1 1 100
o 0 1 000 1 0
o 1 0 0 1 0 1 0
o 1 010 1 1 0
o 1 001 100
001 0 0 0 0 0
000 1 1 110
000 0 0 0 0 0

Other areas in the character ROM give similar results. The eight bytes from
33792, for example, correspond to reverse-@ and have exactly the opposite bit pat
tern. In other words, dots which were light with @ are dark with reverse-@, and
vice versa.

Program 12-1 allows the bit patterns of any consecutive eight bytes to be dis
played at the top of the screen. After loading and running it, SYS (828) 8*4096 dis
plays the eight bytes starting at $8000, representing the @ symbol, in either spaces
or solid squares. The symbols + or - step forward or back by eight bytes, and 1
moves up one byte. This is useful in examining ROM software to find where the
graphics definitions are stored. Two additional commands, F and B, step forward or
back by 256 bytes to allow faster movement through memory.

Program 12-1. Eight-Byte Graphics Display, with Addresses
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

8 DATA 32,138,285,32,247,215,169,147,44,169,19,32,
218,255,166,28,165,21,32,285,221 :rem 189

1 DATA 169,13,32,218,255,168,8,132,253,162,8,177,2
8,133,254,169,18,6,254,176,2,169 :rem 188

2 DATA 146,32,218,255,169,32,32,218,255,232,224,8,
288,235,169,13,32,218,255,238,253 :rem 238

3 DATA 164,253,192,8,288,216,32,225,255,288,1,96,3
2,228,255,248,251,281,78,288,2,238 :rem 31

4 DATA 21,281,66,288,2,198,21,281,49,288,6,238,28,
288,2,238,21,281,43,288,11,24,165 :rem 284

5 DATA 28,185,8,133,28,144,2,238,21,281,45,288,11,
56,165,28,233,8,133,28,176,2,198 :rem 159

6 DATA 21,16,138,48,128 :rem 181
18 FOR J=828 TO 964: READ X: POKE J,X: NEXT:rem 21
28 PRINT "{CLR}EXAMPLE: :rem 234
38 PRINT "SYS (828) 32768 :rem 14
48 PRINT "THEN +,- MOVE 8 BYTES, :rem 232
58 PRINT "F,B MOVE 256 BYTES, : rem 79
68 PRINT "I MOVES 1 BYTE. : rem 99

Since the total amount of memory dedicated to character definitions is 4K, there
is room for 4096/8 = 512 characters. However, because the screen memory area can
only store ordinary bytes, it is only possible to display 256 characters at one time.
Thus there are two distinct sets of characters. SHIFT -Commodore switches between

374

Graphics

them by directing the VIC chip to point either at $8000 (which is the value set when
the machine is turned on and is the uppercase mode) or at $8800 (lowercase mode).
Lowercase mode can be selected by PRINT CHR$(14), and uppercase can be selected
by PRINT CHR$(142).

The two sets are identical to those in Commodore's other machines. The idea is
that one could be used for word-processing applications (where the distinction be
tween capital and lowercase letters is important), while the other could be used for
pictorial applications (for example, with the playing-card symbols). Because of this
they are often called "text" and "graphics" modes.

Program 12-2, for the unexpanded VIC, displays all 256 characters of either
mode in black at the top half of the screen. Press SHIFT -Commodore to change
modes; note how many of the characters are duplicated.

Program 12-2. VIC Character Sets

10 FOR J=7680 TO 7680+255:REM 256 VALUES NEED 256
{SPACE}SCREEN LOCATIONS

20 POKE J,Q:REM POKE 0,1,2,3, ••• ,255 AS Q INCREASE
S

30 POKE 38400+Q,0:REM COLOR RAM FROM $9600 SET TO
[SPACE}BLACK

40 Q=Q+l
50 NEXT

A table of these characters is given in Appendix]. Except for space and SHIFT
space, which PEEK as 32 and 96, there is no ambiguity about these screen
characters.

However, there is a rather confusing distinction between characters as they are
POKEd into the screen by this program and as they are printed. PRINT translates
many characters in special ways, changing color, clearing the screen, moving the
cursor up or down or to the start of the next line, and so on. Some of them, like RE
TURN, are fairly standard, while others are peculiar to the VIC-20 and 64.

Another appendix, Appendix I, lists PRINTed characters as they are im
plemented in the VIC-20, in effect listing CHR$ values and their corresponding ASC
values. True ASCII reserves the first 32 characters for control information, and Com
modore has borrowed this idea. The VIC-20's characters as printed are closer to true
ASCII than is the case in earlier CBM machines; the output routine has been modi
fied to insure this, so conversion to true ASCII is easier. However, the upper- and
lowercase alphabets are interchanged in relation to true ASCII, as the table in
Appendix I shows.

The RVS (reverse) feature allows PRINT to match any of the 256 screen charac
ters, and it effectively doubles the character set available. In fact, the built-in reverse
characters are arranged in step with the unreversed equivalents, and the VIC chip
points to them when bit 7 is set. Because of this, an easy way to reverse characters is
to set bit 7 on (or, in BASIC terms, add 128). Try POKE 7680,128, for example.

The fact that this flag (or RVS) is necessary to print a complete graphics set can
be irritating. Suppose you have laboriously designed a large graphic display on the
screen. It is impossible to save reverse characters as strings by homing the cursor

375

Graphics

and typing RETURNs. The strings have to be punctuated with (RVS ON) and (RVS
OFF). Block saving of screen memory is usually best; see Chapter 6.

There is no simple translation between unSHlFTed and SHIFTed keys because
of rearrangements of the keyboard, but setting bit 6 "on" usually displays the
SHIFTed version on the screen. In BASIC terms, add 64. Try POKE 7680,1 and
POKE 7680,65 in lowercase mode.

Table 12- 1. Quick Cross Reference to VIC Graphics

KEY: C-@ SH-R SH-F SH-* SH-C SH-D SH-E C-T
CHR$: 228 210 198 192 195 196 197 227
POKE: 100 82 70 64 67 68 69 99

D D Q B B EJ D D
KEY: C-G SH-T SH-G SH-B SH-- SH-H SH-Y C-M

CHR$: 229 212 199 194 221 200 217 231
POKE: 101 84 71 66 93 72 89 103

D D [J OJ rn [] D D
KEY: REVERSE, CHR$(18), THEN-
KEY: C-@ C-P C-O C-I C-U C-Y C-T SH-space

CHR$: 228 239 249 226 184 183 163 160
POKE: 100 111 121 98 248 247 227 224

D D D ~ ~ iii II -KEY: REVERSE, CHR$(18), THEN-
KEY: C-G C-H C-J C-K C-L C-N C-M SH-space

CHR$: 229 244 245 225 182 170 167 160
POKE: 101 116 117 97 246 234 231 224

D D D [] IJ IJ II -KEY: SH-O SH-P SH-@ SH-L SH-V SH-+ SH-M SH-N
CHR$: 207 208 186 204 214 219 205 206
POKE: 79 80 122 76 86 91 77 78

D D D D ~ EE [S] [ZJ
KEY: C-x C-Z C-A C-S C-E C-R C-w C-Q

CHR$: 189 173 176 174 177 178 179 171
POKE: 125 109 112 110 113 114 115 107

EJ [9 Cd 5J E9 Ed ED rn
KEY: C-V C-C C-D C-F C-B C-I C-K

CHR$: 190 188 172 187 191 226 225
POKE: 126 124 108 123 127 98 97

~ ~ ~ ~ ~ ~ IJ

376

Graphics

KEY: SH-K SH-J SH-U SH-I SH-W SH-Q
CHR$: 203 202 213 201 215 209
POKE: 75 74 85 73 87 81

EJ 0 [] bJ [QJ ~
KEY: SH-£ C-* C-+ C-£ C--

CHR$: 169 223 166 168 220
POKE: 105 95 102 104 92

~ ~ ~ ~ []
KEY: SH-A SH-S SH-Z SH-X SH-i

CHR$: 193 211 218 216 222
POKE: 65 83 90 88 94

~ ~ [tJ ~ 0
Notes:
1. c- means press the Commodore key and the indicated character; SH- means press the SHIFT key and the

indicated character.
2. There are ambiguities in many of the CHR$ figures-CHR$(227) or CHR$(163) for example might equally

well be chosen. I've preferred the values with a constant difference of 64 or 128 from the screen
POKE/PEEK value.

3. As the characters are made of 8 x 8 dots, a line cannot appear exactly in the center of any character; some
characters, when pOSitioned as neighbors, will not exactly line up together.

4. In lowercase mode, some characters aren't available; those with POKE values 65-90 appear as A-Z. The full
128 graphics characters are obtained by reversing all those in the table, whether by PRINTing the reverse
character first or by POKEing the values listed here + 128.

5. Four extra graphics, obtainable only in lowercase mode, are:

KEY:
CHR$:
POKE:

C-i
126
94

m
C-*
223

95

~

SH-£
169
105

~

SH-@
186
122

[ZJ
Table 12-1 gives you a quick cross-reference to VIC graphics characters. Note

that the pairs of symbols on the near side of most keys apply only in uppercase/
graphics mode, the default mode when the machine is turned on. After SHIFT -Com
modore puts the machine into lowercase, only the left-hand graphics symbols can
appear on the screen, and SHIFTing a key gives the capital version (except for a few
keys with no SHIFTed version, like @' *, and £). Thus, the right-hand set of graphics
is lost in lowercase mode.

Fortunately, however, some some very useful graphics are retained. For ex
ample, neat boxes can be ruled on the screen, using Commodore-A, Commodore-S,
Commodore-Z, Commodore-X, SHIFT-*, and SHIFT--. The toggle effect between
these modes can be turned off by PRINT CHR$(8) and reenabled with PRINT
CHR$(9), or with POKE 657,128 and POKE 657,0, which sets the relevant flag.
Sometimes, programs with user-defined graphics do not disable this switch, in which
case SHIFT -Commodore can produce odd results as graphics characters are looked
for in a region $800 bytes away from that intended by the programmer.

377

Graphics

Astute readers will note that some symbols are missing from the keys. Thirty
one keys have a pair of symbols, making 62 symbols in all. Adding 71' and SHIFT
space gives 64 graphics characters. But four new characters, accessible only in
lowercase mode, also exist. These symbols are Commodore-up-arrow (a 4 X 4
checkerboard), Commodore-* (four downward-sloping diagonal lines), SHIFT -£ (four
upward-sloping diagonal lines), and SHIFT -@ (square root or check mark).

The control key selects color and reverse characters and has no function apart
from slowing screen scroll so LIST is more readable. It is programmable; try running
1 PRINT PEEK(653): GOTO 1. Press SHIFT, Commodore, and CTRL singly or to
gether. You will see that each is individually detected in location 653.

PRINTing with BASIC Graphics
PRINTing is certainly the easiest way to produce graphics effects. First, though, you
should see what PRINT actually does.

PRINT has to interpret the information it's given and convert it into POKEs to
the correct parts of the screen and color RAM, perhaps also selecting lower- or
uppercase mode. This is a complicated and relatively slow process. It uses temporary
locations to store the current color (646 = $0286), the status of the reverse flag (199
= $C7), and the position on the screen to which the character is to be printed (row
is 214 ($06), column 211 ($03)), among other things. Try POKE 646,7. Everything
now prints in yellow, as though you'd typed CTRL-YELLOW. POKE 199,l:PRINT
"HELLO" prints HELLO in reverse. The reverse flag is turned off with RETURN.

PRINT uses the Kernal output routine $FF02 to put characters on the screen.
Try POKE 780,65: SYS 65490. This uses $FF02 and has the same effect as PRINT
CHR$(A). ML programmers can trace the output to $E742. From there, ASCII
characters above 128 go to $E800, while those from 0 to 127 are processed from
$E756. Comparison instructions look for RETURN, space, SHIFT -space, and so on,
and characters in quotes are output from $E6CB. The actual routine which POKEs
the character is at $EAA1. The accumulator holds the character, and the X register
holds its color code. Unlike some CBM machines, the VIC offers no way to increase
the speed of PRINT with a simple POKE.

Program Examples USing PRINT
Programmers unused to the graphics set, or who are looking for new graphics ideas,
can experiment with Program 12-3. It fills the screen with whatever string is entered.

Program 12-3. Graphics with Strings

1I1J INPUT "GRAPHICS": G$
29 FOR J=l TO S99/LEN(G$):PRINT G$::NEXT
39 PRINT:GOT019

Try, for example, Commodore-* and SHIFT-£, or Commodore-A, Commodore
S, Commodore-Z, and Commodore-X, or other combinations of similar characters.

Program 12-4 fills the screen with a repetitive design based on three shapes
which are designed to match, like tiles, when put next to each other (at least as far
as the character set allows).

378

Graphics

Program 12-4. Graphics with Shapes
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 A$="N{DOWN}N{UP}":B$="{DOWN}M{UP}M":C$="@{DOWN}
p{upT" - - - :rem 48

20 L=RND(1)*8+1 :rem 15
30 FOR J=l TO L :rem 241
35 R=RND(l) :rem 93
40 IF R<.33 THEN X$=X$+A$:rem 9
50 IF .33<R AND R<.67 THEN X$=X$+B$:rem 7
60 IF .67<R THEN X$=X$+C$:rem 20
70 NEXT :rem 166
100 FOR J=l TO 300/L:PRINT X$;:NEXT :rem 216
110 GET X$:IFX$="" GO TO 110 :rem 127
120 RUN :rem 136

Program 12-5 shows how strings can be overprinted to produce the effect of
movement. It gives left-to-right scrolling. Note the slight delay when a color charac
ter is printed.

Program 12-5. Overprinting Strings

10 A$="(RVS}AND {PUR}NOW (RED}FOR SOMETHING"
20 FOR J=l TO LEN(A$)
30 PRINT RIGHT$(A$,J)
40 PRINT"{UP}";
50 FOR K= 1 TO 200:NEXT
60 NEXT:PRINT

Frog-Style Graphics
Program 12-6 combines four separate sets of graphics characters, which alternately
move in opposite directions across the screen. Note in line 150 that the HOME
character gives a fixed reference point at the top left of the screen. From this ref
erence, the position at which to print is calculated by moving the cursor down and
across, leaving the remaining graphics untouched.

Program 12-6. Frog-Style Graphics
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

5 PRINT" {CLR} {WHT}" :POKE 36879,110
20 A$ = "A(5 SPACES}S{5 SPACES}Z{5

(5 SPACES}" - -
30 A$ = A$+A$+A$+A$
100 FOR 1= 1 TO 22
110 Dl$ MID$(A$,I,22)
120 D2$ MID$(A$,44-I,22)
130 D3$ = MID$(A$,21+I,22)
140 D4$ MID$(A$,55-I,22)

:rem 214
SPACES}X

:rem 142
:rem 26
:rem 54
:rem 33

:rem 184
:rem 179
:rem 190

379

Graphics

150 PRINT "{HOME}" +Dl$
"{HOME}{4 DOWN}" +

4$
160 NEXT
170 GOTO 100

+ "(HOME}{2 DOWN)" + D2$ +
D3 $ + "(HOME) (6 DOWN)" + D

:rem 226
:rem 214

:rem 98

Printing multiple cursor movements, as you can see, is slow. A cursor-position
ing subroutine is faster. HTAB & VTAB (see Chapter 6) groups together several use
ful subroutines to position the cursor on the screen. The machine code version is
extremely fast and can greatly improve the appearance of programs which print to
the screen.

Kaleidoscope
Program 12-7 displays random colors. The colors are reflected, using string arrays, to
give an attractive symmetry.

Program 12-7. Kaleidoscope
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

20 POKE 36879,8:REM BLACK :rem 129
30 PRINT"(CLR}" :rem 199
40 DIM M$(20,10),A$(10),RN$(20) :rem 213
50 CO$="(RED}(CYN}{PUR}{GRN}{BLU}(YEL}" :rem 206
60 FORI=0 TO 20: RN$(I) = MID$(CO$,RND(I)*6+1,1) +

"{RVS} ": NEXT :rem 135
70 FOR J=0 TO 10: FOR I=0 TO J: C$=RN$(J-I)

:rem 128
80 M$(I,J)=C$:rem 141
90 M$(J,I)=C$:rem 142
100 M$(20-J,I)=C$:rem 69
110 M$(20-I,J)=C$:rem 70
120 NEXT:NEXT :rem 75
130 PRINT"{HOME}" :rem 120
140 FOR J=0 TO 10: A$(J)="":FOR I= 0 TO 20:rem 206
150 A$(J)=A$(J) + M$(I,J) :rem 127
160 NEXT: NEXT :rem 79
170 FOR J=10 TO 0 STEP-I: PRINT A$(J): NEXT:rem 20
180 FOR J=0 TO 10: PRINT A$(J):NEXT :rem 123
190 CLR:GOTO 40 :rem 82

Because of the large number of individual strings, and despite the fact that most
are very short, there is a problem with garbage collection (see Chapter 6). An un
expanded VIC takes about 30 seconds to generate a picture; with 8K expansion this
drops to 5 seconds.

Experiments with POKEs
PRINting to the screen puts the VIC through some tortuous calculations. Is
POKEing faster? Usually not. In BASIC, POKE is not a fast command. BASIC POKEs
spend a lot of time in calculations, so there is no great speed advantage. Color RAM
also must be POKEd, unless the screen background color has been selected to make

380

Graphics

this unnecessary, or the color is already acceptable.
POKE has some advantages over PRINT. For instance, when you're using

POKE, any part of the screen can be changed without the need to keep track of the
cursor position. This is why the screen editor programs later in this chapter use
POKE. POKEing can also handle the situation where the screen is redefined to have
more (or less) than the usual 22 columns across; PRINT can't allow for this
automatically.

PRINT is also liable to produce unwanted effects, like scrolling the screen when
a character is printed in the lower right corner. POKEing has none of these side ef
fects. In addition, the entire character set is available with POKE, without the need
to use RVS.

To POKE to the screen, you must of course know where the screen is. This will
be discussed in detail later on; for now, a summary will do. Color RAM matches the
screen positions, and Tables 12-2 and 12-3 are handy guides to these addresses. Try
POKE 8164,1: POKE 38884,0 with the unexpanded VIC to plot a black A at the start
of line 22. Experiment with different values to see how color RAM works. It is
equally essential to know what value to POKE, so Appendix J has a table of the 256
characters of either lowercase or uppercase mode available by POKEing.

Table 12-2. Screen Memory Locations (DeCimal)

Screen Unexpanded VIC VIC with 8K

Line VICwith3K VIC with 16K

Number Screen Color Screen Color

0 7680 38400 4096 37888
1 7702 38422 4118 37910
2 7724 38444 4140 37932
3 7746 38466 4162 37954
4 7768 38488 4184 37976
5 7790 38510 4206 37998
6 7812 38532 4228 38020
7 7834 38554 4250 38042
8 7856 38576 4272 38064
9 7878 38598 4294 38086

10 7900 38620 4316 38108
11 7922 38642 4338 38130
12 7944 38664 4360 38152
13 7966 38686 4382 38174
14 7988 38708 4404 38196
15 8010 38730 4426 38218
16 8032 38752 4448 38240
17 8054 38774 4470 38262
18 8076 38796 4492 38284
19 8098 38818 4514 38306
20 8120 38840 4536 38328
21 8142 38862 4558 38350
22 8164 38884 4580 38372

381

Graphics

Table 12-3. Screen Memory Locations (Hexadecimal)

Screen Unexpanded VIC VIC with 8K Expansion

Line and VIC with 3K Expansion and VIC with 16K Expansion

Number
Screen Color Screen Color

0 $lEOO $9600 $1000 $9400
1 $lE16 $9616 $1016 $9416
2 $IE2C $962C $102C $942C
3 $lE42 $9642 $1042 $9442
4 $IE58 $9658 $1058 $9458
5 $IE6E $966E $106E $946E
6 $IE84 $9684 $1084 $9484
7 $IE9A $969A $109A $949A
8 $lEBO $96BO $10BO $94BO
9 $IEC6 $96C6 $10C6 $94C6

10 $IEDC $96DC $10DC $94DC
11 $lEF2 $96F2 $10F2 $94F2
12 $lF08 $9708 $1108 $9508
13 $lFIE $971E $111E $951E
14 $IF34 $9734 $1134 $9534
15 $lF4A $974A $114A $954A
16 $lF60 $9760 $1160 $9560
17 $lF76 $9776 $1176 $9576
18 $lF8C $978C $118C $958C
19 $lFA2 $97A2 $l1A2 $95A2
20 $IFB8 $97B8 $l1B8 $95B8
21 $IFCE $97CE $l1CE $95CE
22 $lFE4 $97E4 $l1E4 $95E4

The unexpanded VIC and the VIC with 3K expansion start their screen at $lEOO
(7680) and their color RAM at $9600 (38400). A VIC with 8K or 16K expansion has
its screen at $1000 (4096) and its color at $9400 (37888).

To see how this works, look at Program 12-8. It puts solid squares of random
color onto the normal VIC screen; it is set up (in line 10) for the un expanded VIC.

Program 12-8. Multicolored Squares

10 SC=7680:CO=38400
15 PRINT U{CLR}u:POKE CO-1521,25
20 R=RND(I)*506
30 POKE SC+R,160
40 POKE CO+R,RND(I)*8
50 GO TO 20

Finding the offset from the start of the screen is simple if you take some care in
numbering. It is easiest to start at zero, so the horizontal position is 0-21 and the
vertical position is 0-22. The offset is then 22 times vertical position plus horizontal
position.

382

Graphics

Program 12-9 is a subroutine to POKE character X in color C at position H
across, V down, for any VIC.

Program 12-9. POKEing Character X in Color C at Position H
30000 POKE SC+22*V+H,X
30010 POKE CO+22*V+H,C
30020 RETURN

Try Program 12-10, along with the subroutine given in Program 12-9.

Program 1 2- 1 O. Using the Color POKE Subroutine
Refer to the "Automatic Proofreader" article (Appendix C! before typinx in this proxram.

10 SC=7680:CO=38400:C=2:X=127:PRINT"{CLR)"
20 FOR H =1 TO 20

:rem 4
:rem 4

:rem 212
:rem 7

:rem 164

30 V=1: GOSUB 30000
40 V=21: GOSUB 30000
50 NEXT
60 FOR V =2 TO 21
70 H=1: GOSUB 30000
80 H=20: GOSUB 30000
90 NEXT
100 GET R$:IF R$="" THEN 100
110 END

:rem 24
:rem 202
:rem 252
: rem 168
:rem 103
:rem 105

Another example, Program 12-11, draws a maze. This maze is "simply con
nected" -that is, it is basically a contorted tube with no isolated islands within it.

Program 12-11. Maze
Refer to the "Automatic Proofreader" article (Appendix C! before typil1g in this program.

10 A(0)=-2: A(1)=-44: A(2)=2:A(3)=44 :rem 159
20 SC=256*PEEK(648):A=SC+45+44*INT(10*RND(1»+2*IN

T(10*RND (1» : rem 148
30 PRINT "{CLR}": FOR J=l TO 21:PRINT"{RVS}

{21 SPACES}" :NEXT : rem 60
100 POKE A,4 :rem 97
110 J=INT(RND(1)*4): X=J :rem 50
112 IF S>SMAX THEN SMAX=S: FIN=B :rem 123
120 B=A+A(J): IF PEEK(B)=160 THEN POKE

A(J)/2,32:A=B:S=S+1:GOTO 110
130 J=(J+1) AND 3: IF J<>X THEN GOT0120
140 J=PEEK(A): POKE A,32: S=S-1: IF J<4

(J) : GO TO 110
150 POKE A,l: POKE FIN,2
160 GOT0160

B, ,J: POKE A+
:rem 224
:rem 248

THEN A=A-A
:rem 8
:rem 7

: rem U')3

The algorithm uses space characters to mark boundaries, so there's an unused
border of space characters. This version selects a random starting point, and on
finishing, POKEs A and B into the two points furthest removed from each other in
the maze.

383

Graphics

Any VIC will run this program successfully. Conversion to ML is needed to
make it run faster; white-on-white plotting followed by color RAM POKEs is nec
essary if you want the plotting process to be invisible.

Machine Language Subroutines
BASIC is liable to be slow when dealing with graphics. In this section you will look
at typical machine language methods, which are much faster. All the examples can
be run by inexperienced programmers; knowledge of machine language is not
necessary.

Printing Characters to the Screen
$FFD2, the Kernal's output routine, behaves like PRINT (except that it's your
responsibility to store the characters you want printed in RAM). The speed advan
tage is considerable; the price to be paid is the need to organize memory.

Type in Program 12-12, then type SYS 828. The word HELLO appears, in re
versed red characters. Line 40 holds the ASC characters for reverse, red, and the let
ters of HELLO; it also has a zero byte at the end, which is used to signal the end of
the string. If line 40 is modified and the program run, SYS 828 will give other
results.

The machine language isn't relocatable, because the position of the table varies
if it is moved into other positions, but the only adjustment needed is to alter 74 and
3 in line 30, which point to $034A, to reflect the new table. Any free RAM area can
hold the ML.

The disassembly of the ML is given below.
033C LDX #$00
033E LDA $034A,X
0341 BEQ $0349
0343 JSR $FFD2
0346 INX
0347 BNE $033E
0349 RTS

;LOAD Xth CHARACTER FROM TABLE
;EXIT IF ZERO
;OUTPUT CHARACTER
;INCREASE COUNTER BY 1
;CONTINUE LOOP

Although this example uses only straightforward lettering, the technique can ob
viously be extended to include cursor moves so a 3 X 3 block of characters can be
printed by a SYS call.

Program 12- 1 2. ML Printer
10 FOR J=828 TO 849
20 READ X:POKE J,X:NEXT
30 DATA 162,0,189,74,3,240,6,32,210,255,232,208,24

5,96
40 DATA 18,28,72,69,76,76,79,0

POKEing the Entire Character Set to the Screen
The following program POKEs an ML routine into the cassette buffer:

384

Program 12-13. POKE to Screen

10 FOR 1=828 TO 843:READ A:POKE 1,A:NEXT
20 DATA 160,0,162,0,138,157,0,30
30 DATA 152,157,0,150,232,208,245,96

Graphics

SYS 828 puts 256 black characters on the top half of the screen. The second
value (0) controls the color; POKE 829,2, for example, gives red characters on typing
in SYS 828.

The addresses of the screen and of color RAM apply to the unexpanded VIC-20.
Note that the routine is relocatable; it can be put in any free area of RAM and still
operate correctly with a SYS call to its first address.

The disassembled ML is given below:
033C LOY #$00
033E LOX #$00
0340 TXA
0341 STA $1EOO,X iX TAKES VALUES 0,1,2, ... FF
0344 TYA
0345 STA $9600,X iCOLOR IS DETERMINED BY Y [BLACK HERE]
0348 INX
0349 BNE $0340
034B RTS

Reversing Part of the Screen
This effect, useful in highlighting parts of the screen or making them flash (by
repeating the reversal several times), is easy to produce. The high bit of screen RAM
characters determines whether or not the character is reversed; therefore, all you
need to do is replace each character by its equivalent with the high bit reversed.

In machine language you can do this with LDA (from an address), EOR #$80
(to switch the high bit), and STA (back into address).

This version is relocatable into any secure area of RAM, for example, 828. Then
SYS 828,7680,22 will reverse 22 characters starting at 7680, the topmost line of an
unexpanded VIC screen.

Program 12- 14. Reverse Characters on the Screen
10 FOR 1=828 TO 854:READ A:POKE 1,A:NEXT
20 DATA 32,178,209,165,100,133,253,165
30 DATA 101,133,252,32,155,215,138,168
40 DATA 136,177,252,73,128,145,252,136
50 DATA 16,247,96

Other analogous effects include reversing all characters, with ORA #$80, and
unreversing all characters with AND #$7F. Flashing the whole screen is more easily
done by altering the color rather than the characters; a couple of POKEs are all that's
required.

The disassembled ML is given below:

033C JSR $D1B2 iINPUT START ADDRESS

385

Graphics

033F
0341
0343
0345
0347
034A
034B
034C
034D
034F
0351
0353
0354
0356

LDA
STA
LDA
STA
JSR
TXA
TAY
DEY
LDA
EOR
STA
DEY
BPL
RTS

$64
$FD
$65
$FC
$D79B

($FC),Y
#$80
($FC),Y

$034D

;(FC) IS THE STARTING ADDRESS WITHIN THE SCREEN
;INPUT NUMBER OF CHARACTERS PARAMETER

;Y IS THE NUMBER OF CHARACTERS TO BE REVERSED

Plotting Rows or Columns to High Accuracy
Table 12-1, "Cross-Reference to VIC Graphics," groups similar graphics characters
together; from the layout it is clear that the completeness of the graphics sets enables
some progress to be made towards accurate graphics. To show the approach, we'll
write a routine which plots vertical columns on the screen, to the nearest one-eighth
of a square, that is, including 0-7 rows of dots on top of each column of solid
characters.

Program 12-15. Histogram
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o FOR J=828 TO 924 :rem 130
1 READ X: POKE J,X:NEXT :rem 85
10 DATA 32,178,209,165,100,133,252,165,101,133,251

,32,155,215,134 :rem 109
20 DATA 143,32,155,215,138,160,0,201,8,144,39,233,

8,72,169,160 :rem 227
30 DATA 145,251,165,251,133,253,165,252,41,3,9,148

,133,254,165 :rem 237
40 DATA 143,145,253,165,251,233,22,133,251,165,252

,233,O,133,252 :rem 62
50 DATA 104,76,82,3,170,240,21,189,149,3,145,251,1

65,251,133,253 :rem 77
60 DATA 165,252,41,3,9,148,133,254,165,143,145,253

,96,100 :rem 249
70 DATA 111,121,98,248,247,227,160 :rem 142

To make the routine easy to use, three parameters are input as part of the SYS call.
The syntax is:
SYS 828,bottom of column,color,height

when the routine starts at 828. For example, try this,

386

Graphics

Program 12- 16. Histogram Example

10 FOR J=l TO 20
20 SYS828,8164+J,2,J
30 NEXT

Graphics of this type are convenient because they coexist with ordinary text and
graphics-there's no problem mixing text on the screen with them, and there are
none of the complexities inevitable when defining special characters in RAM.

Double-Density Graphics
"Double-Density Plotting" is designed to fit into the top of the unexpanded VIC-20's
memory; it can be moved to other areas of RAM if the pointer to the 16-byte table at
the end, 226 and 29 in line 7, is modified. It exploits the fact that all 16 combina
tions of squares with internal quadrants exist in the VIC graphics set.

Program 12- 17. Double-Density Plotting
Refer to the "Automatic Proofreader" article (Appclldix C) before typing in this program.

° DATA 32,155,215,134,254,32,155,215,134,255,32,15
5,215,134,252,32,155 :rem 106

1 DATA 215,134,251,165,254,48,89,201,44,176,85,165
,255,48,81,201,46,176 :rem 193

2 DATA 77,169,O,133,253,169,46,229,255,70,254,38,2
53,106,38,253,133,255 :rem 192

3 DATA 166,253,169,O,133,253,133,210,56,38,253,202
,16,251,165,255,10,10 :rem 152

4 DATA 10,10,38,210,133,209,165,255,10,101,255,10,
144,2,230,210,24,101,209 :rem 6

5 DATA 133,209,173,136,2,101,210,133,210,164,254,1
77,209,162,15,221,226 :rem 149

6 DATA 29,240,4,202,16,248,96,165,252,240,6,138,5,
253,170,208,8,138,73,255 :rem 73

7 DATA 5,253,73,255,170,189,226,29,145,209,32,178,
234,165,251,145,243,96 :rem 250

8 DATA 32,126,123,97,124,226,255,236,108,127,98,25
2,225,251,254,160 :rem 242

10 POKE56,29: POKE 55,80: CLR :rem 20
20 FOR J=7505 TO 7665: READ X: POKE J,X: NEXT

:rem 122
30 PRINT "{CLR}SYS 7505,H,V,ONjOFF,COLOR. :rem 23
40 PRINT " {DOWN} EXAMPLE: SYS 7505,3,10,1,2:rem 225
50 PRINT "SETS A POINT AT 3 ACROSS, 10 UP, IN RED.

:rem 175
60 SYS 7505,3,10,1,2 :rem 221

Figure 1 2- 1. 16 Quadrant Pictures
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1I~~[]~~~c.~~~~IJ~~D
387

Graphics

Since each quadrant may be either filled or not filled, there are 16 possible
combinations (2 4 =16), from completely blank to completely filled. The machine lan
guage disassembly is too long for inclusion here. Its method involves:

• Calculating the position in screen RAM corresponding to the horizontal and vertical
coordinates .

• Checking this screen character-if it is not in the table, do nothing else.
• Adding or subtracting the appropriate quadrant and replacing this new character

into the screen.

VIC's screen in effect now has a resolution of 44 X 46 small squares. Number
ing is 0-43 horizontally and 0-45 vertically, starting at the bottom left. Like the pre
vious program, the fact that the characters are ordinary graphics POKEd into the
screen means that mixing text with the small square graphics is not a problem.

The syntax is SYS 7505,H,Y,FLAG,COLOR. H is the horizontal position, V the
vertical. If FLAG is 1, a small square is plotted; if 0, erased. The COLOR parameter
allows the color (0-7) to be selected, subject to the limitation that only one color can
be selected within a single character. The program can be used with a light pen.

The first demonstration program is called "Lissajous Figures." It creates figures
similar to shapes obtained when two perpendicular pendulums swing together. The
second draws centrally symmetrical patterns. Remember, both of these demonstra
tions require that the machine language program from Double-Density Plotting be in
memory.

Program 12- 18. Lissajous Figures Demonstration
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o REM TRY INPUTTING 3,5
10 POKE 36879,40
20 INPUT A,B
30 PRINT "{ CLR}"
40 FOR J=0 TO 9E9 STEP .01
50 X=(1+SIN(A*J»*22: Y=(1+COS(B*J»*23
60 SYS 7505,X,Y,1,0
70 NEXT

Program 12- 19. Flower DeSign

:rem 105
:rem 49

:rem 161
:rem 199

:rem 39
:rem 29

:rem 248
:rem 166

Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

H::J INPUT M
20 PRINT" {CLR}"
30 FOR TH=0 TO 100 STEP .1
40 S=SIN(TH*M)+.2
50 X=S*COS(TH):Y=S*SIN(TH)
60 X=22+17*X:Y=23+17*Y
70 SYS 7505,X,Y,1,2
80 NEXT

388

:rem 62
:rem 198

:rem 34
:rem 205
:rem 109
:rem 191
:rem 251
:rem 167

Graphics

Altering Color RAM with Machine Language
The routine to clear the screen is located in BASIC ROM at $ESSF (try SYSS8719). It
resets the screen line link tables, and clears each line using a subroutine at $EABD
where the X register holds the line's number. What actually happens is that the
screen area is filled with 32's (space characters), and the color RAM fills with l's
(white). Since the screen has been filled with spaces, it actually isn't necessary to
change color RAM because only the background color shows up.

The consequence is that the cleared screen cannot normally be POKEd with
characters, since they are printed white on white and are invisible. PRINTing always
sets color as it prints, so this is no problem, but POKEs will be visible only if the
background color is set to a contrasting color, if the color RAM is POKEd along with
the character, or if color RAM is set to a contrasting color. This last option is best
done in machine language-SOO or so POKEs can be quite slow. Program 12-20 per
forms this function. There's no really easy way to clear the screen to a specified
color. White is hardcoded in ROM and can't be changed.

Direct modification of color RAM can be used for other purposes like giving a
watery, quivery effect by changing between multicolor modes or between multicolor
and high-resolution modes; giving an effect of motion by plotting bars of color in se
quence, red, cyan, purple, green, blue, and yellow, then cycling through color RAM;
or making portions of the screen disappear and reappear, as their colors are set to
match the background.

Program 12-20. Change Color RAM
Refer to the "Automatic Proofreader" article (Appendix C) before typillg ill this program.

o REM POKE 140, 0-15, THEN{2 SPACES}SYS 828
:rem 195

1 REM THIS CODE CAN BE LOCATED IN ANY VIC-20
:rem 173

10 FOR J =828 TO 855: READ X: POKE J,X: NEXT
:rem 20

20 POKE 140,0: SYS 828: REM DEMO WITH RED :rem 183
30 DATA 173,136,2,41,2,9,148,133,143,160,0:rem 255
40 DATA 132,142,162,2,165,140,145,142,200 :rem 202
50 DATA 208,251,230,143,202,208,246,96 :rem 75

Scrolling the Whole Screen
In this section we'll see how to scroll the entire screen left, right, up, or down, mov
ing one character's width or height. Color RAM usually has to be moved to match,
so that the characters keep their colors. Landscapes can be scrolled right, stars can be
scrolled down the screen, patterns can be scrolled up, or whatever. (Because the
movement is in whole characters, scrolling is somewhat jerky. Later we'll see how to
get smooth scrolling.)

These routines have to move 480 or so characters to new positions in screen
memory, and repeat the process for color. About 480 characters, not S06, because in
each direction 22 or 23 characters are lost when the scrolling effect overwrites them.
A new row or column of characters has to be printed or POKEd to complete the

389

Graphics

scroll; alternatively, as in an example below, the displaced characters can be stored
and reused, giving an indefinitely repeating scroll effect. POKEing is likely to be
easier than PRINTing, since the methods used here manipulate the screen data by
ignoring line link tables.

One thousand BASIC PEEKs and POKEs, with calculations, are slow, but repet
itive loads and moves are easily written in machine language, so this is a very good
practical application for machine language. The examples can be called by a simple
SYS command from BASIC and are therefore easy to use. They assume an un
expanded VIC-20.

These BASIC loaders POKE machine language into RAM. Once loaded, each re
mains (unless overwritten). All of the following four routines are relocatable, so if
the start address is altered from 828, they will run correctly, provided all the bytes
are POKEd in and SYS calls the correct starting address. (Remember that 828 is the
start of the cassette buffer, so machine code in here can't be saved easily to tape.)

Program 12-21. Scroll Down One Line
o DATA 169,31,133,253,169,227,133,252,169,151,133,

255,169,227,133,254,160,0,177,252
1 DATA 160,22,145,252,160,0,177,254,160,22,145,254

,165,252,208,2,198,253,198,252,165
2 DATA 254,208,2,198,255,198,254,165,253,201,29,20

8,218,96
10 REM ****{2 SPACES}SYS 828 SCROLLS DOWN *****
20 FOR J=828 TO 882: READ X: POKE J,x: NEXT

Program 1 2-22. Scroll Up One Line
o DATA169,30,133,253,169,0,133,252,169,150,133,255

,169,0,133,254,160,22,177,252,160
1 DATA0,145,252,160,22,177,254,160,0,145,254,230,2

52,208,2,230,253,230,254,208,2
2 DATA230,255,165,252,201,228,208,222,165,253,201,

31,208,216,96
10 REM **** SYS 828 SCROLLS UP *****
20 FOR J=828 TO 884: READ X: POKE J,X: NEXT

Program 12-23. Scroll One Column Right
o DATA 169,30,133,253,169,0,133,252,169,150,133,25

5,169,0,133,254,162
1 DATA 22,160,20,177,252,200,145,252,136,177,254,2

00,145,254,136,136
2 DATA 16,241,24,165,252,105,22,133,252,165,253,10

5,0,133,253,165,254
3 DATA 105,22,133,254,165,255,105,0,133,255,202,16

,211,96
10 REM **** SYS 828 SCROLLS RIGHT ****
20 FOR J=828 TO 891: READ X: POKE J,X: NEXT

390

Graphics

Program 12-24. Scroll One Column Left
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o DATA 162,6,189,251,29,157,250,29,189,251,149,157
,250,149,232,208,241 :rem 143

1 DATA 189,250,30,157,249,30,189,250,150,157,249,1
50,232,208,241,96 :rem 242

10 REM **** SYS 828 SCROLLS LEFT **** :rem 131
20 FOR J=828 TO 860: READ X: POKE J,X: NEXT:rem 17
100 REM ** DEMONSTRATION ** :rem 4
105 X=10 :rem 140
110 FOR J=21 TO 22*23 STEP 22: POKE J+7680,160 :NE

XT : rem 136
115 R=RND(l) :rem 140
120 IF R<.4 THEN X=X+1 :rem 138
122 IF R>.6 THEN X=X-1 :rem 146
124 IF X>15 THEN X=15 :rem 76
126 IF X<0 THEN X=0 :rem 224
128 H=X*22 :rem 6
129 SYS 828 :rem 61
130 FOR J=21 TO 21+H STEP 22: POKE 38400+J,5: NEXT

140 FOR J=43+H TO 506 STEP 22: POKE
T

160 GOTO 110

How Is the Screen Scrolled?

:rem 53
38400+J,6: NEX

:rem 115
:rem 98

Thanks to the systematic memory mapping of the VIC's screen, scrolling in any
direction is quite easy. The diagrams show scrolling in two directions (down and
right) on a simplified 4 X 4 screen, labeled to show the effects of each scroll. The
cells marked with? have no definite contents.

Figure 12-2. Scrolling Down
Screen

A B C D ? ? ? ?

1 2 3 4 Scroll A B C D

E F G H 1 2 3 4

5 6 7 8 Down E F G H

Screen RAM before and after scrolling down

Diagram of VIC-like screen scrolling down

391

Graphics

Figure 12-3. Scrolling Left

Screen

A B C D B C D ?

1 2 3 4 Scroll 2 3 4 ?

E F G H F G H ?

5 6 7 8 Left 6 7 8 ?

Screen RAM before and after scrolling left

IAIBlclDI 1 2 I 3 I 4 IE IF I G I H I 5 6 7 8

I B I c I D I ? I 2 3 I 4 I ? IF I G I H I ? 6 7 8 ?

Diagram of VIC-like screen scrolling left

It is easy to deduce that for the VIC-20, scrolling up or down requires that the
entire screenful of characters, excluding a set of 22 at the end, be moved 22 places
along. Scrolling right or left, in the simplest case, requires only that every screen
character (but one) be shifted one place along. Program 12-24, "Scroll One Column
Left," uses this method and is therefore very short. FOR J = 1 TO 10000: SYS 828:
NEXT moves the screen left, and up, as the screen wraps around to the right. Pro
gram 12-23, "Scroll One Column Right," operates by moving 21 characters in each
row to the right, leaving the leftmost column unchanged.

The order in which the program moves the characters is important-to scroll
down, the characters at the bottom right must be moved first; otherwise, because
there is no temporary storage, characters will be overwritten.

Modifications for VICs with 8K or 16K Expanders
It is not difficult to modify these routines to work with the screen at $1000 and color
RAM at $9400. The following modifications are all that are necessary:

Scroll Down: Line O. Convert 31 to 17 and 151 to 149.
Line 2. Convert 29 to 15.

Scroll Up: Line O. Convert 30 to 16 and 150 to 148.
Line 2. Convert 31 to 17.

Scroll Right: Line O. Convert 30 to 16 and 150 to 148.
Scroll Left: Substitute these lines:

o DATA 162,6,189,251,15,157,250,15,189,251,147,157,250,147,
232,208,241

1 DATA 189,250,16,157,249,16,189,250,148,157,249,148,232,
208,241,96

It is easy enough to make other modifications, to leave color RAM unaltered, for
example, or to scroll the colors while leaving the graphics.

392

Graphics

The VIC Chip: Color, Position, and Dimensions of the TV
Display

Color, Color RAM, and Multicolor Mode
Color TVs and monitors display color by electronically causing small patches of color
(phosphors) to glow on the screen. This is additive color; each extra color adds to the
brightness, unlike painting and printing, which use subtractive color. The primary
colors for additive color are red, green, and blue. All three colors combined equally
give white.

The phosphor dots can be seen with a low-power magnifier; typically there are
columns of red, green, and blue repeating the full width of the screen. TVs are likely
to show some defects-a "red" screen will have some green and blue also. As the
color is turned down, TVs have a device to average colors locally, giving shades of
gray.

Secondary colors are yellow, blue-green, and magenta; these are known by a
variety of names-Commodore's choice is yellow, cyan, and purple. Each is made of
about equal amounts of two colors: Yellow is red and green, cyan is green and blue,
and purple is blue and red. On the VIC-20, adjacent pairs of keys are "com
plementary": They add to white or gray. For example, red and cyan contain between
them red, green, and blue, and in the right proportion mix to give white. The eight
basic colors of the VIC are simply the three primaries, each of which is either on or
off, giving eight combinations.

The screen's background also has eight colors, of which six are generated by
adding white to the primaries and secondaries. Presumably within the VIC chip, set
ting bit 7 of $900F causes the TV signal to add extra red, green, and blue output to
the signal. Orange and light orange have also been put in. Table 12-4 illustrates the
combinations.
There are at least two perceptual effects worth mentioning. One is that the weaker,
less saturated colors are influenced by stronger adjacent colors, so that the light
background colors are often difficult to identify properly. The other is the advancing
effect of red and receding effect of blue, which can be striking with solid blocks of
these colors. There are related problems in getting red (or any bright color) to look
bright, when compared with white, which has three times as many phosphors lit.

Color RAM
Changing the border and background colors is straightforward. Color RAM is a more
difficult concept, but seems natural enough after a time: VIC-20, like other CBM
computers, has 256 fully defined characters, which use up all the available bytes, so
why not have a complete parallel set of RAM to store colors? As Chapter 5 shows,
only the low bits are relevant, so values from 0 to 15 apply; higher bit values are
simply ignored. Colors 0-7 are the same as with the border and background. If the
high bit is on, with color RAM containing 8-15, the character is displayed in multi
color mode.

Color RAM occupies $9400 to $97FF, a total of 1024 bytes. It is wired so that a
screen at $1000 (8K or 16K expansion) has its color at $9400, and a screen at $IEOO
(unexpanded or 3K expansion) has its color at $9600.

393

Graphics

Table 1 2-4. Background and Border Colors

Border Color

Reversed Characters Normal Characters

Black White Red Cvan Purple Green Blue YellO\\ Black White Red Cyan Purple Green Blue Yellow

Black 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $OA $OB $OC $OD $OE $OF

White 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
$10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $lA $lB $1C $1D $lE $lF

Red 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
$20 $21 $22 $23 $24 $25 $26 $27 $28 $29 $2A $2B $2C $2D $2E $2F

Cyan 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
$30 $31 $32 $33 $34 $35 $36 $37 $38 $39 $3A $3B $3C $3D $3E $3F

B 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
A Purple $40 $41 $42 $43 $44 $45 $46 $47 $48 $49 $4A $4B $4C $4D $4E $4F C
K

Green 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
G $50 $51 $52 $53 $54 $55 $56 $57 $58 $59 $5A $5B $5C $5D $5E $5F R
0 Blue 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
U $60 $61 $62 $63 $64 $65 $66 $67 $68 $69 $6A $6B $6C $6D $6E $6F
N
D Yellow 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

$70 $71 $72 $73 $74 $75 $76 $77 $78 $79 $7A $7B $7C $7D $7E $7F
C 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 0 Orange L $80 $81 $82 $83 $84 $85 $86 $87 $88 $89 $8A $8B $8C $8D $8E $8F
0 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 R Lt. Orange $90 $91 $92 $93 $94 $95 $96 $97 $98 $99 $9A $9B $9C $9D $9E $9F

Lt. Red 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
$AO $A1 $A2 $A3 $A4 $A5 $A6 $A7 $A8 $A9 ~AA $AB $AC $AD $AE $AF

Lt. Cyan 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
$BO $B1 $B2 $B3 $B4 $B5 $B6 $B7 $B8 $B9 $BA $BB $BC $BD $BE $BF

Lt. Purple 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
$CO $C1 $C2 $C3 $C4 $C5 $C6 $C7 $C8 $C9 ~CA $CB $CC ~CD $CE $CF

Lt. Green 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
$DO $D1 $D2 $D3 $D4 $D5 $D6 $D7 $D8 $D9 ~DA $DB ~DC ~DD $DE $DF

Lt. Blue 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
$EO $E1 $E2 $E3 $E4 $E5 $E6 $E7 $E8 $E9 $EA $EB $EC $ED $EE $EF

Lt. Yellow 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
$FO $F1 $F2 $F3 $F4 $F5 $F6 $F7 $F8 $F9 $FA $FB $FC $FD $FE $FF

To use this table: (1) Given the contents of 36879 ($900E), the corresponding colors can be read from the
chart. Thus, a program with this line: 5 POKE 36879,169 sets background to pink, border to white. (2) To find
what value must be POKEd into 36879 to achieve same color combination, refer to the intersection of the two
colors in the table. Thus, cyan border with cyan background, and normal characters, needs POKE 36879,59.

394

Graphics

There is a conversion algorithm which derives the position of a character's color
RAM from the screen position. In assembly language it is LOA high byte of screen
position/ AND #$03/ ORA #$94. In BASIC, PEEK the high byte of the screen po
sition, AND 3, OR 148. The low bytes of the screen position and color RAM are
identical.

This arrangement has the fortunate side effect that larger than normal screens,
say of 25 X 25 or 625 characters, will not run out of color RAM, as they would if
only 512 bytes had been provided.

Multicolor Mode
We cannot fully explore this mode until we deal with user-defined characters. How
ever, the general idea is fairly easy to grasp. This is another Commodore com
promise: in order to get more color onto the screen, resolution is halved. Color RAM
is the sale determinant of this mode, so it is possible to mix normal, high-resolution
characters (made of individual dots) with multicolor characters (made up of pairs of
dots).

To get the feel of this, POKE 646,10 and print a few lines of text. The current
color being plotted is 2 + 8-red, but in multicolor mode. This is easier than
POKEing color RAM, and has the same effect. The characters are vaguely rec
ognizable, but in addition to red and white, some cyan and black are mixed in too.

Instead of 8 X 8 characters, we have 4 X 8 characters in which each dot can
have one of four colors. These are determined by this table:
00 = Background color (one of sixteen)
01 = Border color (one of eight)
10 = Character color (one of eight)
11 = Auxiliary color (one of sixteen)

The auxiliary color is stored in the four highest bits of 36878 ($900E), and is set to
zero, black, when the VIC is switched on. POKE 36878, C*16 + V puts in any auxil
iary color from 0 to 15 and adds the volume of the sound too. So POKE 36878,5*16
sets the auxiliary color to green.

Figure 12-4 shows the effect multicolor mode has on the Commodore- + charac
ter. After POKE 646,10 a few Commodore-+ characters should show alternate lines
of red and cyan. POKE 646,11 makes the character color cyan, so Commodore-+
will show as a solid cyan square.

Figure 12-4. Multicolor Example One

Normal: Multicolor: Displays As:
1 010 1 010 10 10 10 10 Chartr Chartr Chartr Chartr
o 1 0 1 0 101 01 01 01 01 Border Border Border Border
1 0 1 0 1 010 10 10 10 10 Chartr Chartr Chartr Chartr
o 1 0 1 0 1 0 1 01 01 01 01 Border Border Border Border
101 010 1 0 10 10 10 10 Chartr Chartr Chartr Chartr
01010 101 01 01 01 01 Border Border Border Border
10101 010 10 10 10 10 Chartr Chartr Chartr Chartr
o 1 0 101 0 1 01 01 01 01 Border Border Border Border

395

Graphics

Figure 12-5 is more complex. SHIFT -Q in multicolor mode includes all four
colors. It also loses some of the symmetry of the original, becoming a solid rectangle
in the auxiliary color, surrounded by samples of the three other colors. Try POKE
36879,30 to change the border to blue; the cyan parts of the character change to
blue.

Figure 12-5. Multicolor Example Two

Normal:
o 0 0 0 0 000
o 0 1 1 1 100
01111110
o 1 111 1 1 0
o 1 1 1 1 1 1 0
01111110
o 0 1 1 1 1 0 0
00000000

Multicolor:
00 00 00 00
00 11 11 00
01 11 11 10
01 11 11 10
01 11 11 10
01 11 11 10
00 11 11 00
00 00 00 00

Displays As:
Backgd Backgd Backgd Backgd
Backgd Auxily Auxily Backgd
Border Auxily Auxily Chartr
Border Auxily Auxily Chartr
Border Auxily Auxily Chartr
Border Auxilv Auxilv Chartr
Backgd Auxil}' Auxily Backgd
Backgd Backgd Backgd Backgd

Program 12-25 displays characters in multicolor mode and then rapidly changes
the auxiliary color for an interesting effect.

Program 12-25. Multicolor Demo
10 S=PEEK(646):POKE646,10:FOR 8=1 TO 15:FOR A=65TO

90:PRINT CHR$(A);:NEXT:NEXT
20 FOR A=lT010:FOR J=0T015:POKE 36878,J*16:NEXT:NE

XT:POKE 646,S

With some work, characters in multicolor mode can produce impressive effects.
Typically, we can enlarge the screen format so the border color isn't visible, which
gives us another color to work with. Alternatively, we might set the border red and
the background black, since red is likely to be a useful color, and leave them. If the
auxiliary color is white, we have red, white, and the local color on a black
background.

Multicolor mode is characterized by thin horizontal lines-the screen has a 3:2
ratio, so taking pairs of dots produces graphics made of little lines about three times
as long as they are high. With a little practice it's possible to classify most graphics
as high-resolution or multicolor just by looking at them.

The four colors needn't all be different. Try, for example, POKE 36879,30 (sets
the border blue), and POKE 36878,16 (sets auxiliary color white). Now POKE 646,14
so the character color is blue. Typing a few characters gives a new character set,
resembling normal characters, which can be freely mixed with normal characters by
POKE 646,6. All these characters have a chunky appearance. They are useful for
decorative borders and designs, and for graphics, and are easier to use than user
defined characters. They also take up no extra space in RAM. Finding characters
which look right-a frog or whatever-may be difficult though.

The next BASIC program displays most of these multicolor characters, neatly
separated by spaces, by POKEing them into the unexpanded VIC-20's screen. Func
tion key f1 toggles the border color between black and white; f3 toggles the auxiliary

396

Graphics

color between black and white; and f5 toggles the character color. The background
color is always white. If you set all four colors white, the characters disappear. There
are 16 different character sets, allowing for lowercase and uppercase too, which
means there are about four thousand new characters available. They cannot be
mixed together on the screen, of course. If you wish, the program can be easily
modified to analyze the effects of color changes of the character color, border, auxil
iary, and background.

Program 12-26. Multicolor Characters
10 PRINT"{CLR)":POKE 36879,24:REM BLACK BORDER, WH

ITE SCREEN
20 FOR J=7680 TO 7680+511 STEP 2
30 POKE J,X:POKE J+30720,8:X=X+l:NEXT
40 GET X$
50 IF X$="{FIJ" THEN POKE 36879,49-PEEK(36879):REM

Fl TOGGLES BORDER
60 IF X$="{F3}" THEN POKE 36878,16-PEEK(36878):REM

F3 TOGGLES AUXILIARY
70 IF X$="{F5}" THEN P=PEEK(384eJ0)ANDI5:P=17-P:FOR

J=38400T038911 STEP 2:POKE J,P:NEXT
80 GOTO 40

The Reverse Bit
Bit 3 in $900F, as we saw in Chapter 6, is the reverse bit. This is conceptually tricky,
and I have never found software which uses it. When the bit is set to 0, by POKE
36879, PEEK (36879) AND 247 or some equivalent, each character, either 8 X 8 or 8
X 16, is reversed-the background and foreground colors switch. If several colors
have been used, this inevitably results in a set of rectangular patterns disrupting the
display. However, if only two colors have been used, the effect is a straightforward
reverse display.

Changing the Physical Position and Dimensions of the Screen
Display
Four VIC chip registers, the first four, control the position of the rectangular display
within the screen, and its number of columns and rows. Another bit controls the
character size, and can select 8 X 8 or 8 X 16 pixels. Between them these registers
determine the physical shape and position of the display. Often of course they are
left at the default values set when the VIC is switched on-22 columns X 23 rows,
and left margin 5, top margin 25. (UK equivalent margins are 12 and 38. To be inter
national, these values need to be modifiable within the program.)

The following BASIC program has four straightforward demonstrations which
modify the distances from the top and left of the screen, allowing the whole screen
to move in a circle, for example. Line 1 matches background and border colors to de
lete the rectangular boundary between the text and the border.

397

Graphics

Program 12-27. Shift Screen Demo
Refer to the "Automatic Proofreader" article (Appendix C) before typing ill thi, program.

1 POKE36879, 68+8 : rem 110
10 PRINT"1=RANDOM I :PRINT"2=CIRCULAR" :rem 48
15 PRINT"3=VERTICAL" :PRINT"4=HORIZONTAL" :INPUT X

:rem 169
20 ON X GOTO 100,200,300,400 :rem 94

VALUE IS 12
:rem 184

100 POKE 36864,8+9*RND(1):REM AVERAGE

110 POKE
8

36865,20+36*RND(1):REM AVERAGE VALUE IS 3
: rem 28
:rem 93
:rem 57

GOTO 100
FORI=0 TO 2*t STEP .639
POKE 36864,12+12*SIN(I)
POKE 36865,38+38*COS(I)
NEXT
GO TO 200
FOR I=160 TO 0 STEP -1
POKE 36865,I
FOR J=l TO 20:NEXTJ,I
FOR I=0 TO 22
POKE 36865,I
FOR J=l TO 20:NEXTJ,I
GOTO 10

:rem 152
:rem 165
:rem 212

120
200
210
220
230
240
300
310
320
330
340
350
360
400
410

FOR I=l TO 23:POKE 36864,I:NEXT
GOTO 400

:rem 97
:rem 4

:rem 68
:rem 113

:rem 58
: rem 71

:rem 116
:rem 51

:rem 156
:rem 98

The next program introduces the idea of altering the number of columns and
rows, and also altering the left and top distances to center the screen. Starting with
two parameters, U and L, which stand for the number of characters the top left of
the screen is to be moved up and left, each of the four VIC registers is altered.

The calculations are a little complex: Moving the display a single character left
means reducing $9000 by 2*L, because each bit change only moves half a character.
To be symmetricaL the number of columns must be increased by 2*L. Accuracy up
and down is to one-fourth a character, so shifting the screen up a whole character
means POKEing a new value 4*U less. Again, for symmetry, the number of rows has
to be increased by 2*U, but because this parameter in $9003 starts at bit 1, not bit 0,
this value has to be doubled.

Program 12-28. Nonstandard Size VIC-20 Screen
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

1 POKE 648,28:SYS58648:REM
2 POKE 56,28:CLR:REM BASIC
5 U=5:REM UP 5 CHRS
6 L=2:REM LEFT 2 CHRS
7 REM 28 BY 33 SCREEN

398

SCREEN AT $lC00 :rem 75
ENDS AT $lC00 :rem 180

:rem 36
:rem 156

:rem 70

Graphics

20 POKE 36864,PEEK(36864)-2*L:REM MOVE LEFT
:rem 158

30 POKE 36866,PEEK(36866)+2*L:REM INCREASE #COLS
:rem 221

40 POKE 36865,PEEK(36865)-4*U:REM MOVE UP :rem 39
50 POKE 36867,PEEK(36867)+4*U:REM INCREASE # ROWS

:rem 6
100 CR=37888 :rem 117
110 FOR J=28*256 TO 28*256+(22+2*L)*(23+2*U)-1

:rem 210
120 POKE J,5 :rem 109
130 POKE CR+X,2:X=X+l :rem 188
140 NEXT : rem 212

The program fills the new screen with the character E in red, by POKEing 5's
into the whole newly designed screen area, and shows that an enlarged screen is in
fact possible. It is also possible to PRINT in almost the usual way; the easiest
method is to use a function to position the cursor before PRINT, like this:
10 SC=7168 + 26*V + H: REM ASSUMES SCREEN AT $lCOO AND 26 COLUMNS
20 POKE 209, SC AND 255: POKE 210, SC/255: REM POINT INTO THE SCREEN RAM
30 PRINT "HELLO!": REM HELLO! STARTS H ACROSS, V DOWN

Smooth Screen Scrolling
Sometimes it's nice to be able to display smoothly scrolling text, or landscape graph
ics shifting left or right. The scrolling we've seen so far shifts whole characters, and
is therefore somewhat jerky. We can improve on this without much extra work with
VIC's facility to move the screen.

Its finest resolution is half a character horizontally, and a quarter character verti
cally, controlled by locations $9000 (36864) and $9001 (36865), respectively. To per
form an upward scroll, the screen's position is moved upward using $9001, and
every fourth movement the screen is moved back to its normal position and scrolled.
This gives a jiggling motion at the top and bottom borders, which can be reduced by
matching the border and background colors, or removed entirely by expanding the
screen outside the total TV area. The screen scroll must be as fast as possible. If it is
slow, the TV will catch the instant when the screen is shifted. We can demonstrate in
BASIC; later we present some ML routines which are faster.

Horizontal motion is also possible, although resolution to only half a character
weakens the effect. VIC BASIC has no sideways scroll, so a pure BASIC demo isn't
possible-use SYS 828 with one of the earlier side-scrolling subroutines.

Program 12-29. BASIC Demo of Smooth Text Scrolling
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 POKE 36879,25:PRINT"{CLR}" :rem 210
20 D$=" {HOME} {21 DOWN}" : rem 195
30 READ X$: IF X$="l" THEN RESTORE:READ X$:rem 7
40 PRINTDX :rem 213
50 GOSUB 10000 :rem 214

399

Graphics

60 GOTO 30
70 DATA IN THE FAR OFF LAND, OF

ACK,l
10000 P=PEEK(36865):S=59765
10010 POKE 36865,P-l:GOSUB 11000
10020 POKE 36865,P-2:GOSUB 11000
10030 POKE 36865,P-3:GOSUB 11000
10040 POKE 36865,P:SYSS

:rem 2
COMMODORIA,LIVED J

:rem 125
:rem 218
:rem 179
:rem 181
:rem 183

:rem 56
11000 FOR J=l TO 100 :NEXT:RETURN :rem 88

Line 11000 allows the delay between one-fourth line scrolling to be varied.
SYS59765, which scrolls the screen, is slow by ML standards, so there is some
flicker.

The two ML subroutines following are faster versions which are free of flicker.
SYS 828 with the first subroutine scrolls the screen up one-fourth character, so SYS
828: FOR J = 1 TO 100: NEXT within a loop can replace the BASIC subroutine in the
demonstration. A test such as: IF PEEK (36865)=22 THEN READ X$ allows printing
every fourth scroll.

The other ML subroutine scrolls up one-fourth character but also rotates the top
line to the bottom, giving an infinite repeat; to do this it keeps a table of 22 charac
ters and 22 color RAM entries at each scroll. The result is an effective continual
scrolling.

One way to properly eliminate jitter at the edges with this method is to expand
the screen's boundaries. It's not as easy to write a routine which can allow for all the
parameters of screen margin setting and altered numbers of rows and columns.

This technique works with double-sized characters, except that seven increments
are needed before each overall scroll.

Program 12-30. Scroll Up One-Fourth Character
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o DATA 173,1,144,201,22,208,7,169,25,141,1,144,208
,4,206,1,144,96 :rem 105

1 DATA 162,6,189,16,30,157,250,29,189,16,150,157,2
50,149,232,208 :rem 91

2 DATA{2 SPACES}241,189,250,30,157,228,30,189,250,
150,157,228,150,232,208 :rem 82

3 DATA 241,96 :rem 127
10 REM***** SYS 828 SCROLLS UP 1/4 OF A CHARACTER*

***** :rem 114
20 FOR J=828 TO 878: READ X: POKE J,X: NEXT:rem 26
30 REM REPLACE 22 25 IN LINE 0 HITH 35 AND 38 IN B

RITAIN :rem 127

Program 1 2-31. Scroll Up and Rotate Top Line
Refer to the "Automatic Proofreader" article (AppCIldix C) before typing in this program.

o DATA 173,1,144,201,22,208,7,169,25,141,1,144,208
,4,206,1,144,96 :rem 105

1 DATA 160,21,185,0,30,153,145,3,185,0,150,153,167
,3,136,16,241,162 :rem 199

400

Graphics

2 DATA 6,189,16,30,157,250,29,189,16,150,157,250,1
49,232,208,241 :rem 90

3 DATA 189,250,30,157,228,30,189,250,150,157,228,1
50,232,208,241 :rem 83

4 DATA 160,21,185,145,3,153,228,31,185,167,3,153,2
28,151,136,16,241 :rem 223

5 DATA 96 :rem 190
10 REM **** SYS 828 SCROLLS UP AND ROTATES SCREEN

(SPACE}CONTENTS **** :rem 32
20 FOR J=828 TO 912:READ X:POKE J,X:NEXT :rem 15
30 REM REPLACE 22 AND 25 IN LINE 0 WITH 35 AND 38

(SPACE}IN BRITAIN :rem 82

Smooth Scroll Up Two Pixels
1 SCREEN
2 COLRAM
3 TOP
4 TOPPOSN
5
6
7
8
9

10
11
12 NOSCROLL
13
14 SCROLLUP
15 LOOP
16
17
18
19
20
21 LOOP2
22
23
24
25
26
27

$IEOO
$9600
$9001
25 ;BRITAIN = 38

*=$033C
LDA TOP
CMP +TOPPOSN-3
BNE NOSCROLL
LDA + TOPPOSN
STA TOP
BNE SCROLLUP
DEC TOP
RTS
LDX +6
LDA SCREEN+22-6,X
STA SCREEN-6,X
LDA COLRAM+22-6,X
STA COLRAM-6,X
INX
BNE LOOP
LD A SCREEN + 228 + 22,X
STA SCREEN + 228,X
LDA COLRAM+228+22,X
STA COLRAM +228,X
INX
BNE LOOP2
RTS

User-Defined Characters

The VIC Chip and the Screen Position and Character Table
Position
We saw in Chapter 5 how the video interface chip is wired to the internal memory of
the VIC-20. Memory location $9005 (36869) is the most important determinant of
graphics display; two other bits, one from each of locations $9002 and $9003 (36866

401

Graphics

and 36867), are also essential.
To understand the display system, let's review this information. Switch on the

VIC-20 without memory expansion, and PRINT PEEK(36866) PEEK(36867) PEEK
(36869). These values are 150,46 or 174, and 240. PEEK(36867) is an even number,
which means that bit 0 is zero. PEEK(36866) is greater than 127; therefore, bit 7 is
set. Location $9005 (36869) contains 240 ($FO). The bit pattern of its contents is 1111
0000.

These bits can be used to change the location of the screen and character set.
The VIC chip constructs a 16-bit address from these bits as follows:

$9005 bits 6 54
y U

Screen start address= 0001 11100000 0000
t

$9002 bit 7

$9005 bits 32 10
Uvt

Character set address= 0000000000000000

Arranging these bit patterns in the usual hexadecimal format of four bits together
gives the screen start as $1 EOO and the character set start as $0000. But when bits 2
and 3 of $9005 are zero, the VIC chip sees the character set address as $8000 plus
the value of bits 0 and 1. So in this case, the start of the character set is actuallv
$8000. '

The unexpanded VIC-20 sets itself with the screen RAM from $IEOO to $IFFF,
and with characters defined in eight-byte sets from $8000 onwards, which as we've
seen is the uppercase character set. You can check that pressing SHIFT and the Com
modore key alters the contents of $9005 to 242 ($F2 or 1111 0010) which leaves the
screen position unchanged but alters the character definitions to start at $8800,
which is the lowercase character set.

Two tables (one decimal, one hex) in Appendix G show every usable combina
tion of screen and character definitions. Note, for example, how 240 in 36869 and
150 in 36866 correspond to a screen starting address of 7680 and a character table
start address of 32768. Moreover, the color RAM position is fixed by bit 7 in $9002
(36866), and has two alternative positions, at $9400 or $9600.

The Screen Position and How to Control It
To set the screen properly, it is necessary at least in BASIC to POKE 648 ($288) with
the correct screen page, so that the screen editor can work properly. PRINT uses a
location to hold the current color, and in the same way location 648 points to the
part of memory to which characters are to be POKEd, and this should normally be
the screen.

An unexpanded VIC-20 has 30 ($lE), pointing to $IEOO; an 8K or 16K VIC-20
has 16 ($10). With the aid of the table, it is possible to put the screen wherever you
like within the limits imposed by the system. For example, POKE 36869,226: POKE
36866,22: POKE 648,24 puts the screen at 6144 and its color RAM at 37888, with
the lowercase character set, as can be verified by clearing the screen and typing a
few characters. The two screen positions used by the VIC-20 are only a subset of the

402

Graphics

total available number. Naturally, BASIC pointers may have to be changed to avoid
the screen; simply shifting the screen is unlikely to work if a program uses strings,
for example. Later in this section we'll have examples illustrating exactly what to do.

The VIC-20 automatically assigns 512 bytes to the screen. For example, an 8K
expanded VIC-20 has its screen start address at $1000 (4096), and BASIC defined to
start at $1200 (4608), leaving a limit of 512 bytes. It is important to realize that this
apparent limit of 512 bytes is not inherent in the VIC chip, which can address far
more bytes. 1024 is the practical maximum.

This is why I've used the phrase "Start of Screen Position" and variations on it.
If the screen is redefined to be only 10 X 10 characters, only the first 100 bytes after
the address as defined by the VIC chip will be used; if the screen is 25 X 25, then
625 consecutive characters after the address will be used. Provided this is borne in
mind, there should be no problem with corruption caused by overlap of programs,
characters, and screens.

The Character Set Position
Like the screen, the character set position defines the start of an area of memory.
From it, the VIC chip will take its character information. Since 256 characters maxi
mum can be defined, the total extent of the character set can be 256 x 8 = 2048
($0800) bytes, or if double-sized characters are used, 256 x 16 = 4096 ($1000) bytes.
For this reason, POKEing 36867 with 47 to set double-sized characters means that
the entire character set from $8000 to $8FFF can be accessed, and reversed and
lowercase characters can appear with text characters (but only in pairs), in a way
which is normally impossible. Try

POKE 36867,47: FOR J=7680 TO 7935: POKE J,X: POKE J+30720,0: X=X+l: NEXT

with an unexpanded VIC-20.
Unlike the screen table, the characters need not form a continuous area of RAM.

Character definitions can be started at $0, for example, and only certain selected
characters actually used, with their definitions in the region $0 to $03FF. This is a
tricky technique most suited to ML programs.

How Graphics Appear on the Screen
Figure 12-6 shows how 8 X 8 characters are stored in RAM and displayed. Figure
12-7 is the same as Figure 12-6 except each character is 8 X 16. Usually, 506 of
these are displayed in one of the two ordinary text modes (Figure 12-6). Note that,
because of screen RAM duplication of characters, typically there will be many
spaces.

When characters are 8 X 16, they are upright, and the number of rows which
they fill must always be equivalent to an even number of 8 X 8 character rows.
Thus it is impossible to generate a screen the same size as the ordinary 22 X 23
screen. This mode is often characterized by a shallower picture than normal.

403

Graphics

Figure 12-6. 8 X 8 Character Definitions and the Screen

Character definitions extend 2048 bytes (512 characters).

I I
I 8 bytes 8 bytes 8 bytes
define @ define A define B

Stlt of Character Definition

Screen RAM, typically 506 bytes.
o 1 2 3

I 32 I 32 I 22 I 9

St:h.t of Screen RAM

8 bytes I
define Iiil!

505

Screen: Arrangement of screen RAM-22 across, 23 down

0 1 2 . . .
22

· · ·

404

21

505

Graphics

Figure 1 2-7. 8 X 16 Character Definitions and the Screen

Character definitions extend 4096 bytes.

I 16 bytes I 16 bytes I
define @A define Be

statt of Character Definition

Screen RAM, typically 220 bytes.

o 1 2 3

I 32 I 32 I 22 I 9

t
Start of Screen RAM

219

Screen: Arrangement of screen RAM-22 across, 10 down

0 1 2 .

22

.

198

I 16 bytes I
define~ ~

21

219

405

Graphics

In either case, the VIC chip takes the RAM character from the screen, multiplies
by 8 or 16, adds this to the start address as stored in VIC's registers, then uses the 8
or 16 bytes to construct the character's pattern of dots in the correct screen position.

In principle, the method of defining your own character set is straightforward.
The VIC chip is reset to take its characters from RAM, not ROM. The usual area for
storage of this information is $1000-$1FFF (4096-8191). The screen is nearly always
in this area too; so is BASIC, in unexpanded VIC-20s. Therefore, several problems
must be dealt with: shortage of space, keeping BASIC and the characters from
overlapping, and moving the character information into RAM.

Why bother with double-sized characters? The reason is simple: They enable the
entire screen to be bitmapped, so that true high-resolution graphics, in which any
point on the screen can be turned on or off, is possible.

To be precise, the screen can hold only 256 entirely different characters, so
double-size mode allows a screen the size of 512 normal characters to be 100 percent
bitmapped, at a cost of doubling, or more than doubling, the RAM needed to hold
the bits. The biggest fully bitmapped screens are 25 X 20 normal characters, or 23
X 22, or 21 X 24, or other combinations of similar size.

However, the VIC is connected internally so that the screen and character defi
nitions normally coexist in VIC-20's built-in memory from $1000 to $2000. (It's also
possible to put the screen at $200.)

What's the largest obtainable fully bitmapped screen? If the screen is at $200, all
4096 bytes from $1000 to $1 FFF can hold character definitions. If both the screen
and characters are to be stored in $1000-$1FFF, the character space is less. In fact, a
240-byte screen can be achieved with either layout, which is 24 columns X 10
double-sized rows, resembling 24 X 20 normal characters, or 20 columns X 24
rows. Only with the screen starting at $200 are 22 columns X 22 rows possible.

Fitting a 24 X 20 screen and characters into $1000-$1FFF can be done only by
starting the screen and the characters at the same address, $1000, and using only the
240 characters from 16 to 255, so that the first character, CHR$(16), starts after the
screen.

Double-sized graphics is another reason for double-sized characters. Whenever
it's more convenient to manipulate 8 X 16 rather than 8 X 8 user-defined charac
ters, it makes sense to define them in this size from the start; double-sized lettering
is a good example.

Incomplete High-Resolution Graphics
Often a picture or other graphic display on the screen doesn't need 100 percent
bitmapping; there may be large spaces, which can all be mapped by a single space
character without wasteful duplication. An unexpanded VIC-20 can plot graphs
(even with an enlarged screen) like this.

Memory Maps of the VIC-20 in Its Graphics Modes
How Many Configurations?
Many books and magazine articles give the impression that there are perhaps one or
two, but no more, graphics configurations of the VIC. In fact, the number of

406

Graphics

permutations is enormous and can't be exhaustively covered.
This section describes configurations and their uses and advantages, in ascend

ing order of complexity and sophistication.

Some unexpanded VIC-20 configurations.

Figure 12-8. Character Definitions at $1800, Screen Unchanged
at $lEOO
$1000 $1800 $lEOO

BASIC Characters I Screen I

The difference from the normal unexpanded VIC-20 is that the character set
starts in RAM at $1800 (6144), and therefore the top of BASIC RAM must be low
ered to $1800.

Use POKE 56,24: ClR: POKE 36869,254 when VIC-20 is originally configured
normally. This can be included as the first line of a program, since the start of BASIC
itself isn't affected.

BASIC space is now 2048 bytes. There are 1536 ($600) bytes available for
character definitions, space for 192 normal characters.

Figure 12-9. Character Definitions at $1800; Enlarged Screen
Starting at $1 COO

$1000 $1800 $lCOO

BASIC Characters Screen

Character definitions and the start of screen are both moved. Top of BASIC RAM
must be lowered. POKE 56,24: ClR: POKE 36869,254: POKE 36866,22: POKE
648,28 (direct or program mode) gives this configuration.

The entire screen can now be filled, after POKEing the parameters controlling
the position of the window and its number of rows and columns. BASIC space is
again 2048 bytes, and there's room for 128 user-defined 8 X 8 characters.

Figure 12- 1 O. Loading User-Defined Characters with a BASIC
Program

$1000

BASIC

$1800

Character
Definitions

$lCOO $lEOO

This more unusual configuration allows BASIC to include character definitions
(and/or machine language) after the program, in such a way that lOAD automati
cally loads both together. This is very convenient, though tricky.

407

Graphics

BASIC must not extend above $1800. When the program is saved, the pointers
to the start of variables must be moved up to include the character definitions within
what will be taken to be BASIC. POKE 45,0: POKE 46,28 in the example.

BASIC space is 2048 bytes, excluding variables, which have 512 bytes. (To check
whether this is sufficient, remember that simple variables take seven bytes; then add
the length of strings.) There's room for 128 user-defined characters.

Figure 12- 11. 22 X 20 High-Resolution Graphics
$1000 $2000

Screen Character definitions
220 (14 to 233) BASIC

bytes

t
Start of screen and start of character definitions

We need double-sized characters for full bitmapped high resolution. In this
mode, 22 columns X 10 rows is equivalent to 22 X 20 normal characters. The
screen must have 220 bytes, and we'll need 220 characters too; the diagram shows
the most efficient way to get this, and uses only CHR$(14) through CHR$(233). This
leaves 352 bytes for BASIC; just enough for a five- or six-line demonstration
program.

Figure 12-12. Arrangement with the Screen at $ 200
$200 $300 $1000

Space for character definitions
and BASIC

$2000

This is a technique for skilled programmers only. It has the advantage of making
more RAM available for graphics definitions.

In BASIC, double-sized graphics are necessary to avoid the table of pointers at
$0300.

Figure 12- 13. Exotic Arrangement
$1000

Character
definitions

$1600 $1800

BASIC + ML

$ICOO $1EOO

This is not intended as a recommendation or suggestion; simply to show how
the soft nature of VIC allows a lot of flexibility. It has two alternate screens, neither
in the conventional position, and each with its own color RAM, plus space for user
defined characters, and BASIC (including some machine language at the end) sepa
rated from its variables by a screen.

Because the start of BASIC has been moved from $1000, a configuration like this
needs a loader, a short program that does the POKEs to reconfigure memory, then
loads the main program into the correct place.

408

Graphics

Expanded VIC-20
An expanded VIC-20 is of course an un expanded VIC-20 with either 3K of RAM just
before $1000, and/or 8K, 16K, or 24K of RAM just after $2000. 16K and 8K expan
sions are most popular. Configurations follow the same rules as the unexpanded
VIC-20. The extra RAM is usable only for BASIC or machine language storage;
character definitions and the screen have to occupy the usual positions, typically
$1000 to $lFFF. (This is why 3K with 16K on an expansion board doesn't automati
cally enlarge BASIC.)

Figure 12- 14. Expanded VIC-20

$0400 $1000 $2000

Top of 240 Double-sized
BASIC BASIC ~ bytes character definitions

RAM 16-255

t Start of screen and start of character definitions

$1000 $2000 $4000

240 Double-sized
bytes char. definitions ~ Start of BASIC BASIC

16-255

Full bitmapping of a 24 X 20 screen has this configuration. BASIC can be stored
in 3K, 8K, or other expansion; BASIC pointers must be set correctly as shown.

Programs for Exploring VIC-20's Graphics Potential

Character Editor
Program 12-32 is a useful character editor, which you can use to design your own
graphics. The editor assumes you are using an unexpanded VIC-20; if you are using
an expander, POKE 648,30: SYS 64818. Its memory configuration is shown in Figure
12-15.

Figure 12- 15. Short High-Resolution Character Editor

$1000 $lCOO $lEOO

BASIC I Graphics I Screen I
End of BASIC t

The program lowers the top of BASIC, sets the character definition pointers to
$lCOO (7168)-giving room for 64 individual graphics-and copies the first 64
characters from ROM into RAM. You will be able to watch as they progressively
build up. RUN/STOP-RESTORE returns to normal-so that BASIC can be LISTed
without appearing as frogs, trucks, or whatever-as does POKE 36869,240.

409

Graphics

Using the Character Editor
The character editor will display 64 of the current graphics characters in the middle
of the screen. You are asked, WHICH CHARACTER? Respond with the character
you wish to redefine.

As redefinition of the characters proceeds, it will become difficult to know ex
actly which key corresponds to which character; it is therefore advisable to note
which key goes with which new character.

You are now asked, DELETE? and you're expected to type Y (Yes) to erase the
character and start afresh, or N (No) to modify a character without deleting it. In ei
ther case, a pattern of 8 X 8 dots is printed at the top left of screen; asterisks repre
sent bits which are on, and each byte's decimal equivalent provides a record of the
character's structure.

Incidentally, the bit pattern of VIC's own character set can be scrutinized. The
cursor position is marked by auxiliary color mode, which should be more or less vis
ible in most settings of the program. Enter new asterisks or spaces by moving around
with HOME, RETURN, and other cursor control keys, and watch the whole character
change. It's printed in each color, and in multicolor mode, near the bottom of the
screen, to give a better idea of its appearance in bulk. Note that defining the asterisk
or the period will change the appearance of the 8 X 8 array.

You can move to the right of the screen with the cursor and use this area as a
scratch pad-to hold new graphics characters and to check that they match properly.

The function keys: Press f2 when you've finished with a character; you will be
returned to WHICH CHARACTER? F8 is intended as an exit so you can save the cre
ated characters either with a BLOCK SAVE, or with a change of BASIC pointer en
abling BASIC and graphics to be saved together (see "Saving Graphics Sets to Tape
or Disk" below). F1 cycles through character colors, in the current character; f3
through background; f5 through border; and f7 through auxiliary color.

About the program. If the function keys are omitted, this program can be com
pressed into about 11 lines. Line 5 configures the top of BASIC and the start of the
character definitions; the screen is assumed at $lEOO. Line 6 copies 64 characters
from ROM into the new character definition area. Line 30 puts 64 black characters in
midscreen, and lines 40-45 get the key to be edited and find its position in the table
of characters, offset from the start by a multiple of 8. The ASCII value of alphabetic
keys isn't identical to the POKE value, hence line 44. Line 60 clears this character if
Y is pressed. Line 70 puts in 80 characters in 16 colors, including multicolor mode.

Lines 80-86 print the 8 X 8 array of dots 'and asterisks, with the contents of
each byte, at the top left. Lines 100-200 are all concerned with inputs-space, as
terisk, function keys, or cursor control keys are assumed. Note that locations 211 and
214 keep track of the cursor position in a relatively simple manner. The POKEs into
M in lines 100 and 120 control multicolorjnormal modes in the cursor. P in line 130
is the byte corresponding to the row being edited.

We can increase the number of characters by lowering the character set start to
$1800, at the expense of reducing space for BASIC to 2K. All that's needed is POKE
36869,254 and POKE 56,24 in line 5. This makes space for 128 characters.

410

Program 12-32. Character Editor
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

5 POKE36869,255: POKE 55,0: POKE56,28: CLR:rem 240
6 FOR J=7168 TO 7679: POKE J,PEEK(32768+M): M=M+l:

NEXT :rem 183
20 PRINT "{CLR}{14 DOWN}WHICH CHARACTER?"; :rem 46
30 FOR J=0 TO 63: POKE 7900+J,J: POKE 38620+J,0: N

EXT : rem 231
40 GET C$: IF C$="" GOTO 40 :rem 249
42 PRINT C$:rem 90
44 C=ASC(C$): IF C>63 THEN C=C-64 :rem 179
45 C=C*8 :rem 142
50 PRINT "DELETE? (Y/N)"; :rem 138
52 GET D$: IF D$="" GO TO 52 :rem 1
54 IF D$<>"Y" GOTO 70 :rem 23
60 FOR J=7168+C TO 7168+7+C: POKEJ,0: NEXT:rem 233
70 PRINT: FOR J=0 TO 79: POKE 646,J/5: PRINT C$;:

{SPACE}NEXT: POKE 646,6 :rem 15
80 PRINT "{HOME}";: FOR Y=0 TO 7: P=7168+C+Y: FOR

(SPACE}X=0 TO 7 :rem 151
82 IF (PEEK(P) AND 2t(7-X»>0 THEN PRINT"*";: GOTO

86 : rem 52
84 PRINT "."; :rem 166
86 NEXT: PRINT TAB(8) PEEK(P): NEXT :rem 19
90 PRINT "{HOME}"; :rem 136
100 X=PEEK(211): Y=PEEK(214): M=38400+22*Y+X: POKE

M,10 :rem 168
110 GET G$: IF G$="" GOTO 110 : rem 93
120 POKE M,6 :rem 113
130 P=7168+C+Y :rem 233
140 IF G$="{F2}" GOTO 20 :rem 52
142 IF G$="{Fl}" THEN POKE 646,PEEK(646)+1: POKE M

-l,PEEK(M-l)+l :rem 240
144 IF G$="{F3}" THEN POKE 36879,PEEK(36879)+16 AN

D 255 :rem 189
146 IF G$="{F5}" THEN POKE 36879, (PEEK(36879) AND

{SPACE}247)+1 OR 8 :rem 181
148 IF G$="{F7}" THEN POKE 36878,PEEK(36878)+16 AN

D 255 :rem 193
150 IF G$="{F8}" GOTO 20000 :rem 200
160 IF G$<>" " AND G$<>"*" THEN PRINT G$;: GOTO 10

o :rem 219
170 IF G$="*" THEN PRINT "*{LEFT}";: POKE P,PEEK(P

) OR 2 t (7 - X) : rem 40
180 IF G$=" " THEN PRINT ".{LEFT}";: POKE P,PEEK(P

) AND NOT 2t(7-X) :rem 38
190 X=PEEK(211): Y=PEEK(214): POKE 646,0: PRINT TA

B (8) PEEK(p)" {LEFT}{ 2 SPACES}"; : rem 132
200 POKE 211,X: POKE 214,Y: GOTO 100 :rem 98

Graphics

411

Graphics

Often the easiest way to use characters of this sort is simply as individual new
characters, accepting the VIC size constraint. Many games do this; it is the line of
least resistance and avoids the hassles involved in dealing with several bunched
characters or with fractions of characters. Applications include special alphabet sets,
perhaps with accents, in which case several versions of a letter will need to be stored
separately; games pieces; math or music symbols; and of course the familiar arcade
style pictures. Below is some data for characters you might find useful.
A knight: 8,28,54,67,81,107,17,63
A bishop: 8,20,42,62,42,28,93,99
Trucks and cars: 15,21,21,63,63,45,18,0; 0,0,56,40,127,127,34,0;

63,113,81,113,127,127,54,0; 0,0,0,30,106,127,93,34
A "not equal" sign: 0,20,34,65,34,20,0,0

Program 12-33 creates an Islamic pattern using only four graphics "tiles" se
lected in a random order and repeatedly printed to the screen, which is enlarged.
This is an example of effective use of these relatively simple user-defined graphics.

Program 12-33. Islamic Designs
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

1e POKE 648,28: POKE 36869,254: POKE 56,24: CLR
:rem 137

2e C=l: FOR J=37888 TO 38688: POKE J,c: NEXT: REM
{SPACE}COLOR RAM WHITE :rem 26

3e POKE 36879,8 :rem 7
4e FOR J=6144 TO 6144+39: READ X: POKE J,x: NEXT:

{SPACE}REM GRAPHICS :rem 119
5e POKE 36864,3: REM LEFT MARGIN (9 IN UK):rem 198
6e POKE 36866,25: REM 25 COLUMNS :rem 219
7e POKE 36867, (PEEK(36867) AND 129) OR 3e*2: REM 6

e ROWS :rem 67
8e POKE 36865,15: REM TOP MARGIN (24 IN UK)

lee

lle
12e

: rem 242
R=1+RND(1)*25: DIM A%(R): REM MAX PERIOD OF RE
PETITION IS 25 :rem 242
FOR J=l TO R-1 :rem 132
A%(J)=RND(1)*5: REM SELECT RANDOM CHARS

:rem 166
13e NEXT :rem 211
2ee FOR J=7168 TO 7968 :rem 87
21e K=K+1:IF K>R THEN K=l :rem 78
22e POKE J,A%(K):REM POKE REPEATED SEQUENCES OF CH

ARACTERS e TO 4 :rem 25e
23e NEXT :rem 212
3ee GET X$: IF X$="" GOTO 3ee :rem 129
31e RUN lee :rem 26
1eee DATA 36,72,144,33,66,132,9,18: REM 8 BYTES DE

FINING CHR$ (e) : rem 39
1e1e DATA 36,18,9,132,66,33,144,72: REM CHR$(l)

:rem 38

412

Graphics

1020 DATA 36,36,255,0,0,255,36,36
1030 DATA 36,36,231,36,36,231,36,36
1040 DATA 36,66,153,36,66,36,153,66:REM

Saving Graphics Sets to Tape or Disk

: rem 77
:rem 180

CHR$(4)
:rem 104

Chapter 6 has routines which enable areas of memory to be dumped unchanged
onto tape or disk, complete with a name which the user can type in.

Saving characters along with BASIC is a little tricky. This is how it's done with
Program 12-32 above. Add these lines:
20000 POKE 45,0: POKE 46,30: POKE 55,0: POKE 56,32: CLR
20010 PRINT" {CLR}"
20020 INPUT "NAME"; N$: SAVE N$

These lines put the end of BASIC/start of variables pointer to $IEOO. The other
POKEs set the top of BASIC to $2000, in order to make room for the name to be
stored and saved. Add ,8 to the end of line 20020 to save to disk instead of tape.
This will now save the entire program plus characters. However, this isn't quite
enough; when the program is loaded again, end of BASIC/start of variables is too
high. So add this line too:
2 POKE 45,000: POKE 46,000
and when you've finished editing the program, so its final length is determined (for
example, deleting line 6 so the characters are not overwritten), then put the values of
PEEK(45) and PEEK(46) into this line. The reason for using three digits is so that we
will not alter the program length (enter 15 as 015 or 9 as 009).

The trick, in short, is to remember that a program is saved from the start of
BASIC to the end, as measured by pointers in 43 and 44 (start), and 45 and 46 (end).
So POKEing and PEEKing locations 45 and 46 is what's needed.

Incomplete Graphics Examples
As we've seen, bitmapping the whole screen is impossible with an unexpanded VIC-
20. The nearest approximation would be to map an area of about 24 X 20 normal
characters, but this would still require memory expansion if room is to be left for any
real BASIC program. A compromise solution exists, even for the un expanded VIC-20,
and the memory maps shown in Figure 12-16 illustrate two implementations. The
point of this method is that very often at least half the screen holds spaces anyway,
which can all be represented by one character, while the user-defined graphics deal
individually with the other half.

Figure 1 2- 16.1ncomplete Graphics Memory Maps
$1000 $1400 $lCOO $lEOO

(1) RAM for 256 normal (8 X 8) characters with $ICOO-$IDFF unused, or
(2) RAM for 160 double-sized characters (8 X 16) with nothing unused.

413

Graphics

These configurations confine BASIC to 1K, keep the screen its usual size, and
still have room to store 256 normal characters or 160 double-sized characters.
Double-sized characters can therefore cover a larger proportion of the screen, about
63 percent as compared with about 50 percent with normal characters. If an enlarged
screen is used, though, this advantage disappears, and expanded screens can have a
coverage of 50 percent maximum with these configurations.

Here's a short example program which should help make this clear.

Program 12-34. Compressed Version of Incomplete Screen
Hi-Res for Unexpanded VIC
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 POKE56,20:CLR:FORJ=828T0849:READX:POKEJ,X:NEXT:
SYS828 :rem III

20 POKE36869,253:PRINT"{CLR}":POKE36879,8 :rem 227
100 FORX=0T0175 : rem 125
110 Y=175-170*EXP(-«X-80)/40)t4) :rem 211
120 SC=7680+INT(X/8)+22*INT(Y/8) :rem 22
140 CH=PEEK(SC):IFCH=32THENCH=N:POKESC,N:N=N+l:IFN

=32THENN=33 : rem 101
150 BYTE=5120+8*CH+(YAND7):POKEBYTE,PEEK(BY)OR2t(7

ANDNOTX):NEXT :rem 238
500 GOTO 500 :rem 99
1000 DATA 162,8,160,0,132,253,169,20,133 :rem 156
1010 DATA 254,152,145,253,200,208,251,230 :rem 208
1020 DATA 254,202,208,246,96 :rem 97

About the program. The machine language subroutine puts zero bytes into all
locations from $1400 to $1BFF. POKEing is of course slower. Without this (try it), the
graphics as they are defined will contain garbage. Also line 140 includes a test for
the space character so it will not be changed. If the space definition is altered, the
whole screen will change, as you can see by omitting the test "IF CH = 32 ... " and
waiting until the program has plotted 32 characters.

Lines 120 to 150 plot high-resolution dots corresponding to X and Y, where X is
the horizontal position, Y the vertical. The screen is 22 X 23, and therefore has 176
X 184 dots. X values in the range 0-175 and Y values from 0 to 183 can be plotted
with the routine as it stands, with 0,0 in the top left.

Variables: SC is the byte in screen memory corresponding to X across and Y
down. CH is the character stored in the screen RAM which is redefined to hold the
new dot. BYTE is a location within the character definitions, which is why it begins
at $1400 (5120). The new dot position is added to the character definition by ~Ring
the present contents of the byte with 1, 2, 4, 8, or whatever in line 150.

Line 100 scans across the screen from left to right; STEP controls the resolution.
More dots look better but take longer. Line 110 calculates Y values according to a
formula. The values are selected to keep in the range 0 to 183. The formula in line
110 plots a bell-shaped curve; Y=X gives a straight line; Y=90+90*SIN(X/10) a
sine curve.

414

Graphics

The next program (12-35), also for an unexpanded VIC, has some enhance
ments: The screen window can be selected (line 2) to fill your TV screen; lines 4 and
6 control the position. Double-sized text can put a title on top; lines 10000 and after
show this. Lines 90-96 have a scaling feature which insures that line 90's function
will nearly always fit the screen. (Dots can be drawn, for example, with a joystick.)

Program 12-35. Incomplete Graphics with Text
Refer to tlze "Automatic Proofreader" article (Appendix C) l)elore typing in this program.

1 POKE56,20:CLR:FORJ=828T0849:READX:POKEJ,X:NEXT:S
YS828 :rem 63

2 R=26:C=23:REM CHOOSE ROWS,COLS :rem 207
3 POKE36867,R+l:REM ROWS & DOUBLE SIZE :rem 207
4 POKE36865,17 :REM TOP (21 IN UK) :rem 255
5 POKE36866,128+C:REM COLS :rem 245
6 POKE36864,4 :REM LEFT (8 IN UK) :rem 217
20 POKE36869,253:PRINT"{CLR}":POKE36879,8 :rem 227
90 DEFFNY(X)=(SIN(X/7)+COS(X/9)t2) :rem 6
91 FOR X=0 TO (C+l)*8 STEP5 :rem 124
92 Y = FNY(X) :rem 151
93 IFMAX<Y THEN MAX=Y :rem 33
94 IFMIN>YTHEN MIN=Y :rem 32
95 NEXT :rem 173
96 D=MAX-MIN:F=8*R/l.l/D :rem 138
97 POKE36879,10 :rem 61
98 GOSUB10000 : rem 226
100 FORX=0T08*C-l : rem 227
110 Y=FNY(X) :rem 190
115 Y=F*(Y-MIN):Y=8*R-Y :rem 98
120 SC=7680+INT(X/8)+C*INT(Y/16) :rem 36
140 CH=PEEK(SC):IFCH=32THENCH=N:POKESC,N:N=N+l:IFN

=32THENN=33 :rem 101
150 BY=5120+16*CH+(YAND15):POKEBY,PEEK(BY)OR2t(7AN

DNOTX) :NEXT : rem 26
500 GOTO 500 :rem 99
1000 DATA 162,10,160,0,132,253,169,20,133 :rem 197
1010 DATA 254,152,145,253,200,208,251,230 :rem 208
1020 DATA 254,202,208,246,96 :rem 97
10000 REM PRINT MESSAGE :rem 103
10002 N$="UNEXPANDED VIC GRAPHICS":N=LEN(N$)+l

:rem 200
10003 FORJ=lTOLEN(N$):A=ASC(MID$(N$,J))-64:IFA<0TH

EN12002 :rem 32
10004 S=J* 16+5120 : rem 83
10005 Q=0:FORK=32768+A*8T032775+A*8:POKES+Q,PEEK(K

):POKES+Q+l,PEEK(K):Q=Q+2:NEXT :rem 67
12001 POKE7680+J-l,J :rem 65
12002 NEXT :rem 52
20000 RETURN :rem 210

415

Graphics

Line 100's STEP size controls the resolution of the plot. Line 97 controls the
color scheme; POKE 0 for black dots on white, for example. Variations in rows or
columns are compensated for.

Finally, note that RAM is short; the program already fills most of BASIC RAM,
there's room for only 160 separate graphics on the screen. If you're experimenting,
add this line which warns of a character shortage by changing the screen color:

145 IF N>140 THEN POKE 36879,11

3 X 3 High-Resolution Screen Editor (Unexpanded VIC-20)
This character editor allows 3 X 3 characters to be edited simultaneously. It is key
board-controlled (* = plot point, space = don't plot) and uses a screen window en
larged to 24 X 28 characters. Of course, 24 X 24 permits 3 X 3 characters to be
mapped; the extra rows allow the real-size image to be displayed.

About the program. The large screen starts lower than usual at $1 COO; the
character definitions start at $1800. BASIC can therefore go up to 2K bytes. Most of
the character definition space is wasted; the program uses only 12 characters. The
first nine (characters 0-8, starting from $1800) start as blanks and are built up by the
user as asterisks or spaces are typed in; the other three are a space character, a dot,
and a solid character. The dots show the positions of individual bits; some are
colored differently to mark the boundaries of the nine graphics.

In general terms, lines 0-14 set the configuration of memory and the screen.
Lines 15-32 blank characters 0 to 10 in the new character definition table, and also
put in a dot character and a solid character. Lines 60 to 62 plot blue dots on the
screen, except for every eighth dot, which is yellow. Line 70 puts spaces into the
parts of the screen that {CLR} can't reach. Lines 80 to 95 POKE characters 0 to 8 to
create a black square for the bottom of the screen; they can be repeated elsewhere or
in different colors.

Editing starts at line 100. Cursor pointers are just as in the earlier character
editing program. The routine starting at line 200 POKEs in the on or off bit when
ever >I< or the space bar is pressed.

If you wish to store the defined characters, PEEK the bytes from 6144 to 6215
for the relevant data.

Program 12-36. 3 X 3 Character Editor
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

1 POKE 36869,254: POKE648,28:
REEN AT $lCIi'JIi'J

2 POKE 55,1i'J: POKE 56,24: CLR:
{SPACE}BASIC ENDS $181i'J1i'J

6 POKE 36866,24 :REM 24 COLS
8 POKE 36867,56 :REM 28 ROWS

POKE 36866,22:REM SC
:rem 73

REM CHRS AT $181i'J1i'J &
: rem 23

:rem 185

lli'J POKE 36864,4 :REM LEFT (10 IN UK)
12 POKE 36865,17:REM TOP{2 SPACES}(24

:rem 223
: rem 45

IN UK)

14 POKE 36879,24:REM BLACK BORDER
16 SCREEN=7168

:rem 49
:rem 112

:rem 58

416

18 COLOUR=37888
20 CHARACTERS=6144
30 FORJ=CH TO CH+87:

:rem 140
:rem 78

POKE J,0: NEXT: REM CHRS 0-10
ARE BLANK :rem 248

31 POKE CH+83,24:POKECH+84,24: REM CHR 10 IS NOW D
OT : rem 54

32 FORJ=CH+88 TO CH+95: POKE J,255: NEXT: REM CHR
{SPACE}ll IS SOLID

40 PRINT "{CLR}":
50 FOR J=SC TO SC+24*24-1: POKE J,10: NEXT:

: rem 40
:rem 3

{2 SPACES}REM DOT :rem 223
60 FOR J=CO TO CO+24*24-1: POKE J,6:IFJ=INT(J/8)*8

THEN POKEJ,7 :rem 217
62 K%=(J-CO)/24:IF K%=0 OR K%=8 ORK%=16 THEN POKE

{SPACE}J,7 :rem 240
65 NEXT :rem 170
70 FORJ=SC+24*24 TO SC+24*29:POKE J,9:NEXT: REM PO

KE 0-9 INTO A :rem 218
80 POKE SC+586,0:POKESC+587,1:POKESC+588,2: REM SO

UARE NEAR BOTTOM :rem 153
82 POKE SC+610,3:POKESC+611,4:POKESC+612,5: REM PO

KE BLACK COLOR :rem 191
85 POKE SC+634,6:POKESC+635,7:POKESC+636,8: REM IN

TO COLOR RAM :rem 107
90 POKE CO+586,0:POKECO+587,0:POKECO+588,0:rem 161
92 POKE CO+610,0:POKECO+611,0:POKECO+612,0:rem 127
95 POKE CO+634,0:POKECO+635,0:POKECO+636,0:rem 148
100 OF=PEEK(211)+22*PEEK(214): REM OFFSET FROM TOP

LEFT OF SCREEN :rem 191
110 POKE COLOUR+OFFSET,8: REM MULTICOLOR MODE CURS

OR :rem 22
120 GETG$:IFG$=""GOT0120 :rem 95
125 POKE COLOUR+OFFSET,6 :rem 239
130 IF G$=" " OR G$="*" GOT0200 :rem 145
140 IF G$="{HOME}" THEN OFFSET=0: REM HOME KEY

:rem 182
142 IFG$="{UP}"THEN OFFSET=OFFSET-24: REM UP

:rem 243
144 IFG$=" {DOWN} "THEN OFFSET=OFFSET+24: REM DOWN

:rem 6
146 IFG$=" {RIGHT} "THEN OFFSET=OFFSET+l : REM RIGHT

:rem 37
148 IFG$="{LEFT} "THEN OFFSET=OFFSET-1 : REM LEFT

:rem 86
150 IF OFFSET<0 THEN OFFSET=0 :rem 187
152 IF OFFSET>24*24-1THEN OFFSET=24*24-1 :rem 7
154 POKE 214,OFFSET/22: POKE 211,OFFSET-INT(OF/22)

*22 :rem 245
156 GOT0100 :rem 102
200 ROW%=INT(OFFSET/24): COL%=OFFSET-24*ROW%: REM

{SPACE}FIND ROW & COL :rem 218

Graphics

417

Graphics

210 CHAR%=3*INT(ROW%/8)+INT(COL%/8): REM FIND CHAR
ACTER 0 TO 8 :rern 216

220 BYTE%=CHARS + 8*CHAR%+ ROW% - INT(ROW%/8)*8:RE
M BYTE IN CHAR :rern 9

300 IF G$="*" THEN POKE SC+OF,ll:POKE BYTE%,PEEK(B
YTE%) OR 2t(7-COL%+INT(COL%/8)*8) :rern 83

310 IF G$=" " THEN POKE SC+OF,10:POKE BYTE%,PEEK(B
YTE%)AND NOT 2t(7-COL%+INT(COL%/8)*8) :rern 76

320 GOT0100 :rern 95

3 X 3 Multicolor Mode Screen Editor (Unexpanded VIC-20)
A multicolor bitmap editor is a bit more tricky than the previous editors. But it is
worthwhile experimenting with a program like the following to get the feel of VIC-
20's color capabilities.

This editor allows four colors at one time. Each of the nine characters to be de
fined is assumed to use the same character color; and the background, border, and
auxiliary colors are the same for each. The first step is to input four colors by press
ing a color key, or SHIFT -color if the lighter border or auxiliary color is desired. For
example, press RED, GRN, BLK, and PUR to set up these four colors. When the en
larged screen is ready, use the cursor keys and HOME to move about the screen.
Press one of the four color keys (the others are ignored) to draw a block of color.
The cursor is a block striped with all four colors, and therefore reasonably visible.
You must remove the REM statements so the program will fit in memory.

Inevitably this mode produces pictures made of little horizontal lines. Bear in
mind that three of these small lines stack up to make an approximate square. Also,
remember that some colors are brighter than others-white shows up well on black,
but small amounts of red are barely visible. The function keys could be programmed
to change colors if you want to be able to watch the effects of different color bal
ances and color choices. Quite striking effects of light and shade or of colored light
ing can sometimes be designed.

About the program. Only 15 characters are used. The first nine-characters 0 to
8-start blank and are built up as the user selects colors. Character 9 is a dot, and
character 10 a blank-this takes the same color as the background.

The next four characters are designed around the peculiarities of multicolor
mode. One character is made up of bit pattern 01010101: This appears as a solid
character in the border color, because the bit-pair 01 is interpreted as the border
color in multicolor mode. The next, CHR$(12), is made of 10101010 bytes, 170 in
decimal, which take the character color; and there is also the auxiliary color of
11111111. CHR$(14) is made of bit pattern 11100100; this gives a vertical stripe in
each color and acts as a cursor.

This program is similar to the previous one. However, line 105 converts cursor
shifts to the leftmost of two possible positions, since in multicolor mode adjacent bits
are counted together. A second difference is the four variables-BACKGD, BODER,
CELL, and AUX-that store the four colors which are compared (lines 10040-10070)
with keystrokes so the color's status can be determined.

418

Program 12-37. 3 X 3 Multicolor Character Editor
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

1 POKE 55,0:POKE56,24:CLR: REM TOP OF BASIC $1800
:rem 156

2 PRINT "BACKGROUND?";: GOSUB
PUT FOUR COLORS

50000: BA=G-l:REM IN

3 PRINT "{4 SPACES}BORDER?";:
:rem 103

GOSUB 50000: BO=G-l:
:rem 87

GOSUB 50000: CE=G-l:REM KE
:rem 30

REM KEYS; SHIFT-COLOR
4 PRINT " CHARACTER?";:

YS; SHIFT-COLOR
5 PRINT" AUXILIARY?";: GOSUB 50000:

VES ORANGE ETC.
6 POKE 36879,8+BO+16*BA: REM BORDER,

AU=G-1:REM GI
:rem 251

BACKGROUND
:rem 189

7 POKE36878,16*AU: REM & AUXILIARY COLORS :rem 151
8 POKE 36869,254: POKE648,28: REM CHRS $1800 & SCR

EEN $lE00 :rem 250
9 POKE 36866,24: REM 24 COLUMNS :rem 172
10 POKE 36867,56: REM 28 ROWS :rem 8
11 POKE 36864,4: REM LEFT MARGIN (10 IN UK)

:rem 236
12 POKE 36865,16: REM TOP MARGIN (24 IN UK)

:rem 238
14 PRINT "{CLR}";: SCREEN=7168: COLOUR=37888: CHAR

ACTERS=6144
30 FOR J=CH TO CH+87: POKE J,0:

10 BLANK

:rem 148
NEXT: REM CHARS 0-

:rern 97
CHAR 9 IS NOW 31 POKE CH+75,12:POKE CH+76,12: REM

{SPACE}DOT :rem 75
32 FOR J=CH+88 TO CH+95: POKE J,85: NEXT: REM CHAR

S 11,12,13,14 :rem 38
33 FORJ=CH+96 TO CH+103: POKE J,170: NEXT: REM ARE

VERTICAL STRIPES :rem 80
34 FORJ=CH+104TO CH+lll: POKE J,255: NEXT: REM WHI

CH GIVE SOLID :rem 55
35 FORJ=CH+112TO CH+119: POKE J,228: NEXT: REM COL

OR IN MULTICOLOR
50 FOR J=SC TO SC+24*24-1: POKE

S FILL SCREEN
60 FOR J=CO TO CO+24*24-1: POKE

RECT COLOR
65 NEXT

:rern 70
J,9 :NEXT: REM DOT

:rem 241
J,CE+8: REM OF COR

:rem 40

70 FOR J=SC +24*24 TO SC+24*29: POKE
EM BLANK BOTTOM

80 POKE SC+586,0: POKE SC+587,1: POKE
POKE SQUARE OF

82 POKE SC+610,3: POKE SC+611,4: POKE
CHARACTERS INTO

85 POKE SC+634,6: POKE SC+635,7: POKE
THE BOTTOM OF

:rem 170
J,10: NEXT: R

:rem 255
SC+588,2:REM

:rem 98
SC+612,5:REM

:rem 206
SC+636,8:REM

:rem 29

Graphics

419

Graphics

90 POKE CO+586,8+CE: POKE CO+587,8+CE: POKE CO+588
,8+CE:REM SCREEN :rem 176

92 POKE CO+610,8+CE: POKE CO+611,8+CE: POKE CO+612
,8+CE:REM WITH :rem 10

95 POKE CO+634,8+CE: POKE CO+635,8+CE: POKE CO+636
,8+CE:REM COLOR :rem 98

100 OF=PEEK(211)+22*PEEK(214): REM OFFSET FROM TOP
LEFT :rem 106

105 IF INT(OF/2)*2<>OF THEN OF=OF-l :rem 182
110 P=PEEK(SC+OF): POKE SC+OFFSET,14 :rem 109
120 GET G$:IF G$="" GOTO 120 :rem 95
125 POKE SCREEN+OFFSET,P :rem 245
126 G=ASC(G$) :rem 176
127 IF G>48 AND G<57 THEN G=G-49: GOTO 200:rem 117
128 IF G>32 AND G<41 THEN G=G-25: GOTO 200 :rem 98
140 IF G$="(HOME}" THEN OF=0: REM HOME :rem 155
142 IF G$="{UP}" THEN OF=OF-24: REM UP :rem 143
144 IF G$="(DOWN}" THEN OF=OF+24: REM DOWN:rem 162
146 IF G$=" (RIGHT}" THEN OF=OF+2: REM RIGHT

:rem 194
148 IF G$="{LEFT}" THEN OF=OF-1: REM LEFT :rem 242
150 IF OFFSET<0 THEN OFFSET=0: REM CORRECTION IF M

OVE :rem 151
152 IF OFFSET>24*24-1 THEN OFFSET=24*24-1: REM OFF

SCREEN EDGE :rem 213
154 POKE 214,OFFSET/22: POKE 211,OFFSET-INT(OF/22)

*22: REM CURSOR :rem 241
156 GO TO 100 :rem 102
200 ROW%=INT(OFFSET/24): COL%=OFFSET-24*ROW%

:rem 159
210 CHAR%=3*INT(ROW%/8)+INT(COL%/8): REM FIND CHAR

ACTER 0 TO 8 :rem 216
220 BYTE%=CHARS + 8*CHAR%+ ROW% - INT(ROW%/8)*8:RE

M BYTE IN CHAR :rem 9
10040 IFG=BACKGD THEN B=0:POKESC+OF,10:POKESC+OF+1

,10:REM SEARCH :rem 74
10050 IFG=BODER THEN B=l:POKE SC+OF,ll:POKESC+OF+l

,11:REM KEYPRESS :rem 222
10060 IFG=CELL THEN B=2:POKE SC+OF,12:POKESC+OF+l,

12:REM COLOR & :rem 197
10070 IFG=AUX(3 SPACES}THEN B=3:POKE SC+OF,13:POKE

SC+OF+l,13:REM POKE AND :rem 244
10080 P=(7-COL%+INT(COL%/8)*8):IFINT(P/2)*2<>PTHEN

P=P-l:REM PLOT :rem 20
10100 POKE BYTE%,(PEEK(BYTE%)AND(255-3*2tP»OR B*2

tp: REM IN 3*3 :rem 34
20000 GOTO 100 :rem 188
50000 GET G$: IF G$="" GOTO 50000: REM CONVERTS CO

LOR KEY :rem 29
50005 G=VAL(G$): REM OR SHIFTED-COLOR :rem 143

420

Graphics

5~~1~ IF G=~ THEN G=ASC(G$)-24: REM INTO A VALUE 1
-16 :rem 237

5~~15 PRINT G: RETURN :rem 233

Full-Screen High-Resolution Screen Editor (Expanded VIC-20)
Program 12-38 allows plotting on a large screen (20 columns X 24 rows) in high
resolution and in color. The program is joystick-controlled. Dots are plotted in any of
the eight joystick directions, or erased if the delete mode is on. The joystick button
toggles the delete feature on and off. If the joystick and button are active together,
the plotting position moves without affecting the present graphics. Finally, pressing
any color key (1 to 8) sets the current character's color. Double-sized characters are
used.

The program requires a 3K, 8K, or 16K expansion cartridge or the Super Expan
der. With 3K expansion memory or the Super Expander, add this line before saving:
10 POKE 55,0: POKE 56,16: CLR

With 8K or 16K expansion memory, type POKE 642,32: SYS 64818 before loading
and running.

There are severe limitations on the use of color with high-resolution graphics.
The section on the VIC chip's reverse bit shows how each color change is confined
to a rectangular area.

Pictures can be saved to disk or tape with the methods explained in Chapter 6.
(Note, however, that saving color RAM to tape isn't straightforward.)

Program 12-38. Full-Screen Joystick-Controlled Plotter in High
Resolution Mode
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

2~ POKE36879,8+16: REM BLACK BORDER :rem 2e9
22 POKE36869,2~4:POKE648,16: REM CHRS, SCREEN AT 4

e96 :rem 165
24 POKE36866,2~: REM 2~ COLS :rem 225
26 POKE36867,25: REM 12 ROWS: DOUBLE-SIZE :rem 98
4e FOR J=32~ TO 343: READ G: POKE J,G: NEXT: SYS 3

2~ :rem 174
42 FOR J=~ TO 239 :rem 69
44 POKE 4~96+J,J+16: REM POKE CHRS 16 TO 255

:rem le
46 POKE 37888+J,~: REM COLOR RAM SET BLACK :rem 66
48 NEXT :rem 171
lee POKE 37154,127: REM READ JOYSTICK :rem 52
lle PE=PEEK(37152): POKE 37154,255 :rem 17
12~ R=(PE AND 128)/128: REM RIGHT :rem 22~
13~ PE=PEEK(37137) :rem 225
14~ U=(PE AND 4)/4: REM UP :rem 58
15~ D=(PE AND 8)/8: REM DOWN :rem 197
16~ L=(PE AND 16)/16: REM LEFT :rem 31
17~ B=(PE AND 32)/32: REM BUTTON :rem 195
2~~ IF B=~ THEN DEL=l-DEL: REM BUTTON TOGGLES DELE

TE :rem 6

421

Graphics

210 IF B=0 AND U*D*L*R=0 THEN MOV=I: REM BUTTON +
{SPACE}JOY :rem 108

220 IF B=1 THEN MOV=0: REM MOVES WITHOUT PLOTTING
:rem 174

300 K=PEEK(197): IF K=64 GOTO 340: REM READ KEYBOA
RD AND : rem 27

310 IF K<6{2 SPACES}THEN CE=2*K: REM CONVERT COLOR
KEY :rem 34

320 IF K>55 THEN CE=2*K-lll: REM TO NUMBER 0 TO 7
:rem 6

330 POKE 37888+SCR,CE :rem 158
340 IF L=0 THEN X=X-l: IF X<0 THEN X=0: REM UPDATE

X AND Y :rem 63
350 IF R=0 THEN X=X+l: IF X>159 THEN X=159: REM CO

ORDINATES :rem 24
360 IF U=0 THEN Y=Y-l: IF Y<0 THEN Y=0 :rem 233
370 IF D=0 THEN Y=Y+l: IF Y>191 THEN Y=191:rem 175
500 SCREENCHR = 20*INT(Y/16) + INT(X/8) :rem 76
510 ROW = Y AND 15: BIT= X AND 7 :rem 21
520 CHAR=4352 + 16*SCR + ROW: REM STARTS 4096+256

(SPACE} (CHR 16) :rem 182
530 PE=PEEK(CH): REM SAVE IF LINE 560 NEEDS

:rem 121
540 POKE CH,PEEK(CH) OR 2t(7-BIT): REM PUTS IN THE

NEW BIT :rem 240
550 IF DEL THEN POKE CH,PEEK(CH) AND NOT 2t(7-BIT)

:rem 252
560 IF MOVE THEN POKE CH,PE: REM RESTORE VALUE IF

{SPACE}NO PLOT :rem 53
570 GOTO 100 :rem 102
1000 DATA 169,16,170,133,252,169,0,168,133: REM CL

EAR CHAR DEFNS :rem 35
1010 DATA 251,145,251,153,0,148,200,208 :rem 108
1020 DATA 248,230,252,202,208,243,96 :rem 231

Full-Screen Multicolor Mode Screen Editor (Expanded VIC-20)
Like the last program, this allows a picture to be developed on a fully mapped 24 X
20 screen. However, this version uses multicolor mode. It is also keyboard-con
trolled. Background, border, and auxiliary colors are input at the start and remain the
same during the program; however, local character colors can be changed. The key
board controls are simple: Type in whichever colors you want whenever you wish to
select a new color, using the SHIFT key for the lighter background and auxiliary col
ors. If the color is the border, background, or auxiliary color, the appropriate bit pat
tern will be set for this. Any other color will be treated as a character color, and if
new, will replace whatever character color was previously in use. The space bar tog
gles between plotting and moving without plotting.

The program requires a 3K, 8K, or 16K expansion cartridge or the Super Expan
der. With 3K expansion memory or the Super Expallder, add this line before saving:
10 POKE 55,0: POKE 56,16: CLR

422

Graphics

With 8K or 16K expansion memory, type POKE 642,32: SYS 64818 before loading
and running.

Program 12-39. Full-Screen Keyboard-Controlled Plotter in
Multicolor Mode
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

20 PRINT "BACKGROUND?It~: GOSUB 50000: BA=G-l
: rem 219

22 PRINT "{4 SPACES}BORDER?"~: GOSUB 50000: BO=G-l
:rem 21211

24 PRINT " AUXILIARY?" ~ : GOSUB 50000: AU=G-l
:rem 202

26 PRINT " CHARACTER?" ~ : GOSUB 50000: CE=G-l
:rem 147

30 POKE 36879,8+BO+16*BA: REM SET BORDER, BACKGND
:rem 224

32 POKE 36878,16*AU: REM AUXILIARY COLOR :rem 76
34 POKE 36869,204: POKE648,16: REM SCREEN & CHARS

{SPACE}AT $1000 :rem 245
36 POKE 36866,20: REM 20 COLUMNS :rem 212
38 POKE 36867,25: REM 12 DOUBLE-SIZE ROWS : rem 42
40 FOR J=320 TO 343: READ G: POKE J,G: NEXT:SYS 32

o :rem 174
42 FOR J=0 TO 239: POKE 4096+J,J+16: REM SCREEN CH

ARS 16 & UP :rem 127
44 POKE 37888+J,CE+8: REM DEFAULT CELL COLOR

:rem 247
46 NEXT :rem 169
100 GET G$: G=ASC(G$+CHR$(0» :rem 218
200 IF G>48 AND G<57 THEN G=G-49: GOSUB 40000: GOT

o 500 :rem 30
210 IF G>32 AND G<41 THEN G=G-25: GOSUB 40000: GOT

o 500 :rem 11
220 IF G$=" " THEN MOVE = I-MOVE:REM SPACE TOGGLES

PLOT ON/OFF :rem 204
230 IF G$ = "{RIGHT}" THEN X=X+2: IF X>159 THEN X=

159: REM RIGHT :rem 163
240 IF G$ = "{LEFT}" THEN X=X-2: IF X<0 THEN X=0:

{SPACE}REM LEFT :rem 243
250 IF G$="{UP}" THEN Y=Y-1: IF Y<0 THEN Y=0: REM

{SPACE}UP :rem 101
260 IF G$ = "{DOWN}" THEN Y=Y+l: IF Y>191 THEN Y=1

91: REM DOWN :rem 79
500 SCREENCHR = 20*INT(Y/16) + INT(X/8) :rem 76
510 ROW = Y AND 15: BIT=6-(X AND 7) :rem 201
520 CHAR=4352 + 16*SCR + ROW: PE=PEEK(CH) :rem 148
530 POKE CH,(PE AND (255-3*2tBIT» AND NOT B*2tBIT

:REM FLASH... :rem 210

423

Graphics

540 POKE CH,(PE AND (255-3*2tBIT» OR B*2tBIT: REM
AND PLOT :rem 202

550 IF MOVE=1 THEN POKE CH,PE: REM REPLACE UNCHANG
ED : rem 31

560 GOTO 100 :rem 101
1000 DATA 169,16,170,133,252,169,0,168,33: REM CLE

AR CHAR DEFNS :rem 242
1010 DATA 251,145,251,153,0,148,200,208 :rem 108
1020 DATA 248,230,252,202,208,243,96 :rem 231
40000 IF G=BACKGD THEN B=0: RETURN: REM SEARCH FOR

COLOR :rem 213
40010 IF G=BODER THEN B=1: RETURN :rem 109
40020 IF G=CELL THEN B=2: RETURN
40030 IF G=AUX THEN B=3: RETURN
40040 CE=(G AND 7) + 8: B=2: REM NEW

: rem 35
:rem 243

DEFAULT COLOR
:rem 57

+ INT(X/8),CE: REM P
:rem 166

40050 POKE 37888+20*INT(Y/16)
UT INTO COLOR RAM

40060 RETURN
50000 GET G$: IF G$ "" GOTO 50000: REM

OLOR KEY
50005 G=VAL(G$)
50010 IF G=0 THEN G=ASC(G$)-24
50015 PRINTG:RETURN

Defining Your Own Lettering

Large Lettering

:rem'218
CONVERT C

:rem 202
: rem 29
:rem 18

:rem 233

Double-sized text, which is clear and readable even at a distance, is easy to achieve
by redefining ROM characters as double-sized characters in RAM,

Several memory configurations are possible. We'll use the one shown in Figure
12-17, which applies to the unexpanded VIC and allows use of a large screen of, say,
26 columns X 16 rows of text. There's room for 1K of BASIC, which could be mes
sages printed on the screen.

Figure 12- 17. Large Lettering Memory Map (Unexpanded VIC)

$1000 $1400 $ICOO $2000

Character Definitions

4096 5120 7168 8192

This layout allows a generous 2K for the definitions of the characters. Since these are
double-sized, they take 16 bytes each, so we've room for 128 characters (2048/16
= 128). Try this short program for the unexpanded VIC which moves the lowercase
set, excluding reverse characters, into RAM. (Note that the parameters in line 20 may
need adjusting to square up your TV picture.)

424

Program 12-40. Large Lettering
10 POKE 36867,33:POKE 36866,154:REM 26 COLUMNS, 16

DOUBLE-SI ZE ROWS
20 POKE 36865,21:POKE 36864,8:REM SQUARE UP PICTUR

E
30 POKE 56,20:CLR:POKE 36869,253:REM BASIC END=CHR

START=$1400
40 FOR J=5120 TO 7168:POKE J,PEEK(J!2+32256):NEXT:

REM EACH TWICE

Graphics

In line 40, whenever J is odd, J/2 has an odd half which is ignored, so the same
PEEK value is reused. The value 32256 is $8800 minus 5120/2.

All the normal keyboard characters print normally, but in giant characters.
Colors behave normally, and the background and border can be POKEd normally in
36879, but reverse characters aren't defined. Also editing behaves abnormally
RETURN, for example, doesn't allow for the wider screen. This difficulty can be
evaded by putting semicolons after strings so that RETURN isn't used, and juggling
spaces and lengths to fit. This sort of thing is sometimes recommended for titling
videos and so on.

Since there are plenty of characters to play with, we could include reverse
characters or characters of our own. For example, we might move reversed uppercase
text to replace the graphics characters in text mode. Then SHIFT -A prints as a re
versed A, and SHIFT -space appears as a block. This is useful for messages, and easy
to use, since there's no need for a conversion algorithm. These lines replace line 40:

40 FOR J=5120 TO 6159: POKE J, PEEK 0/2 + 30208): NEXT
50 FOR J=6160 TO 7168: POKE J, PEEK <1/2 + 30720): NEXT

Small Lettering
Some commercial software has 40 columns of text with the VIC-20. How is this pos
sible? Since a full character is 8 X 8 dots, a 40-column screen will require characters
that are 4 X 8 dots. Obviously, though, they need to be readable when put next to
each other, so in practice a full set of characters like this needs to be 3 X 7 dots.
Figure 12-18 shows an uppercase A and B fitted into an 8 X 8 grid.

Three-dot wide lettering is surprisingly readable in both upper- and lowercase,
although some letters-notably capital N-are impossible to approximate, and oth
ers, such as M, can only be loosely approached. Four-dot wide letters, in fact, are
probably the best size visually. However, text has to be separated into blocks of eight
characters, which are then redefined as a five-character set for display, which is tire
some. In addition, only 20 rows of these characters will fit into a VIC-20, whereas
the narrower three-dot characters can fill 40 columns X 24 rows, a very useful size,
almost compatible with PET ICBM and 64 machines. The rest of this section will
therefore deal with three-dot wide graphics only.

425

Graphics

Figure 1 2- 18. Small Lettering: A and B

Bit Value 128 64 32 16 8 4 2 1

Decimal
Value
of Byte

38

85

85

118

85

85

86

o

Narrow Lettering with 8 X 8 Characters (Unexpanded VIC-20)
Can we display lettering like this in the common 256-character format? It's possible
to get a partial solution, but since we're forced to consider pairs of letters, the
arithmetic is against us. The full uppercase alphabet set, plus space character and a
period, can be combined into 784 combinations (28 * 28). So only one-third of all
possible combinations could be covered. However, this remains a feasible approach
since several letters and letter combinations are rare and could be ignored. And
spare characters can be allocated letters when required.

The demonstration program uses an incomplete graphics technique; it simply
converts a BASIC string of text into characters, starting at the beginning, and not
attempting to check whether a combination already exists. Therefore, it is impossible
to fill a full screen. At most, 255 8 X 8 characters are available (a space character
has to be retained, making the full 256), and the screen can't be more than about
half-full.

Its memory map is slightly more complex than some we've used. There are two
areas of character storage. $1600-$17FF stores individual letter definitions.

Figure 12-19. Thin Lettering Memory Map

$1000

BASIC

4096

426

$1600 $1800

5632

Double
Letter Characters

6144

$IEOO $2000

7680 8192

Graphics

Character definitions actually start at $1800. When a pair of letters is to be dis
played, the bits for the two characters are combined and put in the character defi
nition area. A maximum of 198 new pairs can be defined, enough for about nine
complete lines of text. I've used 26 letters and 8 punctuation symbols; these occupy
272 bytes (34*8). BASIC could end further up than $1600, but for relative conve
nience I've started the individual characters at a page boundary and kept the usual
ASCII numbering of punctuation symbols.

To run the demonstration, first enter and run the loader, which puts individual
definitions into $1600-$17FF occupying the low four bits. Lines 330 and 340 do this
for letters, separating the two letters as they're stored in DATA statements, and lines
420 to 450 do the same for punctuation.

Once the loader has been run, run the demonstration. COSUB 500 prints any
string TEXT$ (must have an even number of characters) in black at a position in the
screen referred to as OFFSET. OFFSET = a means printing starts at the top left of
the screen, OFFSET = 22 starts one line down, and so on.

Program 1 2-41. Thin Lettering BASIC Loader
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

100 DATA 32,46,44,63,58,59,34,33 :rem 39
110 FOR J=l TO 8: READ X: CH(J)=X: NEXT :rem 40
300 FOR J=5640 TO 5639 +26*8 :rem 63
310 FOR K=0 TO 7 : rem 13
320 READ X : rem 9
330 POKE J+K, X/16 :rem 159
340 POKE J+K+8,X AND 15 :rem 166
350 NEXT K :rem 34
360 J=J+15 :rem 251
370 NEXT J :rem 35
400 FOR J=l TO 8 :rem 14
410 FOR K=0 TO 7 :rem 14
420 READ X : rem 10
430 POKE 5632+CH(J)*8+K, X/16 :rem 217
440 POKE 5632+CH(J+1)*8+K, X AND 15 :rem 217
450 NEXT K :rem 35
460 J=J+1 :rem 199
470 NEXT J :rem 36
500 FOR J =6400 TO 6407:POKEJ,0:NEXT :rem 201
610 POKE 648,30 :rem 247
620 POKE 36866,150 :rem 150
630 POKE 56,22: CLR :rem 222
1000 DATA 38,85,85,118,85,85,86,0,38,85,69,69,69,8

5,38,0:REM ABCD :rem 27
1010 DATA 119,68,68,119,68,68,116,0,37,85,69,87,85

,85,37,0:REM EFGH :rem 135
1020 DATA 115,33,33,33,33,37,114,0,84,84,100,100,8

4,84,87,0:REM IJKL :rem 137
1030 DATA 86,117,117,117,85,85,85,0,38,85,85,86,84

,84,36,0:REM MNOP :rem 158

427

Graphics

1040 DATA 38,85,85,86,85,117,37,16,55,82,66,34,18,
82,98,0:REM QRST :rem 128

1050 DATA 85,85,85,85,85,82,34,0,85,85,82,114,117,
117,85,0:REM UVWX :rem 183

1060 DATA 87,81,82,34,36,36,39,0:REM YZ :rem 253
1070 DATA 0,0,0,0,0,6,6,0,2,5,1,2,34,32,66,0:REM S

PACE.,? :rem 87
1080 DATA 0,0,34'0,0,34,2,4,82,82,82,2,0,0,2,0:REM

:;"1 :rem 115

Program 12-42. Thin Lettering Demonstration
Refer to the "Automatic Proofreader" article (Appendix CJ before typing in this program.

10 POKE36869,254 :rem 103
100 PRINT"{CLR} :rem 211
400 TEXT$="I AM BESIDE A DARK FOREST; A RAPID STRE

AM{3 SPACES}RUNS NEARBY ... " :rem 130
401 TE$=TE$+"FIERCE ELECTRIC STORMS RAGE. TINY FROG

S HOP AROUND." :rem 140
402 TE$=TE$+" FAST MOVING CLOUDS{3 SPACES}OBSCURE

{SPACE}THE MOON. A CLOSED :rem 184
403 TE$=TE$+" COFFIN LIES BY A SMALL HUT. :rem 241
410 OFFSET=176: GOSUB 500 :rem 134
420 TE$="I SEE NOTHING UNUSUAL.": OF=352: GOSUB 50

o :rem 97
430 TE$="WHAT SHALL I DO NOW?": OF=440: GOSUB 500

: rem 127
499 GOT0499 :rem 133
500 Q=0:{2 SPACES}FOR J=lTOLEN(TE$}STEP2 :rem 42
520 Al=ASC(MID$(TE$,J)}-64:IFAl<0THENA1=A1+64

:rem 19
521 A2=ASC(MID$(TE$,J+l»-64:IFA2<0THENA2=A2+64

:rem 116
530 FORK=0T07:Pl=PEEK(5632+8*Al+K}:P2=PEEK(5632+8*

A2+K} :rem 121
560 POKE6144+8*N+K,Pl*16+P2:NEXTK :rem 153
600 POKE 7680+0F+Q,N :rem 80
610 POKE 38400+0F+Q,0 :rem 93
614 Q=Q+l: N=N+l:IF N=32THENN=33 :rem 30
615 NEXT :rem 219
620 RETURN :rem 120

Narrow Lettering with 8 X 16 Characters (Expanded VIC-20)
The only way to fill an entire screen with three-dot wide characters is with double
sized characters, which map the entire screen. Each double-sized character contains
up to four three-dot wide characters, one in each corner. As we've seen, 20 X 12 of
these characters can be fit in, giving in effect 40 columns of text X 24 rows. This of
course imposes a software overhead-the method can be used only with memory
expansion.

One commerical product, Superscreen, fits the unexpanded VIC area. When run,

428

Graphics

it stores its version of the VIC's characters at $2000 and beyond, reconfigures the
memory and stores characters 16, 17, 18, ... 255 in screen memory, clears the charac
ter definitions, and changes two vectors (for input and output of characters) so that
these intercept machine language routines at about $2800. These routines handle the
work of calculating which quadrants of which double-sized characters require a
character to be ORed in.

The start-of-BASIC pointers have to be at the end of all this. If the object is to
write or use 40-column BASIC programs, BASIC must be higher than usual, with
perhaps 13K of memory left from a 16K expansion. There are inevitably problems
with color, screen, and other POKEs, but ordinary monochrome BASIC can work
satisfactorily.

Other programs, notably for use with modems, are intended only to be used for
a specific function, so problems of compatibility with other programs are
unimportant.

Using the Raster Scan and the Interrupt
The VIC always knows which screen line is being scanned. This information can be
used to obtain some effects that might otherwise be impossible to achieve. These ef
fects have one thing in common: The screen can be treated as though divided hori
zontally into two or more independent parts. As we'll see, there are two
programming approaches: the easy way, which is not very flexible, and the more
difficult method, using VIC's interrupt to regularly modify the screen as each scan
periodically occurs, which is very flexible. The second method is potentially very
powerful, opening up such possibilities as mixing text on the bottom half of the
screen with graphics on top.

Easy Example with the Raster Scan
The raster line is stored in nine bits; we'll ignore the smallest bit and use only loca
tion $9004. This is about the shortest demonstration program possible. (This is a US
version; for Britain change the 128 in line 10 to 144.)

Program 12-43. Raster
10 DATA 169,128,133,0,169,40,141,15,144,165
20 DATA 0,205,4,144,208,251,169,56,141,15,144
30 DATA 173,4,144,208,251,198,0,208,230,96
40 FOR J=828 TO 858:READ X:POKEJ,X:NEXT
50 SYS 828

A background color change scrolls up the screen, as the program waits for the raster
line to take a progressively reducing value. The assembly listing looks like this:

LDA #$80 ;IN BRITAIN #$90
STA $00 ;LOCATION $00 COUNTS DOWN FROM 144 TO 0

LOOP LDA #$28
STA $900F ;RED BACKGROUND, BLACK BORDER
LDA $00

429

Graphics

WAIT CMP $9004
BNE WAIT iWAIT UNTIL RASTER = CONTENTS OF $00
LDA #$38
STA $900F iCYAN BACKGROUND, BLACK BORDER

WAI2 LDA $9004
BNE WAI2 iAWAIT TOP OF SCREEN
DEC $00
BNE LOOP iREPEAT UNTIL TOP OF SCREEN REACHED
RTS

Add line 60 POKE 833, RND(1)*256 OR 8: POKE 845, RND(l)*256 OR 8: GOTO 50
for a repeating display in random colors.

What other effects can this method give? Part of the screen can use lowercase,
and part uppercase, or user-defined graphics can coexist with normal text, if location
$9005 is altered with a loop as above. The screen dimensions can be changed.
Double-sized and normal characters can be mixed.

The point is that almost the entire processing time of the 6502 chip is spent
waiting for the raster scan. We'll now see how we can do better.

More Complex Example with the Raster Scan and Interrupt
The TV screen is scanned about each thirtieth of a second, and every scan inter
leaves the previous scan. Interrupts and screen scans aren't normally synchronized,
but since the interrupt rate is programmable, we can arrange interrupts to coincide
with any screen scan position. This makes it possible for one horizontal section of
the screen to be processed differently from another section. This example program
changes the border and background colors, by changing location 36879, but other
possibilities include changing the entire character set, changing the screen size, and
so on. Ordinary text could be used at the bottom, and graphics at the top.

Program 1 2-44. Split Screen Demonstration: BASIC Loader
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

2 FOR J=828 TO 881: READ P: POKE J,P: NEXT:rem 212
4 SYS 828 :rem 213
6 PRINT"{CLR}POKE 849 AND 875 TO{4 SPACES}CONTROL

{SPACE}COLORS :rem 89
8 PRINT "POKE 862 TO CONTROL{4 SPACES}POSITION OF

{SPACE}SPLITi{4 SPACES}867 FINETUNES :rern 161
9 REM * BRITAIN: REPLACE 32 AND 200 (LINE 13) BY 4

3 AND 66 * :rern 152
10 DATA 120,169,3,141,21,3,169,73,141,20 :rem 155
11 DATA 3,88,96,162,0,240,11,206,74,3,169 :rern 221
12 DATA 94,141,15,144,76,21,235,173,4,144,208

:rem 163
13 DATA 251,169,32,141,37,145,169,200,141,36

14 DATA 145,238,74,3,169,58,141,15,144
15 DATA 76,191,234

430

:rern 114
:rem 86

:rern 121

Graphics

How does this work? In Figure 12-20, the situation after the program is run
shows interrupts at about twice the screen scan frequency. Interrupts alternate be
tween the value they put into 36879. Also, each second interrupt waits for the TV to
scan the top line, then reloads the timer with the same constant value. This means
the display is very stable. It 's not usually acceptable to simply hope the VIA will
generate interrupts at exactly the right frequency to match the TV's display.

Figure 12-20. Screen Scan Frequency

r---------------------------------~

1/60 sec

.

Reset
~ Interrupt

1/120 sec

1/120 sec

The dividing line cannot be moved below about the halfway point. To do this
satisfactorily, more interrupts are needed, perhaps four per screen scan . Try POKEing
862 with 64, twice its normal value; interrupts now coincide with the screen refresh,
so the two patterns of color alternate, and therefore overlap on the screen. If the col
ors are very different, there'll be a noticeable flashing effect, but if they're similar,
the flashing is reduced, though usually still visible.

POKE 849,9: POKE 875,24 shows a black and white dividing line; if the bound
ary isn't still, move it by changing the value in 867.

Loading or saving to tape or disk temporarily turns off the split, because the
interrupt is used by the system.

Below is the assembly language. Note that JMP $EABF continues the interrupt
just as usual; JMP $EB15 continues without updating the clock or scanning the key
board, and this insures that the clock works normally. $034A holds a flag, alternately
o and 1, to track the state of the interrupts. US values to set the VIA timer are about
4239, 8481, and other multiples; in Britain, 5536, 11074, and so on. There is a slight
delay at each complete picture when the screen top is tested for, but generally of
course routines like this will be adequately transparent.

033C SEI ;SYS 828 RESETS
0330 LOA #$03 ;THE INTERRUPT
033F STA $0315 ;VECTOR TO
0342 LOA #$49 ;$0349.

431

Graphics

0344 STA $0314
0347 CLI
0348 RTS
0349 LOA #$01 ;TEST FOR 1ST
034B BEQ $0358 ;OR ALTERNATE
0340 DEC $034A ;INTERRUPT
0350 LOA #$5E
0352 STA $900F ;SET BORDER, BCKGND
0355 JMP $EB15 ;CONTINUE INTERRUPT
0358 LOA $9004 ;lST INTERRUPT
035B BNE $0358 ;WAIT FOR SCREEN TOP
0350 LOA #$20 ;SET VIA TIMER
035F STA $9125 ;TO ABOUT 1/120 SEC.
0362 LOA #$C8
0364 STA $9124
0367 INC $034A ;NEXT INTERRUPT
036A LOA #$3A ;SET BORDER, BCKGND
036C STA $900F
036F JMP $EABF ;CONTINUE INTERRUPT

Interrupts and Repetition
Any repetitive task can be carried out with an extension added to the interrupt rou
tine. Graphics examples include such things as clocks and countdown indicators
when accurate timing is wanted. Pictorial, numerical, or digital clockfaces can be
continually updated.

Motion
By motion I mean simulating movement by replacing characters with duplicate
characters PRINTed nearby. Moving characters one character step in any direction is
relatively straightforward. This sort of animation is inevitably jerky. An obvious
improvement is to use intermediate characters made up of two halves of the original.
For example, using ordinary BASIC:

Program 1 2-45. Motion
HI M$="Ec~EF~"
20 PRINT"[2 SPACES}";
30 FOR J= 1 TO 20
40 FOR K= 1 TO 30:NEXT
50 PRINT"{2 LEFT} EB~";
60 FOR K= 1 TO 30:NEXT
70 PRINT"[LEFT}"M$; : NEXT

Lines 40 and 60 control the speed of the checked block across the screen. This
relies on the fact that the check pattern can be initiated by another pair of graphics.
Smoothness of movement is improved over the simpler method. For general move
ment, exactly the same principle can be followed, but you'll need user-defined
graphics. The character editor presented earlier is an easy way to define these. Obvi
ously, for horizontal movement each original character will need an additional pair
of characters, each holding half, as in this diagram:

432

Graphics

Figure 1 2-21. Half-Character Motion
Boat Character Diagrams

~ is one character, then " ~ "and" ~ " will give smoother movement.

This method becomes unwieldy for a lot of movement in many directions, be
cause each single character needs eight more characters to allow half-character mo
tion in the eight main directions. This method imposes a maximum of about 25
characters to move in any of the main directions. If the movement is onlv one
dimensional, as in frog-type games, many more (80 or so maximum) mobile charac
ters can be fit in, making the technique a very useful one.

Figure 12-22. Half-Character Motion in Eight Directions

Original Motion Sideways Motion Up Motion Diagonally
Character

If you want to experiment without using the editor, try this with any VIe:
1. Reset the VIC (turn it off then on again).
2. rOKE 44,20: POKE 20*256,0: NEW to start BASIC at $1400.
3. Enter these lines:

10 POKE 36869,252:POKE 36866,150:POKE 648,30
20 FOR J=8*4096 TO 8*4096+4*256-1:POKE 4096+Q,PEEK(J):Q=Q+l:NEXT

4. Run.
This puts character definitions from $1000 (4096) on, so POKEing 4096 to 4103,

for example, alters the first eight bytes, which define @. The next bytes define A, B,
e D, and so on, and you can POKE in your own character definitions. Obviously
the left, right, top, and bottom half-characters are logically related to the original
characters.

Motion of Groups of Characters Together
An interesting problem is moving a collection of characters all together on the
screen. These could be in a close group or spread out in a pattern like space in
vaders, or spread out over the whole screen to imitate stars.

Although the machine language program that follows may seem long and com
plex, it could have been much longer. It has somewhat minimal features in order to
keep its length reasonable. One SYS call takes a collection of characters anywhere on
the screen and moves them by a selectable amount. A value of 1 scrolls the charac
ters right one position; 22 scrolls vertically down; 129 scrolls left; 151 scrolls up and
right, and so on. The more often the routine is called, the faster the apparent motion.

The demonstration keeps track of nine characters. Each character's position in

433

Graphics

the screen is stored in a table, and with each SYS call the table is updated. The
characters are all assumed to be identical, for example, dots (which give a starlike ef
fect). It is easy to add a table of characters and a table of colors to the addresses.

The routine sets the background and border black, so the characters are white
on black. Extra code might be added to change color RAM if this is desired.

The program won't overwrite nonspace characters already on the screen: If a
character other than a space is found, it is left untouched. A collision detection flag
is set. You may want to add a delay loop to slow the movement. Press any key, then
type in I, 22, 23, or 129, and watch the direction of motion change. Numbers not re
lated to the screen width of 22 characters give a random "rain,"

The screen is assumed to start at $lEOO, so the program will work with an un
expanded VIC-20.

Program 1 2-46. Star Motion
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o DATA169,8,141,15,144,160,0,132,255,162,16,189,21
3,3,133,253,189 :rem 174

1 DATA212,3,133,252,177,252,201,46,208,4,169,32,14
5,252,202,202 : rem 58

2 DATA16,232,162,16,169,22,48,39,133,254,24,189,21
2,3, un , 254,157 : rem 178

3 DATA212,3,189,213,3,105,0,201,32,208,10,189,212,
3,105,5,157,212 :rem 140

4 DATA3,169,30,157,213,3,202,202,16,221,48,39,73,1
28,133,254,56 :rem 72

5 DATA189,212,3,229,254,157,212,3,189,213,3,233,0,
201,29,208,10 :rem 66

6 DATA189,212,3,233,6,157,212,3,169,31,157,213,3,2
02,202,16,221 :rem 59

7 DATA162,16,189,213,3,133,253,189,212,3,133,252,1
77,252,201,32 :rem 75

8 DATA208,9,169,46,145,252,202,202,16,232,96,169,1
,133,255,208,245 :rem 240

9 DATA68,30,120,30,163,30,191,30,252,30,17,31,77,3
1,116,31,187,31 :rem 155

110 FORJ=828 TO 997: READ X: POKE J,x: NEXT:rem 76
1000 PRINT "{CLR}{2 DOWN}{RED}DEMONSTRATION"

:rem 74
H:H0 SYS 828 :rem 99
1020 GET X$: IF X$>"" THEN INPUT X: POKE 866,X

:rem 142
1030 IF PEEK(255)=1 THEN PRINT "(HOME}COLLISION"

: rem 146
1040 IF PEEK(255) =0 THEN PRINT II [HOME} [9 SPACES}"

:rem 230
1050 GOTO 1010 :rem 193

434

Graphics

Source code is given for programmers who'd like to modify this program, to increase
the number of objects, for example, or to allow a set of objects to be displayed in dif
ferent colors.
1 ;MULTIDIRECTIONAL SCROLL
2 ;ASSUMES
3 ;CHARACTERS CAN BE VARIED (DOT IS 46)
4 ;COUNTER IS 2*(NO. OF ADDRESSES -1)
5 ;COLLISION RECORDED AS 1 (0 IF NO COLLN)
6 SPACE = 32
7 CHARACTER = 46
8 POINTER = $FC
9 TEMP = $FE

10 COLL = $FF
11 OFFSET = 22
12 COUNTER = 16
13 BACKGND = $900F
14 ;SET BLACKGROUND AND Y=O
15 *=$33C
16 LDA +8
17 STA BACKGND
18 LDY +0
19 STY COLL
20 ;ERASE EXISTING CHARACTERS
21 LDX +COUNTER
22 ERASE LDA TABLE+l,X
23 STA POINTER +1
24 LDA TABLE,X
25 STA POINTER
26 LDA (POINTER),Y
27 CMP + CHARACTER
28 BNE NOERASE
29 LDA +SPACE
30 STA (POINTER),Y
31 NOERASE DEX
32 DEX
33 BPL ERASE
34 ;UPDATE ADDRESSES OF EACH CHAR
35 LDX +COUNTER
36 LDA +OFFSET
37 BMI SUBTRACT
38 ;TEST FOR PLUS OR MINUS CHANGE
39 STA TEMP
40 ADD CLC
41 LDA TABLE,X
42 ADC TEMP
43 STA TABLE,X
44 LDA TABLE+l,X
45 ADC +0
46 CMP +$20
47 BNE NOOVERFL ;STlLL WITHIN SCREEN
48 LDA TABLE,X ;ALLOW FOR 506<>512

435

Graphics

~ ADC +5
50 STA TABLE,X
51 LDA +$lE
52 NOOVERFL STA TABLE+1,X
53 DEX
54 DEX
55 BPL ADD
56 BMI PLOTCHARS
57 ;REMOVE BIT 7 WHICH DENOTES NEGATIVE
58 SUBTRACT EOR + %10000000
59 STA TEMP
60 SUB SEC
61 LDA TABLE,X
62 SBC TEMP
63 STA TABLE,X
64 LDA TABLE+1,X
65 SBC +0
66 CMP +$lD
67 BNE NOUNDERFL ;IF STILL IN SCREEN
68 LDA TABLE,X
69 SBC +6 ;ALLOW FOR 506<>512
70 STA TABLE,X
71 LDA +$lF
72 NOUNDERFL STA TABLE+1,X
73 DEX
74 DEX
75 BPL SUB
76 ;REPLACE CHARS ON SCREEN
77 PLOTCHARS LDX +COUNTER
78 PLOT LDA TABLE+1,X
79 STA POINTER + 1
80 LDA TABLE,X
81 STA POINTER
82 LDA (POINTER),Y
83 CMP +SPACE
84 BNE COLLFOUND
85 LDA +CHARACTER
86 STA (POINTER),Y
87 CO NT DEX
88 DEX
89 BPL PLOT
90 RTS
91 COLLFOUND LDA +1
92 STA COLL
93 BNE CONT
94 ;TABLE OF ADDRESSES
95 TABLE .WO $lE44,$lE78,$lEA3,$lEBF
96 .WO $lEFC,$IFll,$1F4D,$1F74
97 .WO $IFBB

436

Graphics

Motion by Dynamic Redefinition of Characters
We saw how motion to the nearest half-character needed eight extra partial-character
definitions. Obviously, with this method, smooth motion to the nearest dot-the
smoothest VIC is capable of-in any direction is unrealistically expensive in terms of
memory use. Motion sideways or up and down only, often used in shoot-out type
games, is more practicable, needing about 16 extra characters for every original.

A better but very advanced method is to alter the actual character definitions in
RAM to give the impression of motion, so each partial character is generated when
it's needed rather than having to be stored. This means that machine language is
likely to be necessary: 16 or so POKEs, just to move one character, will be too slow.

A certain amount of planning is necessary to redefine characters dynamically.
First, it's desirable to keep the original, unaltered characters in memory. These can
be modified, then put into the character definition area, without themselves being
changed. Second, programming is made easier if the characters are numbered
conveniently.

Program 12-47 shows how a character can be plotted anywhere on the screen; a
square arrangement of four definable characters is necessary for this, because obvi
ously the character will nearly always straddle adjacent cells. This type of thing in
machine language can put a character anywhere on the screen, and so give very
smooth motion.

Program 12-48, "Vertical Motion," is a short machine language demonstration,
which redefines consecutive characters. Adding delay loops in lines 100 and 110
may make things clearer. Note the effect on numerals at the top of the screen-a
realistic odometer effect. As it stands, the example uses a whole batch of characters.
If you add:
35 FOR J=7168+41*8 TO 7679:POKEJ,O: NEXT
36 FOR J=7168+41*8 TO 7168+41*8+15: POKE J, RND(1)*256: NEXT

an 8 X 16 random block is controlled by the SYS calls.

Program 12-47. Plot Character Anywhere on Screen
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 POKE56,24:CLR:POKE36S69,254:POKE36S66,150:POKE6
4S,30 :rem 1S6

20 FOR J=6144 TO 7679:POKEJ,PEEK(3276S+0):O=O+1:NE
XT: REM $1S00-$1DFF :rem 69

30 O=0:FORJ=6144 TO 6151: INPUT Z(O):POKEJ,Z(O):O=
O+1:NEXT:PRINT I @" :rem 226

40 INPUT "X (0-175)"rX :rem 110
50 INPUT fly (0-1S3)l rY:PRINT"{CLR)" :rem 14
60 S=76S0+22*INT(Y/S)+INT(X/S):C=3S400 + 22*INT(Y/

S)+INT(X/S): REM SCREEN,COLOR POKES :rem 69
70 XO=X-S*INT(X/S) :rem 45
SO YO=Y-S*INT(Y/S) :rem 49
90 XF=2txo :rem 123
95 FORJ=6144+ST06144+39:POKEJ,0:NEXT :rem 159

437

Graphics

1BB FOR J=BT07:POKE6144+8+J,Z(J):NEXT :rem 179
15B POKES,1:POKES+1,3:POKES+22,2:POKES+23,4: REM C

HR IN POSN 1 OF 1,2,3,4 SQUARE :rem 248
16B POKEC,B:POKEC+1,B:POKEC+22,B:POKEC+23,B

:rem 248
2BB FOR J=B TO 7: REM MOVE RIGHT :rem 221
21B POKE6144+8+J,Z(J)/XF: REM DIVIDE BY 1,2,4,8, ..

• :rem 2B6
22B POKE6144+24+J,(Z(J)-XF*INT(Z(J)/XF» * 256/XF:

REM PUT REMAINDER INTO NEXT DOOR CHR :rem 2B1
23B NEXT :rem 212
3BB FOR J=15 TO YO STEP-I: REM MOVE DOWN :rem 217
31B POKE6144+8+J,PEEK(6144+8+J-YO): REM 1&2:rem 47
32B POKE6144+24+J,PEEK(6144+24+J-YO): REM 3&4

:rem 144
33B NEXT :rem 213
34B FOR J=YO-1 TO B STEP-I: REM DELETE LEFTOVER

35B
36B
37B
4BB

POKE
POKE
NEXT
GOTO

6144+8+J,B: REM 1&2
6144+24+J,B: REM 3&4

:rem 176
:rem 113
:rem 164
:rem 217

4B: REM PLOT IN ANOTHER POSITION :rem 171

Program 12-48. Vertical Motion USing Character Definition
Changes
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

1B POKE56,28:CLR :rem 172
2B POKE36869,255 :rem 1B5
3B Q=B:FORJ=7168 TO 7679:POKEJ,PEEK(32768+Q):Q=Q+1

:NEXT :rem 232
4B POKE36879,8 :rem 8
5B PRINT "{CLR}{WHT}B123456" :rem 51
6B Q=41:FORJ=768B+21 TO 768B+21+22*23STEP22:POKEJ,

Q:Q=Q+1:NEXT :rem 7B
7B FOR J=828T0853:READ X:POKEJ,X:NEXT :rem 24
1BB FOR J=l TO 8B:SYS 828:NEXT :rem 143
lIB FOR J=l TO 8B:SYS 84B:NEXT :rem 138
12B GOTO 1BB :rem 93
1BBB DATA 162,183,189,71,29,157,72,29,2B2,2B8

:rem 176
.lB1B DATA 247,96,162,1,189,73,29,157,72,29 :rem 38
IB2B DATA 232,224,183,2B8,245,96 :rem 4B

Vertical motion is the easiest to implement. In our example, 64 character defi
nitions are stored after $1COO, and characters 41 to 63 are POKEd into the right edge
of the screen, so 41 is followed by 42 and so on. These are defined by a consecutive
block of RAM locations, as shown in Figure 12-23.

438

Figure 12-23. Vertical Motion

$1000

BASIC

Character 41

8 bytes-top
to bottom

Screen

$lCOO $lEOO

Characters Screen

Character 42

8 bytes-top
to bottom

41
-

42
-

-
62

-
63

Graphics

$2000

All we need to do to move selected characters in .this range up or down one row
of dots is to move the corresponding bytes in the character definitions one byte
along. 50 5Y5 828 uses this simple loop:

LDX #183 decimal
LOOP LDA $1D49,X

STA $1D48,X
DEX
BNE LOOP
RTS

and 5Y5 840 is similar, but moves RAM the other way.
Horizontal motion is achieved by numbering adjacent horizontal screen memory

locations consecutively. The programming is more complex because every eighth
byte of the relevant character definitions must be rotated one bit, and this bit must
be stored while 8 is added or subtracted from the current offset.

439

Graphics

Program 12-49. Horizontal Motion Using Character Definition
Changes
Refer to the "Automatic Proofreader" article (Appendix C) before tl/pin/(in this program.

o DATA 160,7,152,170,24,8,40,126,0,28,8,24,138,105
,8,170,201,184 :rem 57

1 DATA 144,242,40,136,16,234,96,160,175,152,170,24
,8,40,62,0,28 :rem 17

2 DATA 8,56,138,233,8,170,176,244,40,136,192,167,2
08,234,96 :rem 109

20 FOR J=828 TO 877: READ X: POKE J,X: NEXT:rem 25
10000 POKE56,28:CLR: POKE36869,255: POKE 36879,8:P

RINT"(CLR}" :rem 249
10010 Q=0: FOR J=7168 TO 7679:POKEJ, PEEK(32768+Q)

:Q=Q+l:NEXT :rem 119
10020 Q=0:FOR J=7680 TO 7701: POKEJ,Q:Q=Q+l:NEXT

:rem 190
10030 FOR J=l TO 50: SYS 828:NEXT :rem 239
10040 FOR J=l TO 50: SYS 853: NEXT:GOT010030

: rem 85

Diagonal motion is more complex. The previous BASIC program illustrates the
method. It is necessary to implement a form of local bitmapping, with numbering of
characters as shown in Figure 12-24.

Figure 12-24. Local Bitmaps

B rn
17

18

19

14 11

15 12

16 13

The size of the bitmapped area depends on the type of motion. If the object
moves out of the mapped screen area, it must be remapped. Some provision may be
necessary for overlap of characters. A relatively easy solution is to exclusive-OR
character definitions together where they overlap, so the full characters are
recoverable.

Super Expander
The Super Expander is a Commodore cartridge which fits in the back of the VIC-20
or into an expansion board. It supplements BASIC with graphics and sound com
mands, and adds a few other BASIC commands-KEY, RJOY, RPEN, and RPOT.

KEY allows the function keys to output text; RJOY reads the joystick, RPEN the
light pen, and RPOT a paddle. Music commands, and those dealing with the games
port, are dealt with in Chapters 13 and 16.

So the intention of the Super Expander, presumably, was to provide a general-

440

Graphics

purpose aid to writing BASIC games and similar applications. The Super Expander
uses the VIC-20's built-in features, and uses no special tricks. Anyone who says
graphics are impossible without Super Expander is talking nonsense.

Technical Description
Hardware. The Super Expander is a 3K RAM pack with a ROM mounted on it.

Its RAM occupies $0400-$OFFF, and its ROM occupies $AOOO-$AFFF, so $BOOO
$BFFF is left available for another utility. $AOOO is the autostart area: When the VIC
is turned on with the cartridge in place, the system is automatically initialized. The
function keys are set up with various keywords, so pressing any of these keys will
show that it is ready. The Super Expander can coexist with VICMON (at $6000), Pro
grammer's Aid (at $7000), and 8K or 16K memory expansion.

There are four memory configurations possible with the Super Expander, depend
ing on the absence or presence of 8K or 16K expansion, and whether or not graphics
are used (see Figure 12-25).

Memory. The number of bytes free indicated when the machine is turned on is
misleading. As soon as graphics are used, the entire RAM area from $1000 to $lFFF
is dedicated to graphics definitions and screen storage, which instantly removes 4K
of memory. Super Expander then limits the top of BASIC's memory to $1000. When
8K or 16K is used too, the BASIC program in RAM and all its variables is shifted up
to start at $2000. This can be important: If you develop a long program you may
find that it won't run because of an OUT OF MEMORY error.

The amount of memory free if graphics are to be used can be printed out like
this:
GRAPHIC 1: F = FRE(O): GRAPHIC 0: PRINT F

which temporarily switches into a graphic mode. GRAPHIC 0 leaves BASIC where it
is. GRAPHIC 4 alters BASIC to what it was before the GRAPHIC command. With
graphics in use, the Super Expander alone has 3062 bytes for BASIC; with 8K, 8046
bytes; with 16K, 16238 bytes. Because BASIC must have continuous memory, and
because the system puts the screen at either $1000 or $lEOO, the Super Expander's 3K
can't be used as part of BASIC when 8K or 16K is added, although it can be used to
store ML or data.

Software description. The Super Expander adds BASIC commands by storing
them as tokens like ordinary BASIC. A wedge, to intercept BASIC, is not used. In
stead, during initialization of the system, the Super Expander alters many of the in
direct vectors around $0300, including the first six which handle tokenization, the
input and output vectors, and LOAD and SAVE.

Note that Super Expander can be software-disconnected by POKE 783,181: SYS
64815, which bypasses the usual ROM check. It now functions as a plain 3K RAM
expansion pack. SYS 64802 will reconnect it. The number of bytes free is 136 larger
than reported when the cartridge is active. This is because function keys are allo
cated an average of 16 characters each, and eight bytes store the lengths of each
string. On power-up, the keys are defined as GRAPHIC, COLOR, DRAW, SOUND,
CIRCLE, POINT, PAINT, and LIST. This is a nice cosmetic touch, not necessarily of
much practical use. KEY allows f1 to f8 to be reprogrammed in direct or program

441

..,. ..,.
N

Super Expander Without Graphics

$0000 $0400 $1000 $IEOO $2000 $AOOO $BOOO

Super Expander RAM I
BASIC

Super Expander With Graphics

1
R
E
E
t\:) ~

136 bytes for
functi~n key definitions

Super rExpander

ROM

$0000 $0400 $1000 $lEOO $2000 $AOOO $BOOO

Super Expander RAM Graphics Character
Definitions

BASIC

136 bytes for
functi~n key definitions

8K + Super Expander Without Graphics
$0000 $0400 $1000 $1200

Super Expander 5 c
RAM Unused R

E
by BASIC E

N

8K + Super Expander With Graphics
$0000 $0400 $1000 $1200

Super Expander 5 Graphics c
RAM Unused R Char. Definitions E

by BASIC E
N

5
c
R
E

~ I ~ ~
Super 1 Expander

ROM

$2000 $4000 $AOOO $BOOO

I 8K Expansion

BASIC

\ ~ Super I Expander

\ \ ROM

136 bytes for
functi~n key definitions

$2000 $4000 $AOOO $BOOO

8K Expansion

BASIC

~) Super Expander

\ \ ROM

136 bytes for
functi~n key definitions

"TI G'> _.
..... CO 0 C
'0 ..

CD ::T - ()

N en
I
N
~
"TI
0
C ..
CI)

-6
CD ...
~
'b g
:t ...
i:
CD
3
0
-<
i:
0
'C en

Graphics

mode. The total length of the strings cannot exceed 128 bytes, but there is no special
limit on anyone string.

The keywords introduced by the Super Expander are these:
204 KEY Define function keys or list current definitions
205 GRAPHIC Set graphic mode or return to normal
206 SCNCLR Clear graphic screen
207 CIRCLE Draw circles, ellipses, or arcs
208 DRAW Draw straight lines between points
209 REGION Change the current character color
210 COLOR Select background, border, character, auxiliary colors
211 POINT Plot points
212 SOUND Set four voices and volume
213 CHAR Print ordinary VIC text or graphics characters
214 PAINT Fill an area with solid color (within limitations)
215 RPOT Return position of paddle
216 RPEN Return position of light pen
217 RSND Return the value in a sound register
218 RCOLR Return color currently in registers 0 to 3
219 RGR Return graphic mode 0 to 3, but excluding 4
220 RJOY Return position of joystick
221 ROOT Read color register, 0 to 3, of a point

These keywords can be abbreviated on entry like ordinary keywords, typically with
an initial followed by a SHIFTed second letter.

A program using these commands, saved to tape or disk, can be loaded into a
computer without the Super Expander, but will not run, and will LIST oddly. A Super
Expander program can be run only if the host computer is fitted with a Super Expan
der. Does this mean that a cartridge has to be present? No, a copy of the Super
Expander in an 8K RAM pack at $AOOO will run any such program, but it requires an
expansion board with two RAM packs at least.

Super Expander relocated lower down in RAM, and included in the software, is
feasible, but cannot be a solution in programs for resale without Commodore's per
mission. The best way to relocate Super Expander is to assume 8K or 16K expansion
and use a loader to: load the relocated Expander into $2000 to $2FFF; put the start of
BASIC at $3000; initialize the RAM version of the Expander, which will reserve 136
bytes at the top of memory; and load and run the BASIC program.

Because of these complications, very little commercial software depends on the
Super Expander.

Graphics software. The Super Expander graphics have the serious drawback of
providing only 160 X 160 pixels, equivalent to 20 rows X 20 columns of normal
characters. As we've seen, the maximum bitmapped VIC-20 screen is 24 X 20,
which is 20 percent larger than this utility can offer.

Other features of this utility may appear disappointing, but most are inescap
able, due to limitations of the VIC-20. For example, differently colored high-resolu
tion lines drawn at random are eventually submerged in a colored rectangular grid,
but this is only a consequence of the fact that high-resolution graphics can't display
more than two colors within a character.

The x and y coordinates have nominal values from 0 to 1023. The true resolu
tion is 0 to 159 in each direction, or 0 to 79 horizontally in multicolor mode.

443

Graphics

BASIC on small computers is generally slow with graphics, especially if individ
ual dots are plotted. Moreover, if dots make up a picture, not calculable by a
formula, storage in BASIC is likely to be inadequate. For example, DATA 123,456
takes at least seven bytes just to store a single dot, so an Expander with its 3K can't
store more than about 350 dots out of 160 X 160, which is only 1.5 percent of the
picture area. It may be best to use the Expander as an editor and to save the screen
RAM.

Screen memory is arranged with values from 0 to 199, in columns from left to
right. If you press STOP and HOME with graphics present, keys @' A, B, C, etc., are
defined as the top left, top-but-one left, and so on.

BASIC Programming with Super Expander
The Super Expander could be more user-friendly. The problem is that its graphics
commands rely on four color registers that store the familiar character, background,
border, and auxiliary colors; these have to be referred to as 0, 1, 2, and 3. All four
have to be defined with COLOR, even where, with high-resolution graphics, two
aren't very relevant. And a special command (REGION) has to be used to change
the character color currently being plotted. So the programmer is always a step re
moved from the actual colors, having to remember which register holds what color,
rather than being able to simply select and use any color.

Modes. There are three graphics modes, turned on by GRAPHIC 1, GRAPHIC
2, and GRAPHIC 3. GRAPHIC 0 returns to normal text, with 22 columns, 23 rows,
white background, cyan border, and blue lettering, so a program can be listed.
GRAPHIC 4 is identical, except that it returns BASIC to the condition it was before
going into graphics. This increases the amount of free memory, but at the risk of
OUT OF MEMORY errors as explained earlier. A syntax error in a program exits
with GRAPHIC 0 to print its message.

There's very little difference between the graphics modes, which are multicolor,
high-resolution, and mixed. If you've understood the earlier material, you will appre
ciate that the only differences are in color RAM: GRAPHIC 1 has bit 3 set,
GRAPHIC 2 does not have bit 3 set, and GRAPHIC 3 may have bit 3 set. The bit is
always inserted or removed in the first two modes, and left alone in the third. If you
switch modes in midprogram, you'll clear the screen.

Plotting. X and y coordinates are 0-1023 in all three modes-values larger than
these are ignored, while negatives give ?ILLEGAL QUANTITY ERROR. The origin is
top left. Converting the actual coordinates of 0-159, which are often easier to work
with since they involve distinct points, requires a factor of 6.4, or 12.8 in the case of
x coordinates in multicolor mode. In practice, 6.395 and 12.795 avoid rounding
errors.

Colors. Color parameters are identical to those POKEd into the VIC chip:
o Black 6 Blue
1 White 7 Yellow
2 Red 8 Orange
3 Cyan 9 Light Orange
4 Purple 10 Light Red
5 Green 11 Light Cyan

444

Graphics

12 Light Purple
13 Light Green

14 Light Blue
15 Light Yellow

Border and character colors can only take values of 0-7; the full range is re
served for background and auxiliary colors. COLOR takes parameters in this order:
COLOR background, border, character, auxiliary.

The order is that of the bit-pairs in multicolor mode, where 00 is interpreted as
background, 01 as border, 10 as character, and 11 as auxiliary. This shows how the
VIC chip intrudes itself unnecessarily into Super Expander's commands.

BASIC Syntax and Commands
Parameters are evaluated, so GRAPHIC X and similar constructions are valid. This
sometimes confuses people. I've seen it claimed that DRAWOVER x,y,z or DRAWX
x,y,z are Super Expander commands; in fact 'OVERx' or 'Xx' are evaluated as variables
OV or Xx, which are likely to be zero, so the command is treated as DRAW O,y,z. Ta
ble 12-5 shows how the commands GRAPHIC, COLOR, and REGION are related to
the three graphics modes.

Table 12-5. Super Expander Modes

Register: 0 1 2 3

COLOR Background, Border,
REGION 0-15

Auxiliary Character,

GRAPHIC 1
0-15 0-7 0-7 0-15

(multicolor)

GRAPHIC 2 0-15 0-7 0-7 Unusable (high-res.)

GRAPHIC 3 0-15 0-7 8-15 0-15

(either) 0-15 0-7 0-7 Unusable

Notes:
1. "0-7" means that 8-15 are converted to 0-7. Example: In GRAPHIC2 mode, COLOR 10,10,10,10 is

indistinguishable from COLOR 10,2,2,10.
2. REGION changes the character color, and is usable in any of the modes. Use it to switch between high

resolution and multi color modes in GRAPHIC3.

Plotting commands. POINT, DRAW, and CIRCLE plot dots. DRAW and CIR
CLE construct straight lines and circles or part-circles, respectively. POINT is useful
in setting starting points for lines and for drawing individual dots. The syntaxes are
as follows. The portion within brackets is optional.

POINT color register 0-3, Xl coordinate 0-1023, Y1 coordinate 0-1023
[,X2,Y2,X3,Y3 ...]
One command can plot several points.

445

Graphics

DRAW color register 0-3 [, X coordinate 0-1023, Y coordinate 0-1023] TO X1,Y1
[TO X2,Y2 TO X3,Y3 ...]
The line's start defaults to the previous point drawn. A set of lines can be specified,
each starting at the end of the previous line.

CIRCLE color register 0-3, X coordinate 0-1023, Y coordinate 0-1023, radius
across 0-1023, radius down 0-1023, [start of arc 0-100, end of arc 0-100]
This command plots ellipses, so circles can be round even in countries with different
TV systems. Arc parameters are treated as 0-100, and arcs are drawn clockwise. The
maximum parameter actually accepted is 255.

Figure 12-26. Examples of Super Expander Plotting

Y Direction
(Down)

o X direction (Across)
r--------------.--------~--~------------------_,

1023

1023

I ---------.
Point at 300,200

Line drawn
from 0,500
to 300,700

50

Circle
75 Center at 700,500

y
Radius

'-----10/100

25

Other commands. SCNCLR erases graphics. Switching graphics modes has the
same effect.

PAINT color register 0-3, x coordinate 0-1023, y coordinate 0-1023 fills the re
gion surrounding x,y with solid color. In high-resolution mode, adjacent areas are
likely to change color, since there just aren't enough colors to spare. There is a bug
in PAINT: Its algorithm assumes that any bit which is on marks a boundary, so an
area already PAINTed can't be cleared with PAINT O,X, Y. PAINT isn't intelligent
enough to be able to find any other type of boundary.

CHAR row 0-19, column 0-19, string expression puts ordinary text and charac
ters on the screen in the current character color or in multicolor mode. CHAR allows
ordinary BASIC to be mixed with the Super Expander's graphics commands, and can
be very much more useful than appears at first. The obvious use is to put messages
on the screen, but CHAR also allows VIC's ordinary characters to be used for dec-

446

Graphics

orative borders, animation, and other BASIC tricks. Try a string of Commodore- + in
multicolor mode, for example.

RCOLR (register 0-3) is a function which returns the value in color register 0-3.
PRINT RCOLR (2) prints the character color. RDOT (X,Y) returns the color register
value, 0 to 3, of a dot. And RGR (padding) returns the graphics mode. All these
commands do is simple machine language PEEKs-they are useful when drawing
random graphics.

We'll look at KEY here despite its irrelevance to graphics. KEY prints out all
eight current key definitions, as stored in RAM. Note that RETURN characters and
quotes are both treated specially, emerging as CHR$(13) and CHR$(34).

KEY definitions use this syntax: KEY parameter 1-8, string expression. So KEY
X, "HELLO" + M$ is acceptable, if X is 1 to 8. The null string is accepted, as are KEY
1, "{RED}", KEY 2,"{CLR}". If all the keys are set null, perhaps by a loop involving
KEY J, a 128-character key can be defined with KEY I,LEFT$(Y$,128) where Y$ is
very long. The system isn't designed for longer strings than this.

KEY is usable within programs. 10 FOR J=1 TO 8: INPUT X$: KEY J,X$: NEXT
assigns all eight keys. Fancy constructions are possible, although the average 16-byte
limit is severe. KEY 1, "CHAR 0,0" + CHR$(34) + X$ + CHR$(34) + CHR$(13)
assigns key 1 so that X$ prints at the top left in graphics mode.

Program 1 2-50. BASIC Example

10 GRAPHIC 2
20 COLOR 1,2,3,4
30 X= RND(1)*1000:Y=RND(1)*1000
40 DRAW 2 TO X,Y
50 GOT030

This example sets high-resolution mode, white background, red border, and
cyan characters, then draws lines which join random points in the screen. DRAW 2
uses the character color, so the lines are cyan. In fact, DRAW 1 or DRAW 3 also
gives cyan lines: The character color is assumed to hold except for DRAW 0, which
uses the background color, in effect erasing a line.

Add 35 REGION RND(I)*16 to change the character color. You'll see how the
colors are all in the range 0-7, indicating that the pastel colors have been dis
regarded; and you'll see how the color RAM changes, making distinct lines impos
sible. The screen ends as a collection of colored rectangles with all the bits set.

Change line 10 to GRAPHIC 1, multicolor mode. The lines are coarser, as ex
pected, but the effect is similar-there's no sign of more color. This is because line
40 only draws with the character color. Replace line 35 with:
35 C=INT(RND(1)*16):IF NOT(C=RCOLR(O) OR C=RCOLR(l) OR C=RCOLR(2) OR

C = RCOLR (3» THEN 35

and line 40 with:
40 DRAW C TO X,Y

which insures that only one of the four possible colors is selected. There is now no
problem with plotting, except that the lines are coarse and the color range limited.

447

Graphics

37 REGION RND(1)*16 increases the color range by varying the character color,
without producing too blocklike an effect, since many proper lines are still plotted.
You may feel the effect is enhanced if COLOR's first two parameters are identical;
this reduces the palette by one color, but deletes the boundary between plottable
screen area and border.

GRAPHIC 3 allows high-resolution and multicolor modes to coexist. The mode
depends entirely on the character color; if it is 8 or more, you have multicolor mode.
Try GRAPHIC 3 in line 10. Provided you've included line 37 with REGION, some
lines emerge as hi-res, others as multicolor.

Finally, we'll see why REGION alters character colors, but leaves the others
alone. Replace line 37 with
37 COLOR 1,2,ll,RND(1)*15

and line 40 with
40 DRAW 3 TO X,Y

Now line 37 selects multicolor mode, and the auxiliary color varies randomly. Line
40 draws with this auxiliary color, so the screenful of lines continually changes color.
The border and background can be changed like this too with
37 R = RND(1)*8: COLOR R,R,I1,RND(1)*15

so the whole screen flashes.

Program 12-51. Multicolor Mode Concentric Ellipses (Four Colors)
10 GRAPHIC 1
20 COLOR 0,2,5,6
30 FOR R=0 TO 500 STEP 12.8
40 J= (J+1) AND 3
50 CIRCLE J,500,500,R,R:REM ,.7*R,R FOR CIRCLES
60 NEXT

In Program 12-51, line 40 cycles J from 0 to 3. In multicolor mode, all four colors
can always be displayed. Replace line 10 with

10 GRAPHIC 2

Line 40 becomes irrelevant-delete it and change line 50:

50 CIRCLE 1,500,500,R,R

This gives a moire pattern.

Program 12-52. High-Resolution Mode Random Ellipses
10 GRAPHIC 2
20 X=512*RND(1):CX=X:IF RND(1».5 THEN CX=1023-CX
30 Y=512*RND(1):CY=Y:IF RND(1».5 THEN CY=1023-CY
40 RX=X*RND(1):RY=Y*RND(1)
50 CIRCLE 2,CX,CY,RX,RY
60 GOTO 20

448

Graphics

In Program 12-52, lines 20 and 30 select centers and radii which fit within the
screen.
55 REGION RND(1)*8: PAINT 2,CX,CY

shows PAINT and its limitations.

Program 12-53. Drawing in Three Dimensions
Refer to the "Automatic Proofreader" article (Appendix C) hefore typillg ill this program.

10 DEF FNZ(X)=SIN(X/3+1/(X+1»*10*EXP(15/(X+12»
:rem 72

20 GRAPHIC 2:COLOR1,0,0,0:S=1:H=1023+6.4*S :rem 80
30 FOR X=-80T00STEPS:M=-80:H=H-6.4*S:FORY=80 TO -8

o STEP -1.6 :rem 205
40 J=FNZ(SQR(X*X+Y*Y»-Y:IF J>M THEN M=J:V=1024-6.

3*(J+80) :rem 41
50 IF V<0 GOTO 70 :rem 86
60 POINT 2,H,V,1023-H,V:REM PLOT SYMMETRICAL PAIR

{SPACE}OF BLACK ON WHITE DOTS :rem 30
70 NEXT Y,X : REM ON A WHITE SCREEN WITH A BLACK B

ORDER :rem 88

Here S controls the step size across; the larger S is, the faster the picture is plotted,
but with fewer dots. For each value of X, a series of Y values is calculated and
plotted, provided each value isn't less than the minimum, M, so far. Line 50 avoids
negative values; line 60 plots dots. Note that line 40 uses a square root formula to
insure circular symmetry.

Chapter 6 explains how these pictures can be saved to disk and tape.

Super Expander: Machine Language Entry Points
AOll Table of 7GRAPHIC, 5COlOR, 4DRAW, etc.
A044 Initialization routine called on power-up
A047 lower top of BASIC memory by 136 bytes
A077 RUN/STOP-RESTORE routine
A08D KEY X, string processed here
AOBF KEY alone processed here
AIBF Table of all 18 Super Expander keywords, with high bit set
A214 Table of 18 addresses (add 1) called from $A515
A238 Initialization subroutine-puts pointers into RAM
A2A2 Table of new vectors for $0314
A372 New IRQ interrupt routine to process keyboard
A395 New input routine processed here
A454 New PRINT routine, processes new keywords, etc.
A626 Music mode-handles 0, T, S, V, R, P, Q, etc.
A6C2 Music mode-plays notes A to G
A72C GRAPHIC jumps to A88A
A740 CIRCLE "" AC93
A7 AS POINT jumps to AAE7
A7BD COLOR jumps to AA29
A7CF REGION jumps to AA6B

449

Graphics

A7D9 SCNCLR jumps to AAF2
A7DD SOUND jumps to AB35
A7EA CHAR jumps to AE57
A80A PAINT jumps to AD6C
A8H RPOT jumps to AB6A
A818 PEN jumps to AB77
A8lC RSND jumps to AB55
A820 RCOLOR jumps to AA85
A824 RGR jumps to AA23
A828 RDOT jumps to AA8C
A843 RJOY jumps to AEDA

These are provided as a basis for exploration. Some of the parts of code-for
example, RJOY to read the joystick and SCNCLR to clear the character definitions
can be used in isolation, so that SYS 43762 clears the characters, but mostly the
commands are rather intertwined.

Locations 707-711 hold the first four VIC registers controlling the screen po
sition and size; 712 ($2C8) holds the graphics mode, 0-4. (POKE 712,2: GRAPHIC 3
crashes, for example, because of this.) Locations 715-718 hold the four colors cur
rently defined. When the cartridge is switched on, PRINT PEEKs of these give values
1, 3, 6, and 0, corresponding to white, cyan, blue, and black. So POKE 717,2:
GRAPHIC 2: GRAPHIC 0 sets characters to red. Super Expander is lavish in its use of
RAM, including the start of the cassette buffer, parts of page 2, and some zero page
areas. Machine language programming is therefore liable to be tricky. A good way to
try it is to use an expansion board with VICMON and 8K or 16K of expansion, so
machine language can be tucked into the now untouched 3K from $0400 to $9FFF.

Some Final Words About Graphics
Many VIC programs use the 22 X 23 format. A few extend the number of rows
Night Ride and Commodore's Jelly Monsters are 22 X 28. Some software houses con
fine themselves to screens obviously designed to be 512 bytes or fewer: 16 X 32 or
25 X 20. Occasionally-for example, "Moons of Jupiter" by D. Byrden-a full
screen is used. The moving objects vary in size, of course, but 2 X 2 and 3 X 2
composite graphics are common. Generally it's easier with VIC than other computers
to produce largish objects, but more difficult to produce small ones, because of the
quite coarse resolution.

Designing screen-graphic layouts is just a matter of starting with a grid and fit
ting things into it.

Provided 256 different characters are sufficient to fill the entire screen, the nor
mal character-plotting mode used by BASIC is fine. It also allows expanded screens
to be used, which is impossible in high-resolution mode; there just aren't enough
bits to go around.

450

Graphics

Note that a split-screen method, though tricky, can increase the available num
ber of characters to 512. For example, with the screen starting at $1000, graphics
might be stored in $1200-$17FF and text definitions in $1800-$lFFF. When the
interrupt triggers a changeover between the top to the bottom halves of the picture,
the start-of-graphics pointer would switch from $1000 to $1800. Enlarged screens be
come less of a problem too.

The easiest way to mix high-r~solution graphics with text is to use the entire
RAM area from $1000 through $2000 to define a 24 X 20 screen (using characters
16 to 256). Text and numerals can be taken from the usual ROM definitions and in
serted so the whole screen is bitmapped. Mixing in narrow lettering is possible, but
consumes some space (the letters' bit patterns have to be stored) and processing
time.

451

Chapter 13

Sound

This chapter deals with music and noise generation on the VIC-20 and includes pro
gram examples in BASIC and ML. Music theory is outlined in a straightforward way
where it can be applied to the VIC. It also includes a summary of Super Expander
commands, as well as a discussion of the techniques needed to play music without
slowing programs.

After working through the chapter, you will have a good appreciation of VIC's
sound capabilities and limitations.

How Does VIC Generate Sound?
Chapter 5 explained that the VIC has five registers controlling sound output to the
TV. This chapter shows you how to program those registers, which are listed in
Table 13-1.

Table 13-1. VIC Sound Registers
Hex Decimal

$900A 36874
$900B 36875
$900C 36876
$9000 36877
$900E 36878

37002 Low notes
37003 Medium notes
37004 High notes
37005 White noise
37006 Volume (0-15)

All music aids, like Super Expander, basically provide fancy ways of POKEing
values into these locations; thus, any sound effect which they can make can be made
without them, too. Either decimal address is usable, although you may find the sec
ond set easier to remember. Commodore's interface chips are always fairly high in
memory, so you're stuck with five-digit POKEs and PEEKs unless you use variables
to cut down on space (for example, R1 = 36874).

Summarizing Chapter 5, values of 128 or more in any of the sound registers
turn the registers on, although no sound is heard unless the volume is also on. Note
that $900E shares with auxiliary color, so a simple POKE isn't always a suitable way
to change volume.

The larger the number, the higher the tone. However, 255 produces the lowest
tone and is not often used. The frequency is controlled by the crystal clock; with
each pulse the register value is (in effect) increased, and when 255 is reached the TV
output is reversed. Square wave sound results.

Chapter 5 explains how to calculate exact frequencies produced by the VIC. Un
fortunately, they rarely coincide with musical notes, so VIC music is inevitably out
of-tune. The exception is octaves; tones of exactly twice or four times another's
frequency can be produced.

Try POKE 37006,5: POKE 37004,230: POKE 37003,230, which puts two high
notes in the upper tone registers and plays the result at a low volume. This is a
richer sound than either register can produce separately, as you'll see if you cursor
up and change one tone to O.

455

Sound

Alter the POKEs to 140. The sound is much deeper; it also tends to be more dis
torted, which helps explain the odd sounds VIC may produce at low frequencies.
Alter one POKE to 141, and you'll hear some beating, caused by interaction between
notes of similar frequencies. This is another reason for some of VIC's inharmonious
effects when notes played together fail to harmonize because their pitches don't
quite match. Pressing RUN/STOP-RESTORE returns VIC to normal.

Program 13-1 rapidly switches two notes in a register; try, for example, 245 and
235. The pulsing effects vary with the numbers and their order in an unpredictable
way; it's easier to experiment than to say what to expect. Hit any key to change the
values.

There are many ways to modify these sounds. For instance, add lines 35 and 55
to POKE the volume with different values (a form of amplitude modulation) to in
crease the pulsing. The possibilities are almost endless, although the square wave
form inevitably limits the VIC to low-fidelity applications. You'll never quite get
orchestral quality.

Program 13-1. Switching Notes

10 POKE 37006,4
20 INPUT X,Y
30 POKE 37004,X
40 GET X$:IF X$ GOTO 20
50 POKE 37004,Y
60 GO TO 30

Program 13-2 changes register values systematically. Try inputting 1, 2, or 3 for
glissandi (slides) up, and 255, 254, or 253 for glissandi down. The values 32 or 64
produce rapid alternation. Press any key to change X. You've certainly heard sounds
like these before, and you can build your own sounds by adding several registers at
one time or including random numbers.

Program 13-2. Changing Register Values

10 POKE 37006,4
20 INPUT X
30 POKE 37004, K OR 128
40 K=K+X AND 255
50 GET X$:IF X$ GOTO 20
60 GOTO 30

Before looking at music, look briefly at the white noise register at 37005.
Change 37004 in line 30 to 37005 and listen to the results. The value 177 gives a
frantic bubbling noise.

Music and VIC
Figure 13-1 shows a short section of the piano keyboard, starting at C. It has 12 keys
in half-tone steps, tuned to frequencies in constant ratio to each other. (Two half
tones together make up a whole tone, or whole step.) Since octaves differ in fre-

456

Sound

quency by a ratio of exactly 2, the ratio of frequencies between adjacent keys is
21(1/12), or roughly 1.059463. American standard pitch sets A at 440; international
standard pitch is 435. Whichever scale is used, all the other notes' frequencies can be
calculated from anyone note.

Figure 13-1. Part of a Keyboard

The black notes are designated "sharps" (~) moving up or "flats" (P) moving
down. Thus, C-sharp is identical to D-flat. The white notes are "naturals."

A scale consists of seven notes taken from these 12, plus the eighth octave note.
The starting note of a scale is its key. There are many possible scales; those with
notes divided fairly evenly along the range are normal.

C major may be the best-known scale. It starts with C and uses only white
notes. All major scales have the same basic pattern (starting tone, whole step, whole
step, half step, whole step, whole step, whole step, half step). There are 12 half steps
between any two notes that are an octave apart; compare this sequence with the
keyboard diagram to see why C major uses white keys only.

Natural minor scales have a different pattern (starting tone, whole step, half
step, whole step, whole step, half step, whole step, whole step). Again, note the total
of 12 semitones. An example is A minor, which starts with A and uses white notes.
There are other minor scales, plus unusual minor modes like Dorian and Phrygian,
which can complicate matters even more.

To put a tune into programmable form, you must start with a list of the relevant
notes. Converting notes to POKE values can be done with the help of Table 13-2;
however, given the small number of values in the VIC sound registers, the result is
inevitably going to sound out-of-tune. The lower POKE values offer more scope for
fine-tuning but tend to sound worse overall.

It's best to avoid some of the less accurate notes. You should also be careful
when selecting values that should harmonize, unless you pay careful attention to ab
solute pitch. For example, the major scale made of POKEs 130, 144, 156, 162, 172,
181, 189, and 193 gives the least overall errors of frequency of any major scale.

Probably the best approach, though, is to use Pythagorean harmonies, which
VIC can generate exactly. You've seen how to select register values to generate oc
taves: 250 and 245, for example, differ by 5 and 10 respectively from 255.

457

Sound

Table 13-2. Note Conversions

Approx. us UK Approx. us UK
Note Value Value Note Value Value

C 135 128 G 215 213
C# 143 134 G# 217 215
D 147 141 A 219 217
D# 151 147 A# 221 219
E 159 153 B 223 221
F 163 159 C 225 223
F# 167 164 C# 227 225
G 175 170 D 228 227
G# 179 174 D# 229 228
A 183 179 E 231 230
A# 187 183 F 232 231
B 191 187 F# 233 232
C 195 191 G 235 234
C# 199 195 G# 236 235
D 201 198 A 237 236
D# 203 201 A# 238 237
E 207 204 B 239 238
F 209 207 C 240 239
F# 212 210 C# 241 240

It's not difficult to extend the principle. Table 13-3 shows the relationships be
tween half tones and root notes; all, as it happens, are accurate approximations of
true chromatic values. Under some tuning systems they can actually be treated as
correct values. Some approximations, for example thirds and fifths, are very close
indeed.

Notes which make up a scale (naturals) are marked with an X. A number was
selected into which all or most of the scale's ratios will divide. Then this number
was divided by each of the ratios, giving the columns headed 120 and 144.

The first POKE column is simply 255 minus these values. The second and third
POKE columns are the values for the next two octaves. Figures marked with 1/2
could either be rounded up or down; asterisked values are not exact. Note that these
figures differ occasionally from those given by the exact formula 255 - N/2tO/12).
Thus, N=120 and J=9 give 183.6, not 183. But the theory is that the integer ratio
harmonies will stand together and shouldn't be mixed with chromatic harmonies.

Program 13-3, a short excerpt from a well-known Bach piece, plays three-note
chords using the major scale sequence just calculated. A deeper bass and variable
note-lengths are easy to put in. In addition, an economical way to control timing is
to precede each set of notes with a constant and use line 50 READ T: T = II + T and
line 55 IF TI<T GOTO 55.

458

""" U1
\0

Table 13-3. Ratios of Half Tones and Root Tones

Approx. Values for VIC-20
Ascending

Frequency Major Scale
Note No. Ratio Notes N=120 POKEs Notes

0 1 x 120 135 195 225 x
1 18/17
2 918 x 107* 148* 201112* 228* x
3 G/5 x
4 5/4 x 96 159 207 231
5 4/3 x 90 165 210 232% * x
6 7/5
7 3/2 x 80 175 215 235 x
8 8/5 x
9 5/3 x 72 183 219 237

10 9/5 x
11 15/8 x 64 191 223 239
12 2 x 60 195 225 240 x

--- - - ---- - L '--- -

* Not exact

Minor Scale

N=144 POKEs

144 - 183 219

128 - 191 223
120 135 195 225

108 147 201 228

9G 159 207 231
9() 1G5 210 232% *

80 175 215 235

72 183 219 237
L-.. ------------ -----

en
o
C
::J
a.

Sound

Program 13-3. Jesu
Refer to the "Automatic Proofreader" article (Appendix C) before typinK in this program.

1 REM ** 'JESU JOY OF MAN'S DESIRING' PART **
:rem 171

2 REM ****** NOTE: Z CAN BE USED TO END THE TUNE,
{SPACE}OR (AS HERE) TO LOOP :rem 176

3 REM ****** NOTE: 'L' IS TREATED AS QUIET, SO 2,
{SPACE}l, OR 0 VOICES CAN BE USED :rem 139

10 R=37002: V=37006 :rem 185
20 S(1)=225: S(2)=228: S(3)=231: S(4)=232.5: S(5)=

235: S(6)=237: S(7)=239: S(8)=240 :rem 211
30 B(1)=195: B(2)=201.5: B(3)=207: B(4)=210

{2 SPACES}: B(5)=215: B(6)=219: B(7)=223: B(8)=
225 :rem 66

40 POKE V,3 :rem 72
50 GOSUB 1000 :rem 166
55 POKE R,B(N){2 SPACES}:REM LOW REGISTER :rem 109
60 GOSUB 1000 :rem 167
65 POKE R+l,S(N) :rem 102
70 GOSUB 1000 : rem 168
75 POKE R+2,S(N):REM HIGH REGISTER :rem 11
76 PRINT :rem 250
80 FOR J=l TO 200: NEXT :rem 181
90 GOTO 50 :rem 7
1000 READ N$:rem 79
1010 IF N$="Z" THEN RESTORE: GOTO 1000 :rem 37
1020 PRINT N$; : rem 253
1030 N=ASC(N$) - 66 :rem 130
1040 IF N<1 THEN N=N+7 :rem 121
1050 RETURN :rem 166
10000 DATA C,E,C, C,E,D, C,G,E, C,E,G, D,A,F, G,B,

F, G,B,A, D,B,G, C,E,G :rem 184
10010 DATA E,G,C, D,G,B, E,G,C, C,E,G, C,G,E, F,A,

C, F,A,D, C,G,E :rem 109
10020 DATA D,A,F, D,B,G, D,F,A, C,E,G, A,D,F, A,C,

E, G, B, D, C, G, E, E, G, C, C, C, C : rem 3
20000 DATA Z :rem 102

VIC as a Keyboard
It's easy to simulate a piano keyboard with the VIC, since each register has about
three usable octaves. However, the registers only overlap for about one octave. Thus,
it's not really feasible to simulate a keyboard in the sense of allowing three
keypresses to play chords over several octaves. For example, where three notes are
low-pitched, the highest register may be unable to play any of them, even when set
to play its lowest note.

460

Sound

Program 13-4 lets you use your VIC as a keyboard. First, it defines two rows of
keys to act as the keyboard, with Y being note C, then it computes an array of
POKEs to correspond to the keys, turns on the volume, and plays notes depending
on which key is pressed. Y, V, I, and so on are a major scale. Line 30's parameter of
60 controls the POKE values.

There's no problem in adding another double row of keys; just extend line 100
and alter line 130's parameter to 120, for example, so the lower keys play bass and
the upper treble (or vice versa). Vse X=PEEK(197) in place of GET to test for actual
key depressions.

Program 13-4. VIC Keyboard
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

100 K$=llQW3E4R5TY7U8I00P+@-*t"
110 DIM K%(l00)
120 FOR J=l TO LEN(K$): X=ASC(MID$(K$,J»
130 K%(X)=255.5 - 60/(2t(J/12)
140 NEXT
150 R=37004: V=37006
200 POKE V,3
300 GET K$: IF K$="" GOTO 300
310 POKE R,K%(ASC(K$»
320 GOTO 300

Chords with the VIC

:rem 54
:rem 190
:rem 159
:rem 185
:rem 212
:rem 240
:rem 118
:rem 103
:rem 153

:rem 97

If you modify line 310, and add lines 315 and 316 as shown, you will be able to
play chords:

Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

310 POKE R-N,255.5-(255-K%(ASC(K$)))/2tN :rem 103
315 N=N+l:IF N=3 THEN N=0 :rem 63
316 PRINT I {CLR}"PEEK(37002)PEEK(37003)PEEK(37004)

:rem 87

Now the contents of each tone register print on top of the screen. N counts from 0
to 2, and the registers are POKEd, in turn, with the correct value appropriate to their
outputs. The key Y typically prints 247, 238, and 221, so each register plays an
approximately equal tone. However, tuning cannot be precise and some beating ef
fects are unavoidable. Try pressing the space bar three times, putting 191, 128, and 0
into the registers, for a weird pulsing sound.

Chords can be constructed fairly simply. A "root chord" is the tonic (or starting)
tone, plus the major third tone, plus the major fifth tone. A major third is four half
steps away from the tonic, and a fifth is seven half steps away. Thus, the chord C
major consists of the tones C, E, and G.

A minor third is three half steps up, so C minor is C, E-flat, and G. Other
chords include the dominant and subdominant; these are built of three notes in just
the same way but start at the fifth and fourth notes of the scale, respectively.

461

Sound

"Inversions" occur when the lowest note is moved up an octave, moving it to
the top of the three-note pile.

VIC's three voices are fairly well-suited to these straightforward methods. Note
that major thirds' and fifths' frequencies are in constant ratio to their tonics, of 2t(1/3)
and 2i(7/12) respectively, so POKE 37003,X and POKE 37004,255-(255-X)/1.4983
are fifths.

Program 13-5 turns your VIC into a chord organ and lets you playa set of care
fully chosen chords using the keys Q, W, E, and so on. It is easily modified.

Program 13-5. VIC Chord Organ
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 REM -- SET UP POKE VALUES FOR NOTES 0 TO 16 -
:rem 51

20 DIM RV%(16): FOR J=0 TO 16: READ F: RV%(J)=255-
F: NEXT :rem 166

30 DATA 90,80,72,67.5,60,54,48,45,40,36,34,30,27,2
4 , 22 . 5 , 20 , 18 : rem 22 7

40 REM ---- READ IN NOTE VALUES FOR EACH REGISTER
{SPACE}---- :rem 198

50 DIM MA%(2,94) :rem 14
55 K$="QWERTYUIOP@*t" :rem 75
60 FOR Y=0 TO 2 :rem 232
65 FOR J=1 TO 13: K=ASC(MID$(K$,J)): READ MA%(Y,K)

:rem 89
70 NEXT J,Y :rem 117
80 REM ---- VOLUME ON, THEN PLAY 3-NOTE CHORD:

:rem 174
90 POKE 37006,2 :rem 246
100 GET X$: IF X$="" THEN GOTO 100 :rem 172
110 X=ASC(X$) :rem 203
120 FOR Y=0 TO 2 :rem 21
130 POKE 37004-Y,RV%(MA%(Y,X)) :rem 114
140 NEXT Y :rem 45
150 PRINT PEEK(37002) PEEK(37003) PEEK(37004) :REM

PRINT CHORD :rem 151
160 GOTO 100 :rem 97
8999 REM ---- DATA FOR NOTES: -------- :rem 167
9000 DATA 0,1,2,3,4,5,6,7,8,9,10,11,12 :rem 38
9100 DATA 4,6,4,7,6,7,8,11,11,7,7,8,7 :rem 15
9200 DATA 9,11,7,12,8,10,11,16,13,11,12,13,10

:rem 122

Super Expander Sound
The Super Expander cartridge offers two music aids. One is a set of commands that
rely on the user to put in register values; the other uses notes (so far as possible) and
converts them.

462

Sound

SOUND
This is an easy, uncomplicated command, which simply POKEs the four sound reg
isters with pitch and volume. For example, SOUND 0,0,128,0,8 POKEs 128 into the
high tone register, at a volume of 8, and turns off the other tones. The parameters
must follow the usual rules: The values 128 to 255 must be used if the sound is to
be audible; ° to 15 must be used to set volume.

CTRL-BACK ARROW
This command can be thought of as calling "music mode." In direct or program
mode it converts notes written as A, B, C, D, E, F, or G (with # and $ for sharp and
flat) into sound. It can play only one octave in direct mode, so it is virtually useless
as a keyboard as it stands. Also, if S is accidentally pressed (it's located on the key
board near A, B, C, and so on), it's interpreted as a register selection and turns on
noise. Pressing RETURN cancels the mode.

In program mode, this command modifies PRINT, so a printed string can output
music. The extra commands in the string, in addition to notes, sharps, and flats, are
summarized below. As long as strings are terminated with semicolons, music mode
remains in force.
p
Q
V
TO-T9
51-54
01-03
R

Prints to screen during play
Do not print
Set volume
Set tempo; an interrupt-driven counter is used
Select bass, mid, high, or noise voice
Select pitch within a voice
Rest (silence)

Machine Language and VIC-20 Sound
Any program with BASIC POKEs can be directly converted into ML. The ML ver
sions will be significantly faster, so in the simplest examples, notes from a table can
be consecutively stored in the sound registers, and a delay loop waits a suitable time
between notes.

Musical notes typically have a hard-to-synthesize attack, in which the note is
established, then a short delay followed by a relatively long sustain in which the
characteristic harmonics of the instrument appear. Finally, during the release phase,
the note fades. All this happens very quickly. Envelope shaping is possible in ML,
but such ML synthesis is not really possible with the VIC.

Intenupts
Chapter 8 discussed ML which plays music as a program runs. The BASIC loader is
given in Program 13-6. When run, 256 bytes are set aside in memory to store notes;
their processing is controlled by POKEing memory.

463

Sound

Program 13-6. Interrupt Music
Refe) to the "Alltomatie Proofreader" artide (Appendix C) before typill:\ ill this Pro:\raIll.

10 DATA 120,169,28,141,21,3,169,21,141 :rem 61
11 DATA 20,3,88,165,250,133,249,165,248 :rem 132
12 DATA 133,247,96,165,251,208,6,141,12 :rem 125
13 DATA 144,76,191,234,173,14,144,41,240 :rem 172
14 DATA 5,251,141,14,144,198,249,208,239 :rem 185
15 DATA 166,248,189,0,29,141,12,144,230 :rem 127
16 DATA 248,165,248,197,252,144,4,165,247 :rem 249
17 DATA 133,248,165,250,133,249,76,191,234 :rem 33
100 POKE 56,PEEK(56)-2: CLR :rem 178
110 S=PEEK(55) + 256*PEEK(56) :rem 213
120 FOR J=S TO S+71: READ X: POKE J,X: NEXT:rem 59
130 R=S+21 :rem 4
140 POKE S+2,R/256 :rem 190
150 POKE S+7,R-INT(R/256)*256 :rem 70
160 R=S+256 :rem 65
170 POKE S+49,R/256 :rem 252
180 POKE S+48,R-INT(R/256)*256 :rem 126
190 SYS S :rem 236
1000 PRINT "{CLR}POKE START POSITION{4 SPACES}(0-2

54) IN 247." : rem 2
1010 PRINT "POKE TEMPO IN 250{6 SPACES} (SMALLER =

{SPACE}FASTER)." :rem6
1020 PRINT "POKE VOLUME (0-15) IN[2 SPACES}251."

:rem 12
1030 PRINT "POKE LENGTH FROM START IN 252."

:rem 166
1040 PRINT "POKE NOTES IN " S+256 "TO" S+511

:rem 252
2000 POKE 250,1: POKE 251,3: POKE 252,255: POKE 24

7,0: REM DEMO OF 255 RANDOM BYTES :rem 45

Enter and run the program. POKE 252,20 (to set up a 20-byte set of notes).
POKE the start of the 256-byte area (7424 with an unexpanded VIC) with 200. A
bleep will repeat. POKE 250 with different values to change tempo; POKEing with 1
gives the fastest rate. Something like FOR J=7424 TO 7524: POKE J,128+Q:
Q=Q+1: NEXT will put ascending values in the reserved buffer, so a smoothly
increasing tone will play without significantly affecting BASIC.

Locations 247 and 252 allow the 256 bytes to be partitioned, so several tunes
can coexist. Obviously, a tune can be played at any tempo (notes are of fixed dura
tion, from 1/60 to about 4 seconds), so there's considerable scope with this tech
nique for good-quality sound programming. There's no great problem in extending
the method to include all three (or four) voices and to allow for variable tempos. It is
also possible to allocate more memory for storage.

Program 13-7 is a shorter example that puts ML into low memory. It can be ac
tivated at any time with a simple POKE, provided the ML isn't overwritten. It also
has no significant slowing effect on BASIC.

464

Program 13-7. Interrupt Noise
Refer to the "Alitomatic Proofreader" article (Appendix C! before typing in this program.

2 REM * * NEEDS
CTIVATE **

ONLY POKE 840,X (YOU CHOOSE X) TO A
:rem 25

3 REM ** LARGE X VALUES CAUSE REPEAT **
5 REM ** POKE 849 AND/OR 850 WITH 234 TO

:rem 132
REDUCE RE

PEATS ** :rem 25
6 REM ** POKE 846,238 FOR INCREASING SOUND **

:rem 175
7 REM ** POKE 854,13 FOR NOISE, NOT TONE **

:rem 219
10 FOR J=828 TO 863: READ X: POKE J,X: NEXT:rem 19
20 SYS 828: LIST 2-7 :rem 15
100 DATA 169,3,141,21,3,169,71,141,20,3,96,169,0,2

40,10,173,72,3 :rem 54
110 DATA 206,72,3,10,10,9,128,141,12,144,169,4,141

,14,144,76,191,234 :rem 253

Sound

465

..

Chapter 14

Tape

Tape is the most-used storage medium for the VIC-20. This chapter discusses tape
operations completely; it will give you the information you need to handle any tape
operation.

The chapter is arranged in six parts:

Using LOAD and SAVE with BASIC programs. Includes notes on validation,
the end of tape marker, time taken, and relocation.

Handling tape files. How to store and retrieve data with tape.
Loading and Saving blocks of data. Looks at saving ML programs on the

screen. Includes methods for saving at addresses above $8000 (32768).
Hardware notes on the C2N recorder. Discusses programming the motor, the

cassette keys, and the VIA.
Software notes. Explains how programs and files are stored and how they can

be retrieved and examined.
Security methods. Copy protection for tapes.

Loading and Saving BASIC Programs with Tape
LOADing and SAVEing programs with tape are both, in their simplest forms, very
easy to use. The command LOAD prompts you with the message PRESS PLAY ON
TAPE; when that is done, the next program is located and loaded. Holding down the
left SHIFT key and pressing the RUN/STOP key enters LOAD and RUN into the
VIC-20; it is the method that uses the minimum of keystrokes.

The command SAVE prompts with PRESS PLAY & RECORD ON TAPE. When
this is done, the BASIC program currently in memory is saved on tape.

Tape, as operated by VIC, is not very fast. Table 14-1 shows approximate times
needed to load or save BASIC programs. Obviously, longer programs take more
time. It also indicates the number of programs which can be expected to fit onto one
side of a cassette; as you might expect, longer tapes can store more programs.

Table 14-1. Time Required to Load or Save Programs to Tape

Length of Approx. Time to Approx. Number of Programs, One Side of Cassette
Program Load or Save

CS CI0 C20 C30

lK 1/2 min. 4 9 19 29

4K 1-1/4 min. 1 3 7 11

8K 2-1/4 min. - 2 4 6

Before considering the full syntax of LOAD and SAVE, it is helpful to look at a
few aspects of BASIC storage. These commands have the function of loading RAM
from tape and of dumping RAM to tape, respectively. In fact, they use the start- and
end-of-BASIC pointers, in locations 43 and 44 (start) and 45 and 46 (end). This is

469

Tape

why variables can't normally be stored along with BASIC. The zero byte at the very
start of all BASIC programs is not used; neither is the byte at the end-of-BASIC
position.

With VIC. BASIC can start in several positions, depending on memory expan
sion. LOAD automatically relinks BASIC so that it can work properly regardless of
memory configuration, assuming BASIC doesn't use POKEs to screen and other
expansion-dependent features. Append (Chapter 6) takes advantage of this mobility
of BASIC on loading.

The cassette recorder (sometimes called the "Datassette") is not under full com
puter control, which is why screen prompts are necessary. In particular, there's only
one line to test for a keypress on the cassette, so VIC cannot distinguish PLAY from
RECORD. Even the fast forward and rewind keys are detected as though PLAY or
RECORD were being pressed. Thus, if you want to rewind a tape and record from
the start, rewind before pressing RETURN after SAVE.

In addition, be sure to press both RECORD and PLAY to save to tape. PLAY
looks the same on the screen but of course doesn't work. If PLAY and RECORD are
accidentally pressed for the LOAD command, the program on tape will be erased,
unless the write-protect tabs at the back of the cassette are missing.

Tape operations use the interrupt, locking out the keyboard. However, the
RUN/STOP key and II clock subroutine are called at intervals, so RUN/STOP and
RUN/STOP-RESTORE still work. Without this, if tape reading failed in some way,
the VIC would have to be switched off. Note that the clock is updated about ten
times faster than usual during tape operations.

Several programs can be stored consecutively on each side of a tape; however,
the simple LOAD syntax can't distinguish between them. So the system allows
BASIC programs to be named. The complete syntax for SAVE is SAVE "filename"
which saves the program along with a name. The corresponding LOAD "filename"
searches for the named program and also (so you know where you are) lists any
other programs it may find. For example, following the command LOAD "CHECK
ERS" the screen may show something like this:
LOAD "CHECKERS"
PRESS PLAY ON TAPE
OK
SEARCHING FOR CHECKERS
FOUND CHESS
FOUND CHECKERS
LOADING CHECKERS
READY.

The maximum length of a name, as it appears after FOUND, is 16 characters.
Provided the found program name matches, the program is loaded. LOAD "CH"
loads CHESS if it finds that program on the tape before CHECKERS. LOAD
"CHEC" loads CHECKERS. This is why LOAD alone always loads the first program
it finds.

Full Syntax of LOAD and SAVE
The full syntax introduces two new concepts: the forced LOAD address and the end
of-tape marker. A forced LOAD means that the starting address is the same as that

470

Tape

specified on tape; no relocatability is allowed. This is primarily important with ML
programs and hardly applies to BASIC.

An end-of-tape marker signals that there are no more programs on a tape. The
idea is to avoid the situation where time is wasted in reading blank tape. The marker
needn't be near the physical end of the tape, and if you choose to do so you can
record programs beyond it. When LOAD finds such a marker, it prints a message
which should be ?END OF TAPE but is instead ?DEVICE NOT PRESENT ERROR.

Full syntax for LOAD is LOAD String Expression, Device Number, Type-of-load
Number, where String Expression is the program name (e.g., "CHESS" or X$). De
vice Number is 1 or expression evaluating to 1 (tape is always device #1). Type-of
load is 0 for a relocating load and 1 for a forced load, or an expression evaluating to
o or 1. Only bit 0 counts; a parameter of 16 is treated as O.

As you've seen, forced LOADs are seldom used with BASIC. Also, if the middle
parameter is not specified, it is assumed to be I, so the simpler syntax of LOAD
"filename" is usually enough.

Full syntax for SAVE is SAVE String Expression, Device Number, Type-of-save
Number. The type-of-save parameter uses two bits; 0 means SAVE allowing reloca
tion, while 1 means SAVE with a forced LOAD address. This too is seldom used in
BASIC. If the parameter is 2, it means SAVE with an end-of-tape marker; a value of
3 means SAVE with both forced LOAD address and end-of-tape marker.

Some examples will make this dearer. SAVE "TEST PROGRAM",1,2 stores
TEST PROGRAM on tape, followed by an end-of-tape marker. SAVE CHR$(18) +
CHR$(28) + "PROGRAM" adds a RVS ON and a RED character to the program's
name. When it's found, this will generate FOUND PROGRAM, and the name will be
reversed and in red characters.

SAVE "EXCEPTIONALLY LONG NAME" stores the program in memory onto
tape with the full name as it is given. Although LOAD checks only the first 16
characters, the others are in fact saved; as you'll see, they can be put to use in pro
gram protection.

Direct and Program Modes
So far discussion has focused on direct mode. However, both LOAD and SAVE work
from within programs too. SAVE has the same effect as it does in direct mode.
LOAD has a chaining effect; generally, the newly loaded program overwrites the
older program and is automatically run.

Where a long program can be split into smaller programs (for example, in
BASIC tutorials, where the earlier lessons may be no longer needed), this feature
helps compensate for the VIC's small memory. It also decreases the loading delay for
any particular program. Screen prompts don't appear when PLAY is pressed on the
cassette; this also helps to keep the screen layout dean.

Validation and Errors with LOAD and SAVE
SAVE, although very reliable, isn't 100 percent foolproof. The tape may be faulty,
for example. The best protection is to save your program twice, perhaps with names
like PROG and PROGCOPY to distinguish them.

An alternative is the VERIFY command. This has syntax identical to LOAD and

471

Tape

SAVE, so VERIFY "filename" or simply VERIFY is acceptable. VERIFY works much
like LOAD, except that the bytes aren't loaded into memory but are instead com
pared with the present memory contents. If the two are not equal, ?VERIFY ERROR
results. To use VERIFY, the tape must be rewound to the start of the program being
verified; note too that VERIFY takes at least as much time as saving a second copy.

If you use the VERIFY command, you will get the following screen display:

SAVE "GRAPHICS DEMO"
PRESS PLAY & RECORD ON TAPE
OK
SAVING GRAPHICS DEMO
READY.

(Rewind tape at this point.)
VERIFY (or VERIFY "GRAPHICS DEMO" or VERIFY "GR")
PRESS PLAY ON TAPE
OK
VERIFYING (or VERIFYING GRAPHICS DEMO or VERIFYING GR)
OK
READY.

VERIFY also works within a program, but if you use it in that way it is nec
essary to include a message telling the user to rewind.

LOAD is generally reliable, but errors are possible for reasons explained in the
hardware section of this chapter. The message ?LOAD ERROR signals that the sys
tem found uncorrectable errors on tape. PRINT ST prints the value of the error
status variable and gives a clue as to what happened; PRINT PEEK (159) indicates
the number of errors found.

?LOAD ERROR doesn't always signify a failure to load. If a program is loaded
partly into ROM, or into an area where there's no RAM, the system will find an
error. These situations won't normally apply to BASIC unless a program has a forced
load address into the 3K expansion area and 3K expansion is not present.

If you experiment with short test programs, deliberately recording over small
sections to corrupt them, you'll be able to generate LOAD errors. Note that the
resulting program is usually meaningless. Sometimes you'll generate an lOUT OF
MEMORY ERROR instead; this happens if the header (at the start of the program) is
corrupted.

Programs may very occasionally seem to have disappeared from the tape. Either
the program hasn't been recorded (this can be checked most easily with an ordinary
audio tape recorder) or, more likely, the record/playback head needs to be cleaned
or demagnetized.

Handling Files of Data on Tape
Files are more difficult to understand than programs. A file is a collection of stored
data-in this case, data stored sequentially on tape. A typical use is with programs
that give multiple-choice tests; once the program is in memory, a tape on a particular
subject can be read and its information used. In principle, there's no limit to the
number of subjects. Tapes can be changed indefinitely, so the tape files are a storage
system which is independent of the program.

472

Tape

VIC's tape system is slower in this mode than it is with program storage. Even
in the best cases it's about half as fast. To put this in perspective, Table 14-2 shows
the approximate amount of data which can be stored as a file on one side of a
cassette.

Table 14-2. Tape Storage Capacity

Cassette Type CS C10 C20 C30

Maximum Length of File SK 10K 20K 30K

Minimum Time to Read or Write 3 min 6 min 12 min 18 min

Because of this slow speed, data file handling may be absurdly slow. It may be
worthwhile saving data along with programs, although this is a tricky technique,
requiring the end-of-program pointer to be moved to include variables and the first
line of the program to POKE in the correct value. In addition, strings are hard to
save. The whole of BASIC memory needs to be saved, plus the pointers which han
dle strings. Generally, then, particularly with unexpanded VICs, files offer the only
method of storing reasonable amounts of data.

Files need a buffer. Unlike a program, which has a place allocated in memory at
one time, files need to be written piecewise, with data accumulating until the buffer
is full. It's not possible to write directly to tape, because the motor needs to pick up
speed, so there's a stop-start option with files.

VIC tape files are inevitably sequential. Data has to be written (and read back)
in order, so the only way to access data that is part of the way into a file is to read
the whole file from the start. Moreover, there's no way to alter file information,
without reading everything into memory, altering it, and writing it back-and this is
usually impossible with small memory VICs. Thus the system has severe limitations,
although to be fair these are largely constraints of the system and are unavoidable
without advanced methods like those described later in this chapter.

There are three stages in file use. First, the file must be opened, meaning that
preparations are made in memory to write data to tape. Second, you write the file to
tape. Finally, close the file, meaning that the file is correctly terminated.

When the file is to be read back, perhaps by a different program, three other
steps are necessary. First, open the file for reading, which prepares the VIC for input
from tape. Second, read the file from tape; it may be read in parts. Finally, close the
file. The final step is often not really necessary; since nothing is being written to
tape, the file will be left unchanged.

File Handling Syntax
The full syntax of OPEN is OPEN file number, device number, type of OPEN, filename.
The file number is an expression evaluating a number from 1 to 255; the device
number must evaluate to I, corresponding to tape. The filename is a string ex
pression, usually something like "TEST DATA./I

The type of OPEN is an arithmetic expression, usually 0, 1, or 2. Use 0 to open
a file for reading, 1 to open a file for writing, and 2 to open a file for writing with an
end-of-tape marker after the file.

473

Tape

The rules for default values (values assumed by the system when not specifi
cally set) are similar to those for LOAD and SAVE. For example, when no name is
given to the file, it's saved without a name; when a file is opened for read, the first
file conforming to the name in the OPEN statement is taken to be the correct file.

Note that OPEN defaults to read; this prevents accidental overwriting of files.
Also note that there's no type 3. Reading a file, then writing an end-of-tape marker,
isn't allowed.

Because the VIC only supports one tape drive, the normal VIC setup never has
more than one file open. Thus OPEN 1 is a typical command, assigning file number
1 to tape. Other file numbers are seldom used.

To see how this works, consider the following example. Type in OPEN 1,1,1,
"TESTING" in direct mode and press RETURN. This opens file number 1 ("logical
file 1" is another name for it) to tape, for writing. You'll be prompted PRESS
RECORD & PLAY ON TAPE. When you do this, there's a delay of 12 seconds or so.
A preparatory block of information, giving the filename, has been written to tape.
Now type PRINT #1,"HELLO" and press RETURN. Nothing happens, although the
buffer has stored the word HELLO.

But there's room for more. Type CLOSE 1 and press RETURN. The buffer is
written to tape. If you don't type CLOSE, no data is written; generally, if a file isn't
closed, the last batch of data will be missing. In addition, the system won't recognize
that the file has ended.

Program 14-1. USing Files
10 OPEN 1
20 INPUT #l,X$
30 PRINT X$
40 CLOSE 1

To read this back, use the INPUT# command. This can onlv be used from
within a program. Therefore, most file reading is done in program mode. Type in
Program 14-1, rewind the tape, and run it. After PRESS PLAY ON TAPE there'll be
a delay while the header is found and read; then the word HELLO should be printed
on the screen. The word was recovered from tape, showing in miniature how files
work.

USing Files Effectively
Note the 10 OPEN 1,1,0,"TEST" is necessary if you wish to name the file to be read;
the default parameters have to be put in. PRINT# is usually used to write to tape.
The alternative is CMD 1, which causes PRINT to output to file #1. However, it has
the drawback of sometimes working in unpredictable ways. In particular, GET pre
vents it from working.

Either INPUT# or GET# will let you read from a tape file. GET# takes in in
dividual characters, exactly like GET, and therefore tends to be slower than INPUT#.
But it is able to treat the various special characters of INPUT (comma, colon, quotes,
return) as ordinary characters.

Generally, use INPUT# when you're sure of the format of each data item. Don't
try to read a string with INPUT#1,X, for example, or try to input a string longer than

474

Tape

88 characters. Null strings are also a problem and should be avoided.
Note, too, that number storage is inefficient. For example, ten bytes are taken up

storing 1234.56. When possible, write ASCII values to tape with PRINT#I,CHR$(X),
and use GET# to read them back.

CLOSE's full syntax is identical to that of OPEN, but only the file number is
actually used. Therefore, CLOSE 1 is typical.

The Status Variable, ST
You can use ST to detect the end of a file. ST changes from 0 to 64 when the last
record of a file is read with INPUT#. However, it isn't necessary. Alternatives are to
arrange the data as it's written into a definite pattern (for instance, 100 strings
alternating with 100 numerals), then read back using the same pattern, so no prob
lems should arise. You could also write an end-of-file marker of your own (such
as"····") which can be checked on readback.

ST will become 4 or 8 if a program is mistakenly read as a file. The errors mean
that the program is too short, or too long, to fit the buffer.

Saving and Loading Machine Language
Programs in machine language are unlike BASIC in that they need to be positioned
in a fixed place in memory. Otherwise, they generally won't work. The same applies
to character definitions and screen memory; usually it's easiest to keep these at fixed
locations. All these examples occupy continuous chunks of RAM, so LOAD and
SAVE can be used. Files aren't necessary.

BLOCK LOAD and BLOCK SAVE, discussed in Chapter 6, provide methods
(with examples) for doing this reliably. There are only two further points which need
to be made here.

Forced LOAD Addresses. If memory is saved with the forced LOAD parameter,
for example by SAVE "GRAPHICS",I,I, then LOAD will always position GRAPH
ICS back in the area it was saved from. SAVE "GRAPHICS" allows repositioning;
LOAD will now load starting at the BASIC pointer area. But LOAD "GRAPH
ICS",I,1 forces a LOAD back into the original area. Thus, it is SAVE which deter
mines whether LOAD always puts data back where it came from.

Therefore, when saving ML, it is usual to insure a forced LOAD by using syntax
SAVE "ML",I,l.

Memory above $8000 (32768). The VIC has a limitation, carried over from CBM
machines, of being unable to save data above $8000. Therefore, saving color RAM or
the ROM area to tape isn't too simple. However, there are two ways it can be done,
as explained here. Note that loading above $8000 isn't a problem.

Saving above $8000 with files. This relies on PEEKing the data and writing it
as a tape file. The efficient way to do this is to use the routine given in Program
14-2. Any other way is likely to be much slower; this method takes about 90 sec
onds to save the 2K of ROM from $COOO to $C7FF.

475

Tape

Program 14-2. Saving above $8000
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 OPEN 1,1,1,"ROM AREA FILE"
20 FOR J=12*4096 TO 12.5*4096
30 P=PEEK(J}
40 PRINT#l,CHR$(P}:
50 NEXT
60 CLOSE 1

:rem 21
:rem 150
:rem 176

:rem 78
:rem 164
:rem 13

Reading back uses the same process in reverse, except that RAM of course is
needed. Program 14-3 reads the file from tape and stores it in RAM beginning at
$1600.

Program 14-3. Reading ROM Files from Tape
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

5 POKE56,22:CLR :rem 122
10 OPEN 1 :rem 196
20 FOR J=5632T07679 :rem 32
30 GET#l,P$:rem 55
40 POKE J,ASC(P$+CHR$(0}) :rem 82
50 NEXT :rem 164

Saving above $8000 as a program. A more sophisticated method saves this area
with a forced LOAD header, so LOAD is enough to put the program back into RAM.
This is faster than a file, of course. The ROM area from $COOO to $C800 is copied
into RAM starting at $1600, then a forced LOAD header is written to tape, and
finally the RAM is stored. All this is possible only with advanced ML methods.

Program 14-4. Saving the ROM Area as a Program
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 POKE 56,22:CLR :rem 166
20 FOR J=320 TO 381:READ D:POKE J,D: NEXT :rem 218
30 INPUT "NAME":N$:rem 5
40 N$=N$+"(18 SPACES}" :rem 244
50 POKE 828,3 :rem 149
60 POKE 829,0:POKE 830,22 :rem 40
70 POKE 831,0:POKE 832,30 :rem 35
80 FOR .J=l TO 16 :POKE 832+J,ASC(MID$(N$,J}}:NEXT

:rem 144
90 SYS 320 :rem 253
100 SYS 357 :rem 47
110 POKE 321,20 :rem 229
120 POKE 325,22:POKE 329,0 :rem 79
130 POKE 333,30:POKE 337,0 :rem 77
140 SYS 320 :rem 41
1000 DATA 169,105,133,171,169,3,133,194,169,60,133

,193,169,3,133,175 :rem 30

476

Tape

1010 DATA 169,252,133,174,169,1,133,184,133,186,16
9,0,133,183,169,255 :rem 86

1020 DATA 133,185,76,234,248 :rem 102
1030 DATA 162,0,189,0,192,157,0,22,232,208,247,238

,105,1,238 :rem 125
1040 DATA 108,1,173,105,1,201,200,208,234,96

:rem 94
A forced LOAD changes BASIC pointers; NEW or SYS 64802 will set them back

to normal.

CasseHe and Tape Hardware Notes
Virtually all VIC owners also have a Commodore C2N Datassette recorder (also mar
keted with the model number VIC-1S30). These units have undergone several re
designs, both externally and internally. But all of them, from the early black PET /
CBM models to the newer, compact rounded version, are compatible in most
programming situations.

The compact C2N has a tape counter and a SAVE light (lit when recording onto
tape). It also has a braided ground strap on its connector, which is not used with the
VIC. Pressing RECORD also presses PLAY; earlier models have the standard security
feature of requiring two separate RECORD and PLAY keys to be pressed
independently.

The C2N takes its power from the VIC through the same connector that handles
data transfer, although it could be powered separately with a small modification. The
connector can be plugged in only one way; most recorders cannot be connected in
correctly. Cable lengths vary between models but are generally adequate.

C2Ns use an ordinary 1-7/8-inch-per-second tape transport mechanism, plus
additional circuitry to control the VIC specific features like keypress detection. All
tape recorders use similar principles: The C2N has an erase head, to remove signals
(if any) from tape, followed by the record head, which records vertical magnetic
stripes on the tape. On playback, the same head acts in reverse to play back the sig
nals on the tape, generating induced voltage when the tape is drawn past the head.

The VIC uses a square-wave system, alternately changing the direction of mag
netization. Square waves are relatively difficult to copy with ordinary audio equip
ment, which tends to round them off, and this provides some protection against
unauthorized tape copying. However, commercial tape duplication is done by
recording on tape from an original with equipment designed to preserve the original
signal shapes.

The C2N's record/playback head is mounted so that its angle to the tape is vari
able, although it's not usually advisable to alter it. However, if the angle isn't
reasonably perpendicular, read errors are possible with tapes made on other re
corders. The newest C2Ns have a small hole through which the relevant screw can
be turned with a plastic screwdriver.

A more common source of problems is a magnetized head. Demagnetizers are
simple coils which use alternating house current to magnetize the heads alternately
in opposite directions; as the demagnetizer is moved away, the inverse square law
insures that the remaining magnetism is minimal. Tapes played with magnetized
heads may be partly erased; if your recorder doesn't read tapes which it should be

477

Tape

able to read, demagnetize it immediately.
The capstan is the metal spike which drives the tape at a fairly constant speed.

Tape is trapped between it and a hard rubber pinchwheel when reading or writing.
It's best not to leave the PLAY key pressed with the recorder off, or the tape may
become dented by the capstan and give irregular playback.

When rewinding or running fast forward, the pinchwheel is disengaged and one
or the other spool is driven directly. When playing at normal speed, the right-hand
spool is kept under tension so the tape is wound tightly.

The tape counter is connected by a belt to the right-hand spool. One turn of the
counter therefore indicates more tape when the right-hand spool is full than it does
when the spool is nearly empty. Actual tape length is a quadratic expression of the
counter reading, so the counter readings corresponding to programs of equal length
on the same tape show progressively smaller differences.

Routine recommended maintenance involves cleaning the heads, typically with
a cleaning kit consisting of cotton swabs and cleaner. The cleaner is a liquid like iso
propyl alcohol, never a plastic solvent like trichloroethane.

The best type of tape is ordinary ferric oxide (not chromium) tape of reasonable
quality. A screw-type cassette casing is preferable, since it can be taken apart if the
tape gets tangled. Very long tapes are good for storage, but shorter tapes, perhaps
with only one program each, save search time. It's not really possible to test tapes;
this is far too time-consuming.

All cassettes have write-protect tabs at the back left of the cassette case, one tab
for each side of the tape. If these tabs are removed, the recorder won't save to that
tape, so much commercial software is packaged in cassettes like this. Put a piece of
masking tape over the gap if you wish to record over a protected tape.

Since both sides of the tape are usable, only half the width (1/16 inch) is used
at one time. Thin tape is prone to problems with print-through: in fact, a tightly
wound spool left for some time may degrade as magnetism is transferred between
adjacent turns of tape. However, even short tapes may be thin, and thus prone to
this problem; there's no easy way to be sure which tapes may have trouble and
which will not.

Most tapes start with a nonmagnetic leader to take the strain at the end of fast
winding. The tape operating system allows for this, with seven or eight seconds of
tone before actual recording proper starts, but you may prefer to manually wind for
ward so all recording begins on the magnetic part of tape. Another tip: Rewind
brand-new tapes before recording on them. High-speed manufacturing equipment
stretches tape to some extent; by rewinding the tape first, you relieve the stretch and
make the tape more stable.

Non-Commodore Tape Hardware
Can you connect an ordinary tape recorder to your VIC? It is not particularly easy to
do. Commodore claims several advantages for its dedicated tape system: There are
no problems with recording levels, automatic or otherwise, or with tone controls and
other potential incompatibilities; control over motor stop/start makes file handling
possible; and the system is monaural, using a full 1/16 inch of tape rather than the
1/32 inch used on stereo recorders.

478

Tape

If building an interface to drive an ordinary tape recorder seems like too much
trouble, you might experiment with connecting the tape write line (next to right
hand pin of the cassette port, looking from the VIC's back) to the microphone
socket, and the read line (third pin from the right-next to write-looking from the
back) to the earphone socket of an ordinary recorder. Remember to connect the com
mon, or ground, connection too.

It's actually possible to interface two (or more) recorders to the VIC, with the
possibility of file merges and updates.

Tape Operating Systems
Alternative ROM or RAM operating systems have been designed and are commer
cially available. Rabbit and Arrow are two of them; each is far faster (by about six
times) than the VIC's tape system. Each has commands to LOAD, SAVE, and VER
IFY, and each has a BLOCK SAVE command. Syntax is typically something like *S
"PROGRAM" or *S "SCREEN",lEOO,2000.

Rabbit occupies $7000-$7FFF, the same area as Programmer's Aid, which reduces
the maximum BASIC RAM. Arrow occupies $AOOO up, and therefore has no effect on
BASIC, but makes ROM area loading and saving difficult. Arrow automatically
initializes on power-up; Rabbit needs a SYS call.

The speed improvement with these systems is enormous; even 8K programs
load in only about 25 seconds. This is not so far removed from disk speeds. But
tapes recorded with these systems aren't compatible with ordinary programs. In spite
of the attractive speed performance, little software is written for them.

Programming the Recorder
The tape port pinout is diagrammed in Figure 14-1. Pins C-F are connected to the
VIA chips. Chapters 5 and 6 have examples of the programming, and the program
"Tape Talker" includes a routine to read the signal from tape.

Figure 14- 1. VIC Tape Port

Pin A B C D E F

Function Ground +5 Volts Motor On/Off Read Write Cassette Key On/Off

The tape motor is programmable. Its VIA location (shared with the user port
and the RESTORE key) is 37148 ($911C). With the PLAY key pressed, POKE
37148,4 turns the motor off; POKE 37148,12 turns the motor on. These work in di
rect or program mode. Remember to leave 12 in this location, or the motor won't
start.

The cassette keypress can be detected with location 37151 ($911F). Bit 6 is 1
when the key isn't pressed and 0 when the key is pressed. The PEEK values are
usually 126 and 62 respectively. To test, use WAIT 37151,64 (which waits until the
cassette key isn't pressed) or WAIT 37151,64,64 (which waits until it is). In ML
programming, use]SR $F8AB followed by BEQ to branch if the key is pressed, or
BNE to branch if the key isn't pressed.

479

Tape

An edge connector fitted into the tape port, with a wire from pin B (second from
the left looking from the back), can provide limited power to external equipment.
Small amplifiers and even printer interfaces can be powered in this way.

Advanced Tape programming
In this section you'll see how programs and files are stored on tape and how you
can manipulate them. You'll see how the headers and their programs or files are
programmable independently, which means that you will be able to write tape pro
grams which can load anywhere.

Storage at Bit Level
The VIC's tape system uses three separate square wave frequencies; the actual values
vary internationally. If you call them long, medium, and short (L, M, and S), then
each byte is made of patterns of L, M, and S. Bit value 0 is represented as SSMM; bit
1 as MMSS. An odd parity bit is added as an internal check (the total of l's is made
odd). LLMM marks the start of a byte. The system also has a standard tone which is
used to allow for differences in tape motors.

Storage of Programs on Tape
Try recording a short program on tape and replaying it through an ordinary recorder.
You will hear several seconds of a constant tone, then about four seconds of header,
then two seconds of tone, then the program. The header and the program are each
written twice; you'll hear a short pause midway in each. Any program records or
loads in about 15 seconds plus 15 seconds per K (kilobyte).

Storage of Files on Tape
Data files are stored on tape as a sequence of fixed-length buffers. There are two
reasons why files are slower than programs: One is the extra time spent writing or
reading the tones; the other is the extra time spent starting the cassette motor to read
each buffer. If BASIC does the reading or writing, that slows things too.

Error Correction
As data is read, errors in the first copy of the recording are noted (and corrected, if
possible, by reading the second copy). Only 30 errors are allowed; these are logged
in RAM at $OlOO-$013D (at the bottom of the stack area). PEEK(159) gives a count
of the errors after a full read; this should be zero. Small ML routines to be put in the
stack area are best started after $013D if tape is to be used.

Headers in More Detail
Tape storage relies on headers; if you understand them, you understand most of
what you need to program tape.

There are five types of headers, as diagrammed in Figure 14-2. Only the first 21
bytes are normally used, unless you wish to add ML or program protection.

480

Tape

Figure 14-2. Types of Headers

1
1 I Start I End I Name

~ddress Address

Program Header-Relocatable

I 3 I Start I End I Name
~ddress Address

Program Header-Forced LOAD Address

Data File Header

DATA

Data Buffer

Start
Address

End of Tape

End
Address Name

The tape buffer, which holds headers and file data, normally extends from
$033C to $03FB (828-1019), a total of 192 bytes. It can be changed by POKEing into
$B2 and $B3 (178 and 179). As it happens, OPEN 1 accepts any of these header
types, not just files, and provides a simple way to look at buffers.

Put a VIC program tape in the recorder, type OPEN I, and press RETURN.
Then, when the header is found, type FOR J=828 TO 850: PRINT PEEK(J);: NEXT.
Now, the first byte is 1-5, the second and third bytes are the start address, the
fourth and fifth are the end address, and the following bytes are the name.

Using SYS 63680 in place of OPEN 1 loads the first 192 bytes of any tape data
into the buffer, so use this if you want a tape directory which allows you to examine
the start of ML or BASIC programs, or read the whole of data files.

Tape Directory
Program 14-5 identifies and lists programs and files on tape and shows how the
header system works. Another way to inspect header storage, with the unexpanded
VIC, is to POKE 36879,8: PRINT CHR$(147) CHR$(14): POKE 178,0: POKE 179,30:
OPEN 1: CLOSE 1 which puts the header into the screen. The very first character
will be a, b, c, d, or e, and the name will start four characters later.

481

Tape

Program 14-5. Listing Tape Programs and Files
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

100PENl:CLOSEl :rem 165
20 IFPEEK(828)=lTHENPRINT"PROGRAM--RELOCATABLE"

:rem 7
30 IFPEEK(828)=2THENPRINT"PROGRAM--FORCED LOAD"

:rem 190
40 IFPEEK(828)=3THENPRINT"DATA FILE" :rem 181
50 IFPEEK(828)=4THENPRINT"DATA BUFFER" :rem 81
60 IFPEEK(828)=5THENPRINT"END OF TAPE" :rem 21
70 PRINT"START ADDRESS:": :rem 65
80 PRINTPEEK(829)+256*PEEK(830) :rem 17
90 PRINT"END ADDRESS:": :rem 140
100 PRINTPEEK(831)+256*PEEK(832) :rem 53
110 PRINT"NAME: ";:FORJ=833T0848:PRINTCHR$(PEEK(J)

); :NEXT :rem 19

Consequences of This Method of Storage
Programs can be made to load into any area, even places normally impossible to
load into, if the header is altered. The header itself can be used to store ML pro
grams. However, note that saving ML starting at $033C with a monitor can't work,
because the program will be overwritten by its header before it can be saved.

Since a program's start and end are defined, there's no need for an end-of-pro
gram identifier. However, files are saved as chunks, and the last chunk written (on
CLOSEing the file) has a zero inserted after the data. This zero byte causes ST = 64
to be set if INPUT# reads the file back. The start and end addresses with file data
are simply the start and end addresses of the buffer. Because "2" identifies a buffer
of data, only 191 bytes are actually storable in the buffer.

Several tricks to make programs harder to copy are explained at the end of this
chapter.

ML Routines to Save, Load, and Run Tape Programs
ML programmers may want to do the equivalent of LOAD and SAVE. Conversely,
programmers might want to decipher LOAD and SAVE instructions in ML programs.
There are too many locations and subroutines for exhaustive listing here, but many
of the most common can be outlined.

LOAD's ROM entry address is $E165. It uses the Kernal LOAD routine at
$FFD5, which jumps to $F542. All the parameters are set, and several branches test
for the device number of 1. Tape LOAD is at $F5D1. Normally, all programs have a
header, and $F867 finds a named header. $F7 AF finds any (that is, the next) header.
$F8C9 reads the program itself from tape into the correct part of RAM.

A typical loader, POKEd from BASIC and designed to run an ML program, is
given below. This loads whatever program it finds next on tape with a forced load,
then jumps to address $1000, the start of your ML program.

482

Tape

LDA #1
TAX
TAY
JSR $FFBA ; file #, device, sec. addr. all 1
LDA #0
JSR $FFBD ; filename irrelevant
JSR $FFD5 ; forced load to stored address
JMP $1000

SAVE's ROM entry point is E153; its Kernal routine is $FFD8, which jumps to
$F675. Tape saving is handled from $F6F8. $F7E7 writes the header, and $F8E6
writes the program.

ML saving might look like this:
LDA #1
STA $BA ; device #1 (i.e., tape)
STA $B9 ; sec. addr.=1 (i.e., forced LOAD in header)
LDX #0
LDY #$20 ; end address is $2000 here
LDA #$FB ; start address presumed in ($FB)
JSR $F675 ; save

All conventional LOAD and SAVE routines use both a header and its subsequent
program. Before seeing how to operate these separately, however, note the useful
RAM locations in Table 14-3.

Table 14-3. Useful RAM Locations
$90
$93
$9F
$AB
$AE/AF
$B21B3
$B7
$B8
$B9
$BA
$BB/BC

144
147
159
171
174/175
178/179
183
184
185
186
1871188

ST status
Load/Verify flag (0 = load, 1 = verify)
Error log
Length of tone written to tape
End address for saving
Start of tape buffer
Length of program name
Current file number
Secondary address parameter
Device number (l=tape)
Start address of program name

Loading Tape Data Anywhere in RAM
Program 14-6 first loads the header, then loads the remaining program indepen
dently to start at any new address you choose.

Program 14-6. Anywhere
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 OPEN 1 :rem 196
20 INPUT II START ADDRESS "i S : rem 88
30 L=PEEK(831)-PEEK(829) +256*(PEEK(832)-PEEK(830)

) :rem 216
40 E=S+L :rem 176

483

Tape

50 POKE 830,S/256:POKE
60 POKE 832,E/256:POKE
70 POKE 781,3
80 SYS 62972

829,S-INT(S/256)*256:rem 84
831,E-INT(E/256)*256:rem 38

:rem 149
:rem 113

Programmers using ML monitors will want an ML routine to load a block into
RAM. This one is reliable.
LDA #0
STA $93 ; specify LOAD
LDA #$16
STA $C2 ; example start address
LDA #$00
STA $Cl ; is 1600, and
LDA #$IE
STA $AF ; example end address
LDA #$00
STA $AE ; is lEOO.
JSR $F63A ; or F63D or F8CO-slight differences.
BRK

Writing Tape Data Anywhere from RAM
This is best done with ML, since BASIC might be overwritten. Program 14-4, given
earlier, saves the ROM area as a tape file and writes separate buffer and program
data; use lines 110 through 1020 of that program, and add line 100 FOR J=320 TO
356: READ D: POKE J,D: NEXT for a general-purpose tape write program. SYS 320
writes to tape. Lines 110-130 specify five parameters which control the length of the
tone (normally 105 before headers and 20 before the program data) as well as the
start and end addresses. Like all VIC routines, the end address itself is not actually
written to tape, since the program stops when it gets there. This routine uses F8EA
to write and sets several parameters.

Copy Protection for Tape
Security is an interesting aspect of tape programs. Before taking it too seriously, it's
worth remembering that tapes may be copyable by audio means; you should also
keep in mind the fact that a number of commercial tape software houses believe that
determined copiers will copy anyway and so don't put in protection. However, there
are opposing views.

This section will survey some methods of complicating copying without arguing
the pros and cons.

Using the Header
Because SAVE erases most of the header, a program which relies on information
stored after 16 bytes of name is less easy to copy. For example, if your BASIC pro
gram is "FRENCH LESSONS", save it as "FRENCH LESSONS [2 spaces]" +
CHR$(96). This puts an extra ML instruction after the name. SYS 849 from within
BASIC returns, but if 96 is missing, the program crashes. However, it is relatively
easy to allow for this by simply POKEing 849 with 96.

484

Tape

This is only a very simple example. The entire header can be filled with ML
routines, which could modify BASIC, load new programs or data, or whatever.

Also at the simple level, the SYS call can be concealed in a line erased by RAM
followed by deletes. It can also be disguised-for example, as SYS 84923-by insert
ing a zero byte after the 9 which won't list. The program's name can include screen
clear or white characters, or it could even be something like ?LOAD ERROR. All
that's needed is SAVE "NAME" + CHR$(13) + "ERROR" + CHR$(5), or other
analogous strings.

USing the Screen Positions
ML programs are sometimes designed to load into the entire area from $1000 to
$1FFF, normally into one of the two screen positions set by the VIC. An ML jump to
$1000 and then to the other possible screen position at $lEOO to initialize, for in
stance, makes the program impossible to stop in the usual way, as some of it will be
corrupted. This type of program can be developed either by moving the screen to a
nonstandard position like $1200 or by writing the header separately from the
program.

BASIC can use this. With the unexpanded VIC, POKE 648,28: SYS 64818 to put
the screen at $lCOO. Then put some ML at $lEOO-$lFFF which lowers the end-of
BASIC pointer ($2D and $2E) to $lCOO and runs BASIC (perhaps with JMP
($COOO)). Add a SYS call to this screen subroutine and alter the end-of-BASIC
pointer by POKEing 45 and 46 to point to the end of the screen subroutine. Finally,
save the results.

Using Headerless Programs
In BASIC or ML, you can load program data without a header. Such data can't be
picked up by a normal LOAD and isn't copyable by a simple LOAD and SAVE. Of
course, it must be written as a single chunk with the help of a tape write routine.

Programs Which Automatically Run When Loaded
Several techniques can be used to make programs run automatically, but all require
some ML expertise on the part of the programmer. Figure 14-3 shows free RAM and
key locations that are important for tape protection; three techniques can be used.

485

Tape

Figure 14-3. Key Locations for Tape Protection
0 $100 $200

Zero Input
Stack

Page Buffer

Number of ChaJ;cters in Keyboard Buffer ($C6)
Keyboard Buffer ($0277-0280)
Tape IRQ SAVE ($029F)
BASIC Start Vector ($0302)
BRK Vector ($0316)
NMI Vector ($0318)
In ut Vector $0324 p

Free RAM: 4 bytes $FB-$FE
95 bytes $02A 1-$02FF

8 bytes $0334-$033B
4 bytes $03FC-$03FF

K
B
D

J

RAM (with Care): Tape Buffer, 192 bytes, $033C-$03FB

J

$300 $400

Vec- Tape
tors Buffer

Lower part of stack from $0100 or $013F if cautious about tape reading.

BASIC warm start vector in ($0302). Normally $C483, this can be directed ei
ther into the header or into the LOADed program, perhaps spanning $02Al-$0303.
Then ML LOAD and RUN will automatically run the BASIC program that comes
afterward.

Input vector in ($0324). Again, a loader might span $02A1-$0325, so the al
tered input vector might jump to $02Al.

Tape interrupt vector at ($029F). When the first program finishes loading, this
vector is replaced as the IRQ. A program from $029F to $0300, for example, could
start with two bytes which change the vector to point to $02Al, with ML at $02A1
which first sets the IRQ to normal.

A BASIC Autoloader
Program 14-7 will run the BASIC program immediately following it on tape. It's very
simple, in order to keep it short and easily understood, and it lacks some features of
more sophisticated autoload routines. For example, it doesn't disable the RUN/STOP
or RESTORE keys or change the screen or character colors. Nonetheless, it works
well.

When it's loaded, the first two bytes are put in the tape interrupt storage loca
tion; these alter the interrupt to point to $02A1. The rest of the program resets the
IRQ to normal, then puts $83 into the keyboard buffer, which has the same effect as
SHIFT-RUN/STOP. Finally, it jumps to the start of BASIC. Provided this is followed
by a BASIC program, LOAD effectively becomes LOAD:RUN. The BASIC program
can test for the presence of ML at $02A1 if some security is desired.

486

Program 14-7. BASIC Autoloader
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

20 FOR J=320 TO 356:READ D:POKE J,D: NEXT :rern 220
30 INPUT "NAME": N$: rem 5
40 N$=N$+" {18 SPACES}" : rem 244
50 POKE 828,3 :rem 149
60 POKE 829,159:POKE 830,2 :rem 101
70 POKE 831,200:POKE 832,2 :rem 84
80 FOR J=1 TO 16 :POKE 832+J,ASC(MID$(N$,J)):NEXT

:rem 144
90 SYS 320 :rem 253
110 POKE 321,20 :rem 229
135 FORJ=828T0851:READD:POKEJ,D:NEXT :rem 32
140 SYS 320 :rem 41
1000 DATA 169,105,133,171,169,3,133,194,169,60,133

,193,169,3,133,175 :rem 30
1010 DATA 169,252,133,174,169,1,133,184,133,186,16

9,O,133,183,169,255 :rem 86
1020 DATA 133,185,76,234,248 :rem 102
1050 DATA161,2,169,191,141,20,3,169,234,141,21,3

:rem 89
1060 DATA169,131,141,119,2,169,1,133,198,108,0,192

:rem 204

Tape

Many tapes using this sort of copy protection load into the entire area of RAM
from, for example, $0300 up. This makes LOADing times rather long, as the area
from $0400 to $OFFF is usually wasted.

The general method should be clear: A forced LOAD header loads ML into parts
of RAM which are used by the system. When the initial LOAD is over, the changes
take effect, driving ML routines to load and run more material.

There is considerable scope for ingenuity in using encoding routines, non
standard 6502 instructions, programs without headers, and overlays. If the
RUN/STOP and RESTORE keys are disabled, a reset switch leaves most memory in
tact but erases all of RAM from $0000 to $0400 except the stack ($OlOO-$OlFF).
Thus, if key parts of a program are left in this area, the result can be all but
impenetrable.

487

Chapter 15

Using the Commodore Disk Drive

Disk storage is more expensive than tape, but it is also more versatile. It can be used
to store a selection of programs for rapid loading, but it also gives you access to
large amounts of data.

This chapter begins with a discussion of straightforward disk commands and
progresses through more advanced material. By the end of the chapter you'll be able
to handle most disk programming tasks.

The chapter is divided into eight parts:
Introduction to disk storage. How it differs from using tape.
Basic disk commands. LOAD and SAVE, formatting a disk, reading its direc

tory, channel 15, and more.
Handling disk files. Storing data in sequential and relative files, and tricks to

use with program files.
Disk commands. Includes notes on each command, as well as a checklist of

potential programming difficulties. Also covers messages from the disk drive.
Utilities. An annotated index of Commodore's TEST/DEMO diskette.
Hardware notes. Discusses disk drives and diskettes.
Disk storage of data. Explains how data is organized on diskette and how to

read and/or change it using only BASIC. Special versions of the directory are de
scribed. The direct access commands are listed and explained. This section is essen
tial for a full grasp of disk use.

Machine language programming with disks. Deals with converting BASIC into
ML for extra speed.

Introduction to Disk Storage
The VIC-20's serial port (next to the video port) is a design unique to Commodore. It
accommodates single-disk 1540 and 1541 disk drives. The earlier 1540 models were
designed specifically for the VIC-20; the main difference between it and the 1541 is
a single ROM chip in the 1541 that makes it compatible with both the VIC and with
later Commodore machines. VIC-20 users are often told to type OPEN 15,8,15,"UI
":CLOSE 15 and RETURN, when using the 1541, but many users do not find it
necessary.

VIC's disk units store data on 5%-inch diskettes, and a demonstration diskette
should be packed with each disk drive. The usual advice is to switch on the disk
drive first, then the VIC, and then any printer, but this usually doesn't matter.

A diskette is inserted label up, with the read/write slot nearest the disk drive.
The drive door, when closed, clamps the disk firmly and permits reading and writing
to take place.

Disks are faster than tape, but the VIC's system (with data transferred one bit at
a time) isn't fast by today's standards. Generally, you should allow about 10 seconds
per 4000 bytes plus about 5 seconds overhead-roughly 25 seconds for an 8K
program.

The non-CBM tape operating systems described in the previous chapter are just
as fast; however, disks allow for random access. The disk lets you choose from a

491

Using the Commodore Disk Drive

whole range of programs or files on a single disk, giving a versatility unavailable
with VIC tape systems.

So-called "black boxes" are available to allow several VICs to access the same
disk drive. This saves money where a group of people must use the same programs
(in some teaching situations, for example) and the serial connector is reliable over
distances up to about 12 meters (about 40 feet).

The VIC's disk drive is autonomous. In other words, it is largely independent of
the VIC. In fact, it has as much ROM as the VIC itself. When the drive receives a
command from the VIC, that command is stored in the disk drive's RAM and carried
out only when the disk drive decides to do so. Similarly, results are typically stored
in a buffer, waiting for the VIC to read them. This explains how it is possible for the
VIC to print READY, even when the disk drive is still obviously working. It also per
mits disk functions to be changed by switching ROMs within the drive.

One side effect of this arrangement is that errors can occur either in the VIC or
in the disk drive. For example, if there's no diskette present, the disk drive can't read
data and an error condition is present in the disk drive. Commodore has a special
channel to allow transfer of information from and to the disk, as you'll see.

The keyboard is affected by disk operations. For example, while data is being
read from disk, the interrupt is mostly off. This means the keyboard cannot be pro
cessed normally, and keys pressed when the drive is active may not show up when
it stops. If you're using a disk system to store data, bear this in mind. Clear the key
board queue (POKE 198,0) before INPUT or GET to insure that incomplete data isn't
written to disk.

Disk commands are more explicit than tape commands. Unless otherwise in
structed, the VIC assumes that LOAD (or whatever) applies to tape. Thus, disk com
mands always include the device number, which is normally 8. Also, because disks
can store many programs, the bare command LOAD is disallowed. Instead, quote
marks and names are used. For example, to simply read the disk directory you must
type in LOAD "$/1,8 then LIST. The VIC-20 Wedge (on the demo disk) offers limited
help with this.

Serious disk drive users, who are using disks to store valuable data and writing
their own programs too, should take note of a few points to keep from losing data.
First, duplicating disks for security purposes isn't easy with only one disk drive. Sec
ond, there are potential problems when the process of writing to a disk is interrupted
(for example, by a syntax error) because incomplete information is left on the disk
and may corrupt other files. Subsequent parts of this chapter will discuss these areas
in more detail.

Basic Disk Commands
This section will take you through the steps needed to store a program on a new,
blank disk. You will then see how channel 15 allows communication between your
VIC and the disk drive.

Fonnatting a Disk
Switch on the disk drive and VIC, insert a new disk in the drive, and close the drive
door. Then you're ready to format the diskette. Formatting gives the diskette a name

492

Using the Commodore Disk Drive

and a two-character identifier; it also writes data on the disk to identify it as a VIC
disk.

Every time you format a disk, all programs and any data that it contains will be
wiped out. Don't format a disk more than once unless you no longer need its con
tents and prefer an empty disk.

This is the formatting command:
OPEN 15,8,15,"NEW:NAME,ID":CLOSE 15

To format a disk, type in this command and press RETURN. The red light on the
disk remains on for about a minute and a half; the drive should first move to the
outer track (with some noise), then click gently as it writes to the disk. After 35
clicks the drive will stop and the red light will go off.

The disk's name can have up to 16 characters (for example, DISK TESTS 1) and
the identifier up to 2 characters (for example, 00 through 99). Avoid using the sym
bois? # * , : " or @ in names sent to the disk, since they may be interpreted as
separators or special operators.

The identifier is written to the disk nearly 700 times. It helps to check that data
is in its expected position and that the disk hasn't been inadvertently changed. It's
thus advisable to give your disks individual IDs; otherwise, swapping disks to load
from one and save to the other may scramble data if the IDs happen to match.

Inspecting a Disk's Directory
Any disk's directory or catalog is recoverable with the following command:

LOAD "$",8

Type in this command, press RETURN, and then LIST the directory.
A newly formatted diskette's directory has its name and ID in reverse video, fol

lowed by 2A, which shows the type of Commodore disk format. The message 664
BLOCKS FREE shows that 664 blocks of 256 bytes each are available for storage (but
not quite all are usable). The directory is held as BASIC, as you may have inferred
from LIST, and that explains the leading zero at the start of the directory. It is a
dummy line number and can be ignored.

Note that inspecting the disk with LOAD"$",8 will erase any program you have
in memory. Conversely, without NEW, a program typed in after reading the direc
tory may contain odd lines left over from the directory. Subsequent sections give the
full syntax of LOAD "$", allowing parts of the directory to be listed, and present
BASIC programs that sort the directory and do other tricks.

Saving a Program
To see how to save a program to disk, first type NEW, press RETURN, and then type
in any short program. Then type in SAVE "PROGRAM",8 and press RETURN to
save the program to disk with the name (up to 16 alphanumeric characters) you gave
it. Don't include? # * , : or @ in the name. A null name (SAVE "",8) is rejected with
?MISSING FILE NAME ERROR.
. If you wish, you can VERIFY, with either VERIFY "PROGRAM",8 or VERIFY
"*",8. In either case you should see the following display as the program is com
pared with the version in memory.

493

Using the Commodore Disk Drive

SEARCHING FOR PROGRAM
VERIFYING
OK

Disks are generally reliable enough to make this unnecessary. The version with *
uses Commodore's pattern-matching technique, explained under "Disk Commands."
The same idea allows LOAD "*",8 to load the first program it finds, when the drive
is turned on.

When using disks, SAVE won't work if a program with the same name already
exists on a given disk. This is a security measure. An error is generated by the disk
drive, and the red light flashes, but no error message is displayed on the screen.
You'll soon see how to read the disk drive's message.

SAVE's syntax has an optional form causing SAVE with replace. It allows a pro
gram to overwrite another program with the same name. The command is SAVE
"@:PROGRAM",8 where the added @: is interpreted by the disk as a command to
overwrite. So, if you modify your program and then enter SAVE "@:PROGRAM",8,
you'll find the newer version present on LOADing later. It's only fair to note that
disk errors of the kind caused by unclosed files (corrupted programs and/or data)
have been associated with this command, so if you're the cautious sort it's better to
scratch the old file before saving.

After saving a program, LOAD and LIST the disk directory. The diskette's name
and ID remain the same, but a program (PRG on the line after the name shows it's a
program) is present. If it's a short program it will probably occupy only one block,
leaving 663 blocks free.

Loading a Program
To load a program, type in LOAD "PROGRAM",8 and press RETURN. The disk
drive will run for a few seconds, and the READY prompt will appear. Then LIST or
RUN your program. LOAD "PR*",8 or LOAD "*",8 will have the same effect.

LOAD "filename",8,1 is necessary for a nonrelocatable load. Machine language,
graphics definitions, VIC chip registers, and any data which needs to be replaced at
the point from which it was saved uses this syntax.

There's a slight complication with LOAD and VERIFY in BASIC. VERIFY "PRO
GRAM",8 after LOAD "PROGRAM",8 reads and compares programs byte-for-byte;
however, if BASIC was loaded into a different start area because its memory
configuration has changed, the link pointers will be different and you'll get a spuri
ous ?VERIFY ERROR message. Try VIC-20 WEDGE with an unexpanded VIC.
VERIFY can be used from within a program; with BASIC this could be used to check
that the right memory is being used.

You can also use LOAD in program mode. LOAD from within a program pro
duces the same chaining effect that you get with tape; however, it is much faster.
The new program, presumed to be BASIC, runs from the start. It retains all the old
variables if the new program is no longer than the old one and if strings and func
tions held within BASIC are redefined. See CHAIN and OLD in Chapter 6 for fur
ther discussion.

ML and memory dumps can also be loaded successfully. Use 10 X=X+1:IF
X=l THEN LOAD "GRAPHICS",8,1:REM ONLY LOADS FIRST TIME.

494

Using the Commodore Disk Drive

Scratching a Program
"Scratch" is a strange computerese word meaning to remove or erase a program.
With tape it's simple to rewind and obliterate a program by recording over it. Disks
need a specific command, however, because the disk drive can't know which pro
gram to scratch unless it's told.

SCRATCH has this syntax:
OPEN 15,8,15,"SCRATCH:/ilellame":CLOSE 15

Pattern-matching abbreviations are also usable, so OPEN 15,8,15,"SCRATCHN*"
:CLOSE 15 scratches anything beginning with N, while OPEN
15,8,15,"SCRATCH:*" :CLOSE 15 scratches everything and leaves the diskette
empty.

The number of files scratched is reported in channel 15.

Copying Programs from One Disk to Another
Both BASIC and machine language programs can be transferred from disk to disk.
However, BASIC programs are easier to transfer because the system keeps track of
where they start and end.

First, though, it is helpful to look at the disk operation called initialization. With
CBM disks this means forcing the drive to read the current diskette's directory infor
mation into its own memory. This process is often automatic (for example, when a
directory is loaded from disk), but to be on the safe side you can use this command
to guarantee that the disk to be copied to is correctly set up. INITIALIZE has this
syntax:
OPEN 15,8,15,"INITIALIZE":CLOSE 15

or
OPEN 15,8,15,"I":CLOSE 15

or
PRINT#15,"I" (after OPEN 15,8,15 has been performed)

To actually copy a BASIC program, first acquire two disks. Call them "source"
and "destination." Then follow these steps:

1. LOAD "fi/ellame",8 from the source diskette, being sure that your VIC has enough
RAM to hold it.

2. Remove the source disk, replace it with the destination disk, and close the drive
door.

3. Enter OPEN 15,8,15,''1'' to initialize the destination disk.
4. SAVE "fi/ellame",8 to save the program onto the destination diskette.
5. Replace the source diskette, enter PRINT#15,"I" to initialize it, and return to step

1. Repeat the process until you've moved as many programs as you want.

Copying Machine Language and Memory Dumps
To copy machine language or memory dumps, you'll need to know the start and end
address. Finding the end address is simple: Enter LOAD "filename",8,1 then PRINT

495

Using the Commodore Disk Drive

PEEK (45),PEEK (46). The end pointers are thus set, but the beginning is lost. To lo
cate the starting address, you can read the start address as a program file.

Once you've located those addresses, the process is similar to that for BASIC.
Have source and destination diskettes ready. Then follow these steps:

1. LOAD "filename",S,l from the source diskette.
2. Exchange diskettes. Type NEW.
3. Enter OPEN 15,S,15,''!'' to initialize the destination diskette.
4. POKE 43 and 44 with the low byte and high byte of the starting address, and

POKE 45 and 46 with the low byte and high byte of the end address.
5. SAVE "filename",S
6. Exchange diskettes, enter PRINT#15,"I", and repeat from step 1.

Communicating with the Disk Drive: Using Channel 15
Channel 15 is variously known as the error channel, the command channel, or the
information channel. The number 15 refers to its secondary address, the third
parameter of the OPEN statement. Disk drives use this third parameter to identify
the channel number, and generally it makes sense to use the same number for the
file where possible. To better understand this, enter and run Program 15-1, a one
line BASIC program:

Program 15-1. Using Channel 15
g OPEN lS,8,lS:INPUTtlS,E,E$,T,S:PRINT ErE$rTrS:CL

OSElS:END

If the disk drive has no current error stored in it, the result will be 0 OK 0 0
where the first zero is the error number, OK is the message from disk, and the track
and sector of the error (both zero) mean there's no problem. This is a long-winded
way to discover the disk status. It can be tedious to enter and run it just to discover
the reason for a disk error or problem. Note that direct mode can't be used; the line
must be entered as part of a program. Therefore, when developing disk programs, it
makes sense to include this as, say, line 40000 so that RUN 40000 is ready and wait
ing if needed.

Note that reading the channel clears it, so a subsequent read will say OK even if
there's a major problem (like an open disk drive door). The message remains until
either the channel is read or disk activity forces in another message.

You'll see later the circumstances in which the flashing "error" light, which is
apt to alarm newcomers, can be ignored. First, though, deliberately generate some
errors and watch the effect of running line 10 above:

1. Enter LOAD "%",S. This program doesn't exist on disk. RUN gives:
62 FILE NOT FOUND 0 0

2. Enter LOAD "l:HELLO",S. It tries to load a program from a nonexistent drive.
Your drive is drive 0; since it's a single drive, there's no drive 1. The message is:
74 DRIVE NOT READY 0 0

496

Using the Commodore Disk Drive

3. Enter SAVE "PROGRAM",8. (I'm assuming PROGRAM is still present on the
disk.) RUN gives this:
63 FILE EXISTS 0 0

4. Enter OPEN 15,8,15,"S:PROGRAM":CLOSE 15. This scratches PROGRAM from
the disk. (The initial is sufficient.) Now RUN gives:
lFILES SCRATCHED 1 0
which, translated, means that message 1 (which always deals with scratched files)
reports that just one file was scratched by the command. More than one file may
be scratched if pattern matching (with "S:*") is used.

5. Turn the disk drive off. Open the disk door if there's a disk present; this insures
that no magnetic glitch can occur on the disk. Turn on the disk drive and run im
mediately. Your message is something like this:
73 CBM DOS V2.6 1541 0 0
which tells you what type of ROM your disk unit has.

If you want to experiment more, try VIC-20 WEDGE from the demo diskette,
which modifies BASIC so that just pressing @ prints the message.

Sending Messages to the Disk Drive
You've seen how to read channel 15, but how are messages sent to the disk? The
syntax has two forms, both based on the syntax of OPEN:
OPEN 15,8,15,"command"

or
PRINT#15,"command" (assuming OPEN 15,8,15 has been carried out)

Formatting a disk and scratching a file are two examples we've seen so far. A sub
sequent section includes a comprehensive list of eight disk commands that use this
channel.

Handling Disk Files with BASIC
Files on disk are more complicated, and thus more difficult to understand, than tape
files. If you're a newcomer to disks, you may find the concept of a file hard to grasp.
However, after working through the examples which follow, it should become clear.

There are two essential aspects of any computer filing system. One is that an ex
ternal storage device (like a disk drive) must be able to store and retrieve data in a
reliable way; the other is that the computer must have commands available to han
dle the output and input of that data. To illustrate the second condition, consider the
fact that the VIC's disk drives can be programmed to store data almost anywhere on
the disk surface. Although this can be a very useful feature, it does not provide a file
in the true sense because specially written commands have to be used to process the
data.

Disk files, unlike tape files, aren't always exclusively read or write files. The
versatility of disks enables files to be open for writing and reading at the same time.

Another example of disk versatility is that several disk files can be open at once.
For example, a sequential file-identical to a tape file-can be read, updated, and

497

Using the Commodore Disk Drive

then written to a second sequential file. This is not possible with the VIC's tape unit.
The tape system can use only a single track of tape, whereas a diskette works more
like a multitrack system.

Types of File Organization
The VIC's disk system supports four types of files, shown on the directory as PRG,
SEQ, REL, and USR (program files, sequential files, relative files, and user files). A
user file allows a programmer to build his own type of file by writing data directly to
the disk and the directory, but all the work of arranging the data on disk and reading
it back must be done by the programmer. The subsequent section on disk storage ex
plains how this is done; meanwhile, USR can be ignored, since it is not a true file
system.

Program Files
These are simply programs or memory dumps which can be loaded and run (if
they're programs) in the usual way. However, the disk system also allows them to be
read from and written to, and that makes several nice programming techniques
possible.

Sequential Files
Next to program files, sequential files are the easiest to understand. Data is written
to them from a buffer, in sequence, without restriction on the type of data or its
length. Thus, the file can be of any length, regardless of the computer's RAM. Be
cause sequential file data isn't ordered, it is usually read back in sequence starting at
the beginning. As a result, long sequential files can be slow to handle.

In practice, VIC sequential files-whether on tape or disk-aren't usually quite
so free from structure. Why? Because it's easiest to use PRINT# to write data to a
file, and INPUT# to read it back, and both of those commands have certain restric
tions on length and type of character that they can handle.

Relative Files
Relative files do not have to be read from the beginning. Any record in the file can
be read by number; thus, "random access" is a name sometimes given to such files.
With the VIC, this is made possible by defining a record length when the file is
initially opened, and diskette space is assigned as it's needed. For example, if record
number 200 is to be written to a new relative file, the disk's operating system allo
cates space on the diskette for 200 records of the desired length before writing the
data of record number 200. Relative filing is more ordered than sequential filing;
later you'll see exactly how that is accomplished. For the moment, note that the
records are the same length. This wastes disk space if some records are far longer
than others. Obviously, a shorter maximum record length allows more records to be
filed.

Note also that accessing records by number may not be what you really want.
For instance, you may find yourself using extra files, or arrays, to convert JONES
into number 93. Nevertheless, this is the most advanced form of filing offered by
most microcomputers.

498

Using the Commodore Disk Drive

Direct access files may also be used. Commodore's manuals refer to the system
of storing data at certain sectors on the diskette as "random access," which is ex
plained in the section on data storage. More usually, "direct access" filing refers to a
system allowing access to records by a single key. This is a fascinating system of file
organization, easily implemented on the VIC.

To take an actual example: You want to be able to read from disk, as fast as pos
sible, information on anyone person out of a group of 400 by entering the person's
name. VIC's relative file system requires a number between 1 and 400, and the idea
of direct access is to convert the name into a number within that range. This could
be done by converting some of the name's characters into ASCII, then generating a
key from 0 to 1 and using RND(- key)*400 + 1 to generate a repeatable value in the
required range. A good algorithm will, of course, evenly spread the coded values of
the keys. With this kind of organization, records are held in the file in a jumbled se
quence but can be recovered by applying the coding algorithm to the key.

Direct access has several drawbacks, however. First, there's no easy way to print
a sequential list of the records. In other words, it's difficult to check what's on file.
Second, many keys will inevitably generate the same record number, so it's nec
essary when writing to the file to check that the record number isn't used (if it is, try
the next one). It's also necessary, when reading, to read until the correct record is
found. For that reason, the file has to be longer than the number of records by at
least 30 percent. In this case, about 35 percent of the records are synonyms, but this
drops to 25 percent if all keys are tested first and all synonyms are stored in the file
in a second pass. If the most frequently used records are entered first, efficiency im
proves again.

Inverted files are used in data base programming, where there are huge
amounts of data in a main file, and where you want a list of items conforming to
several stringent criteria.

Instead of reading the entire file, a large number of smaller files are established,
with each holding keys to a subset of the original data. As a result, fewer files have
to be read, but only at the expense of extra file space being taken up and extra work
being required to add new records to a number of files. For example, 26 subsidiary
files for initials A through Z plus a full-length relative file works well in some
applications.

Writing and Reading Disk Files
OPEN. You can OPEN a disk file using this syntax:

OPEN file number, device number, disk channel, command string

For example, OPEN 2,8,2,"0:ORDINARY FILE,S,W" opens file #2 to disk drive #8,
and uses channel #2 in the disk drive. (This is relevant with random access storage
and with relative files.) The command string begins with 0: which is a construction
from Commodore drives which have two disk drives, instead of only one. The other
drive used the prefix 1:, but that generates 74 DRIVE NOT READY with VIC disk
drives. This chapter ignores 0:, but readers with access to PET ICBM machines
should bear it in mind.

The other part of the command string uses commas as separators and causes a
sequential file, called ORDINARY FILE, to be set up. PRINT#2 will now write to this

499

Using the Commodore Disk Drive

file, and CLOSE 2 safely completes all the housekeeping. You'll see further examples
shortly in the demonstration programs on file handling.

Note that the file number cannot be zero. Ordinarily, use any number from 1
through 127. File numbers 128 through 255 should usually be avoided, because
PRINT# to them sends linefeed (CHR$(10» with carriage return. This is useful with
some printers, but not generally helpful with disk files.

The device number is 8 unless changed by hardware or software. It's possible to
connect two drives at once, one with device number 8 and the other with device
number 9, and open several files to each (OPEN 3,9,3,"ORDINARY FILE,S,R"),
allowing reading from 9 and writing back to 8.

The channel number should generally avoid 0, 1, and 15: 0 and 1 are related to
the directory, and 15 is the command channel.

The command string syntax varies with the type of file. See the demonstration
programs.

PRINT# is one of three BASIC commands (the others are INPUT# and GET#)
that let you send output to a file and read it back, either as a batch of characters (IN
PUT#) or as individual characters (GET#). PRINT# outputs string and number ex
pressions to the file in just the same way that output is sent to the screen. The
organization of relative files is identical to that of sequential files, as far as the stored
data is concerned. PRINT# treats a colon or end-of-BASIC line as requiring a car
riage return character. The semicolon causes PRINT# to print no extra characters.
The comma outputs 11 spaces (in effect tabulating half a screen across). Numbers
appear in the file with a leading minus or space, and with a trailing space, too.

The effect of OPEN 2,8,2,"TEST,S,W" followed by PRINT#2,"HELLO";12345;
"HELLO","HI" is shown in Figure 15-1.

Figure 15- 1. Using PRINT#

PRINT# can output individual characters for GET# to read back later. In this
case, there are no restrictions on character types. PRINT#2,X$; outputs the character
stored in X$ (the semicolon prevents unwanted RETURNs), and GET#2,X$ reads the
character back. PRINT# should thus be fairly straightforward, although most pro
grammers will find themselves rearranging colons and semicolons to remove small
bugs in their programs.

If you're reading data with INPUT#, remember not to write strings longer than
88 characters. INPUT# generates ?STRING TOO LONG if this happens. If long
strings appear to be unavoidable, it's always possible (though slower) to evade this
problem by replacing INPUT# with something like X$="": FOR J=1 TO 100:
GET#l,Y$: X$=X$+Y$: NEXT.

Remember to include RETURN when estimating the lengths of records. Relative
files in particular need a RETURN character if data is read back by INPUT#, and this
adds 1 to the maximum record length.

INPUT#. Using INPUT# is the most convenient way to fetch information from
files. The point to understand is that PRINT# and INPUT# are largely mirror images

500

Using the Commodore Disk Drive

of each other. PRINT#l,X$:PRINT#l,Y writes a string, then a numeral, to a file;
INPUT#l,X$,Y will interpret this correctly, reconstructing X$ and Y. If the variable
types match, there should be few problems.

There are several small complications, all of which have been mentioned al
ready, but they are worth going over again.

INPUT# cannot input a string more than 88 characters long.
INPUT# looks for a separator, normally a RETURN or a comma. Thus,

PRINT#l,X$;Y cannot be read back properly by INPUT#, because the semicolon
causes the two variables to be output with no break. It's easiest to separate the vari
ables by a RETURN (CHR$(13», but PRINT#l,X$","Y works just as well.

INPUT# cannot input a null string. PRINT#l,X$: PRINT#l,Y$ then
INPUT#l,X$,Y$ ordinarily works, but if Y$ is nothing, PRINT# puts two consecutive
RETURNs on file, and INPUT# behaves as though RETURN were pressed on IN
PUT at the keyboard and goes on to the next item.

GET# reads individual characters from a file, with no exceptions. It will fetch
null characters written as CHR$(O), quote marks (ASCII 34), RETURNs (ASCII 13),
plus any punctuation and screen-editing characters. If you are interested in the entire
contents of a file, use this command; if not, the intelligence of INPUT#, which
assigns all your variables for you, makes a better command.

CLOSE. Closing a file is simple:
CLOSE file number

CLOSE operates on one file only; you need CLOSE 2: CLOSE 15 if files 2 and 15
are open. Unclosed files can cause problems. See the section "When to Ignore the
Red Warning Light" for a full discussion.

ST (StatuS) and Disk Errors and Messages
ST has several applications in disk file handling. When INPUT# reads to the end of
a file, ST is set to 64. ST can be tested for this condition if the file length is un
certain. After 64, ST becomes 66, which means the device isn't responding.

Two other possibilities are ST= -128 (usually accompanied by ?DEVICE NOT
PRESENT) and ST = 1 (if writing is slow). The other four bit-settings of ST don't
apply to disk. ST isn't usually important, because an end-of-file marker makes
ST=64 superfluous and the other errors are generally obvious. However, a com
mand like IF ST>O THEN GOTO EXIT provides a rough-and-ready exit mechanism
when testing files. If you do this, remember that ST is reset after every input or out
put, so put the test immediately after the relevant command.

Disk messages nearly always indicate that a program can't run. The exceptions
are message 1, the number of files scratched, and message 50, RECORD NOT
PRESENT, which always occurs when a relative file is set up. The error may not be
serious-for example, a syntax error in a command string-but it's good practice to
follow each disk command with a subroutine call to read channel 15 and exit if the
message number is 20 or more. The subroutine should print the message number
and its message, and close all open files, as the following example shows:
10000 INPUT#15,E,E$,T,S: IF E<20 THEN RETURN
10010 CLOSE 2: CWSE 15: PRINT E;E$;T;S

501

Using the Commodore Disk Drive

Note that this subroutine slows processing (especially after GET# statements) and
can be ignored in ordinary, noncritical programming.

When to Ignore the Red Warning Light
Newcomers to Commodore disks are often concerned with the red warning light.
Does it mean that something horrible has happened to the disk? Usually not.

The red light combines several functions, mostly informative rather than warn
ing. A steady light means that a file is open. Try for instance OPEN 2,B,2,"TEST,W"
in direct mode. The drive will start, and a write file will be opened to the disk.
When the disk stops (the motor runs on for a few seconds to reduce delays when
there are repeated disk accesses), the light remains on. Enter PRINT#2,"HELLO"
then CLOSE 2. As with a tape file, the data is stored in a buffer; it's only written
when the file is closed. A directory of the diskette shows FILE with type SEQ,
occupying one sector only because there's such a small amount of data.

Any read/write activity causes the light to turn on mainly as a warning not to
interrupt the process by opening the drive door. However, this is important only if
there's a file writing to the disk.

A flashing light indicates an error message (scratching files generates message I,
but in that case the light doesn't flash). In fact, the number of flashes varies with the
type of error, though not in a very useful way. The message can be read (by RUN
1000 with 1000 INPUT#15,E,E$,T,S: PRINT E;E$;T;S: END); once it is read, the light
goes off and the message is cleared.

You can ignore the flashing red light if you are reading from disk. Suppose
you've typed LOAD "PROGARM",B in error; the red light flashes, and the message
is something like ?FILE NOT FOUND. Type the correct version LOAD "PRO
GRAM",B and loading will proceed normally with no problems. The same sort of
thing obtains in a program; 10 OPEN 2,B,2,"FIEL,S,R" will generate an error, but if
the line is edited and the program rerun, no harm will result.

Take the red light seriously if you are writing to disk and a write file is still
open. An unclosed file can cause problems with storage to disk, because the normal
system of chaining between sectors is disturbed; other programs and files can be
come corrupted. This isn't likely to be a major problem. However, if you are using a
file system for a serious purpose, you should be aware of this possibility, since there
will almost inevitably be program crashes during testing. When programs are finally
completed, it is good practice to transfer them to new disks to avoid any chance of
error. The steps to take, and danger signs to watch for, are listed in the next section's
notes.

Handling Program Files
Program files are marked PRG in the directory. They are used for storing BASIC pro
grams in tokenized form and ML or graphics as simple consecutive bytes. There's no
way of telling from the directory whether PRG is BASIC or not; if LOAD "NAME",B
and RUN works, then it is BASIC, at least in part. ML programs usually need a SYS
call to run.

PRG files can be opened for read or write. If such a file is read, the first two
bytes are invariably the LOAD address, and the rest is the data. LOAD "NAME",B,1

502

Using the Commodore Disk Drive

always loads into this LOAD address, but LOAD "NAME",8 allows relocation (and
also relinks the program, assuming it to be BASIC). There's no way to force a pro
gram file to load where you want with LOAD "NAME",8.

OPEN 2,8,2,"NAME,PRG,WRITE" opens a program file for write, while OPEN
2,8,2,"NAME,PRG,READ" opens the same file for read. There are, of course, vari
ations on this. For instance, the file numbers and channel numbers needn't be 2; the
device number may not be 8; and the command string can be made up of string ex
pressions. In addition, the command string can be abbreviated such as ,P,W for
,PRG,WRITE.

Program 15-2 is a short program that reads any program byte by byte, printing
out the results in ASCII.

Program 15-2. Reading Programs Byte by Byte
o OPEN 15,8,15,"I":REM INITIALIZE DISKETTE
1 OPEN 2,8,2, "NAME, P, R": REM OPEN PROGRAM FILE FOR READ
2 GET#2,X$:REM GET A CHARACTER FROM FILE
3 IF ST>0 THEN CLOSE 2:END:REM END WHEN FILE ENDS

4 PRINT ASC (X$+CHR$(0»)~:REM PRINT ASCII VALUE

5 GO TO 2:REM CONTINUE ONE CHARACTER AT A TIME

Line 1 must include the name of the program to be examined. Alternate forms
of the command string such as OPEN 2,8,2,"NAME,PROGRAM,READ" or OPEN
2,8,2,N$ +" ,P,R" are perfectly acceptable.

Run this with a BASIC program as its PRG file, and you'll get BASIC in its
tokenized form. For instance, if you save a one-line program (10 PRINT"HELLO")
and then look at it using this program, you'll get something like Figure 15-2.

Figure 15-2. Tokenized BASIC

LOAD Link Line Tokenized Line End of
Address Address Number PRINT "HELLO" Program

1 16 14 16 10 0 153 34 72 69 76 76 79 34 0 o 0

Uses for Program File Processing
Analyzing BASIC. Provided allowance is made for link addresses, line num

bers, and the tokenized form of keywords, BASIC programs can be read, perhaps to
see if they're identical. Hidden code can be searched for. Appending, deleting, and
similar manipulation are possible. The link address need not be correct, since LOAD
will put it right.

It's possible to write BASIC direct to a PRG file, by opening a program file for
write, printing any two bytes as the start address (they'll be overridden when the
program loads), and printing a further series of CHR$(n) commands to make up the
program. This can be useful in some antilisting techniques, and BASIC lines longer
than 88 characters can be written in this way too.

Finding ML or memory dump LOAD addresses. This can't be done in direct
mode. Instead, use the following routine:

503

Using the Commodore Disk Drive

Program 15-3. Finding ML or Memory Dump Load Addresses

10 INPUT "PROGRAM NAME":N$
20 OPEN 1,8,2,N$+",P,R"
30 GET#1,X$,Y$
40 PRINT ASC(X$+CHR$(0))+256*ASC(Y$+CHR$(0))
50 CLOSE 1

Analyzing machine language programs. You've seen how to read the two
LOAD address bytes. If you wish to load ML into a different area, you can change
the LOAD address by rewriting the two leading bytes using the routine in Program
15-4.

Program 15-4. Changing the LOAD Address
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 OPEN 2,8,2,"ML FILEl,P,R"
20 OPEN 3,8,3,"ML FILE2,P,W"
30 GET#2,X$,X$
40 PRINT#3,CHR$(I)CHR$(4):
50 GET#2,X$:IF X$="" THEN X$=CHR$(0)
60 S=ST:PRINT#3,X$:
70 IF S=0 GOTO 50
80 CLOSE 2:CLOSE 3

:rem 219
:rem 228
:rem 232
:rem 183
:rem 114
:rem 157

:rem 84
:rem 243

Lines 50 through 70 transfer the entire file, except for the first two bytes. The
old LOAD address is thrown away; the new is set at $0401. Note in line 50 how a
character which GET# regards as null must be converted into CHR$(O); otherwise,
zero bytes will be lost. Line 60 preserves ST, which is reset by the PRINT# com
mand, for the end-of-file test in line 70.

If you change disks, you may need to initialize the new disk (or add line 0
OPEN 15,8,15,"1": CLOSE 15 to the program).

PET/CBM programs load at $0401, so VIC programs can be made to load into
these machines with this program. Occasionally, you may even want to use the pro
gram to restore LOAD addresses to programs which have lost them through incorrect
copying.

Writing machine code or graphics definitions directly onto disk. As with
BASIC, there's no problem in opening a program file, writing a two-byte LOAD ad
dress, and following this with bytes. For example, where RAM is already occupied
by machine language or BASIC, or in tricky areas like zero page or the screen, this
technique allows any area of RAM to be saved to disk. An autorun routine, analo
gous to those used for tape, provides an illustration.

Autorunning program. This is trickier with disk than with tape. If the start of
BASIC is fixed, extra ML can be added to the start of the program to cause it to run
automatically after loading. Alternatively, and for greater versatility, you can use a
loader which calls the program by name, and so allows for variations in starting
address.

504

Using the Commodore Disk Drive

Program 15-5 autoruns ML programs, which therefore need no SYS call. The
forced LOAD address is $02A 1. The autorun feature is caused by changing the vector
at $0302/0303 to $02Al, where the ML program is loaded by name (in effect, with
LOAD "ML",8,l) and then jumped to. In order to use this program, you'll need to
choose a new name for the loader, such as RUN. Then, LOAD "RUN",8,1 will auto
matically load and run the ML.

Program 15-5. ML Autorun
Refer to the "Automatic Proofreader" article (Appendix C) before typinil in this program.

10 FOR J=673 TO 698: READ X: POKE J,X: NEXT:rem 23
20 PRINT "NAME OF NEW LOADER?": INPUT L$:rem 3
30 PRINT "PROG RAM TO BE RUN?": INPUT P$: rem 232
40 L=LEN(P$): POKE 683,L :rem 19
50 FOR J=l TO L: POKE 700+J,ASC(MID$(P$,J»

:rem 245
60 NEXT :rem 165
70 OPEN 2,8,2,P$+" ,P,R" :rern 150
80 GET#2,X$,Y$: CLOSE 2 :rern 208
90 POKE 699,ASC(X$+CHR$(0» :rern 189
100 POKE 700,ASC(Y$+CHR$(0» :rern 213
110 OPEN 3,8,3,L$+",P,W" :rern 196
120 PRINT#3,CHR$(161)CHR$(2): :rern 75
130 POKE 770,161: POKE 771,2 :rern 139
140 FOR J=673 TO 771 :rern 229
150 P=PEEK(J): X$=CHR$(P) :rern 120
160 PRINT#3,X$r: NEXT :rern 214
170 CLOSE 3 :rern 65
180 POKE 770,131: POKE 771,196 :rern 251
1000 DATA 169,1,162,8,160,96,32,186,255,169:rern 79
1010 DATA 0,162,189,160,2,32,189,255,169,0 :rern 15
1020 DATA 133,10,32,213,255,76 :rern 181

Notes on the program. RAM from locations 673 through 771 is written as an
ML file, preceded by two bytes to force the LOAD address to $02Al. The ML is
POKEd in by line 10. It's fairly straightforward to add new features, for example to
make the background and current color both white, suppressing the next LOADING
message. Lines 40-60 put the name of your ML program in RAM, so the same ML
program will always be loaded (assuming it's on the same disk). Lines 70 and 80
read the ML program's LOAD address; this assumes the program's SYS address is
the same as its LOAD address. If this isn't true, just substitute the correct LOAD de
tails; for example, if SYS 64802 runs your program, then change lines 90 and 100 to
POKE 699,34 and POKE 700,253.

The loader is created in lines 11 0-170. Line 120 sets the start address to $02A 1.
Line 130 changes the warm start vector to $02Al, and lines 140-170 print the whole
of the RAM area as a program file.

PRG files occupy 254-byte sectors on the disk; the first two bytes are the LOAD
address. Thus, 252 bytes go into the first sector, while 254 bytes go into the remain
ing sectors. An 8K program (8192 bytes) therefore occupies approximately 32% sec-

505

Using the Commodore Disk Drive

tors, which appear as 33 sectors on the directory. The number of sectors taken up by
any program or memory dump can be similarly calculated.

Handling Sequential Files
Sequential files are marked SEQ in the directory. They are easy to use and can store
large quantities of data. The records are free from length restrictions, subject to the
88-character limit if INPUT# is used for reading, so there's no space overhead apart
from separators like RETURN characters. In sequential files, records are likely to be
stored in similar sets-for instance, name followed by four address lines and a
phone number-so there are no problems in interpreting data when it is read back
from the file.

Sequential files, once written, aren't readily changed, but new records can easily
be added onto the end. The disk operating system (DOS) has a built-in append com
mand. Files can be updated only by reading, correcting records as they are read, then
writing back the edited version (with old records removed and new ones inserted) as
a new file with a different name. This process, which is impossible on VIC tape, is
quite easy with disks.

The DOS has another command, COPY, which copies a sequential file onto the
same disk and optionally concatenates another file on the end. This is more useful
with CBM's double-disk units, but still has a few uses with the VIC.

Use OPEN 2,8,2,"FILENAME,SEQ,WRITE" to open a sequential file for write
operations. OPEN 2,8,2,"FILENAME,SEQ,READ" opens the same file for read;
OPEN 2,8,2,"FILENAME,SEQ,APPEND" opens an existing file for append.

The file and channel numbers needn't be 2, and the device number may not be
8; there are alternative, similar forms. Sequential files are assumed by default, so if
SEQ or the shorter S is omitted from any of these commands, it makes no difference.
"Read" is a further default, so OPEN 2,8,2,"FILENAME" assumes a sequential file
will be read, and reports an error if the file isn't found.

A sequential file can be opened for write only once. Thereafter, data can be ap
pended, but an attempt to open it again for write using the same file number will
cause a FILE EXISTS error message within the disk drive. However, using a different
file number erases the file and starts over.

COPY has the following syntax:

OPEN 15,8,15,"COPY:new name=old name"

or

PRINT#15,"COPY:new name=old name" (after OPEN 15,8,15 has been carried out)

This command writes another copy of the file, under a different name (or you'll get
FILE EXISTS), to the same disk.

OPEN 15,8,15,"COPY:new name=first file,second file" combines two (or more, if
you wish) named files into another; again, the combined file must have a new name.

Program 15-6 is a simple example of a program that reads a sequential file and
displays its contents onscreen. Note that ST in line 60 tests for the end-of-file con
dition. If that line is omitted, nothing very terrible happens; however, line 40 will
then repeatedly fetch a meaningless character.

506

Using the Commodore Disk Drive

Program 15-6. Reading and Displaying a Sequential File

Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

HI PRINT "NAME OF SEQ FILE TO BE DISPLAYED": rem 186
20 INPUT N$:rem 100
30 OPEN 1,8,2,N$+",S,R":REM OPEN SEQ FILE FOR READ

:rem 238
40 GET#l,X$:REM FETCH A SINGLE CHARACTER FROM FILE

:rem 172
50 PRINT X$: : REM PRINT A CHARACTER
60 IF ST>0 THEN CLOSE l:END:REM STOP

E
70 GOTO 40

:rem 34
AT END OF FIL

:rem 118
:rem 4

You may find that the disk warning light flashes if you misspell the file's name
or try to read a program rather than a sequential file. However, incorporating a test
for these messages is straightforward. First, add the following line:
5 OPEN 15,8,15

It is good practice to close file 15 last; if it is closed during a program, other disk
files will close too. Then add this subroutine:
10000 INPUT#15,E,E$,T,S: IF E<20 THEN RETURN
10010 PRINT J/***DISK WARNING": PRINT E;E$;T;S: CLOSE 15

Whenever the disk is accessed, a call to this subroutine will test that all's well.
Add 35 COSUB 10000 to check that the file was opened properly; add 45 COSUB
10000 to check each read from the file. This slows processing, of course.

The program is now almost ready, but one further subtlety is possible. ST is
changed by the new line 45 to reflect the status of input from the command file
rather than the sequential file, so you can add another line (42 A = ST) and change
ST in line 60 to A; the program then tests for all error conditions.

If the warning light flashes, it can be ignored with this program since no files
are being written.

If you prefer to see every file character (for example, RETURN showing as 13),
replace X$ in line 50 by ASC(X$ + CHR$(O».

Writing Sequential Files
Writing a sequential file is straightforward. It's similar to reading, except that
PRINT# is used and the file must be opened with the W parameter. You can see
how this works by typing in OPEN 2,8,2,"SEQ TEST,W" in direct mode. On RE
TURN, assuming the file doesn't already exist, the disk shows activity; when it stops,
the red light remains on because a file is open. Enter PRINT#I,"HELLO" and note
the absence of activity. CLOSE 2 writes this data to disk and closes the file. The pre
vious program will read back the five letters of HELLO plus a final RETURN
character.

Repeating the same command causes a FILE EXISTS disk error. If the file isn't
important, OPEN 2,8,2,"@:SEQ TEST,W" will open a new file with the same name.

507

Using the Commodore Disk Drive

Appending Sequential Files
Appending means adding new data onto an already existing file. To append to a
sequential file, use OPEN 2,8,2,"SEQ TEST,A" which reopens the file, leaving the
red light on. PRINT#l, "GOODBYE":CLOSE 1 writes an extra record; again this can
be checked by reading.

Sample Uses for Sequential File Processing
Storing records. If a file is to be written once only, open it for write, use INPUT

from the keyboard, then PRINT# to write to the file and CLOSE the file. Where a
file is to have records added from time to time, but none removed or altered, it's
easiest to set up the file first, then open it for append whenever it's needed, INPUT
the new data, and PRINT# to the file.

Where a file is to be edited, however, use two files-perhaps "NAME" +
STR$(N) followed by "NAME" + STR$(N + 1). With this scheme, there will always be
a file called something like "NAMES/PHONES 33" on disk. The file-editing pro
gram will ask for the update number (33 in this case) and open the earlier version
for read and the later version for write. Alternatively, you may prefer to rename the
existing file OLD and write to NEW.

The file OPEN commands have the following form:

OPEN 2,8,2,IOLD":OPEN 3,8,3,"NEW,W"

INPUT#2 takes data from OLD, while PRINT#3 writes it to NEW.
For security, add a channel-reading subroutine which closes files if an error is

detected.
Dealing with BASIC. There's a close connection between SEQ and PRG files.

Commands to append, concatenate, and copy all work with program files, although
the results don't always appear similar because BASIC uses three zero bytes as ter
minators. Thus, appending like this can only work if two of these bytes are thrown
away. BASIC can be written as a sequential file by opening a write file (for instance,
file #1) and using CMD 1: LIST and CLOSE 1 to print the program to the file.
BASIC stored in this way is not tokenized and is generally longer than its normal
equivalent. But this storage method allows for fairly easy program analysis. Cross
reference tables of variables by line numbers are a typical application.

As you'll see, the directory track can be read as a file, and this gives a lot of
information about the way files are stored. Using SAVE "PROGRAM,S,W",8 it's
even possible to save programs as SEQ files.

Copying files. SEQ files can be copied for security either with a CBM 4040 disk
drive or by reading the data, storing it in RAM, and writing it back onto a new disk.
If the file is long, of course, this method is impossible; in such a case the best com
promise is to write to a tape file, which obviously has no space restrictions, then
read back and write to the new disk.

SEQ files occupy 254-byte sectors. Add together the lengths of all the strings of
data, including RETURNs, divide by 254, and round up to estimate the storage
requirement of any SEQ file.

508

Using the Commodore Disk Drive

Handling Relative Files
Because of their highly structured format, relative files (REL in the directory) allow
both reading and writing in the same open file. Every record is assigned a set length,
which cannot be exceeded. Shorter records are automatically padded with null
characters. Thus, when updating a record, it is important to write back the entire
record, or the final part will be erased. For example, WILLIOMS must be printed
back as WILLIAMS, not as an A at the sixth position.

Relative files are referred to by number. The DOS uses a "P" parameter to
transfer the record number to disk.

Whenever a record is written beyond the present end of file, message 50
RECORD NOT PRESENT is generated. The first time around, this can be ignored.
You've seen already that it's a good idea to format the entire file right at the start,
assuming the number of records needed in the complete file is known. This sets up
each record as CHR$(255), so reading back an empty file lists each record as a 7r

symbol.
A relative file's data is stored like a sequential file (with ASCII characters sepa

rated by RETURNs), but has an extra file of pointers. A maximum of three disk reads
is needed to read a record with this system, which is therefore often slower than a
sequential file, which never uses pointers. Of course, for random access, relative
files are faster than any but the shortest sequential files. Records are stored in a
disk buffer, so reading or writing adjacent-numbered records often requires no disk
access time.

Use OPEN 2,B,2,"jilename,L," + CHR$(L) to open a relative file. As usual, the
file number and channel may take a range of values, and the device number may
not be B. L is compulsory when the file is set up for the first time; it is followed by
the record length, which must allow for a RETURN character. For example, use
CHR$(21) if the longest record has length 20.

The record length parameter is stored on the diskette. If you attempt to reopen
the file with a different record length, error 50 RECORD NOT PRESENT shows. The
maximum record length is 254. Anything beyond this gives error 51 OVERFLOW IN
RECORD.

Once the file has been opened, the L and parameter are optional and a simple
OPEN statement with the name is sufficient. It makes sense to use the full version,
though, in case you forget the record length.

Obviously, the number of the record which is about to be read or written must
be sent to disk. The syntax is a bit fussy: PRINT# 15 ,"P" + CHR$(channel) +
CHR$(low byte) + CHR$(high byte) + CHR$(position) assuming OPEN 15,B,15.
The channel parameter is identical to the channel used in OPEN, 2 in the example.
The low- and high-byte idea is familiar; thus record number 200 needs
PRINT#15,"P"+CHR$(2)+CHR$(200)+CHR$(O)+CHR$(I).

The final parameter is a pointer, with 1 representing the start of the record. It
allows writing or reading to take place a set distance within a record. Obviously, it
shouldn't exceed the record length. It is usually 1. Don't omit it.

The pointer allows records to be subdivided, so that a 200-byte record might
have several fields (for instance, starting at 1,40, and 100). In practice, each field can
be written within its record sequentially, without bothering with this, because

509

Using the Commodore Disk Drive

PRINT#, INPUT#, and GET# each advance the pointer as they write or read into
the file buffer. In any case, writing to such a record requires that everything up to
the final record be written. If only the field starting at 40 were written, the field
starting at 100 would be erased.

Program 15-7 is an example of relative file handling. It asks for record numbers,
then for the data to be input, and writes the record to disk. It does not include a
message channel.

Program 15-7. Handling Relative Flies
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 OPEN 15,8,15 :rem 239
20 PRINT "REL. FILENAME": INPUT N$:rem 193
30 PRINT "RECORD LENGTH": INPUT L :rem 203
40 OPEN 1,8,2,N$+",L,"+CHR$(L+1) :rem 95
50 INPUT "RECORD#":R :rem 168
60 IF R=99999 THEN CLOSE 1: END :rem 136
70 RH%=R/256: RL=R-RH%*256 :rem 155
80 PRINT "RECORD": INPUT R$: rem 56
90 R$ = LEFT$ (R$, L) : rem 170
100 PRINTU5,"P"+CHR$(2)+CHR$(RL)+CHR$(RH%)+CHR$(1

) : rem 27
110 PRINTU, R$: rem 21
120 GOTO 50 :rem 49

Line 40 opens a relative file, named by the user, and assigns a record length 1
greater than the input value (to allow for a RETURN at the end). Line 60 allows
record number 99999 to act as an indicator that no more data is to be entered. Lines
80 and 90 take in the material to be written to disk, and check that it isn't too long.
Line 100 sets the record number parameters from the channel number and record
number. Line 110 finally puts the record onto disk. This is the simplest case, where
the record starts at the beginning of its allotted space.

Channel 15 can be read as usual. A subroutine call in a new line 45 will check
the OPEN, and lines 105 and 115 can also be added to test the command and the
print.

Remember that message 50 signals that the file is being extended, and therefore
it should be expected when the file is being set up.

Reading the file. The easiest way to read the file you've just created is to
modify the write program, delete lines 80 and 90, and alter 110 to INPUT#l,R$:
PRINT R$. Line 30 can be removed, and 40 OPEN l,8,2,N$ is sufficient.

The same file is usable for either reading or writing. Typically a program will
have a menu allowing either mode to be selected.

Copying. Use OPEN 15,8,15,"C:new name=old name" to copy this type of file
onto the same disk with a new name. This provides some security. Apart from direct
disk copying, or putting data into RAM (where there may not be enough available
room), copying records to tape by reading them in sequence, then writing them back
to a different diskette, is the easiest method.

Storage. The total file length is the L parameter multiplied by the largest record
number plus one (since record zero exists). 1000 records of length 21 occupy 21000

510

Using the Commodore Disk Drive

bytes; these are stored in 254 byte sectors, so the data occupies 83 sectors. (VIC
disks have 664 free sectors.) Additionally, the side sectors containing the pointers oc
cupy from 1 to 6 sectors, depending on the file length. The actual number is the file
length in sectors divided by 120; so our example file needs one side sector only, and
the entire file takes 84 sectors.

A relative file which fills the entire diskette takes about five minutes to set up
when first written.

Note that some versions of CBM DOS aren't reliable in validating disks with rel
ative files; however, 1540/1541 DOS does not have this fault.

Summary of Disk Commands, Disk Messages,
and Error Handling
The following list summarizes the VIC disk drive's file and program commands. All
the syntax examples are illustrations only; modifying them to your own requirements
where necessary isn't much work.

Append. Used mainly for sequential files, append opens an already existing
sequential file for write. New records are added to the end of the existing file. The
syntax is OPEN 2,8,2,"filename,A" then PRINT#2 and CLOSE 2.

Copy and Concatenate. Used mainly for sequential files, these commands create
a new file with a new name, consisting of a copy of just one file or of several con
catenated files. OPEN 15,8,15,"C:NEW=FIRST,SECOND,THIRD" combines three
files in sequence in the new sequential file called NEW.

Directory. This command lists any diskette's contents. Its form is LOAD "$",8
then LIST. Getting a directory in this way will destroy any BASIC program in mem
ory, so during program development, never read the directory unless you've saved
the current version. VIC's wedge program on the demo disk reads the directory di
rectly into the screen and can therefore be used during program development.

Initialize. Usually automatic, this command reads the present diskette's storage
details into disk RAM. If diskettes are changed, it's always safest to initialize the new
diskette with OPEN 15,8,15:T':CLOSE 15. The command is necessary in some pro
grams reading directly from the diskette and provides a means to get the drive work
ing again in occasional anomalous situations. The VIC's RAM is unaffected.

New. New, used to format all new disks, has been explained earlier. The syntax
is OPEN 15,8,15,"N:name,id" for a brand-new diskette.

OPEN, CLOSE. OPEN and CLOSE were discussed in the sections on program,
sequential, and relative files, and in the discussion of channel 15. Typical BASIC is
as follows:

OPEN 15,8,15,"COMMAND STRING" to the command channel
OPEN 2,8,2,"SEQFILE,S, W" to open SEQ FILE for write
OPEN 3,8,3,"@:PROGRAM,P,W" to scratch and reopen PROGRAM for write
OPEN 4,8,4,"RELFILE,L," + CHR$(10l) to open RELFILE
CLOSE 2: CLOSE 15 to close two files.

Record#. For relative files only, this sets the record number and position within
the record from which write or read will take place. Typical syntax is
PRINT#15,"P" + CHR$(4) + CHR$(LO) + CHR$(HI) + CHR$(I) where OPEN 15,8,15
is assumed and the relative file uses channel 4.

511

Using the Commodore Disk Drive

Rename. Rename changes the name of any type of file. It has the syntax OPEN
15,S,15,"R:NEW=OLD":CLOSE 15 where the file previously called OLD is now
called NEW. Only the name is changed; a duplicate file is not created.

Scratch. Scratch deletes any type of file by name, using pattern matching. Typi
cally it uses the form OPEN 15,S,15,"S:filename":CLOSE 15.

Validate. This command checks disk integrity. It tests and collects together all
the disk sectors' chaining. This is safe with any type of closed file but will erase un
closed files; its syntax is OPEN 15,S,15,"V":CLOSE 15.

Use this command whenever disk writes have been interrupted, for example, by
a syntax error in BASIC. However, if you have an incomplete file you wish to save,
first follow the instructions in the next section. If your disks are used only to load
programs, this command is unimportant; it is significant only when you're develop
ing file-handling programs and is unlikely to be needed with straightforward LOADs
and SAVEs.

Pattern Matching
Disk commands involving loading or opening for READ generally can be abbre
viated using * and? as pattern-matching symbols. For example, LOAD" A *",S loads
the first PRG type file in the directory which begins with A. However, LOAD"*",S
and VERIFY "*",S assume the last loaded program applies, unless no program has
been loaded, in which case the first program loads. Similarly, OPEN 2,S,2,"S:X*"
:CLOSE 2 scratches all files beginning with X.

The? symbol allows wild card matching, but the exact positions have to match;
LOAD "????BON*",8 loads TROMBONE, but not BONZO.

Because of the possibility of sending spurious disk commands, you should not
include symbols like * ? # :, in filenames.

Disk Messages
Table 15-1 summarizes the messages generated within the disk drive.

Problems with Disk Drives
Unresponsive drive. Sometimes you'll get ?FILE NOT FOUND, even with

LOAD "$",S. Try again. If that doesn't work, open the disk door and close it, then
try again.

You may also get ?DEVICE NOT PRESENT when the disk is switched on and
ready. Try initializing, or if the red light is lit, OPEN 15,S,15: CLOSE 15. Sometimes
a printer causes this hangup. Try turning your printer off.

File problems. Unclosed files are signaled with an asterisk (for example, *SEQ).
However, some aborted files don't have this. You may have a situation where a pro
gram occupies two sectors, even though its file is reported as occupying only one,
and there are only 61S blocks free instead of 661 as expected. In each case it's
ultimately best to validate, but you could either leave the disk alone, using it only
for READ, or recover some of the file data using OPEN 2,S,2,"FILENAME,N" which
enables unclosed files of all types to be read as far as possible.

To avoid this sort of problem, simply make a point of closing write files if a pro
gram crashes before they are closed properly. Enter CLOSE 2 in direct mode, for

512

U1
(,;..l

Table 15-1. Summary of Disk Drive Messages

Message Information Programming Mistake or
Type (not an error) Simple Mechanical Error

0 Everything OK
I Files scratched

(gives number)
2-19 Undocumented.

Not important.

Input!
Output
Errors
at
Disk
Level

Initialization 29 Disk ID/BAM mismatch

30 Syntax error
31 Unrecognized command

Syntax 32 Overlength command
Errors 33 Wronglv used? or * in name

34 File name omitted
39 Unrec. command to channel 15

Relative 50 Expand reI. 50 Relative file parameter error
and Seq. file size 51 Relative record too long
Files 52 Relative file too big for disk

60 Attempt to read a write file
File 61 File not open
Errors 62 File doesn't exist

63 File does exist
64 File type mismatch

Track 65 Block-Allocate error: gives
and next available track & sector
Sector 66 Track or sector out of range
Errors 67 System track or sector error

70 Channel to disk unavailable
DOS 71 Error in directory
Errors 72 Disk (or directory) full

73 DOS type message
74 Drive not ready

Hard Error

20 Sector header not found
21 Sync mark not found
22 Sector not found
23 Checksum l'rror in byte
24 Byte read error
25 Readback compare error
26 Write-protected diskette
27 Checksum error in header
28 Next sync mark not found

I

I
I

~

C
en So
<0 -~
<I>
()
o
3
3 o a.
o
(j)
o
en

" o
~

~o

Using the Commodore Disk Drive

example, and include a CLOSE statement for channel 15.
OPEN 15,8,15:CLOSE 15 will generally close all disk files successfully.
Program problems. Sometimes the final sector of programs becomes corrupted;

on LOAD the program loads, but READY never appears. The best solution is to press
RUN/STOP-RESTORE, then POKE zeros into memory after the end of the program.

Commodore Utility Programs
Commodore's demo disks contain a number of programs. Those listed below are
typical of what you will find.

CHECK DISK
Tests a diskette by writing to and reading from every sector.

COPY/ALL
A BASIC program, written by Jim Butterfield, to copy an entire disk from one drive
to another. Two drives are necessary. One drive can be reassigned device number 9
with DISK ADDR CHANGE.

DlR
Reads the directory of device 8 from BASIC. No advantage over ordinary directories.

DISK ADDR CHANGE
Writes a new device number through the command channel, usually 9, to permit
interdrive copying.

DISPLAY TIcS
Displays any track and sector on the diskette. Very useful for examining the disk's
entire storage system or (in extreme cases) for reading programs or files directly.

DOS 5.1
For the Commodore 64.

PERFORMANCE TEST
Formats a disk, writes, and reads, but doesn't exhaustively test either diskette or
drive.

PRINTER TEST
For CBM printers only.

VIC-20 WEDGE
LOAD and RUN this to make direct-mode disk commands simpler. The ML program
stores itself at the top of BASIC RAM; the wedge will not coexist with some other
utilities.

514

Using the Commodore Disk Drive

It adds three direct-mode commands. One of them (@) reads and prints the disk
status; another (@$) reads and displays the directory without affecting the program
in memory. A third command Ufilellame) loads a program from disk.

VIEW BAM
Prints a diagram of the Block Availability Map.

Hardware Notes
1540/1541 Disk Drive Units
These drives contain a transformer to supply power, a printed circuit board contain
ing the ROM, RAM, and interface chips which hold the disk operating system, and a
drive unit, which is positioned away from the heat-generating components. Some
models have metal shielding over the printed circuit board to reduce radio frequency
emission. Both the shielding and the top half of the outer casing are easily removed
(for example, to exchange a 1540 ROM for a 1541 ROM or to change the device
number from 8). The design is similar to earlier Commodore disk drives, the 2031
single disk and 4040 double disk.

The device number can be set to any number from 8 to 11. At least four drives
can be daisychained together, so in principle, a four-drive system would be feasible.
Given the right hardware, a single VIC can also share a disk drive with other VICs.

The read/write head faces up, so the underside of the diskette is the active side.
Closing the door brings a pressure pad down on the head, keeping it in close contact
with the diskette. During read/write operations, the diskette is rotated by the spindle
motor at about 300 revolutions per minute, and centrifugal force gives the diskette
some rigidity. The head itself is mounted on rails and can move, along with the
pressure pad, a maximum of about one inch. Movement is handled by a stepper
motor. Each step moves the head about 1/30 inch.

These drives use 35 tracks. The actual magnetized zones are about 1/60 inch
wide; the clutch mechanism which grips the diskette has to position it within that
tolerance.

Head alignment problems sometimes occur, in which diskettes work on one disk
drive but not on another, because the heads aren't quite in the same place relative to
the disk center. Special alignment diskettes, having very slightly elliptical tracks, al
Iowa disk drive head to be accurately repositioned. Realigning disk drive heads is
specialized work.

Diskettes
VIC disk drives use 5%-inch diskettes ("floppy disks"). Any good-quality, single
sided, single-density diskettes are fine. Soft-sectored diskettes are generally used, but
hard-sectored disks will also work well, as their index hole isn't used by the drives.

Write protection is readily implemented with 1540/1541 drives. An adhesive tab
over the notch prevents writing to the disk. Attempting to write to such a disk re
turns 26 WRITE PROTECT ON.

Diskettes are inserted label up, read-write slot foremost. Diskette labels are
deliberately positioned away from the slot, to reduce the chance of fingerprint dam
age and to allow the label to be read when the diskette is in its dust cover. Writing

515

Using the Commodore Disk Drive

Figure 15-3. A Typical DiskeHe

Stress-Reducing Notches
-It ~

Read-Write Directory Track @Trackl

Slot ~ Track 35

Index 0
Hole ~

Write
~Protect

Notch

Label~

on the label with a sharp implement-for instance, a ballpoint pen-may damage
the diskette surface below. Always write on the label before putting it on the disk.

It is good practice to open the drive door when drives are turned on or off.
There's some small chance of magnetic "glitch" damage to a diskette that's left in a
drive, with the door closed, when power is turned on.

It's easy to modify diskettes so both sides are usable. The index hole isn't a fac
tor, so all that's needed is to cut a notch in the diskette opposite the write-protect
notch. The diskette then works on either side. However, that may not be desirable.
The standard argument against this practice is that small particles of dust, smoke,
and other debris, which become trapped by the self-cleaning wiper which lines the
diskette, may be dislodged when the direction of rotation is reversed. In addition,
some single-sided diskettes have defects on the back side. Nonetheless, quite a num
ber of people do this successfully.

Diskette life is typically quoted as several million passes per track. At 300 rpm
this represents about a week's continual running.

Track and Sector Storage System
All 1540/1541 units use 35 tracks, defined by the head positions. Track 18 is exactly
midway between the edge and center of the disk, and it stores all the directory infor
mation, thus minimizing delays due to head movement. When a disk is formatted,
the head moves to the outer track (track 1) end stop, then counts in one track at a
time to 35. The same head movement to track 1 (making a rapid clicking sound)
happens whenever there is a read error. This occurs because the head counts in until
it arrives at its correct track, then tries reading again in case its position was wrong
before.

516

Using the Commodore Disk Drive

A track is not a solid block of data. Instead, it is broken into 256-byte blocks
called sectors. Any program or file is stored in sectors, and the first two bytes are al
ways pointers to the next sector.

Sector storage tolerates some, but not much, variation in disk rotation speed. If
the disk spins too fast, sectors will overlap and data will be lost. Typically, there's at
least a one-second delay between starting the disk motor and writing or reading
data. For this reason, the motor is left on for some time after an access, so if another
access follows shortly, no time is lost waiting for the speed to build up.

Commodore's system uses more sectors on the outer tracks than the inner. This
takes advantage of the fact that the outer circumference is greater than the inner, in
the same way that other recording media usually give better resolution at the edge
than near the middle. However, because the angular speed is constant, outer tracks
must be written and read more rapidly than inner tracks, so hard sectoring is
impossible.

Sectors are not written in sequence around the disk. If an entire track is filled
with data from a single file or program, it's more efficient to chain sectors which are
far apart on the disk, so that only half a revolution (rather than a whole revolution)
is lost between reads or writes. A typical sequence on the outer tracks is 8, 18, 6, 16,
4, 14, 2, 12, 0, 10, 20, 9, 19, 7, 17, 5, 15, 3, 13, 1, and finally II.

Sectors are stored with a short header, followed by data. Each part begins with a
so-called "sync field" and ends with a checksum. The header contains 08, a two
byte ID, and the track and sector number. The data is preceded by 07. Messages
20-29 from the disk may indicate that some aspect of this elaborate error-checking
system has failed. For example, if a magnet is held near the edge of a diskette, the
outer sectors become unreadable. This technique can be used to protect disks from
being copied.

The conversion of bytes into magnetic patterns on disk, and vice versa, is an an
alog hardware function, relying on crossover detectors, amplifiers, and pulse shapers.

Changing the Disk Device Number from 8
Device number 8 is set by hardware, and many programs using disk assume drive 8.
Therefore, it is generally better to use software to alter the device number, even
though the process has to be repeated whenever the drive is turned off. The excep
tional case, where hardware change is desirable, occurs with a fairly permanent
setup with two drives. In such a case, the change can be made permanent, or the
disk unit can be fitted with a switch to select its device number.

Software conversion is easily done using CHANGE DISK ADDR on the demo
disk. This program, which works with any Commodore disk, writes the new device
number into two disk RAM locations. Commodore disks vary a great deal internally,
so the program also has to work out the type of disk drive. With VIC, use OPEN
15,8, 15:PRINT#15,"M-W"CHR$(119)CHR$(0)CHR$(2)CHR$(32 + 9)CHR$(64 + 9)
:CLOSE 15 to convert from 8 to 9; the analogous statement will work for any other
conversions within the range 8 to 14.

When two drives are used, they must be turned on separately. Typically one
drive is turned on, then the VIC is turned on, then the live disk's number is changed
and the second drive is turned on. In that way the system isn't confused. LOAD
"$",8 and LOAD "$",9 load directories from the two drives.

517

Using the Commodore Disk Drive

"$",8 and LOAD "$",9 load directories from the two drives.
Hardware conversion involves cutting jumpers. These jumpers are not wires, but

round spots of solder on the circuit board separated into halves, with a thin strand of
solder connecting each half. You cut the jumpers by scraping away, or breaking, the
connecting strand with a sharp knife.

The actual board layouts vary. The jumpers in the 1540 and early 1541 disk
drives are located on the left side of the circuit board as you face the front of the
disk drive. On the newer 1541 drives, the jumpers are in the center of the board.
The early 1541 drives can be identified by their white cases, while the newer 1541
drives have brown cases. In both versions, jumper number 1 is nearest the front, and
just behind it is jumper 2. Figure 15-4 shows the layout.

Figure 15-4. Changing Drive Numbers by Hardware Modification

CD Jump'"

00 Jump"!

Front of drive

Cutting only jumper 1 changes the device number to 9. Cutting only jumper 2
changes it to 10. Cutting both jumpers changes it to 11.

Disk ROM
Commodore disk drives have internal ROM from $COOO to $FFFF and RAM from $0
to $7FF. It's easy to disassemble disk ROM, because disk memory can be read with
the following command:

PRINT#15,"M-R"CHR$(low) CHR$(high):GET#15,X$:X = ASC(X$+ CHR$(O))

That assumes, of course, that OPEN 15,8,15 has been performed. The value X is
equivalent to PEEKing the disk's memory. The low and high bytes of the location
should be used in place of low and high. You can disassemble the ROM by replacing
PEEK in a BASIC disassembler with this routine.

An alternative approach would be to look at the source code of the disk system,
but Commodore is not likely to release this.

Disk ROM has the conventional 6502 features, including NMI, Reset, and IRQ
vectors at the top of memory. It also has tables of error messages and tables of com
mands, some of which are undocumented.

518

Using the Commodore Disk Drive

Minimizing Errors
To minimize errors, the general rules are simple: Keep the disk drive free of dust,
smoke, and other contaminants; store and treat the diskettes properly; keep copies of
programs and data; and so on. It's worth having a standby system if your VIC is
used for any serious purpose.

Hard errors are rare; one bad bit in 1011 is typical of quoted figures. Errors
caused by unclosed files are far more likely. With some systems, programs to vali
date data may be used. Such systems can be written to minimize disk use, favoring
RAM where possible to minimize the probability of a mistake.

Disk Storage of Data
Commodore disks have 35 tracks. Of those tracks, 17 have 21 sectors each, 7 have
19 sectors each, 6 have 18 sectors each, and 5 have 17 sectors each. That gives a
total of 683 sectors. Track 18 holds the directory information. Subtracting 19 for the
directory gives 664 blocks free, as reported by the directory for an empty disk. 664
blocks of 254 bytes (excluding the track and sector pointers) gives 168,656 usable
bytes. Relative files, as you've seen, require slightly more space; an entire diskette
filled with a single relative file can occupy 658 blocks (167,132 bytes at most). Table
15-2 shows how the sectors are arranged on a disk.

Table 15-2. The Number of Sectors Per Track

Track Number Sectors

1-17 0-20
18-24 0-18
25-30 0-17
31-35 0-16

The directory track, track 18, is diagrammed in Figure 15-5 and has 19 sectors.
Sector 0 holds the disk name, as well as a bitmap of every sector on the disk, show
ing whether the sector is used or not. Sectors 1-18 store file type, filename, and
pointers to the actual data. Each of these sectors can store eight filenames, giving a
maximum of 144 directory entries.

Figure 15-5. Track 18, the Directory Track

Sector 0

t
Disk Name
and BAM

Sectors 1 through 18

-E-- Directory Entries (up to 144) ~

519

Using the Commodore Disk Drive

Each time a file is written, the BAM (Block Availability Map) is updated, so the
system knows which sectors are free for subsequent recording. VIEW BAM on the
demo disk prints a diagram of this map. To see how this works, load DISPLAY T &S
and inspect track 18, sector O. Its layout is described in Table 15-3.

Table 15-3. Track 18, Sector 0 (BAM)

Byte Numbers Track 18, Sector 0 (Directory Track)

0,1 Pointer to directory entries-track 18, sector 1
2,3 Disk format A

4-143 BAM (Block Availability Map):
35 sets of 4 bytes each

144-159 Diskette Name (16 characters maximum)
162-163 Diskette ID
165-166 2A (version of disk operating system)

(Omitted bytes are SHIFT-spaces, $AO, or spaces, $20. Remember, DISPLAY T&S prints values in hex.)

BAM
Each of the 35 tracks is represented by four bytes in the BAM, as shown in
Table 15-4.

Table 15-4. BAM Organization
First Byte Second Byte Third Byte

Number of sectors Bits for sectors Bits for sectors
free in this track 7,6,5,4,3,2,1,0 15, 14, 13, 12, 11, 10, 9, 8

[From 0 to 211 [0 = used, l=free] [0 = used, 1 = free]

For example, the first track may appear as
04: 15 FF FF IF

Fourth Byte

Bits for sectors
X, X, X, 20, 19, 18, 17, 16

[0 = used or unavailable, 1 = free I

which means that all 21 sectors of track 1 are free. IF has bit pattern 0001 1111,
meaning sectors 16 through 20 are unused. VIEW BAM picks through and displays
these bit patterns. Note the way information is preferentially stored near the middle
track to minimize head movement time.

Directory Entries
Directory entries are fairly straightforward. Use DISPLAY T&S on track 18 sector 1;
you'll find it split into eight sets of 32 bytes each. Except for the first two bytes of
the sector, which link to the next directory entry, the interpretation is shown in
Table 15-5.

520

Using the Commodore Disk Drive

Table 15-5. Contents of a Directory Entry

BYTES Contents of a Directory Entry

0-1 Track and sector pointer in first entry. Otherwise unused.

2 File Type. $ 0= Scratched/Not yet used
$80 = DELeted
$81 = SEQuential file
$82 = PRG, program file
$83 = USR, user file
$84 = RELative file

$1-$4 signals an unclosed file. Such files are removed by COLLECT.
$80 is a scratched unclosed file, a type to be avoided.

3-4 Track and sector pointer to first block of file

5-20 Filename + shifted spaces ($AO characters)

21-22 Track and sector pointer to relative file's first side sector

23 Record size of relative file (i.e., parameter following L on opening file)

24-27 Unused

28-29 Replacement track and sector pointer for OPEN@

30-31 Low and high byte of no. of blocks in file, as shown on the directory

The first directory entry in track 18, sector 1 is as follows:

00: 12 04 82 11
04: 00 48 4F 57
08: 20 54 4F 20
DC: 55 53 45 AD

Track 18, sector 4 next entry. File is PRG. It starts track 17
Sector 0 Name is: HOW

TO
USE

10: AO AO AO AD Name padded with SHIFT-space characters to length 16
14: AD 00 00 00
18: 00 00 00 00
IC: 00 00 OD 00 Occupies 13 sectors

Relative files have slightly more detail than other file types, because of their in
dex system. A track and sector pointer points to the first (of a possible six) side sec
tor, which is linked like any other file and treated as a separate file by the operating
system. The record length parameter is also stored here. If you've forgotten it, this is
the place to look.

The side sectors have the structure shown in Table 15-6.
Up to 120 sectors can be stored in one of these blocks. The system calculates the

effect of the record it is asked to read or write, by multiplying record length by
record number, then calculates which sector the start of the record must appear in.
In the worst case, a new side sector has to be loaded, a track and sector looked up in
it, then finally the correct track and sector read. (If a record straddles two blocks, a
fourth disk movement occurs.)

521

Using the Commodore Disk Drive

Table 15-6. Side Sectors in Relative Files

Bytes Contents

0-1 Track and sector pointer to next side sector
2 Side sector number, 0-5
3 Record length of relative file
4-15 6 pairs of pointers to every side sector

16-255 120 pairs of pointers to consecutive sectors of data

Six side sectors can cover 720 blocks; this, of course, is enough for a file cover
ing the whole diskette. However, in this case an extra channel (for a total of three)
needs to be kept open within the disk: one for a side sector, one for a data sector,
and a third for the data itself. A sequential file needs only two, one for the current
sector and one for the correct data. VIC disk drives allow five channels, so two
sequential files, or one relative file, or one of each type, can be open at the same time.

File and Program Storage
DISPLAY T&S allows any file or program to be examined byte by byte. First, the
directory entry must be found in track 18. Bytes 3 and 4, immediately after the file
type indicator, show the track and sector of the first block, and DISPLAY T&S has
been modified from earlier versions to automatically read chained blocks, when
required.

Program files (type $82) can be either BASIC or ML dumps. The first two bytes
are the load address (for example 01 10 ($1001) for unexpanded VIC BASIC). BASIC
includes tokens, link addresses, and line numbers in coded form; though it looks
rather strange, the messages are legible. ML, however, generally needs disassembly
since it appears as a collection of seemingly random characters.

Relative files are stored like sequential files, with the addition of side sectors,
which are largely a list of track/sector combinations allotted to the relative file and
noted in BAM as allocated.

This may appear complex at first. However, DISPLAY T&S will allow you to ex
plore, and soon the system concepts will fall into place.

The Disk Directory
Both the entire disk directory track and the directory program can be read from
BASIC, and this section explores those and other aspects of the directory. The infor
mation here will help you examine or modify disk programs, files, or directory
entries by writing directly onto the disk.

What Is the Directory?
LOAD"$",8 doesn't load a conventional file. Instead, it processes the directory track,
taking the diskette name, ID and DOS version from sector 1, and taking file type,
filename, and file length from the directory entries in the sequence they are re
corded. Because of this processing, diskettes with many files are slower than fairly
empty diskettes. It is not possible to write to a file called $.

522

Using the Commodore Disk Drive

The number of blocks free is calculated from the individual directory entries. If
file storage has gone awry, the computed figure may include files which don't ap
pear in the directory; in such a case, validation is desirable. The blocks-free figure
sometimes differs from the total calculable from the BAM entries.

Extending the Simple Directory
The $ directory has its own pattern-matching rules.

LOAD U$:VIC*",8 lists all programs and files beginning with VIC.
LOAD "$:??ML *",8 lists all programs and files with ML at third and fourth positions.
LOAD "$:*=S",8 lists only sequential files.
LOAD "$:MUS*=P",8 lists only programs beginning MUS.
LOAD "$:NAME" lists only NAME's entry.

Reading the Directory Within BASIC
The directory can be read from within a BASIC program without overwriting the
program by using OPEN 1,8,0,"$". The zero channel is essential. GET #1 then
fetches two bytes (the LOAD address), then four bytes (link pointers and line num
bers) followed by a directory line and terminated by a null byte, and so on until a
link pointer of ° is found.

Program 15-8 shows how this works:

Program 15-8. Reading the Directory
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

1111 OPEN 1,8,0, "$":REM OPEN DIRECTORY AS FILE
:rem 209

20 GET#l,X$,X$:REM REJECT LOAD ADDRESS :rem 231
30 GET #l,X$,X$,X$,X$:REM REJECT LINK POINTER & LI

NE NUMBER :rem 120
40 IF ST THEN CLOSE l:END:REM STOP AT END OF FILE

:rem 6
50 GET #l,X$:IF X$='"' THEN PRINT:GOT030:REM NEW LI

NE WHEN NULL :rem 54
60 IF X$=CHR$(34} THEN Q=NOTQ:REM SET QUOTES FLAG

:rem 107
70 IF Q THEN PRINT X$; :REM PRINT FILENAME :rem 166
80 GOTO 50 :rem 6

Sorted Directory
Program 15-9 prints a directory in the usual format, except that the names are sorted
alphabetically. That makes it particularly useful if you have lots of programs. It can
be modified for use with a printer and can process any number of disks, one after
another.

523

Using the Commodore Disk Drive

Program 15-9. Sorted Directory
Refer to the "Automatic Proofreader" article (Appendix C! before typing in this program.

o DATA 32,115,0,133,97,169,128,133,98,32,115,0,240
,7,9,128,133,98,32,115 :rem 213

1 DATA 0,165,47,133,99,165,48,133,100,160,0,165,97
,209,99,208,7,200,165,98 :rem 79

2 DATA 209,99,240,20,24,160,2,177,99,101,99,72,200
,177,99,101,100,133 :rem 71

3 DATA 100,104,133,99,144,221,160,5,177,99,133,102
,200,177,99,133,101,208 :rem 3

4 DATA 2,198,102,198,101,24,165,99,105,7,133,99,16
5,100,105,0,133,100,165,101 :rem 192

5 DATA 208,2,198,102,198,101,208,4,165,102,240,18,
133,105,162,0,134,103,134 :rem 82

6 DATA 104,165,99,133,106,165,100,133,107,240,224,
240,114,24,165,106,105 :rem 198

7 DATA 3,133,106,165,107,105,0,133,107,230,103,208
,2,230,104,160,2,177,106 :rem 17

8 DATA 153,109,0,136,16,248,160,5,177,106,153,109,
0,136,192,2,208,246,170 :rem 7

9 DATA 56,229,109,144,2,166,109,160,{2 SPACES}5,23
2,200,202,208,8,165,112,197,109 :rem 169

10 DATA 144,10,176,34,177,113,209,110,240,238,16,2
6,160,2,185,112,0,145 :rem 142

11 DATA 106,136,16,248,160,5,185,106,0,145,106,136
,192,2,208,246,169,0,133 :rem 49

12 DATA 105,165,101,197,103,208,152,165,102,197,10
4,208,146,165,105,240,138,96 :rem 1

15 REM *** SORT DIRECTORY *** (SEE LINE 40000 FOR
{SPACE}OUTPUT){2 SPACES}*** :rem 227

20 POKE 56, PEEK(56)-1: CLR :rem 130
30 T = PEEK(55) + 256*PEEK(56) :rem 167
100 FOR J=T TO T+242: READ X: POKE J,X: NEXT

:rem 107
1000 PRINT "INSERT DISK: PRESS{5 SPACES}RETURN"

:rem 58
1002 GET X$: IF ASC(X$+CHR$(0»<>13 GOTO 1002

1004
1006
1008
1010

1012
1014
1100
1110
1120

524

:rem 19
OPEN 15,8,15,"10": OPEN 1,8,0,"$0"
PRINT "OK"

:rem 93
: rem 50
:rem 49 N=2: GOSUB 10000

N=32: GOSUB 10000:
010
CLOSE 1: DIM D$(D)

IF ST=0 THEN D=D+l: GO TO 1
:rem 191

T = PEEK(55) + 256*PEEK(56)
OPEN 1,8,0,"$0"

:rem 124
:rem 10

:rem 169
:rem 47

D$(0)=D$(0)+X$: NEXT
:rem 236

N=6: GOSUB 10000
FOR J=l TO 25: GET#l,X$:

Using the Commodore Disk Drive

2000 N=3: GOSUB 10000: K=K+1: GET#l,N1$: GET#l,N2$
: IF ST>0 GOTO 20000 :rem 24

2010 D$(K) = STR$(ASC(N1$+CHR$(0» + 256*ASC«N2$)
+CHR$(0») + " " :rem 21

2020 FOR J=l TO 27: GET#l,X$:rem 133
2030 D$(K)=D$(K)+X$: NEXT :rem 42
2040 GOTO 2000 :rem 193
10000 FOR J=l TO N: GET#l,X$: NEXT: RETURN :rem 42
20000 CLOSE 1: CLOSE 15 :rem 175
30000 SYST:D :rem 196
40000 OPEN 4,3: REM OR OPEN 4,4 TO DISPLAY TO PRIN

TER :rem 190
40010 FOR J=0 TO K-1: PRINT#4,"{10 SPACES}" D$(J):

NEXT :rem 233
40020 FOR J=l TO 10: PRINT#4: NEXT
40030 CLOSE 4
40040 CLR: GOTO 1000

Counting Blocks Free Within BASIC

:rem 48
:rem 161
:rem 13

Program 15-10 prints the number of blocks free, as reported by the directory.

Program 15-1 O. Number of Blocks Free
10 OPEN l,8,0,"$:U=U"
20 FOR J=l TO 35: GET #l,X$:NEXT
30 GET #1,Y$:CLOSE1
40 BF=256*ASC(Y$+CHR$(0»+ASC(X$+CHR$(0»
50 PRINTBF"BLOCKS FREE"

Reading BAM and the Directory Entries
The command OPEN 2,8,2,"$" (channel is nonzero) allows the BAM track and direc
tory entries to be read directly. In other words, the whole of track 18 is read as
though it were a file, and 254 characters (not including the track and sector num
bers) from each block can be read with GET#. This is a convenient way to look at
the directory's internal information.

Program 15-11. Reading BAM
100PEN15,8,15,"I"
20 OPEN 2,8,2,"$"
30 GET #2,X$,X$
40 FOR J=l TO 35:GET#2,A$,B$,C$,D$
50 PRINT J;ASC(A$+CHR$(0»;ASC(B$+CHR$(0»;ASC(C$+

CHR$(0»iASC(D$+CHR$(0»
60 NEXT:CLOSE 2:CLOSE15

Program 15-11 prints all 35 tracks of BAM information, arranged in sets of four,
preceded by the track number. For example, 35 17 255 255 1 means that track 35
has 17 free sectors, and all bits 0-16 are on. The number of free blocks can be cal-

525

Using the Commodore Disk Drive

culated from BAM; this number is usually the same as the directory's blocks-free
figure.

Knowing that, you can write a directory to use information from the directory
entries, for example, the first track and sector. Program 15-12 reads the directory
track and reports the load address of every PRG type file; this is often helpful if
you're trying to remember whether a program is BASIC or ML, or where a memory
dump belongs in RAM.

Program 15-12. Reading the Directory Track
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o DIM X$(30) :rem 58
10 OPEN 15,8,15,"1" :rem 168
20 OPEN 3,8,3, "#" :rem 29
30 OPEN 2,8,2,"$" :rem 29
40 FOR J=l TO 254: GET#2,X$: NEXT :rem 209
100 FOR J=l TO 8 :rem 11
110 FOR K=l TO 30: GET#2,X$(K): NEXT :rem 100
120 IF X$(1)<>CHR$(130) GOTO 200 :rem 75
130 FOR K=4 TO 19: PRINT X$(K);: NEXT :rem 215
140 PRINT#15,"Ul:";3;0;ASC(X$(2)+CHR$(0»;ASC(X$(3

) +CHR$ (0)) : rem 211
150 GET#3,X$,X$,L$,H$:rem 80
160 PRINT ASC(L$+CHR$(0» + 256*ASC(H$+CHR$(0»"

{LEFT}" :rem 125
200 IF J<8 THEN GET#2,X$,X$:rem 147
210 NEXT J :rem 28
220 IF ST=0 GOTO 100 :rem 1
300 CLOSE 2: CLOSE 3:CLOSE 15 :rem 52

Line 40 skips the BAM sector, and line 100 loops through each sector in track
18. That is necessary because, although most entries have 32 bytes, the first in each
block has only 30. Line 120 tests for PRG type. If this is found, its name is printed
(line 130) and its track and sector pointers are used to read the block holding the
start of the program. The command VI is explained in the next section. Line 150 re
jects the track and sector links but reads the low and high bytes of the start address.

Direct Access Commands
Direct access commands are roughly 20 commands that give the VIC some direct
control of the disk drive. There are three types of direct access commands: those that
read or write on individual diskette sectors, those that read disk drive memory or
store programs in disk's RAM, and those that jump to and run programs within the
disk drive memory (either in RAM or ROM). Most users need not bother with direct
access, except on rare occasions, since normal disk commands can do almost as
much and do it more easily. Moreover, there may be obscure bugs in these Iittle
used commands.

The most common uses of these commands are in programs like DISPLAY T&S
and VIEW BAM that rely on reading full 256-byte sectors. Disassembly of disk ROM

526

Using the Commodore Disk Drive

uses a memory-read command. Generally, the write commands (apart from sector
write) require some knowledge of the disk ROM; Commodore doesn't supply this, so
the commands are largely unusable. In any case, disk RAM is limited.

It is risky to use individual sectors to store data (unless they are linked in a USR
file) because validating the disk deallocates them in BAM and leaves them at risk of
being overwritten.

The U Commands
These commands, summarized in Table 15-7, work via channel 15. For example,
OPEN 15,8,15"U}" resets the drive by turning off the light, setting the device num
ber to 8, and generally behaving as though the disk were just turned on. Ul and U2
are versions of B-R and B-W; they operate correctly on entire sectors, including track
and sector numbers of links at the start. Thus, you should generally use Ul and U2
and not B-R and B-W.

Table 15-7. U Commands

Command Function

Ul or UA Block Read
U2 or UB Block Write
U3 or UC Jump to $0500
U4 or UD Jump to $0503
U5 or UE Jump to $0506
U6 or UF Jump to $0509
U7 or UG Jump to $050C
US or UH Jump to $050F
U9 or UI Jump to ($FFFA)

UI- Set 1541 for VIC
UI+ Set 1541 for 64

U: or UJ Jump to ($FFFC)

Block Commands
Block read and block write (unlike all other commands) need an extra channel in
which to store their data. OPEN 1,8,2,"#" opens a buffer, which BASIC refers to by
its channel number (2) and file number (1). An alternative system is typically OPEN
1,8,2,"#3" where, if the channel isn't available, error 70 (NO CHANNEL) is re
turned. You can use this to experiment with channels.

For this discussion, assume OPEN 15,8,15 has been entered. Remember: If you
are writing data, be sure to close these files so that the final buffer is written. The
syntax for block read is PRINT#15,"Ul"; channel;O;track;sector.

Program 15-13 is an example of how block read works. It follows a chain of sec
tors; try inputting track 18, sector 0 at the start. Note the use of two files, the com
mand channel to load sectors in line 40, and the file to input characters in line 50.
The program ends when a sector has a link set to track O.

527

Using the Commodore Disk Drive

Program 15-13. Using Block Read
10 OPEN 1,8,2,lt":OPEN 15,8,15
20 INPUT"STARTING T&S";T,S
30 PRINT "TRACK II T ", SECTOR"S
40 PRINTt15,"U1";2;0;T;S
50 GET#l,T$,S$:IF T$="" THEN CLOSE l:CLOSE 15:END
60 T=ASC(T$):S=ASC(S$+CHR$(0»:GOTO 30

Program 15-14 demonstrates block write. It reads, alters, and writes back the
first directory entry block, on track 18, sector 1. Note the use of block pointer, or B
P, in line 30, which is exactly analogous to the P parameter used with relative files.

Program 15-14. Using Block Write
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 OPEN 1,8,2,lt":OPEN 15,8,15 :rem 225
20 PRINTt15,IU1";2;0;18;1:REM READ TRACK 18, SECTO

R 1 :rem 155
30 PRINT#15,"B-PI ;2;2:REM ET POINTER TO POSITION 2

40 PRINT#1,CHR$(130+64);:REM SET PRG FILE
{SPACE}ON

50 PRINT#15,IU2";2;0;18;1:REM WRITE TRACK
R 1

60 CLOSE l:CLOSE 15:END

:rem 164
+ BIT 6

: rem 23
18,SECTO

:rem 14
:rem 52

This program assumes the directory has a PRG file first; by setting bit 6 to 1, the
file is locked and cannot be scratched. It appears as file type PRG<. Making line 30
PRINT#15,"B-P";2;34 selects the second file in the directory, and so on, adding 32
to the second parameter for each subsequent file. If line 20 is omitted, garbage in the
buffer gets written to the directory and corrupts it.

Another example is a diskette test program. DATA statements hold the highest
sector numbers (from 20 to 16) for all 35 tracks; a loop (FOR T= 1 TO 35:READ MS:
FOR S=O TO MS: write 255 character string and return: NEXT S: NEXT T) writes
the same data to every sector. A similar loop reads each sector back to check.

Block Execute
Block execute, or B-E, has syntax OPEN 15,8,15,"B-E"; CHANNEL; 0; TRACK; SEC
TOR, exactly like the two previous commands. It loads the requested sector into disk
memory, then jumps to the start of the same buffer, thus executing the ML program.
RTS or the equivalent returns to BASIC. This could be used as the basis of a diskette
copy protection device. Obviously, ML knowledge is necessary.

Memory Commands
Like the U commands, each of the following commands acts on disk memory rather
than on sectors.

B-A (Block Allocate). Block allocate sets a bit in BAM low, to show that a sector
is in use. Bit value 1 means it's free. Use the following form:

528

Using the Commodore Disk Drive

1000 PRINT#15,"B-A";0;T;S
1010 INPUT#15,E,E$,ET,ES
1020 IF E<>65 THEN END :REM T,S OK
1030 T=ET:S=ES:IF T=18 THEN T=19
1040 GOTO 1000

If block allocate fails (that is, if T and S in line 1000 are already used), error 65
NO BLOCK causes the program to calculate the next block, which is returned in
channel 15. In this way, BAM can accurately reflect blocks written to disk by U2.

B-F (Block Free). The block free command sets a bit in BAM high, correspond
ing to one sector. The syntax is identical to that for B-A. Obviously, the input mes
sage isn't needed.

B-P (Block Pointer). Block pointer, as you've seen on U2, sets the point within a
sector where read or write will start. Its syntax is PRINT#15,"B-P"; CHANNEL;
POSITION 1-255. For example, PRINT#15,"B-P; 2; 32*F-31, where F is 1 through
8 with the directory entries in track 18, can be used to read (or write to) any of the
eight file entries in any of the sectors.

M-E (Memory Execute). The memory execute command jumps to ML in disk,
exactly like B-E, except that no sector is loaded and the starting address can be any
where. Its syntax is PRINT #lS,"M-E"; CHR$(low byte); CHR$(high byte). The ML
can be ROM or written (with M-W) by the programmer.

M-R (Memory Read). This command sends an address to disk, and returns the
value at that location along channel 15. Its syntax is PRINT#15,"M-R"; CHR$(low
byte); CHR$(high byte): GET#15,M$.

To disassemble disk ROM, use a BASIC disassembler and add the following sub
routine, replacing X = PEEK(P) in the disassembler.
10000 PRINT#15,"M-R"iCHR$(P-256*INT(P /256»;CHR$(P /256)
10010 GET#15,X$:X = ASC(X$+ CHR$(O»:RETURN

M-W (Memory Write). Memory write puts data into disk RAM or interface
chips. Each M-W command can write 35 bytes at most. The syntax is PRINT#15,"M
W"; CHR$(low byte) CHR$(high byte) CHR$(length) X$, where X$ is a string of not
more than 35 CHR$ bytes and the other parameters are the starting address in RAM
and the number of bytes.

Machine Language Programming with Disks
LOAD and SAVE
BLOCK LOAD and SAVE are discussed in Chapter 6. These work from within a pro
gram without disturbing its sequence of operations.

A loader, in the sense of LOAD then RUN, is illustrated by the auto running pro
gram in the section on program files. It uses Kernal subroutines, as shown below:

LDA #1 iFILE NUMBER
LDX #8 ;DEVICE NUMBER
LDY #0 ;SECONDARY ADDRESS
JSR $FFBA ;SETLFS
LDA #LENGTH ;NAME LENGTH
LDX #LOW ;START OF NAME

529

Using the Commodore Disk Drive

LDY
JSR
LDA
STA
JSR
JMP

#HIGH
$FFBD
#0
$OA
$FFDS
START

;SETNAM

;LOAD/VERIFY FLAG 0
;LOAD

This is typically standard. Note that a name is necessary with disks, even if it's
only "*"; the autorunning program POKEs it in just after the ML.

SAVE is similar, except that JSR $FFDS is SAVE, and the start and end addresses
must be specified. The X and Y registers hold the low and high bytes of the final ad
dress + 1. The accumulator holds the zero page address of the start address. In addi
tion, the setup for the Kernal routine SETLFS is slightly different. The parameters for
SETLFS are summarized in Table 15-S.

Table 15-8. SETLFS Summary

LOAD "NAME",8 LOAD "NAME",8,1
A=Q A = 1
X=8 X = 8
Y=Q Y=Q

SAVE "NAME",8 SAVE "NAME",8,1
A=Q Secondary Address Irrelevant
X = 8
Y = 1

File Handling
OPEN and CLOSE can be done in ML, though it's often easier to OPEN files in
BASIC and save the hassle of setting up a name or command string in RAM.

As an example, consider the process of copying sequential or program files,
in order to change a program's LOAD address. That can be done in BASIC with
OPEN I,S,2 "ORIGINAL,P,R" and OPEN 2,S,3,"NEW,P,W" followed by GET#I,X$
:PRINT#2,X$; with any necessary alterations. However, the ML equivalent of GET#1
and PRINT# 1 is as follows:

LOOP LDX
JSR
JSR
PHA
LDY
LDX
JSR
PLA
JSR

530

#1
$FFC6
$FFCF

$90
#2

;OPEN FILE 1 FOR INPUT
;INPUT A BYTE (LIKE GET#)
;STORE IT
;LOAD ST

$FFC9 ;OPEN FILE 2 FOR OUTPUT
;RECOVER BYTE

$FFD2 ;OUTPUT IT (LIKE PRINT#)

Using the Commodore Disk Drive

Cpy #0
BEQ LOOP ;CONTINUE IF ST IS 0
LOA #1
JSR $FFC3 ;CLOSE 1
LOA #2
JSR $FFC3 ;CLOSE 2
JSR $FFCC ;BACK TO NORMAL
RTS ;RETURN

The demonstration uses CHKIN and CHKOUT (from the Kernal) to signal file num
bers, and CHRIN and CHROUT to get and print a character. CLOSE is easy to use,
as the example shows. CLRCHN ($FFCC) returns things to normal operation.

Program 15-15 gives another, shorter example. It is POKEd from BASIC; try it if
you're inexperienced in ML. It displays 256 bytes from an open file #1 on an un
expanded VIC-20. Try OPEN 1,8,2,"*,P,R": SYS 828 which will open the first file on
disk (assumed to be a program) and display 256 bytes in black. Further SYS 828
commands read further; the end is marked by RETURN characters, appearing as m.
Enter CLOSE 1 to finish. You can also use this technique to examine sequential files,
with OPEN 1,8,2,"filename"; SYS 828.

Program 15-15. ML File Reader
10 FOR J=828 TO 851: READ X: POKE J,x: NEXT
100 DATA 162,1,32,198,255,160,0,32,207,255
110 DATA 153,0,30,169,0,153,0,150,200,208
120 DATA 242,76,204,255

OPEN and CLOSE in ML
OPEN uses SETLFS to set the parameters typified by 1, 8, and 2 in OPEN
1,8,2"filename". Use the following:
LOA # File Number (e.g., #1)
LOX #8
LOY # Channel number (e.g., #2)

The Kernal SETNAM routine at $FFBD uses the name, or command string,
pointers, and length exactly like LOAD or SAVE. The Kernal OPEN routine is at
$FFCO.

The Kernal CLOSE routine is easier. The file number is stored in the accu
mulator, then JSR $FFC3 closes the file.

Channel 15 and ML
OPEN 15,8,15 is just a special case of OPEN. Messages from channel 15 consist of
ASCII numerals and the message separated by commas and terminated by return.
Thus, message 0 is this string:
48 48 44 32 79 75 44 48 48 44 48 48 13
o 0 0 K 0 0 0 0 RETURN

Thus, to check channel 15 from disk, open file 15, input two bytes, and check that
each is 48. If not, the message can be printed by inputting further characters and

531

Using the Commodore Disk Drive

outputting them, using $FFD2, in a loop until RETURN is received.
The following routine performs the equivalent of OPEN 15,8,15:

INPUT#15,E,E$,T,S: PRINT E,E$,T,S: CLOSE 15:

LDA #$OF
LDX #8
LDY #$OF
JSR $FFBA
LDA #0
JSR $FFBD
JSR $FFCO
LDX #$OF
JSR $FFC6

LOOP JSR $FFCF
CMP #$OD
BEQ EXIT
JSR $F282
BNE LOOP

EXIT LDA #$OF

iOPEN 15,8,15

iSET 15,8,15
iSET LENGTH OF NAME=O
iPOINTERS IRRELEVANT
iOPEN 15,8,15

iOPEN 15 FOR INPUT
iINPUT#15
iGET A BYTE
iEXIT IF RETURN

iPRINT TO SCREEN (OR FFD2)

iCLOSE 15

JSR $FFC3 iCLOSE 15
JSR $FFCC iFILES NORMAL
RTS

This routine can be used from BASIC or ML. In ML programming, as well as in
BASIC, it is often useful to keep file 15 open while the program runs. Use the seg
ment marked OPEN 15,8,15 to open. To test the error number, input two bytes using
the portion marked INPUT#15 and check that both equal $30 (decimal 48).

It's almost as easy to send a command to channel 15. Simply open the channel
for output (with $FFC9) and send bytes, finishing with RETURN. CWSE will not
work immediately after this; use JSR $FFCC or make the disk unlisten. For example,
LDA #$49, JSR $FFD2, LDA #$OD, JSR $FFD2, JSR $FFCC initializes the disk, if
channel 15 is OPEN for output, by sending I then RETURN (exactly like
PRINT#15,"I").

532

Chapter 16

The Games Port

This chapter explains the programming and use of devices that connect to the games
port, notably joysticks, paddles, and light pens. Useful ML programs are included to
help you write even more efficient programs.

Joysticks and the VIC-20
The VlC-20 has a single games or controller port, with the almost universal D
connector. Except perhaps for the tape drive, joysticks are by far the most common
VIC accessory.

It is possible, and easy, to attach a second joystick, but little software can be ex
pected to exist for such a nonstandard device. An additional stick has to be fitted to
a different port, typically the user port, since there's no way to distinguish two sticks
connected to the same port.

The principle of joystick operation is simple. The stick itself is grounded;
moving it grounds sensors positioned up, down, left, or right. The fire button
grounds another wire. Thus, the cable running to the VIC contains six wires, one of
them grounded and the other five normally high but capable of being grounded (set
low) by the controller. All the VIC has to do is to test for one or more wires being
low.

Most joysticks are designed so that intermediate positions-for example, north
east or southwest-ground two wires at once. Therefore, the VIC may detect as
many as three wires being low simultaneously (two "direction" wires and the fire
button wire). Some combinations aren't normally possible, of course, like north with
south.

Internally, the most common arrangement is a ring connected to ground with
pressure-sensitive dimpled-metal switches which make contact with the ring when
the stick or button moves. Heavy-duty models use other arrangements-for example,
microswitches. Some models have two fire buttons, so they can be used in either
hand, and converting some types for left-hand operation isn't hard.

The life of joysticks tends to be short, often because the cable contains the thin
nest possible strands of wire which are prone to break just inside the casing. To test
a joystick, use one of the programs in this chapter to insure that all eight directions
can be found easily. Try the joystick with the program, and see if the response
seems satisfactory. Remember, though, that problems may stem from nothing more
exotic than a loose plug.

VIC programs generally are limited to one joystick. Two users or players can be
accommodated only if they take turns (or if one uses the keyboard), unless an extra
joystick is fitted. Paddles, which are sold in pairs, offer another possibility.

Programming Information
When programming joysticks, three locations need to be considered. They are shown
in Table 16-1.

535

The Games Port

Table 16-1. Relevant Locations for Joystick Programming

Bit#: 7 6 5 4 3 2 1 0

$911F (37151) Btn W 5 N

$9120 (37152) E

$9122 (37154)

Decimal
128 64 32 16 R 4 2 1 Value:

Reading $91lF (or $9111, which is identical) requires only a simple PEEK. Enter
FOR J=l TO 999: PRINT PEEK (37151): NEXT to watch the effect of the joystick.
Since 32+16+8+4=60, and since the bits are inverted, 60-(PEEK (37151) AND
60) looks more meaningful. Note that east has no effect.

To read east, note that the keyboard shares the port with the joystick. Bit 7 has
to be reconfigured for input, typically by POKE 37154,127. After PEEKing port B,
the keyboard can be returned to normal. The following line prints 128 when the
stick is east, northeast, or southeast: POKE 37154,127: PRINT 128-(PEEK (37152)
AND 128): POKE 37154,255.

BASIC is really too slow for such a test and will make the joystick seem un
responsive. In addition, the keyboard may do odd things. If location 37154 is not re
set to 255, for example, only odd numbers can be typed. In addition, moving the
joystick right while pressing 2 will simulate the STOP key. RUN/STOP-RESTORE
returns operation to normal.

BASIC Programs
Joysticks are easily incorporated into your programs. When only the four cardinal
points (N, E, S, W) are important, a routine like that shown in Program 16-1 will
work well. However, where all eight directions are important, the routine shown in
Program 16-2 will be more useful. As you see, ON-GOTO can help cut out a lot of
IF-THEN testing.

Program 16- 1. Testing for Four Directions
1000 P=PEEK(37151): IF (p AND 32)=0 THEN GOTO FIRE

BUTTON ROUTINE
1010 IF (p AND 16)=0 THEN GOTO WEST
1020 IF (p AND 8)=0 THEN GOTO SOUTH
1030 IF (p AND 4)=0 THEN GOTO NORTH
1040 POKE 37154,127: P=PEEK(37152):POKE 37154,255
1050 IF (P AND 128)=0 THEN GO TO EAST

Program 16-2. Testing for Eight Directions
1000 P=PEEK(37151): IF (p AND 32)=0 THEN GOTO FIRE

BUTTON ROUTINE
1010 P= P AND 28

536

The Games Port

1323 POKE 37154,127:PP=PEEK(37152) AND 128:POKE 37
154,255

1333 P=P/2+PP/128: REM W,S,N,E NOW IN BITS 3,2,1,0
1343 ON P GOTO "SW"NW"W",SE,S,NE,N,E,CENTER

As a final BASIC example, Program 16-3 is designed to work with a graphics
program using screen POKEs. North returns - 22, East 1, Southeast 23, and so on.
Adding one of these values to the screen position gives the new POKE address.

Program 16-3. USing the Joystick to Modify Screen POKEs
10003 POKE 37154,127: P=-((PEEK(37152) AND 128)=0)

: POKE 37154,255
10310 PP=PEEK(37151)
13023 P=P + ((pp AND 16)=0) - 22*((PP AND 8)=0) +

22*((PP AND 4)=0)
10030 RETURN

Machine Language Joystick Programs
ML is much faster than BASIC. Programs 16-4 and 16-5 both use ML but are dif
ferent in approach.

Program 16-4 uses a SYS call to read the joystick. Like RJOY with the Super
Expander, the result is stored and used by BASIC. It puts the result into $90, where
ST reads it. This is simpler than using a PEEK. IF (ST AND 16) tests for the fire but
ton; ON-COTO separates the directions, which are 1, 2, 4, and 8 for E, N, S, and W.

Program 16-4. Joystick Reading Via ST
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

20 REM **{2 SPACES}SYS 828 READS JOYSTICK INTO ST
{2 SPACES} ** : rem 79

30 REM **{2 SPACES}l=E, 2=N, 4=S, 8=W, 16=BUTTON
{3 SPACES}** :rem 31

40 REM **{2 SPACES}ADD FOR COMBINATIONS OF THESE
{3 SPACES}** :rem 52

50 FOR J=828 TO 857: READ X: POKE J,X: NEXT:rem 26
100 DATA 173,31,145,73,255,41,60,162,127,120

:rem 103
110 DATA 142,34,145,172,32,145,48,2,9,2,162:rem 55
120 DATA 255,142,34,145,88,74,133,144,96 :rem 187

As it stands, ST takes the current value, returning to zero whenever the stick is
released. Sometimes it's easier to retain a value until it's changed to a new one; you
can do this by replacing 133, 144, 96 in line 120 by 201, 0, 240, 2, 133, 144, 96, and
changing the upper limit in line 50 to 861.

The second routine, Program 16-5, is initialized by SYS 862, which alters the
interrupt vector so that ST is continuously reading the stick. No further SYS call is
required; just test ST whenever you need to know the joystick reading. Add 60
PRINT ST: COTO 60 to watch this in action. Again, if you wish to retain values in

537

The Games Port

ST (perhaps for a maze game where a direction is held unless altered) replace 234,
234, 234, 234 in line 120 with 201, 0, 240, 2.

Program 16-5. Continuous Joystick Reading Via 5T
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

20 REM ** SYS 862 STARTS INTERRUPT ROUTINE **
:rem 97

30 REM ** l=E 2=N 4=S 8=W 16=BUTTON: IN ST **
:rem 231

40 REM **{2 SPACES}ADD FOR COMBINATIONS OF THESE
{3 SPACES}** :rem 52

50 FOR J=828 TO 874: READ X: POKE J,X: NEXT:rem 25
100 DATA 173,31,145,73,255,41,60,162,127 :rem 168
110 DATA 142,34,145,172,32,145,48,2,9,2,162:rem 55
120 DATA 255,142,34,145,74,234,234,234,234 :rem 16
130 DATA 133,144,76,191,234,120,169,3,141 :rern 219
140 DATA 21,3,169,60,141,20,3,88,96 :rern 181

Both routines are designed to leave the keyboard working correctly, so keyboard
control is no problem with either GET or PEEK(197). In pure ML programs, param
eters need not be passed back to BASIC; instead you can set the carry flag only if
the button is pressed and use the accumulator to indicate direction. You can also add
optional keyboard control by looking at location $C5 for keypresses.

Hardware Notes
The controller socket has five pins on top and four underneath. These are numbered
1 to 5 and 6 to 9 in conventionalleft-to-right order. Joysticks use only pins 1 (up), 2
(down), 3 (left), 4 (right), 6 (fire button), and 8 (ground).

Adding a second joystick is quite easy. A 24-pin edge connector fitting the user
port has pins A, B, C, D, E, F, H, J, K, L, M, and N on the underside, reading left to
right while looking at the VIC. Pins A and N are ground; pins C through L are the
user port, wired to $9110 (37136).

If you PEEK this location, you can see that it is normally 255. However, ground
ing any pin C through L turns off a bit. Therefore, connecting the six wires from a
joystick (ground to pin A or N and the other five to pins C through L) gives a simple
PEEK-readable joystick connector which operates just like the game port joystick
connector. If N, 5, W, fire button, and E are connected to bits 2, 3, 4, 5, and 7 of the
port (pins E, F, H, J, and L), respectively, then ordinary BASIC PEEKs to read the
joystick can be directly converted, dropping the redundant POKEs of 127 and 255.

Paddles and the VIC-20
Game paddles are far less popular than joysticks, mainly because the simple up
down-Ieft-right joystick motions of a joystick are generally easier to use than the
rotational motion of paddles.

Commodore's paddle system consists of two separate hand-held paddles, each
with a knob and fire button, which plug together into one games port. Two people
can therefore use paddles to control the VIC-for example, in games like Omega

538

The Games Port

Race. The VIC reads the paddle position as a number value. Counterclockwise mo
tion increases the value read by VIC, while clockwise rotation causes the number to
decrease. It may be worth labeling the paddles; the X paddle is read by VIC chip
location $9008 (36872), and the Y paddle is read by $9009 (36873). The VIC chip's
registers are eight bits wide, so there's a potential resolution of 1 in 256, a useful
range.

Paddles are analog (not digital) devices, so, unlike joysticks, there could be more
compatibility problems between makes (and even between different models of the
same make) because of differences in resistance between the units. Here is how they
work. The games port has a 5-volt power supply at pin 7 (remember, looking at the
VIC, pins are 1 to 5, then 6 to 9, in the games port). This voltage goes through the
paddles; paddle output is connected to pin 5 (for one paddle) and to pin 9 (for the
other).

These pins communicate directly with the VIC chip registers for Y and X,
respectively. Each register performs an analog-to-digital conversion of voltage into a
number ranging from 0 to 255. The higher the voltage, the smaller the number, so
with nothing plugged in, PEEKing these registers shows a value of 255. In other
words, the registers measure the resistance of each paddle. The paddles contain a
simple potentiometer (a variable resistor) which is adjusted by turning the paddle
knob.

Paddles also have an additional resistor, so the 5-volt line isn't fed directly into
the VIC. It's simple to use the same principle with other resistances or potentiom
eters, but for safety keep a minimum resistance of several hundred ohms in the cir
cuit. VIC's registers are supposed to detect changes at about 1000 ohm steps, so
255K and more will read as 255 in the VIC chip.

Why have two analog-to-digital converters? This makes sense for applications
involving two-dimensional activities. For example, graphics tablets use electrical
resistance to estimate the left-right and up-down coordinates. The same principle ap
plies when using a mouse, which relies on an inverted trackball to produce two
outputs.

Paddles, like joysticks, are best read with machine language. First, though, it is
helpful to see how it's done in BASIC. To read paddle X, PEEK $9008 (36872) which
holds 0-255. To read paddle Y, PEEK $9009 (36783). The fire button on paddle X
turns off bit 4 of $911F (37151) when pressed. To read the fire button on paddle Y,
bit 7 of $9122 (37154) must first be set low, so you can read bit 7 of $9120 (37152),
which is turned off when the fire button is pressed.

Obviously, it is easy to read the paddle values using a line like 10 PRINT PEEK
(36872); PEEK (36873): GOTO 10. However, reading the buttons is more trouble.
Reading paddle buttons leads to interaction with the keyboard, just as with the joy
stick. If only one button is needed, use paddle X, which can be read with IF (PEEK
(37151) AND 16) = 0 THEN GOTO FIRE BUTTON ROUTINE.

To read and display all the features, use Program 16-6. It shows the fire button
as 0 (off) or 1 (on) and also shows the value of the paddles.

539

The Games Port

Program 16-6. Reading Paddles with BASIC
Refer to the "Automatic Proofreader" article (Appelldix C! before typing ill this program.

1 PRINT "{ CLR}" : rem 149
10 PRINT "{HOME}" : rem 69
20 PRINT "X"; 1-(PEEK(37151) AND 16)/16; PEEK(3687

2)" {LEFT}{ 2 SPACES}" : rem 88
30 PRINT "Y"; : rem 200
40 POKE 37154,127: PRINT 1 - (PEEK(37152) AND 128)

/128;: POKE 37154,255 :rem 243
50 PRINT PEEK (36873) " {LEFT}{ 2 SPACES}" : rem 84
60 GET X$: IF X$="" GO TO 10 :rem 34

Program 16-6 also lets you investigate the paddles' accuracy. The values can
change quite rapidly; a complete twist of a paddle takes about 1/12 second. Extreme
values are generally least accurate; there is a lot of play. There's also "cross talk" be
tween the two paddles, probably caused by the 5-volt supply being in common. In
other words, when one paddle has a very low reading, the other paddle returns a
lower reading even though it is untouched. If this is a problem, low values could be
made out of range, so a player using them could lose a turn or whatever. Another
possibility is to apply a correction, as shown in a subsequent program.

Commodore paddles don't use high-precision potentiometers, so the resolution
is limited by the construction of the potentiometer. These paddles use so-called
wire-wound potentiometers, in which a length of resistance wire is wrapped
around a circular form and then tapped by a rotating arm, and the resistance de
pends on the point at which the coil of resistance wire is tapped. As a result, the
resistance increases (or decreases) in a series of tiny steps, and you may find that
certain values (which correspond to resistances falling between the taps) can't be
read.

Another potential problem is that the inherent vagueness of analog-to-digital
conversion returns occasional out-of-step series of data. One way around this is to
smooth the values. An ML loop to simply read the value is not a very good ap
proach; a better one is either to average the last few readings or to use a continuous
averaging technique to smooth the readings, taking readings at each interrupt.

ML can do this much better than BASIC. The following ML routine, Program
16-7, is fairly sophisticated; it compensates for low values in the other channel and
also applies smoothing (by combining 3/4 of the previous reading and 1/4 of the
present reading). This introduces some damping; if it's too much, just increase the
interrupt (IRQ) rate. Note that individual paddles may give slightly different results.

Program 16-7. Reading Paddles with ML
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

2 REM **{4 SPACES}AFTER SYS 828, MODIFIED VALUES A
RE{2 SPACES}STORED IN 253 AND 254 ** :rem 86

3 REM **{4 SPACES}AND ST STORES BOTH FIREBUTTONS
{6 SPACES}** :rem 155

10 FOR J=828 TO 929: READ X: POKE J,X: NEXT:rem 22

540

The Games Port

100 DATA 120,169,3,141,21,3,169,73,141,20,3,88,96,
174,8,144 :rem 82

101 DATA 172,9,144,138,192,1,240,3,176,14,36,74,74
,74,74,74 :rem 97

102 DATA 56,109,8,144,144,2,169,255,56,101,253,106
,133,253 :rem 37

103 DATA 152,224,1,240,3,176,14,36,74,74,74,74,74,
56,109,9 :rem 45

104 DATA 144,144,2,169,255,56,101,254,106,133,254,
173,31,145 :rem 133

105 DATA 73,255,41,16,162,127,142,34,145,172,32,14
5,48,2,9 :rem 37

106 DATA 128,162,255,142,34,145,133,144,76,191,234
:rem 162

Use this program by replacing $9008 and $9009 by $FD (253) and $FE (254).
Generally, these PEEK values are similar but show less cross talk and less variability.
The fire buttons are both put into ST. For consistency, bit 4 or bit 7 is set to 1 when
button X or Y is pressed, so test with IF (ST AND 16)=16 or IF (ST AND-128)
=-128.

Light Pens
A light pen is a pen-sized device, fitted with a cable, which plugs into the game
port. Its internal electronics are more complex than those in joysticks or paddles. The
tip of the pen is fitted with a small light-sensitive component, usually a phototransis
tor, which allows current to pass only when the sensor is exposed to light.

VIC light pens use the 5-volt and ground lines, plus a line into the VIC chip.
When this line detects a drop in voltage, two registers in VIC are frozen, or latched,
and remain unaltered until there's another drop. Obviously, since the TV phosphors
are lit once then decay slowly, the light pen must detect (and the voltage drop must
correspond to) a sudden increase in lighting.

The two registers hold the horizontal and vertical positions of the pen position,
or rather the position inferred from the voltage change.

The August 1982 issue of COMPUTE! contains an article outlining home
construction of a light pen. If you decide to build your own, remember that loose
mounting can cause problems.

Using a Light Pen with the VIC
Whenever a range of alternatives is to be selected, particularly if the values are not
alphanumeric, a light pen is potentially useful. Selecting alternative answers to
multiple-choice problems and selecting options from a menu are obvious examples;
so are board games (for example, chess) where light pen input is easier than key
board input. Graphics design is commercially an important application, though VIC's
fairly low resolution rules this out on any great scale. Numbers can be input with a
fairly large numerical 0-9 "pad" on the screen. As you'll see, a light pen can be used
to sketch on the screen and give some idea of the final appearance of different color
combinations.

But light pens have a few disadvantages, too, generally due to the limited

541

The Games Port

accuracy of the pens and the limitations of the computer. For example, the thick
glass at the front of the TV tube reduces definition. In addition, unless the pen has
an on/off switch, false readings can occur as the pen is moved around near the
screen.

There are physical aspects too. It may be undesirable to sit right next to the
screen, and tapping the screen with the pen may not be such a good idea. The cable
length from VIC to the pen may be a problem, and the user may need to return to
the keyboard for some operations.

Another difficulty, inherent in VIC's detection, is that some colors (black and
generally red) cannot trigger the pen. That puts some limitations on color plotting.

Even so, it's generally possible to program around some of these difficulties by
allowing reinput if a wrong value is accidentally read in.

Light Pen Programming
Location $9006 (36870) is the horizontal position register, and $9007 (36871) is the
vertical position register. Both are PEEKed (POKEing has no effect); it's as simple as
that. So 10 PRINT" {CLR}" PEEK (36870); PEEK (36871): GOTO 10 gives a legible
output of both registers. As you move the pen down, one reading increases; as you
move it to the right, the other reading increases.

An ordinary 22 row by 23 column screen returns a horizontal range of values
from about 29 to 117, and a vertical range of roughly 24 to 116, from the edge of the
display area. These figures need to be converted into values from 0 to 21 and from 0
to 22, respectively, or perhaps from 0 to 43 and from 0 to 45 if double-density plot
ting is being used.

Resolution is to two dots. There are 22*8=176 dots across, and 23*8=184
down. It's therefore quite easy to convert light pen readings to screen character
positions. Just subtract 29 then divide by 4 to get the horizontal position, and sub
tract 24 and divide by 4 for vertical. These calculations are quite easy in machine
language, although some light pen demonstration programs written in BASIC are
painfully slow.

How reliable are the readings? The interrupt lets you read the pen 60 times a
second; you can hold the pen still and watch for variations. The readings will vary
within 2 or 3, so this removes any real chance of serious hi-res work. However, any
pen should be accurate within normal VIC screen characters.

BASIC Programming
Program 16-8 is a subroutine that reads the light pen registers and converts them
into CH%, the PEEK value of the screen location at which the pen points. As an
example, if a menu has reversed numerals from 1 to 5, which only appear in one
place on the screen, the subroutine can check which is selected; if none, the program
can go back and retry.

542

The Games Port

Program 16-8. BASIC Light Pen Subroutine
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

3 REM ** EXAMPLE: GOSUB 10000: IF CH%=177 **

4 REM ** TO TEST FOR REVERSE 1 **
10000 H%=PEEK(36870): V%=PEEK(36871)
10010 SC%=256*PEEK(648)
10020 IF H%<29 THEN H%=29
10030 IF V%<24 THEN V%=24
10040 IF H%>117 THEN H%=117
10050 IF V%>116 THEN V%=116
10060 H%=(H%-29)/4: V%=(V%-24)/4
10070 CH%=PEEK(SC% + H% + 22*V%)
10080 RETURN

:rem 203
:rem 215
:rem 138
:rem 201
:rem 218
:rem 237

:rem 58
:rem 85
:rem 14

:rem 226
:rem 217

Integer variables have been used for two reasons. First, if the main program uses
normal variables, there's no possible conflict; second, the vertical reading must be
converted to an integer before multiplying by 22.

The subroutine is easy to modify, if for example your pen gives slightly different
readings at the display area edge. It's also easy to use it to plot characters-reversed
square (160) could be useful-by POKEing the screen RAM position, CH%, with 160
or whatever and POKEing the color RAM at the same time.

Machine Language Programming
Mixed BASIC and ML is far faster than BASIC, because all the operations of check
ing limits, subtracting, dividing, and so on can be handled in very few ML
commands.

Program 16-9 is a double-density (44 X 46) plotter that uses the ML routine
from Chapter 12 to plot small squares of any color on VIC's screen. Line 700 is the
SYS call to the ML routine; this value works with the unexpanded VIC, with the ML
in the top of memory. If you wish, add DATA statements and POKEs to this pro
gram for a single combined program. The resolution of the resulting sketchy graphics
is about the limit for even a good light pen.

Color keys 1-8 change the plotting color, function key f1 alters the background
color, f3 changes the border color, f5 stops plotting, and f7 enables plotting.

Program 16-9. Double-Density Light Pen Plotter
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

8 REM * MUST HAVE CHAPTER 12'S 44-BY-46 DOUBLE- *
:rem 112

9 REM * DENSITY PLOTTING ML ROUTINE IN PLACE *

100 PRINT" {CLR}"
500 H=PEEK(36870): V=PEEK(36871)
510 IF H<29 THEN H=29

:rem 189
:rem 245
:rem 228

:rem 51

543

The Games Port

520 IF V<24 THEN V=24 :rem 70
530 IF H>117 THEN H=117 :REM AVOIDS WRAP ROUND

:rem 57
540 IF V>116 THEN V=116 :REM AND OUT-OF-RANGE ERRO

RS : rem 208
550 H=(H-29)/2 :REM DIVIDE BY 2, NOT 4, AS PLOTTIN

G :rem 211
560 V=(V-24)/2 :REM USES 4 DOTS BY 4 :rem 100
570 V=46-V :REM DOUBLE-DENSITY PLOT STARTS AT BOTT

OM LEFT :rem 247
600 GET X$:rem 242
610 IF X$>10" AND X$<19" THEN COLOUR=ASC(X$)-49

:rem 218
620 IF X$=CHR$(133) THEN POKE 36879, (PEEK(36879) +

16) AND 255 : rem 61
630 IF X$=CHR$(134) THEN POKE 36879, «PEEK(36879)

(SPACE}AND 247) + 1) OR 8 :rem 52
640 IF X$=CHR$(135) THEN GET Y$: IF Y$<>CHR$(136)

{SPACE}THEN 640 :rem 206
700 SYS 7505,H,V,1,COLOUR :rem 186
710 GOTO 500 :rem 102

As you've seen, it's easy to POKE characters to the screen at the light pen's
position. ML subroutines can accelerate the process. First, you can use a program
where a SYS call, say SYS 828, returns the H and V positions from 0 to 21 and from
o to 22 in locations 253 and 254 and checks for (and ignores) out-of-range values.
Program 16-10 can be used with SYS828: H=PEEK(253): V=PEEK(254) to speed up
BASIC programs.

Program 16- 1 O. An ML Light Pen Reader
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 FOR J=828 TO 862:READ X: POKE J,X: NEXT :rem 18
100 DATA 56,173,6,144,233,29,144,26,201,88,176,22,

170 :rem 49
110 DATA 56,173,7,144,233,24,144,13,201,92,176,9,7

4 :rem 205
120 DATA 74,133,254,138,74,74,133,253,96 :rem 188

Finally, you can combine ML with the routine given in Program 16-11 to plot
standard-sized characters. For example, it will let you plot colored blobs at will on
the screen (POKE 81) and then convert them to reverse spaces (POKE 160). In this
way any color (even black) can be plotted, and the resulting screen appearance can
be assessed.

Program 16-11. ML Plotting with a Light Pen
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 FOR J=828 TO 929: READ X: POKE J,X: NEXT:rem 22
100 DATA 56,173,6,144,233,29,144,93,201,88,176

:rem 225

544

The Games Port

110 DATA 89,170,56,173,7,144,233,24,144,80,201
:rem 213

120 DATA 92,176,76,74,74,133,254,138,74,74,133,253
:rem 178

130 DATA 173,172,3,240,62,165,254,10,101 :rem 158
140 DATA 254,10,10,56,229,254,10,133,251,169

:rem 107
150 DATA 0,144,2,169,1,133,252,24,165,253,101

:rem 146
160 DATA 251,133,251,169,0,101,252,133,252,160

:rem 198
170 DATA 0,24,165,252,109,136,2,133,252,173,173

:rem 1
180 DATA 3,145,251,165,252,41,3,9,148,133,252

:rem 163
190 DATA 173,174,3,145,251,96 :rem 155

The routine uses three locations. Location 940 is on/off; POKE it with 0 to turn
the pen off and with 1 to turn the pen on. Location 941 holds the character, and
location 942 holds the color.

Note that the calculation part of the program is added on the end of the pre
vious program which reads the pen. You can test the plotting portion with POKE
940,1: POKE 941,160: POKE 942,2: POKE 253,9: POKE 254,9: SYS862, which will
plot a red square in position 9,9 on the screen. This works for any memory
configuration. It multiplies V by 22, adds H, and adds the current screen position;
then it POKEs the character, finds the color RAM position, and POKEs that. For use
with the light pen, simply use SYS 828 in a loop.

The Games Port: Hardware
Figure 16-1 diagrams the nine pins of the VIC games port. The diagram is drawn as
if you are looking at the VIC.

Figure 16-1. The VIC Games Port

Joy W Joy E
or or

Paddle Y Paddle X
Joy N Joy S Button Button Paddle Y

0 0 0 0 0
1 2 3 4 5

6 7 8 9
0 0 0 0

Light Pen +5V GND Paddle X
or

Joy Button

545

The Games Port

A conventional joystick cannot be used at the same time as paddles (unless the
paddle buttons aren't used) or with a light pen (unless the joystick button isn't used).
However, a light pen and paddles can be used together. The user port's pins 1, 2, 4,
5, 6, and 7 duplicate pins 8, 7, 1, 2, 3, and 6 of the games port, so for some experi
ments an edge connector in the user port can replace the games port. However,
neither potentiometer nor joystick east/paddle Y button connects to the user port.

Graphics Tablets
These analog devices are programmed like paddles. They mayor may not have a
button; when they do, it too is programmed like one of the paddle buttons. Gen
erally such devices are used either to move characters on the screen or to select from
a menu. A tablet can have a preprinted form laid over it, with boxes selectable by
the stylus (and large enough to be distinguished without much chance of error). Pro
grams for these devices use subroutines analogous to those used with light pens,
allowing for the existence of both vertical and horizontal components.

546

Chapter 17

Major Peripherals

This chapter covers printers, plotters, modems, and VIC's interfaces. Simple program
examples are included for quick reference. VIC's serial and RS-232 interfaces are
covered in the last section, which is primarily concerned with software.

Printers

Simple Commands
Commodore printers designed for the VIC plug into the serial port, the round port at
the back of VIC next to the video output. At the simplest level, printers are con
trolled with OPEN 4,4 (which opens file number four to the printer),
PRINT#4,"HELLO" (which prints a message to file four), and CLOSE 4 (which
closes the file). Any number of PRINT#4 statements can be issued. PRINT state
ments, which send output to the screen, can also be mixed in.

The VIC has no LIST#4 statement. To LIST programs to the printer, use OPEN
4,4: CMD 4 (which directs output to file four), LIST, and PRINT#4: CLOSE 4 (which
closes the file). As you'll see, PRINT#4 is needed to close the file properly. It's not
necessarily important to close the file to a printer-nothing disastrous will happen if
you don't-but if you leave it open some output is liable to appear on the printer
rather than on the screen.

With VICMON, all output can be sent to a printer with OPEN 4,4: CMD 4: SYS
6*4096. Then enter M 1000 1200, for example, and output for the desired memory
will be made to the printer. The commands have to be typed in blind, since they
don't echo to the screen, but this isn't a big problem. Enter X, then CLOSE 4 and
POKE 43,1, to return to BASIC.

Non-Commodore Printers
For the most-used applications, many non-Commodore printers use commands
identical to those for CBM printers. The exceptions are printers which use the RS-232
port (that is, which plug into the user port at the back left of the VIC, usually with
an RS-232 converter cartridge). Any RS-232 device has device number 2, not 4.

To use such a device, the following sequence is typical: OPEN 2,2,0,CHR$(6) (to
open file number 2 with baud rate 300), then PRINT#2, "HELLO" and then CLOSE
2 (to close the file). CMD 2: LIST will list to such a printer. See the notes later in this
chapter for more on RS-232 printers, which may not always work with VIC.

PRINT#
PRINT# statements are exactly similar to ordinary PRINT statements, but watch out
for the distinction between the carriage return character, CHR$(13), and the linefeed
character, CHR$(10), which advances the paper in the printer. CBM printers are de
signed to treat PRINT# followed by a semicolon as an instruction to remain on the
same line. PRINT# followed by a colon or end-of-line is treated as a combined car
riage return and linefeed, so PRINT# behaves just like PRINT to the screen. Not all
printers have an automatic linefeed; if your non-CBM printer overprints lines on top

549

Major Peripherals

of each other, use a file number of 128 and up (OPEN 128,4 for example) with
PRINT#128,"HELLO" to cause the VIC to output the linefeed.

Control characters to the printer (to print reversed text, lowercase, and so on)
are sent as special characters which the printer recognizes, typically as PRINT#4,
CHR$(27) or as PRINT#4,A$ (where A$ is a string of CHR$ values). Printer pro
grams are liable to contain a certain number of PRINT# statements which are only
meaningful with reference to the printer in use. It is best to use special printer fea
tures sparingly, if at all, because any subsequent change of printer may wreck a
successful program's output.

Choosing and Using Printers
A printer is simply a device to convert a stream of bytes into text. Unlike other CBM
devices, non-CBM printers can often substitute for Commodore equipment. This is
not likely to be worthwhile except where special print quality is not offered by Com
modore, or where a user has a printer already or doesn't want to be restricted to
CBM printers in future. In all these cases, some sort of interface (which may be quite
expensive) will be necessary, because neither of the VIC's printer ports is standard.

Printers are mainly used for word processing applications. But the VIC, without
40-column software or hardware, cannot realistically handle such assignments. Thus
VIC printers are used for program listings and for miscellaneous output, such as
labels, notes, calculation printouts, and short reports.

Commodore printers for the VIC include the old 1515, the newer 1525, and the
more versatile 1526. Their features are summarized in Table 17-1. All are designed
to be plug-compatible with both the VIC and the 64. They are made by Seikosha; all
CBM printers are made by other companies.

Table 17-1. Commodore Printers for the VIC

1515 1525 1526

Dot Resolution 7 up x 6 across 7x6 8x8 of Characters

Characters per Inch 12 10 11

Paper Widths (inches) Upto8 Up to 10 Up to 10

True Descenders No No Partly . ? ong, I, p, q, y.

Approx. Speed, 30 30 60 Characters per Sec.

Separation Between 2 dots 2 dots Programmable Lines

Programmable No No Yes Formatting of Output?

Programmable Top-of- No No Yes Form Feed?

Ribbon Type Cloth Cloth Carbon Film

550

Major Peripherals

Each of these printers has the complete range of ROM graphics, as might be ex
pected, although none gives an impression identical to the VIC's characters. The
1515's reversed characters, for example, lack the solid underline of the screen charac
ters and look a little ragged. In addition, lowercase letters like g are perched up in
the air. The printers have built-in ROM, to process incoming commands and store
graphics patterns, as well as RAM, to act as a buffer, storing data while the printer
deals with it.

ROMs may be changed, if bugs come to light, without warning. There's no
guarantee that some models won't differ from others. CBM's printers haven't consis
tently used identical commands in the past, so, for preference, stick to commands
which seem firmly established. These are discussed further in the next section.

Each printer allows 80 normal-width characters to the line, but note that the
1515 used a smaller typeface, and also nonstandard 8-inch wide paper, in order to
do so. It is possible to use 81/2-inch paper on the 1515, by loosening the Perspex
paper guide, removing the lid and the guide, and taking out the bar so only the
paper holders touch the paper. However, the result is a very noisy printer.

The number of lines per page has to be counted with the earlier printers. A total
of (typically) 66 lines, including linefeeds, has to be arranged per page if neat output
is wanted. Six lines per inch is standard.

In addition to VIC graphics, these printers have a single user-defined character.
It is invariably demonstrated by the Commodore symbol in the manuals. Printing a
page of graphics therefore requires that the character be continually redefined.

Most software assumes device number 4 for a printer. However, that can be
switched to device 5, so two printers can be used simultaneously, with PRINT#4
selecting one printer and PRINT#5 selecting the other.

The printers have a self-test facility, a loop in internal ROM which outputs the
character set (except for reversed characters, which may cause overheating if used
excessively). They also have a switch-on sequence. The older 1515 was liable to jam
and appear completely dead when turned on, because the cam driving the ribbon
stuck. If this happens, lightly flick the pivoting part of the cam to loosen it.

Other CBM printers include the MPS 801 for either the VIC or the 64 and a se
ries of printers for the earlier PET ICBM machines. All PET ICBM printers require an
IEEE interface connected to VIC's normal printer port to operate. The 4022 (largely
an Epson printer) is the main PET ICBM printer, with a considerable number of fea
tures, including ten secondary addresses. A heavy-duty German printer and a very
slow modified Olympia daisywheel are sometimes encountered, too.

Other Printers
Most printers have an RS-232 or Centronics interface; the latter is a parallel interface
which uses multi wire ribbon-style cabling. IEEE interfaces are rarer; current loop
interfaces are another relatively uncommon type. All can be connected to the VIC,
with the VIC 1011A for RS-232, the VIC 1011B for current loop, proprietary
Centronics adapters for the user port, and IEEE adapters for the serial port.

Note that RS-232 printers without a RAM buffer may not work correctly, be
cause the VIC's handshaking has bugs. It is always advisable to test non-VIC
combinations of equipment before a purchase is made, particularly if packaged soft
ware is to be used. A reliable word processor, such as EasyScript, makes some allow-

551

Major Peripherals

ance for printer type, but other programs may not work correctly with all printers,
particularly with features like margin and tab.

Printer Types
Several different printers are now available for the VIC. They are described below.

Teletypes. These are old-fashioned terminals, uppercase only, which commu
nicate with computers via RS-232. In industry, they have been superseded by VDTs,
but they can sometimes be found very cheaply.

Modified typewriters. Many typewriter manufacturers are now including inter
face sockets on their machines, so daisywheel machines with this dual function are
likely to become popular. Golfball typewriters with interfaces are slower, though the
impression is often slightly better.

Thermal and spark printers. These printers make up characters from columns
of dots, like dot-matrix printers, but use methods that are less demanding mechani
cally. Thermal printers use short bursts of high temperature, while spark printers use
short bursts of high voltage. These printers are cheap, but the paper is relatively
costly and generally supplied in narrow rolls of limited usefulness.

Dot-matrix printers. These are by far the most widely used computer printers.
The print head has typically seven to nine wires arranged vertically, and each wire is
separately controlled by its own solenoid which drives the wire briefly into contact
with ribbon and paper. Higher quality machines have more dots, so the image qual
ity is better, although the delicacy of serifs and other features of typefaces is lost. An
advantage of this method is that any characters within the limits imposed by the dot
resolution can be generated, so dot-matrix printers often have internal switches for
assorted European, Cyrillic, and other alphabets.

Daisywheel printers. A daisywheel has approximately 100 radial spokes, most
(or all) of which hold a character at the tip. The wheels have low rotational inertia
so they can be spun rapidly; common letters (e, t, a, i, 0, n, s) are clustered together
to reduce search time. A solenoid drives the letter against ribbon and paper; com
monly used spokes will eventually fail and the wheel will need replacing. Speeds of
50 or 60 characters per second are common. Wheels and ribbons aren't standardized
to any extent.

Daisywheel printers designed specifically for computers are expensive, and it
may be that computer-compatible typewriters will become more popular for home
use. Daisywheels cannot print graphics except by very tedious programming of
single dots.

Some General Remarks
Printers normally use continuous fanfold paper. "Pin feed" or "sprocket feed"
usually implies that the printer feed mechanism has fixed sprockets; "tractor feed"
often implies that variable width paper is usable. "Pinchfeed" or "friction feed" in
dicates that rolls or sheets of unperforated stationery are accepted.

Most printers use endless-loop cartridge ribbons or, for higher quality, fixed
length carbon film ribbons. Ribbon cartridges are not standardized, so be sure that
you have access to a reliable supplier.

552

Major Peripherals

External switches can range from simple paper control (linefeed, set top-of-form,
form feed, and so on) up to complete control over baud rate, parity, horizontal and
vertical spacing, and so on. Some printers-Epson's RX-80 is one-have an auto
matic !inefeed switch inside the machine. The switch is inaccessible without remov
ing the lid and can be a liability if a printer is shared between computers.

Maintenance generally requires return of the machine to the manufacturer, often
via a dealer. Fortunately, most printers are quite reliable. But it is still a good idea to
be sure that some maintenance is possible and that it is not too costly.

The speed of a printer is usually quoted in characters per second or lines per
minute; neither measure is very satisfactory. A lot depends on the density of the text
to be output. Moreover, the figures quoted often seem to be untrue. If speed is im
portant, check a printer before you buy it to assess its speed under actual conditions.

VIC compatibility is difficult with regard to graphics and upper/lowercase
switching. Few printers offer the entire VIC character set, and interfaces may not
handle the VIC upper/lowercase switch. However, in some cases, the interfaces
themselves are programmable to allow for this.

Programming for Printers
The following discussion is not intended to replace printer manuals; there are too
many possible variations to cover each one completely. Instead, it offers suggestions
and hints on using printers correctly.

Commodore printers are controlled in two ways: by the secondary address or by
special characters with an ASCII value usually below 32. The table of ASCII codes in
Appendix I shows the conventional meanings of codes 0-31, most of which are more
relevant to teletypes than to printers. CHR$(27), Escape, is widely used with non
CBM printers; anything following Escape is treated by a special routine independent
of the rest and can be used to set any feature of a printer. In that respect, it works
much like channel 15 of CBM disks. VIC printers could have used this method,
rather than secondary addresses.

Some VIC control characters, like clear screen and delete, mean nothing to CBM
printers and may cause them to hang up. A number of the ASCII control characters
are irrelevant; the special characters controlling VIC printers therefore are chosen
from those characters. The characters, and their functions, are given in Table 17-2.

Table 17-2. Printer Control Characters
CHR$(10)
CHR$(13)
CHR$(17)
CHl\5(18)
CHR$(145)
CHR$(146)

Linefeed
Return
Lowercase
Reverse characters
uppercase
Normal characters

All other controls have varied among different models of CBM printers, and it is
risky to assume they will remain the same as they are on your model. For example,
the user-definable single character is CHR$(8) but in the past has been CHR$(254).
Secondary addresses too have varied; the 1515 uses OPEN 4,4,7 to set lowercase
mode; and earlier models used this for uppercase.

553

Major Peripherals

To avoid such problems, you should let the VIC do the work of formatting and
so on as much as possible. Otherwise, if you give your program to another user or
change printers for some reason, you may be faced with the irritating job of rewrit
ing PRINT# statements.

PRINT# and CMD
These two commands often cause confusion. They have almost identical effects; for
example, PRINT#4,"HELLO" and CMD4, "HELLO" each print HELLO to file 4. The
difference is that CMD leaves the printer in a "listening" mode, so future PRINT
statements tend to be output to the printer.

However, CMD isn't really implemented properly. Although it works well with
LIST (OPEN 4,4: CMD4: LIST lists to a printer) CMD 4 followed by a program with
PRINT statements isn't reliable. GET, for example, makes the printing revert to the
screen. It's usually best to use PRINT#. If you wish to divert some output to the
screen, use something like the routine shown in Program 17-1.

Program 17-1. Diverting Output to the Screen

18 PRINT "OUTPUT TO PRINTER OR SCREEN (piS)" INP
UT X$

2121 IF X$="P" THEN D=4
3121 IF X$="S" THEN D=3 : REM SCREEN DEVICE IS 3
4121 OPEN D,D:REM NOW USE PRINTiD

The same method can select device 5 rather than device 4, if appropriate, and
OPEN 128+D,D with PRINT#128+D can add an extra linefeed which some printers
may need.

Use PRINT# after CMD to "unlisten" the printer, and return everything to nor
mal, before CLOSE 4. Note that CMD4,; and PRINT#4,; each output nothing and
can be used if it is important not to !inefeed when these commands are executed.

Upper- and Lowercases
CBM printers don't generally behave like VIC printers which remain in either upper
case or lowercase until changed. They revert to uppercase unless specifically told
otherwise. After a RETURN, the lowercase mode is canceled. Therefore,
PRINT#4,CHR$(17); has to precede lowercase material, and PRINT#4,CHR$(145)
must precede uppercase, if the two are mixed on a line (for example, lowercase let
ters mixed with graphics).

Formerly, LISTing a program in lowercase was difficult, but secondary address 7
allows this with some printers-OPEN 4,4,7:CMD4,"TITLE": LIST.

Formatting
PRINT USING in Chapter 6 can format numbers, inserting leading spaces and trail
ing zeros (as in 100.00). Alternatively, in BASIC, it's best to use something like
SP$="{10 SPACES}": PRINT#4,RIGHT$(SP$+X$,lO) instead of TAB. That right
justifies a string (or numeral held as a string) by padding with spaces, then selecting
a fixed length.

554

Major Peripherals

The simplest way to truncate numerals is to use an expression like PRINT#4,
INT(X*100 + .5)/100 which rounds to the nearest hundredth. Some CBM printers
have formatting, typically allowing one format at a time to be defined in COBOL
like form (for instance, OPEN 2,4,2: PRINT#2,"S$$$$$9.99" and OPEN 1,4,1).
PRINT#l then prints in a format defined by secondary address 2, so that 123.456
prints as +$123.45.

User-Defined Graphics/Screen Dump
Only one character can be defined at once. The 1515/1525 use CHR$(S); obviously
six columns of seven dots have to be defined. The 1526 requires that you define
eight columns of eight dots. In either case, all that's needed is PRINT#4, CHR$(S)
followed by six bytes (or eight). You can do this with PRINT#4, CHR$(S) CHR$(22)
CHR$(54) CHR$(96) CHR$(96) CHR$(54) CHR$(22). It can also be done with
PRINT#4, CHR$(8)"!MM**&", or you can use PRINT#4,X$ where X$ is built from
values in a DATA statement, starting with S. An interesting use for this is to dump a
high-resolution screen to the printer. Multicolor mode is less easy, since the printer
can't distinguish four colors.

A different type of screen dump is the ML routine given as Program 17-2. It
works with most printers and assumes the ordinary ASCII characters (no VIC graph
ics). It includes tests for the screen start position, and for lower- or upper-case mode.
Use OPEN 4,4: CMD 4: SYS S2S: PRINT#4: CLOSE 4.

Program 17-2. ML Screen Dump
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 FOR J=828 TO 930:READ X:POKE J,X:NEXT :rem 14
20 DATA 169,0,133,140,133,141,133,142,173,136,2,13

3,143 :rem 121
30 DATA 169,64,133,139,230,140,165,140,201,23,208,

15 :rem 242
40 DATA 230,141,165,141,201,23,240,67,169,1,133,14

0,32 :rem 72
50 DATA 215,202,162,0,161,142,41,127,36,139,208,6,

36 :rem 241
60 DATA 129,240,19,208,33,36,129,208,9,72,169,2,44

,5 : rem 8
70 DATA 144,208,13,104,169,35,208,16,72,169,2,44,5

,144 :rem 99
80 DATA 208,5,104,9,64,208,3,104,9,Q6,32,210,255,2

30 :rem 248
90 DATA 142,208,177,230,143,208,173,76,215,202

:rem 218
Repeat
Some printers allow repetition of characters, notably of a single column of dots to
build up a horizontal bar. A command like PRINT#4, CHR$(S) CHR$(26) CHR$(X)
CHR$(255) CHR$(15); turns graphics on, turns repeat mode on, specifies the number
of repetitions (1-255), specifies character definition (255 gives a solid column of
dots), and returns to normal graphics.

555

Major Peripherals

As Chapter 12 shows, you can get the same result using ordinary VIC graphics,
so this feature isn't enormously valuable.

Printer Presence
Some programmers find this useful as a reminder to users to switch on the printer.
In its simplest form, the command is OPEN 4,4: POKE 154,4: SYS 65490: POKE
154,3: CLOSE 4: S=ST. When the printer is on, ST should be 0; when off, ST is
-128, corresponding to ?DEVICE NOT PRESENT. SYS 65490 is the output routine
at $FFD2, and the above routine in effect tries to output to file 4, but avoids crashing
in the way that PRINT#4 does.

Spooling
The idea of spooling is that a file can be read from disk (and printed) while the VIC
is left free to run programs normally (except that accessing the serial bus is prohib
ited). In principle this seems easy-the disk talks and the printer listens-but there
is no simple way to accomplish it. The commands OPEN 8,8,8,"SEQ FILE": POKE
149,72: SYS 60974: POKE 149,104: SYS 60974: OPEN 4,4: CMD 4: POKE 154,3:
POKE 152,0 (equivalent to a PET/CBM version) fail when used on the VIC.

PloHers
Plotters are unusual peripherals, most commonly used commercially for technical
drawings of various types. Flat-bed plotters have two step motors controlling pen
movement across and up/down, with a mechanism to lift the pen off the paper and
reposition it as needed. Typically, eight directions of motion (N, NE, E, SE, etc.) can
be selected. Small step sizes make for finer drawings, if the pen itself is fine enough,
but tend to be slow. The fastest rate of plotting with cheap plotters is something like
three inches per second, so be prepared for long delays, particularly if the interface is
slow and if commands are sent with BASIC. Flat-bed plotters can be connected to
the VIC and driven by PRINT# commands.

CBM's 1520 plotter uses 41/2-inch wide unsprocketed paper and has four pens
(typically black, red, blue, and green). It has built-in alphanumerics which can be
scaled to four sizes; the smallest draws 22 characters per inch. The pens move across
the paper, and up-and-down motion is provided by a roller that moves the paper it
self. It connects to the serial port as device 6.

These plotters can be used to draw perspective pictures, including color-separa
tion pairs in red and green. They can also draw geometrical patterns of the pins-and
string and Islamic styles, as described in Chapter 12. Yellow, magenta, and cyan
pens could give an imitation of color separation printing.

Programming Ploffers
Plotter programming is a specialized topic. Several programming methods are out
lined below.

Lines
Program 17-3 is a subroutine that assumes a line, having a slope between zero and
one, is to be drawn from left to right. (Other slopes, including vertical lines, are

556

Major Peripherals

treated by analogous routines.) XD and YD are the distances to be plotted in the X
and Y directions, M is the slope, and XP and YP keep track of the current X and Y
positions relative to the start of the plot. Line 120 plots northeast whenever that
gives a better approximation than east.

Program 17-3. Line Plotter
Refer to the "Automatic Proofreader" article (Appendix C) before t~ping in this proxram.

100 M=YD/XO:YP=0 :rem 211
110 FOR XP=l TO XD:PRINT#N,EAST :rem 95
120 IF M*XP>YP THEN PRINT#N,NORTHEAST:YP=YP+l:XP=X

P+l:IF XP<XD GOTO 120 :rem 150
130 NEXT :rem 211
140 IF YP-l<YD THEN PRINT#N,NORTHEAST:YP=YP+l:GOTO

140 : rem 66

Circles
There are several methods to plot circles; one useful circle plotting subroutine is
given in Program 17-4.

Program 17 -4. Circle Plotter
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

10 Q=10 : rem 80
500 REM Q=DEGREES SUBTENDED BY EACH STRAIGHT-LINE

{SPACE} SEGMENT. Q=10 PLOTS A 36-SIDED FIGURE
:rem 207

510
520
530
540
550
560

570
580

G=R: H=0: REM R=RADIUS :rem 208
N=360/Q
F=COS(Q*(1)/180):I=SIN(Q*(1)/180)

:rem 59
:rem 114

:rem 40
:rem 14

HERE TO DRAW FROM G,H
:rem 217

:rem 99
:rem 38

FOR J= 0 TO N -
C=G*F-H*I: A=G*I+H*F
REM INSERT LINE ROUTINE
{SPACE}TO C,A
G=C: H=A
NEXT J

Modems
Most VIC/64 modems users have CBM equipment, either the VIC modem or the
1650 Automodem. Both are designed for the American phone system. The 1650
plugs into the base of the phone, while VIC modem needs a modular handset in or
der to dial correctly. Other modems can be used, notably acoustic modems, if your
VIC has an RS-232 interface.

When the VIC is used to communicate with another computer, the users must
decide which computer will "originate" the communication and which will "an
swer." For example, when a bulletin board system like CompuServe is to be
accessed, the VIC is always set to "originate" while talking to the system.

557

Major Peripherals

To use a modem, first connect the modem to the computer (with the VIC turned
off). Typically, plug the CBM modem into the user port and connect it to the phone.
Then load and run the terminal software. Terminal software is the program that
facilitates computer-to-computer talking via the modems. It may be on cartridge or
on tape or disk. (Note: If you want to use VICTERM with memory expansion, you
may find your version doesn't work properly. The solution is to use a loader, like
the one given in Program 17-5, which reconfigures the VIC-20 like the unexpanded
VIC while keeping the extra RAM.)

Program 17-5. VICTERM Loader
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

o REM ******{6 SPACES}VICTERM LOADER{6 SPACES}****
*** :rem 7

1 REM ***{4 SPACES}WORKS FOR ANY VIC-20 RAM
{5 SPACES} *** : rem 199

2 REM *** PUT THIS BEFORE VICTERM ON TAPE ***

10 POKE 641,0: POKE 642,16: POKE 643,O:
0: POKE 648,30

20 POKE 198,1: POKE 631,131
30 SYS 64818

: rem 215
POKE 644,3

:rem 177
: rem 84

:rem 109

You may want to use your own terminal software. BASIC, although slow, is
about as fast as the modem, so this is often a useful thing to do, notably when talk
ing to computers with slightly unusual characteristics or when trying out unusual
maneuvers like transferring files of data.

Once the software has been loaded and run, call the number (either by dialing
yourself or by inputting the number into the VIC and allowing the 1650 to dial for
you). Wait for the carrier signal (a high-pitched tone). You may of course get a
wrong number, outdated number, no reply, or a reply from a system operator
(sysop). With some modems, you'll need to set the voice/data switch to be on
"voice" at this stage.

Now, wait for the "carrier detected" red light to come on. Your software may
print something like VIC CONNECTED. Either (or both) signifies that your modem
has recognized the incoming frequency. Again, the actual procedure varies between
modems; it's automatic with 1650s, but acoustic modems require you to put the
handset into the cups of the modem and switch to "data" (so-called on-line) mode.

Wait for the system's first welcome frame to appear. Public systems ask for a
password; it allows access, at a price, to their facilities. Keep yours secret. Then use
the menu to select an item from what's available. CompuServe and other systems
provide a large directory to help you with this; GO CBM 310 is a shortcut command
with CompuServe.

These final two steps apply only to full-fledged systems. VIC's 22-column screen
can be a problem, since most systems assume 40 columns, so always check on this if
you don't want 40-column software.

558

Major Peripherals

Notes on Modems
It's helpful to know something about how modems work before looking at
programming.

Modems and their software are designed around phone systems. This has sev
eral consequences: Data has to be transmitted serially, as bits rather than as bytes, so
each end of the line needs a way to convert between parallel and serial transmission.
In addition, the system needs some means of identifying the start of a byte; it also
needs timing conventions so it can reliably detect individual bits.

Certain technical parameters are also important. Phone companies must main
tain control over certain technical details of their lines: They cannot permit excessive
voltages to get to exchanges, and some tones and signals may be reserved for
diagnostic use. Such standards vary internationally; as a result, modems in different
countries are liable to be incompatible. It may in fact be illegal to attach modems
made in one country to phone lines in some other country.

Usually this isn't a problem. Direct-connect modems are designed to be isolated
from the phone line so high voltages cannot pass either way. Acoustic modems,
which generate and receive sounds and communicate them through telephone hand
sets, also present no voltage problems but face similar international problems over
tone compatibility.

The most common American modem convention is the Bell 103, which is used
by Commodore modems and by many computers. It is slow; generally characters are
transmitted at 300 bits per second, or 300 baud. In practice, this amounts to 30
characters per second at most; if the phone connection is weak, the transmission rate
drops, since characters have to be retransmitted. Even 30 characters a second takes
half a minute to fill a 40-column screen, and some characters are likely to be used
for information on color, screen format, and so on, so the overall rate is not dra
matic. Still, it's faster than many people can read or talk.

Bell 103 uses a system called frequency shift keying, or FSK. It means that an
"on" bit is transmitted with one frequency tone, while an "off" bit is transmitted
with another. The tone of the signal carries information. In order that both ends of
the line can talk, Bell 103 uses four tones altogether; in this way, messages can be
simultaneously sent both ways.

The receiving equipment at either end has the job of sorting out which fre
quency is being received. All frequencies are relatively high pitched, in order to carry
as much information as possible while still being within the frequency range
handled by the phone system. The actual frequencies in originate mode are 1270 Hz
to transmit "mark"; 1070 Hz to transmit "space"; 2225 Hz to receive mark; and
2025 Hz to receive space. In answer mode, the frequencies are the other way
around. Note that the mark signal is the idle or carrier signal, present when nothing
is happening but the system is ready and waiting.

When a modem is in operation, these tones are exchanged and deciphered.
Conversion of bits into tones is called modulation, and the reverse process is called
demodulation. The term modem is thus a shortened combination of the words modu
lator and demodulator.

At 300 baud, the VIC's modem receives 300 tones of 2225 or 2025 Hz every
second. The VICmodem handles all of this with a single chip, using some other

559

Major Peripherals

components to filter the four frequencies, and draws its power from the user port.
(Note that the VIC's tape system is practically a modem. However, it sends square
waves, not sine waves, which aren't suited to phone lines. But digital-to-analog
converters make it very feasible to run a modem from the cassette port.)

Bytes (or "words") can be formatted in different ways, and every pair of
communicating modems must be set to the same convention. Standard RS-232 has
one start bit, seven data bits, one even parity bit, and one stop bit-a total of ten
bits per byte sent. "Even parity" means that the eighth bit is set to 0 or 1 to make
the total number of 0 (and 1) bits even. For example, the ASCII pattern for lowercase
a is 1100001 (97 in decimal). For even parity, a parity bit of 1 is added, so the result
ing pattern, 11100001, has an even number of O's and l's. (Bits are transmitted from
the low bit first, so the parity bit is calculated and sent last.)

This is a security measure. Any received byte that doesn't conform to this pat
tern must be wrong and is retransmitted. Note that some seven-bit codes always
send the same parity bit, either a space or mark, ignoring the security aspect. The
start and stop bits are both signaled by transmitting a space (rather than a mark), so
synchronization is always OK. OPENing an RS-232 file allows all these variables to
be controlled by the programmer, within limits.

Note that VIC characters use eight bits, so standard ASCII isn't enough. In fact,
much software simply ignores parity bits, using other error-checking methods in
stead. Getting the baud rate, the number of bits per word, and the number of start
and stop bits right is necessary to successful modem communication; this is some
times wrongly called "getting parity."

Converting bytes into bits and sending them, and the converse process of
assembling bits into bytes, can be performed in software (as VIC's RS-232 handling
does) or by chips like the UART (Universal Asynchronous Receiver-Transmitter; the
"asynchronous" part means it can process data by watching for a start bit).

Error checking is a complex process, which basically uses hash totals sent after
data as a check. With any system there must be some chance of completely random
data just happening to conform to the check, and such events constitute undetected
errors. This topic is far too elaborate to detail here. Generally, note that data is sent
in batches (called "records") of 256 bytes each. Records with errors are retrans
mitted, and the overhead spent on this process can be as much as 50 percent of the
ideal error-free transmission time, depending on the quality of the phone link. Error
correction may be automatic, or software may use a recall feature if a frame is
unacceptable.

Bell 103 modems use full-duplex, which means that either terminal can commu
nicate at any time. Half-duplex is analogous to radio communication, where either

• direction is available, but normally only one at a time. The half-duplex switch turns
. off the so-called "echo-plexing" feature, a verification system which returns charac

ters when they're received; if characters appear double, use this switch or use soft
ware which verifies the echoed characters. True half-duplex needs a line like
RS-232's secondary channel to be able to interrupt unwanted messages.

"Smart" software implies that a system can download programs (get them and
either run them or store them on disk or tape). Data files are more difficult to
handle, because they don't transfer as simply as programs, having RETURN charac
ters and so on embedded in them. They are also liable to exceed RAM storage.

560

Major Peripherals

"Downloading files," therefore, generally refers to programs and frames from data
bases.

The two other common modem standards are the 202 and the 212A, which are
faster than the 103. The 212A can work with the 103. However, the 202 and 212A
are nowhere near as popular as the 103. Incidentally, the 103 system can operate at
600 baud; this may be worth trying. Non-CBM modems need an RS-232 adapter and
cable; all acoustic modems come into this category.

One problem with acoustic modems may be getting the two cups which are sup
posed to fit the handset actually into place. A few modems forgo the rigid body in
favor of a pair of cups on leads, so they can fit many shapes of phone. Incidentally,
over short distances it's not necessary even to use a modem-two VICs or 64s can
be connected by three lines between their user ports, or with RS-232 adapters.

Programming Modems
Programs for use with modems must allow for two things. First, the RS-232 file must
be opened properly; second, transmissions both to and from the VIC must be al
lowed for. Both are fairly straightforward, though they may appear difficult.

Opening an RS-232 file. Only one file can be opened; the syntax is typically
OPEN 2,2,0,CHR$(6). The device number must be 2. File number 2 is simplest,
allowing PRINT#2 and GET#2 for output and input via the modem. The secondary
address is irrelevant.

The filename consists of one or two characters in a string; the example is equiva
lent to CHR$(6)+CHR$(0). These parameters are explained fully in the next section;
they assign eight bits of data per word, with one stop bit (and a start bit, implicit in
the whole process), 300 baud transmission, no parity, and full-duplexing. So-called
"three-line handshaking" is assumed.

This is the most common combination; it also evades a few bugs that are lurking
in VIC's RS-232. OPEN 2,2,0,CHR$(38)CHR$(96) is the ASCII equivalent, assuming
a seven-bit word and even parity.

Transmitting and receiving characters. All that's needed is a loop to get
characters from the keyboard (and print them using PRINT#2) and to get (using
GET#2) characters from the modem. BASIC may need delay loops in its output, or it
may send characters too fast. For most purposes, some characters have to be con
verted, and BASIC provides an adaptable and quite easy means to do this. There are
two reasons. One is that VIC ASCII is a bit different from true ASCII and from 64
ASCII, so unless you're happy with strange-looking lettering, conversion is nec
essary. The other is that it's useful to define some keys so they perform modem-spe
cific things.

There's insufficient room here to list all possible terminal program permutations.
However, Program 17-6 is a good example of a VIC program for use with a modem.

561

Major Peripherals

Program 17-6. VIC Terminal Program
Refer to the "Automatic Proofreader" article (Appendix C) before typing in this program.

100 OPEN 2,2,0,CHR$(6):REM OPENS 300
(SPACE}NO PARITY FILE.

BAUD, 8 BIT,
:rem 232

FOR ASCII 7 B
:rem 84
:rem 86

:rem 140
:REM LOWER-CA

101 REM OPEN 2,2,0,CHR$(38)+CHR$(96)
ITS + EVEN PARITY

200 DIM F%(255), T%(255)
210 FOR J=0 TO 64: T%(J)=J: NEXT
220 FOR J=65 TO 90: T%(J)=J+32: NEXT

SE :rem 71
230 FOR J=91 TO 95: T%(J)=J: NEXT :rem 204
240 FOR J=193 TO 218: T%(J)=J-128: NEXT :REM VIC U

PPER-CASE :rem 202
250 T%(133)=27: T%(134)=3: T%(135)=19: T%(136)=17

:rem 49
251

260
261
300
310
320
400

IE ESC, DEL, CONTROL REM THESE ARE TRUE ASCII:
-C BREAK, CNTL-Q
T%(137)=17: T%(138)=144

:rem 23
:rem 24

:rem 3
:rem 112

:rem 43
:rem 212

CHR$(14):REM CLEAR: LOWER-CASE

REM THESE ARE ALL VIC: IE HOME, BLACK
FOR J=0 TO 255
IF T%(J»0 THEN F%(T%(J»=J
NEXT
PRINT CHR$(147)

:rem 88
500 IF PEEK(669)<PEEK(670) THEN 500 :rem 82
510 GET OUTS: IF OUT$>"" THEN PRINT#2,CHR$(T%(ASC(

OUTS»~):: PRINT OUTS: :rem 239
520 GET#2,IN$: IF IN$>"" THEN PRINT CHR$(F%(ASC(IN

$»): :rem 161
521 REM IN$=IN$ AND 127 FOR 7 BIT CODE. : rem 226
530 GOTO 500 :rem 102

Line 100 opens the file; line 101 is a typical alternative OPEN statement. Lines
200-261 allow for conversion between input and output characters. An alternative
way to do this is to use several IF-THEN range comparisons; however, arrays are
faster, since the correct value can be simply looked up. Integer arrays save space.

Lines 300-320 convert the "From" array into the inverse of the "To" array. Line
500 tests that output data has actually been sent.

The status byte ST can also be tested (but use PEEK(663) with VIC). The vari
able IN$ comes from the modem; OUT$ is actually fetched from the keyboard but is
called OUT$ because it is to be sent to the other computer.

The RS-232 Interface
RS-232-C is a standard of the Electronic Industries Association. Its voltage conven
tion is this: Negative means "mark," bit value 1, or OFF; positive means "space," bit
value 0, or ON.

Pin numbering is from 1 to 13 (top) and 14 to 25 (bottom). Sometimes it is help
ful to know their functions, which are listed in Table 17-3.

562

Major Peripherals

Table 17-3. RS-232 Pin Functions

Pin Number Description

1 GND Protective Ground
2 TX Transmitted Data
3 RX Received Data
4 RTS Request to Send
5 CTS Clear to Send

6 DSR Data Set Ready
7 GND Signal Ground (Common Return)
8 CD Carrier Detector
9 CL+ Direct Current Loop (+)

10 CL- Direct Current Loop (-)

11 Unassigned
12 Sec. Rec'd. Line Sig. Detector
13 Sec. Clear to Send
14 Secondary Transmitted Data
15 Transmission Signal Element Timing (DCE Source)

16 Secondary Received Data
17 Receiver Signal Element Timing (DCE Source)
18 Unassigned
19 Secondary Request to Send
20 DTR Data Terminal Ready

21 Signal Quality Detector
22 Ring Indicator
23 Data Signal Rate Selector (DTEIDCE Source)
24 Transmit Signal Element Timing (DTE Source)
25 Unassigned

OPEN to RS-232 initializes a number of RAM locations and prepares for NMI
interrupts which are used with RS-232. These interrupts disturb disk and tape
timing, which is one reason neither the disk drive nor the Datassette can be used
during transmission.

RS-232's OPEN ($F4C7 in the VIC) sets the parameters indicated in Table 17-4.
If you OPEN and then PEEK, you'll see some of them. Most are reasonably straight
forward. Two points are worth noting, however: OPEN to RS-232 lowers the top of
memory by 512 bytes, making room for two first-in, first-out 256-byte buffers.
BASIC pointers are altered to clear variables, so it's best to OPEN the file early in
the program. The baud rate is controlled by reference to tables in ROM, which in
VIC has 11 usable values. It is possible to use other baud rates.

ML programmers may want to alter the NMI vector into RAM so the tables
can be changed. Alter the first tabled value to generate the new baud rate; and
remember, after OPEN, to POKE the vector at $299 with twice that value, plus 200.
To convert ROM values into equivalent baud rates, use 50"'EXP(9.23308 - we
(VALUE + 100)).

563

Major Peripherals

Table 17-4. Locations Set by OPEN to R5-232

Location Explanation

$A7 167 Receive bit storage
$A8 168 RX bit count
$A9 169 RX start bit flag
$AA 170 RX byte shifts in here
$AB 171 RX parity bit

$B4 180 TX bit count
$B5 181 Next bit for TX
$B6 182 TX byte shifts out from here

$F7/F8 247/248 Pointer to start of input buffer
$F9/FA 249/250 Pointer to start of output buffer

$0293 659 Control Register (e.g., 6)
$0294 660 Command Register (e.g., 0)
$0295/0296 661/662 Two other unused parameters
$0297 663 ST value for RS-232
$0298 664 9, 8, 7, or 6 bits in word + 1
$0299/029A 665/666 2*timer value + 200
$029B 667 End of Receive FIFO Buffer
$029C 668 Start of Receive Buffer
$029D 669 Start of Transmit Buffer
$029E 670 End of Transmit Buffer

Control Register and Command Register
Values in these registers control the way RS-232 is configured. There are six param
eters involved. For example, OPEN 2,2,2,CHR$(6)+CHR$(0) assumes one stop bit,
eight bits per word, 300 baud, no parity bit, full duplex and the usual three-line
handshake. The control register is set by the first CHR$ value, and the command
register is set by the second. Figures 17-1 and 17-2 give details on the control reg
ister and command register.

Finally, six bits of location 663 report conditions resulting from RS-232 use. If
bit 0 is set, there is a parity bit error or some inconsistency if parity is set incorrectly.
Bit 1 being set indicates an error in structure of received bits, perhaps due to noise.
Bit 2 is set when the receive buffer is full (that is, when data is coming in too fast).
Bit 4 is set when the clear to send signal is off (when the remote terminal is not
ready to receive); bit 6 is set when the remote terminal is not ready to send. When
bit 7 is set, a break has been detected. VIC's implementation of some of these fea
tures in fact has bugs, most of which were taken out for the 64's ROM.

564

CJl
~
CJl

Figure 17 - 1. The Control Register .

128 64 32

I

Number of Word Length
Stop Hits (Excluding Parity)

~

0= single
l=two

00=8 bits
01=7bits (e.g., ASCII)
10=6bits
11=5 bits (e.g., Baudot)

Figure 17-2. The Command Register

128 64

I

Parity Type

I
Any

OO=Odd Parity
01 = Even Parity
10=Mark Bit
11 = Space Bit

32

Paritv Bit/
No Parity Bit

O=None
1 = Parity Bit

Unused

16

Duplex

o = Full
1= Half

8

I

I

I

4 2

I

Baud Rate Control

0001 = 50 Baud
0010= 75
0011 = 110
0100=134.5
0101 = 150
0110=300
0111=600
1000=1200
1001 =1800
1010=2400
1011 =3600

I

Unused

~

I

1

1

Handshake
Type

0=3- Line
l=X-Line

~
.9.
o
""'0
([)
~.

U
~
([)

o
VI

Major Peripherals

The Serial Port
The VIC's serial port is peculiar to Commodore; it's adapted from the IEEE interface
of CBM machines. IEEE-488 is the document describing this interface.

The VIC uses a simplified, nonstandard version of this, which carries serial (not
parallel) data and is comparatively slow. Figure 17-3 shows the port's six connec
tions as they appear looking at the VIC from the back (the serial port is next to the
cassette port).

Figure 17 -3. VIC Serial Port
Pin 1 SRQ in CBl of VIA 2
Pin 2 Ground
Pin 3 ATN in Connects with user port
Pin 3 ATN out PA7 of VIA 1
Pin4 ClKin PAOofVIA 1
Pin 4. ClK out CA2 of VIA 2
Pin 5 Data in PAl of VIA 1
Pin 5 Data out CB2 of VIA 2
Pin 6 RESET Connected to VIC reset

Pin 6 is connected to the VIC's reset line, which is why the disk drive resets
when the VIC is switched on. Pin 5 transmits data bits. Pin 1, "Service Request," al
lows devices to request service from the VIC; CLK is a clock signal. ATN (Attention)
is described below.

Both VIAs are used in processing. The part of ROM handling this can be in
spected in detail by looking at the places where bit 1 of $911F is used; this line in
puts data bits. Data is transmitted by line CB2 of VIA 2, so $912C controls data
output. ML loops like LOA $91lF / CMP $91lF / BNE - 8 test the clock. ATN out is
set high with LOA $91lF/ ORA #$80/ STA $91lF; in BASIC, POKE 37151,128 OR
PEEK (37151).

Briefly, the serial bus is controlled by the VIC; devices on the bus are talkers,
listeners, or talkers/listeners. Printers listen; disks both talk and listen. The Kernal
has routines to make devices talk, listen, untalk, and unlisten, meaning in effect that
they're on or off. BASIC handles all this itself, apart from a few special effects.

Commands are sent to devices when ATN is low (the bit value is 0). When ATN
is set high again, all the bytes sent are interpreted as data. When ATN is low, typi
cally a single byte is sent as a command; that byte is interpreted by the device as fol
lows: If it is in the range $20-$3E, it means listen; if it's $3F, it means unlisten. $40-
$5E mean talk; $5F means un talk. $60-$7F indicate secondary addresses. This is
why secondary addresses are stored in the VIC with 96 decimal added, and why the
Kernal LISTEN and TALK routines begin with ORA #$20 and ORA #$40.

A printer can be made to print, without opening a file, by setting the device
number to 4, calling Kernal LISTEN, setting ATN out high, sending characters with
CHROUT, and finally unlistening with CLRCHN. Whenever files are open to a de
vice, the device is first made a talker or a listener. Then the secondary address is
sent (the Kernal has two routines for this purpose) so the device knows which file to
address.

566

Appendix A

A Beginner's Guide to Typing In
Programs

What Is a Program?
A computer cannot perform any task by itself. Like a car without gas, a computer
has potential. But without a program, it isn't going anywhere.

Most of the programs published in this book are written in a computer language
called BASIC. BASIC is easy to learn and is built into all VIC-20s.

BASIC Programs
Computers can be picky. Unlike the English language, which is full of ambiguities,
BASIC usually has only one right way of stating something. Every letter, character,
or number is significant. A common mistake is substituting a letter such as 0 for the
numeral A, a lowercase I for the numeral I, or an uppercase B for the numeral 8.
Also, you must enter all punctuation such as colons and commas just as they appear
in the book. Spacing can be important. To be safe, type in the listings exactly as they
appear.

Braces and Special Characters
The exception to this typing rule is when you see something inside braces, such as
{DOWN}. Anything within a set of braces is a special character or characters that
cannot easily be listed on a printer. When you come across such a special statement,
refer to Appendix B, "How to Type In Programs."

About DATA Statements
Some programs contain a section or sections of DATA statements. These lines pro
vide information needed by the program. Some DATA statements contain actual
programs in machine language; others contain graphics codes. These lines are es
pecially sensitive to errors.

If a single number in anyone DATA statement is mistyped, your machine could
lock up or crash. If this happens, the keyboard and STOP key may seem dead, and
the screen may go blank.

But don't panic; no damage has been done. To regain control, you have to turn
off your computer, then turn it back on. This will erase whatever program was in
memory, so always save a copy of your program before you run it. If your computer
crashes, you can reload the program and look for your mistake.

Sometimes a mistyped DATA statement will cause an error message when the
program is run. The error message may refer to the program line that READs the
data. However, the error is still in the DATA statements.

Get to Know Your Machine
You should familiarize yourself with your computer before attempting to type in a
program. Learn the statements you use to store and retrieve programs from tape or
disk. You'll want to save a copy of your program, so that you won't have to type it

569

Appendix A

in every time you want to use it. Learn to use your machine's editing functions. How
do you change a line if you made a mistake? You can always retype the line, but
you at least need to know how to backspace. Do you know how to enter reverse
video, lowercase, and control characters? It's all explained in your VIC's manuaL
Personal Computing on the VIC.

A Quick Review
1. Type in the program a line at a time, in order. Press RETURN at the end of each

line. Use the INST jDEL key to correct mistakes.
2. Check the line you've typed against the line in the book. You can check the entire

program again if you get an error when you run the program.
3. Make sure you've entered statements in braces using the appropriate control key

(see Appendix B, "How to Type In Programs").

570

Appendix B

How to Type In Programs

Many of the programs in this book contain special control characters (cursor control,
color keys, reverse characters, and so on). To make it easy to know exactly what to
type when entering one of these programs into your computer, we have established
the following listing conventions.

Generally, VIC-20 program listings contain words within braces which spell
out any special characters: {DOWN} means to press the cursor down key, while
{5 SPACES} tells you to press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT key while press
ing the other key), the key would be underlined in our listings. For example, ~
would mean to type the S key while holding down the SHIFT key. This would ap
pear on your screen as a heart symbol. If you find an underlined key enclosed in
braces (e.g., {to N}), you should type the key as many times as indicated. In this
case, you would enter ten shifted N's.

If a key is enclosed in special brackets, [<>], you should hold down the Com
modore key while pressing the key inside the special brackets. (The Commodore key
is the key in the lower-left corner of the keyboard.) Again, if the key is preceded by a
number, you should press the key as many times as necessary.

About the quote mode: You know that you can move the cursor around the
screen with the CRSR keys. Sometimes a programmer will want to move the cursor
under program control. That's why you see all the {LEFT}'s, {HOME}'s, and
{BLU}'s in our programs. The only way the computer can tell the difference between
direct and programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you are in the quote
mode. For instance, if you type something and then try to change it by moving the
cursor left, you'll only get a bunch of reverse-video lines. These are the symbols for
cursor left. The only editing key that isn't programmable is the DEL key; you can
still use DEL to back up and edit the line. Once you type another quote, you are out
of quote mode.

You also go into quote mode when you INSerT spaces into a line. In any case,
the easiest way to get out of quote mode is simply to press RETURN. You'll then be
out of quote mode and can cursor up to the mistyped line and fix it.

Use the following table when entering cursor and color control keys:

571

Appendix B

When You When You
Read: Press: See: Read: Press: See:

{CLR} i SHiFf] @iIHOME J B .. {GRN} I cm Q- D
{HOME} CLRIHOME] II {BLU} [CIRL] 17- III
{UP} l~HI~ rr CRsRT] ~ {YEL} [CIRL,LSJ II
{DOWN} LL~R~R 1] om { f1 } ~ • {LEFT} !SHIFT 1-CRSR -j II { F2 } !sHIFT II f1 . • {RIGHT} I-CRSR J II { F3 } ,13] • I cm I' _~l 119 I SHIFT] I

~ - • {RVS} {F4 } 13
-

{OFF} [?RiJ- ~-=-l • { F5 } ~J • {BLK} l-~~Ij [1:] • { F6 } ISHI~ [to • {WHT} laRL I --2-] [I { F7 } ~ • {RED} [UaRS [-3 g { FS } ~~'~L~J • {CYN} fORtli ~J • ~ EJ II
{PUR} icrRll ~- 5J II 1 I SHIFT I [JJ •

572

Appendix C

The Automatic Proofreader
Charles Brannon

"The Automatic Proofreader" will help you type in program listings without typing
mistakes. It is a short error-checking program that hides itself in memory. When ac
tivated, it lets you know if you have made a mistake immediately after typing a line
from a program listing.

Preparing the Proofreader
Please read these instructions carefully before typing in any programs in this book.

1. Using the listing below, type in the Proofreader. Be very careful when entering the
DATA statements-don't type an I instead of a 1, an 0 instead of a 0, extra com
mas, etc.

2. Save the Proofreader on tape or disk at least twice before running it for the first
time. This is very important because the Proofreader erases part of itself when you
first type RUN.

3. After the Proofreader is saved, type RUN. It will check itself for typing errors in
the DATA statements and warn you if there's a mistake. Correct any errors and
save the corrected version. Keep a copy in a safe place. You'll need it again and
again, every time you enter a program from this book, COMPUTE!'s Gazette, or
COMPUTE! magazine.

4. When a correct version of the Proofreader is run, it activates itself and you are
then ready to enter a program listing. If you press RUN/STOP-RESTORE, the
Proofreader is disabled. To reactivate it, just type the command SYS 886 and press
RETURN.

Using the Proofreader
Most listings in this book have a checksum number appended to the end of each line,
for example, ":rem 123". Don't enter this statement when typing in a program. It is just
for your information. The rem makes the number harmless if someone does type it
in. It will, however, use up memory if you enter it, and it will confuse the Proof
reader, even if you entered the rest of the line correctly.

When you type in a line from a program listing and press RETURN, the Proof
reader displays a number at the top of your screen. This checksum number must match
the checksum number in the printed listing. If it doesn't, it means you typed the line
differently than the way it is listed. Immediately recheck your typing. Remember,
don't type the rem statement with the checksum number; it is published only so you
can check it against the number which appears on your screen.

The Proofreader is not picky with spaces. It will not notice extra spaces or miss
ing ones. This is for your convenience, since spacing is generally not important. But
occasionally proper spacing is important, so be extra careful with spaces.

One sort of error that the Proofreader will not catch is transposition. If you type
PIRNT in a program line instead of PRINT, the Proofreader will not detect the error
because all the proper characters are present (even if they are in the wrong order). If
a program fails to work even though the Proofreader says all the lines are correct,
look for an error of this type.

573

Appendix C

There's another thing to watch out for: If you enter the line by using abbrevi
ations for commands, the checksum will not match up. But there is a way to make
the Proofreader check it. After entering the line, LIST it. This eliminates the abbrevi
ations. Then move the cursor up to the line and press RETURN. It should now
match the checksum. You can check whole groups of lines this way.

Special Tape SAVE Instructions
When you're through typing a listing, you must disable the Proofreader before sav
ing the program on tape. Disable the Proofreader by pressing RUN/STOP-RESTORE
(hold down the RUN/STOP key and sharply hit the RESTORE key). This procedure
is not necessary for disk SAVEs, but you must disable the Proofreader this way before a
tape SAVE.

SAVE to tape erases the Proofreader from memory, so you'll have to load and
run it again if you want to type another listing. SAVE to disk does not erase the
Proofreader.

Hidden Perils
The proofreader's home in the VIC is not a very safe haven. Since the cassette buffer
is wiped out during tape operations, you need to disable the Proofreader with RUN/
STOP-RESTORE before you save your program. This applies only to tape use. Disk
users have nothing to worry about.

Not so for VIC owners with tape drives. What if you type in a program in sev
eral sittings? The next day, you come to your computer, load and run the Proof
reader, then try to load the partially completed program so you can add to it. But
since the Proofreader is trying to hide in the cassette buffer, it is wiped out.

What you need is a way to load the Proofreader after you've loaded the partial
program. The problem is that a tape LOAD to the buffer destroys what it's supposed
to load.

After you've typed in and run the Proofreader, enter the following lines in direct
mode (without line numbers) exactly as shown:

A$="PROOFREADER.T": B$="{10 SPACES}": FOR X = 1 TO
4: A$=A$+B$: NEXT X

FOR X = 886 TO 1018: A$=A$+CHR$(PEEK(X»: NEXT X
OPEN 1,1,1,A$:CLOSE 1

After you enter the last line, you will be asked to press RECORD and PLAY on
your cassette recorder. Put this program at the beginning of a new tape; this gives
you a new way to load the Proofreader. Anytime you want to bring the Proofreader
into memory without disturbing anything else, put the cassette in the tape drive, re
wind, enter OPEN1:CLOSEl, and press PLAY on the recorder. You can then start the
Proofreader by typing SYS 886. To test this, type in PRINT PEEK (886). It should re
turn the number 173. If it does not, repeat the steps above, making sure that A$ con
tains 13 characters (PROOFREADER.T) and that B$ contains 10 spaces.

You can now reload the Proofreader into memory whenever LOAD or SAVE de
stroys it, restoring your personal typing helper.

574

Appendix C

Automatic Proofreader
100 PRINT"{CLR}PLEASE WAIT •.. ":FORI=886T01018:READ

A:CK=CK+A:POKEI,A:NEXT
110 IF CK<>17539 THEN PRINT"(DOWN}YOU MADE AN ERRO

R":PRINT"IN DATA STATEMENTS. ":END
120 SYSBB6:PRINT"{CLR}(2 DOWN}PROOFREADER ACTIVATE

D. ":NEW
886 DATA 173,036,003,201,150,208
892 DATA 001,096,141,151,003,173
898 DATA 037,003,141,152,003,169
904 DATA 150,141,036,003,169,003
910 DATA 141,037,003,169,000,133
916 DATA 254,096,032,087,241,133
922 DATA 251,134,252,132,253,008
928 DATA 201,013,240,017,201,032
934 DATA 240,005,024,101,254,133
940 DATA 254,165,251,166,252,164
946 DATA 253,040,096,169,013,032
952 DATA 210,255,165,214,141,251
958 DATA 003,206,251,003,169,000
964 DATA 133,216,169,019,032,210
970 DATA 255,169,018,032,210,255
976 DATA 169,058,032,210,255,166
982 DATA 254,169,000,133,254,172
988 DATA 151,003,192,087,208,006
994 DATA 032,205,189,076,235,003
1000 DATA 032,205,221,169,032,032
1006 DATA 210,255,032,210,255,173
1012 DATA 251,003,133,214,076,173
1018 DATA 003

575

Appendix D

Screen Location Table

Row
o 7680(4096)

7702 (4118)
7724 (4140)
7746 (4162)
7768 (4184)

5 7790 (4206)
7812 (4228)
7834 (4250)
7856 (4272)
7878 (4294)

10 7900 (4316)
7922 (4338)
7944 (4360)
7966 (4382)
7988 (4404)

15 8010 (4426)
8032 (4448)
8054 (4470)
8076(4492)
8098 (4514)

20 8120(4536)
8142 (4558)

22 8164 (4580)
o 5 10 15

Column

20

Note: Numbers in parentheses are for VIes with 8K or more of
memory expansion.

576

Appendix E

Screen Color Memory Table

Row
o 38400 (37888)

38422 (37910)
38444 (37932)
38466 (37954)
38488 (37976)

5 38510 (37998)
38532 (38020)
38554 (38042)
38576 (38064)
38598 (38086)

10 38620 (38108)
38642 (38130)
38664 (38152)
38686 (38174)
38708 (38196)

15 38730 (38218)
38752 (38240)
38774 (38262)
38796 (38284)
38818 (38306)

20 38840 (38328)
38862 (38350)

22 38884 (38372)
o 5

Column

10 15

Note: Numbers in parentheses are for VICs with 8K or more of
memory expansion.

20

577

Appendix F

Screen Color Codes

Color: Black White Red Cyan Purple Green Blue Yellow

Code: 0 1 2 3 4 5 6 7

Appendix G

Usable Graphics and Screen
Combinations

Usable Graphics And Screen Combinations (Decimal)

Slariof Slariof Slarl of Graphics Characler Memory
Screen Color

Memory Memory Built-In ROM Characlers User-Defined Graphics in RAM

Uppercase Reverse Lowercase Reverse
32768 33792 34816 35840 0 4096 5120 6144

POKE POKE
648 36866 POKE 36869

0 37888 0 22
128 129 130 131 136 140 141 142

512 38400 2 ISO

4096 37888 16 22
192 193 194 195 200 204 205 206

4608 38400 18 ISO

5120 37888 20 22
208 209 210 211 216 220 221 222

5632 38400 22 ISO

6144 37888 24 22
224 225 226 227 232 236 237 238

6656 38400 26 ISO

7168 37888 28 22
240 241 242 243 248 252 253 254

7680 38400 30 ISO

578

7168

143

207

223

239

255

Appendix G

Usable Graphics And Screen Combinations (Hex)
Slariof Slariof Slarl of Graphics Characler Memory
Screen Color

Memory Memory Built-In ROM Characlers User-Defined Graphics in RAM

Uppercase Reverse Lowercase Reverse
$8000 $8400 $8800 $8COO $0

rOKE rOKE
$288 $9002 rOKE $9005

$0000 $9400 $00 $16
$80 $81 $82 $83 $88

$0200 $9600 $02 $96

$1000 $9400 $10 $16
$CO $CI $C2 $C3 $C8

$1200 $9600 $12 $96

$]400 $9400 $14 $16
$DO $DI $D2 $03 $D8

$1600 $9600 $16 $96

$1800 $9400 $18 $16
$EO $EI $E2 $E3 $E8

$IAOO $9600 $IA $96

$ICOO $9400 $IC $16
$FO $FI $F2 $F3 $F8

$IEOO $9600 $IE $96

Usable Graphics and Screen Combinations.
To use this table:

$1000 $1400 $1800 $ICOO

$8C $8D $8E $8F

$CC $CD $CE $CF

$DC $DD $DE $DF

$EC $ED $EE $EF

$FC $FD $FE $FF

1. To determine the start of screen memory and graphics definitions, PEEK the con
tents of locations 36869 and either 648 or 36866, then compare the results to the
table. For example, when 36869 contains 194 and 648 contains 16, screen memory
starts with location 4096 and lowercase characters are in use.

2. To set the start of screen memory and graphics definitions, POKE values from the
table into locations 36869, 648, and 36866. For example, to set up a user-defined
graphics area starting at location 7168, with the screen starting at 7680, you would
use:
POKE 36869,255: POKE 648,30: POKE 36866,150

This establishes 512 bytes for redefined graphics, enough for 64 characters. With
BASIC, remember to protect the graphics definition area from being overwritten
by using:
POKE 56,(7168/256): eLR

to lower the top of memory.

579

Appendix H

Screen and Border Colors

Border

Screen ac W 1te e Cyan BI k h' R d ' Purple G reen ue e ow Bl)Ill

Black 8 9 10 11 12 13 14 15
White 24 25 26 27 28 29 30 31
Red 40 41 42 43 44 45 46 47
Cyan 56 57 58 59 60 61 I 62 63
Purple 72 73 74 75 76 77 78 79
Green 88 89 90 91 92 93 94 95
Blue 104 105 106 107 108 109 lIO I 111
Yellow 120 121 122 123 124 125 126 127
Orange 136

I
137 138 139 140 141 142 ! 143

Light Orange 152 153 154 i ISS IS6 157 158 I 159
Pink 168

I

169 170 171 172 173 174 175
Light Cyan 184 185 IHti 187 188 18Y 190 191
Light Purple 200 201 : 2021203 I 204 2(]5 20ti 207
Light Green 216 217 I 218 219 220 221 222 223
Light Blue 232 233 . 234 i 235 236 237 23H 239
Light Yellow 248 249 I 250 251 I 2-' ,"- 2S3 254 255

580

Appendix I

ASCII Codes

Hex Dec Character Hex Dec Character

05 5 WHITE 32 50 2
08 8 DISABLE 33 51 3

SHIFT -COMMODORE 34 52 4
09 9 ENABLE 35 53 5

SHIFT -COMMODORE 36 54 6
OD 13 RETURN 37 55 7
OE 14 LOWERCASE 38 56 8
11 17 CURSOR DOWN 39 57 9
12 18 REVERSE VIDEO Or\' 3A 58
13 19 HOME 3B 59
14 20 DELETE 3C 60 <
lC 28 RED 3D 61
ID 29 CURSOR RIGHT 3E 62 >

IE 30 GREEN 3F 63 ?
IF 31 BLUE 40 64 @

20 32 SPACE 41 65 A

21 33 42 66 B
22 34 43 67 C
23 35 # 44 68 0
24 36 $ 45 69 E
25 37 0/0 46 70 F
26 38 & 47 71 G
27 39 48 72 H
28 40 49 73
29 41 4A 74
2A 42 * 4B 75 K
2B 43 + 4C 76 L
2C 44 4D 77 M
2D 45 4E 78 N
2E 46 4F 79 0
2F 47 J 50 80 P
30 48 0 51 81 Q
31 49 1 52 82 R

581

Appendix I

Hex Dec Character Hex Dec Character

53 83 S 78 120 14

54 84 T 79 121
55 85 U 7A 122 .J l ..

56 86 V 7B 123 EE
57 87 W 7C 124 [J
58 88 X 7D 125 OJ
59 89 Y 7E 126 0
5A 90 Z 7F 127 ~
5B 91 [85 133 fl
5C 92 £ 86 134 f3
50 93 1 87 135 f5
5E 94 88 136 f7
5F 95 89 137 f2
60 96 ~ 8A 138 f4
61 97 ~ 8B 139 f6
62 98 []J 8C 140 f8
63 99 H 80 141 SHIFT-RETURN

64 100 = 8E 142 UPPERCASE
~J

65 101 ,= 90 144 BLACK
L~

66 102 :--< 91 145 CURSOR UP
'==' REVERSE VIDEO OFF 67 103 IT~ 92 146

68 104 LD 93 147 CLEAR SCREEN
69 105 bJ 94 148 INSERT
6A 106 D 9C 156 PURPLE
6B 107 Ll 90 157 CURSOR LEFT
6C 108 0 9E 158 YELLOW
60 109 N 9F 15l) CYAN
6E 110 0 AO 160 SHIFT-SPACE
6F 111 n Al 161 IJ
70 112 0 A2 162 ~
71 113 • A3 163 :J
72 114 D A4 164 0
73 115 [-;] A5 165 []
74 116 [] A6 166 II
75 117 G A7 167 0
76 118 0 A8 168 ~
77 119 D A9 169 ~

582

Appendix I

Hex Dec Character Hex Dec Character

AA 170 [] CF 207 0
AB 171 [JJ DO 208 r-J
AC 172 [i D1 209 • AD 173 QJ D2 210 b;
AE 174 EJ D3 211 [!~
AF 175 ~ D4 212 [i
BO 176 [[] D5 213 ~
B1 177 fI D6 214 ~
B2 178 W D7 215 D
B3 179 EJ D8 216 c.' '-----

B4 180 D D9 217 [1'

L lJ
B5 181 I] DA 218 [!]
B6 182 U DB 219 EFj
B7 1H3 r DC 220 []
B8 184 L1 DD 221 [1]
B9 185 ~ DE 222 ' 7fl

'--'

BA 186 LJ DF 223 ~
BB 187 .--J EO 224 SPACE
BC 188 ~ El 225 [l

BD 1H9 C=I E2 226 ~
BE 190 • E3 227

r-'1
I - ~

BF 19] ~ E4 228
.-----,
L...J

CO 192 a E5 229 fJ
C1 193 [~l E6 230 II
C2 194 rn E7 231 ~J
C3 195 El E8 232 ~
C4 196 El E9 233 III"'l
C5 197 L EA 234 U
C6 198 d EB 235 [}j
C7 199 n EC 236 [i

C8 200 [] ED 237 [S

C9 201 E:J EE 238 6J
CA 202 C3 EF 239 U
CB 203 E1 FO 240 ca
CC 204 D Fl 241 EIJ
CD 205 ~ F2 242 5J
CE 206 0 F3 243 ED

583

Appendix I

Hex Dec Character

F4 244 r~
F5 245 L
F6 246 []
F7 247
F8 248 U
F9 249 -FA 250 D
FB 251 .Ll
FC 252 [~
FD 253 cJ
FE 254 ~
FF 255 7r

L.~

1. 0-4, 6-7, 10-12,15-16, 21-27, 128-132, 143, and 149-155 have no effect.
2. 192-223 same as 96-127, 224-254 same as 160-190, 255 same as 126.

584

Appendix J

Screen Codes

Hex Dec Uppercase and Lower- and Hex Dec Uppercase and Lower- and
Full Graphics Set Uppercase Full Graphics Set Uppercase

00 0 @ @ IF 31
01 1 A a 20 32 -space-
02 2 B b 21 33
03 3 C c 22 34
04 4 D d 23 35 # #

05 5 E e 24 36 $ $
06 6 F f 25 37 % <}o

07 7 G g 26 38 & &
08 8 H h 27 39
09 9 I 28 40
OA 10 J I 29 41
OB 11 K k 2A 42 * *
OC 12 L I 2B 43 + +
OD 13 M m 2C 44
OE 14 1'\ n 2D 45
OF 15 0 0 2E 46
10 16 P P 2F 47 I I
11 17 Q q 30 48 0 0
12 1H R 31 49 1 1
13 19 5 s 32 50 2 2
14 20 I 33 51 3 3
15 21 U u 34 52 4 4
16 22 V v 35 53 5 5
17 23 W \V 36 54 6 6
18 24 X x 37 55 7 7
19 25 Y Y 38 56 8 8
lA 26 Z z 39 57 9 9
IB 27 [3A 58
lC 28 £ £ 3B 59
ID 29 3C 60 < <

IE 30 3D 61

585

Appendix J

Hex Dec Uppercase and Lower- and Hex Dec Uppercase and Lower- and
Full Graphics Set Uppercase Full Graphics Set Uppercase

3E 02 > SF 95 ~ ~
3F 63 -,) 60 96 - -space- -
40 64 g 9 61 97 I] U
41 65 r~ A 62 98 ~ ~
42 66 rn B 63 99 n 0
43 67 t-:-: C 64 100 C 0
44 68 n D 65 101 Q 0
45 69 L E 66 102 II • 46 70 lJ F 67 103 ::J 0
47 71 C C 68 104 ~ ~
48 72 G H 69 105 P'] ~
49 73 ~~ I 6A 106 [) []
4A 74 13 J 6B 107 W lE
4B 75 ~ K 6C 108 ~ [Ii
4C 76 [J L 60 109 L9 ~
40 77 [SJ M 6E 110 6J 6J
4E 78 ~ N 6F 111 ~ ~
4F 79 0 0 70 112 ca CD
50 80 D P 71 113 0 0
51 81 • Q 72 114 Ea rn
52 82 0 R 73 115 BJ BJ
53 83 F S 74 116 D 0
54 84 D T 75 117 IJ IJ
55 85 W U 76 118 [] []
56 86 ~ V 77 119 [j 0
57 87 D W 78 120 LI LI
58 88 ~ X 79 121 ~ ~
59 89 [] Y 7A 122 0 El
SA 90 G Z 7B 123 ~ .:J
5B 91 ffi B::l 7C 124 ~ ~
5C 92 IJ IJ 70 125 EJJ EJJ
50 93 rn OJ 7E 126 ~ ~
5E 94 0 • 7F 127 ~ ~

128-255 are reverse video of 0-127.

586

Appendix K

VIC Chip Registers
Addresses:

$900036864

$900136865

$900236866

$900336867

$900436868

$900536869

$900636870

$900736871

$900836872
(37000)

$900936873
(37001)

$900A 36874
(37002)

$900B 36875
(37003)

$900C 36876
(37004)

$900D 36877
(37005)

$900E 36878
(37006)

$900F 36879
(37007)

Functions of Registers:

Interlace
o off/Ion Left Margin (4 pixels accuracy)

Top Margin (2 pixels accuracy)

Bit 9 of
Screen Number of Columns (usually 22)
Start

Bit 0 of
Scan Number of Rows (usually 23)
Line

Current TV Scan Line, bits 8-1

Screen Address Start Character Definitions Start

Bit 15 Bit 12 Bit 11 Bit 10 Bit 15 Bit 12 Bit 11

Light Pen-Horizontal

Light Pen-Vertical

First Potentiometer (Paddle X) Reading

Second Potentiometer (Paddle Y) Reading

o off
Ion Low-Frequency Sound Countdown

o off
Ion Medium-Frequency Sound Countdown

o off
Ion High-Frequency Sound Countdown

o off
Ion Noise Countdown

Auxiliary Color Sound Volume

Reverse
Background Color o on Border Color

1 off

Char. Size
o 8X8
1 8X16

Bit 10

Summary:

!)

)

}

Display
Size/Shape

TV Line

I S
(c creen/Graphics

ontrol
/

)
I

!

j

Read-Only
nput Registers I

Sound

)l Color

Note: The addresses in parentheses are alternate addresses that have the same effect, due to incomplete
address decoding. For example, POKE 37006,15 is eqUivalent to POKE 36878,15, and may be easier
to remember.

587

Appendix L

Device Numbers

Table of second parameter in OPEN. Example: OPEN 5,4 opens file #5 to printer.

o Keyboard
1 Tape
2 RS-232, usually modem
3 Screen
4 Printer
5 Printer-alternative setting
6 Plotter
8 Disk Drive
9 Disk Drive-alternative

10 Disk Drive-alternative
11 Disk Drive-alternative

588

Appendix M

Decimal-Hexadecimal Inter
conversion Table

Low High Low High Low High Low High
Hex Dec. Dec. Hex Dec. Dec. Hex Dec. Dec. Hex Dec. Dec.
$00 ~ I a s~o 64!16384 S80 128132768 sca 192 49152
$01 256 $41 65 16640 S81 129133024 SC1 193 49408
S02 2 ; 512 S42 66 16896 $82 130

1

33280 SC2 194 49664
S03 3 768 $43 67 17152 $83 131,33536 $C3 195 49920
$04 4 1024 $44 68 17408 $84 132 ·33792 $C4 196 50176
$05

1

5 1280 $45 69 1766'. $85 133 34048 $C5 197 50432
$06 6 1536 $46 70 17920 $86 134134304 $C6 198 50688
$07 7 1792 $47 71 18176 $87 135 34560 $C7 199 50944
$08 8 2048 $48 72 18432 $88 136 34816 $C8 200 51200
S09 9 2304 $49 73, 18688 S89 137 35072 $C9 201 51456
SOA 10 2560 S4A 74 18944 S8A. 138 35328 $CA 202 51712
SOB 11 2816 S4B 75 19200 $8B 139 35584 $CB 203

1
51968

SOC 12 3072 S4C 76 19456 $8C 140 35840 $CC 204 52224
$00 13 3328 $40 77 19712 $80 141 36096 $CO 205 52480
$OE 14 3584 $4E 78 19968 $8E 142 36352 $CE 206 52736
$OF 10 3840 $4F 79 20224 $8F 1/3 '36608_ $CF 207 ~2
$'-0 16 4096 $50 80 20480 $90 44 36864 - $00 208 53248
$11 17 "352 $51 81 20736 $91 145 37120 $01 209 53504
$12 18 4608 $52 82 20992 $92 146 37376 $02 210 53760
$13 19 , 4864 S53 83 21248 $93 147 .37632 $03 211 54016
$14 20 5120 $54 84' 21504 $94 148 i 37888 $04 212 54272
$15 21 ' 5376 $55 85 21760 $95 149138144 $05 213 54528
S16 22 5632 $56 8::; 22016 $96 150,38400 $06 214 54784
$17 23 5888 $57 87 22272 $97 151 ,38656 $07 215 55040
$18 24, 6144 $58 88 22528 $98 152,38912 $08 216155296
$19 25 6400 $59 89 22784 $99 153,39168 $09 217,55552
$lA 26 6656 $5A 90 23040 $9A 154 39424 $OA 218

1

55808
$lB 27 6912 $5B 91 23296 $9B 155,39680 $OB 219 56064
$lC 28 7168 $5C 92 23552 $9C 156139936 $OC 220 56320
$10 29 7424 $50 93 23808 $9D 157 40192 $DD 221 56576
$lE 30 7680 $5E 94 24064 $9E 158,40448 $DE 222 56832
$lF 31 , 7936 S5F 95 24320 $9F 159140704 $OF 223 57088
$iD 32 8192 560 -96 24576 $AO 1601 40960 -$EO 224157344-
$21 33 8448 $61 97 24832 $A1 161 '41216 $E 1 225 57600
$22 34 8704 $62 98 25088 SA2 162 41472 $E2 226,57856
$23 35 8960 $63 99 25344 $A3 163 41728 $E3 227 i58112
$24 36 9216 $64 100 25600 $A4 164 41984 SE4 228158368
$25 37 9472 $65 101 25856 $AS 165 42240 $E5 229 58624
$26 38 9728 $66 102 26112 $A6 166 42496 $E6 230 58880
$27 39 9984 $67 103 26368 $A7 167 42752 $E7 ~~;,~:~~~ 528 40 10240 $68 104 26624 $A8 168 43008 $E8
S29 41 10496 S69 lOS! 26880 $A9 169 43264 $E9 233 59648
S2A 42 '10752 56A 106 ' 27136 $AA 170 43520 $EA 234 '59904
52B 43 1100B S6B 107 27392 $AB 171 43776 $EB 235 60160
$2C 44 ,11264 $6C 108 27648 $AC 172 44032 $EC 236 60416
$20 45 11520 $6D 109 27904 $AD 173 44288 $ED 237 60672
$2E 46,11776 $6E 110j28160 $AE 174·44544 $EE 238 60928

~ ... 47 '12032 $6F 111 28416 $AF 1}SI44800 $~ 23~ ~184_
$30 48'-12288 Sio 112'28672 $80 176145056 $FO 240 61440

$31 49112544 $71 113 28928 $Bl 177 45312 $Fl 241 61696

532 50 12800 $72 114 29184 $B2 178145568 $F2 242161952
$33 51 ,13056 $73 115 29440 $93 179 45824 $F 3 243 62208

S34 521 13 312 $74 116 29696 $B4 180146080 $F4 244 62464

535 53 11 3568 $75 117 29952 $B5 181146336 $F5 245 62720

S36 54,13824 $76 118 30208 $B6 182 46592 $F6 246 ,62976

$37 55 14080 $77 119 30464 $B7 183·46848 $F7 247'63232

$38 56 14336 $78 120130720 $B8 184 47104 $F8 248 63488

$39 57 14592 $79 121,30976 $B9 185 47360 $F9 249 63744

$3A 58 14848 $7A 122 31232 $BA 186 47616 $FA 250 64000

$3B 59 15104 $7B 123 31488 $BB 187 47872 $FB 251 64256

$3C 60 15360 $7C 124 31744 $SC 188 48128 $FC 252 64512

$30 61 15616 $70 125 3~:00 $BD 189 48384 $FD 253 64768

$3E 62 15872 $7E 126 32256 $SE 190 48640 $FE 254 65024

$3F 63 16128 $7F 127 32512 $SF 191 48896 $FF 255 65280

589

Appendix N

Opcodes in Detail
Table of Opcodes and Their Functions, Hexadecimal Values, Tim
ing, and Processor Flags

590

Opcode Description

ADC Add memory with carry to accumulator
AND Logical AND memory with accumulator
ASL Shift memory or accumulator one bit left

N V

N V
N
N

Flags

B D I Z C

Z C
Z
Z C

~~ Branch if carrLpit £le'<!l" n __ ~_ .. _______ . _________ ,

BCS Branch if carry bit set I
SEQ Branch if zero bit set ~~_
~~~ ~~aDnc~i1~~' t;;~DV;)a_~1~9bi:!t 6 a_n~ 7_~ _ _ _~_ ~~ M6___ Z 
BNE Branch if zero bit clear 
SPL Branch if N bit is not set 
SRK Force break to IRQ 1 1 
BVC Branch on internal overflow bit clear 
BVSBranch on internal overflow bUse-t-- - -~ .. - .. --~ -- -- -

CLC Clear the carry bit 0 I 
CLD Clear decimal flag (for hex arithmetic) 0 ~ 
CL~ear interru.£t disable ~_ .___ _ __ _ _ ___ 0 __ 
CLV Clear internal overflow flag 0 
CMP Compare memory to accumulator N Z C I 

CPX Compare memory to X register N Z C 
c: P.'r'~S:.omJ)are_rTlemory_ to._ Y_ re9i~tE!r _ _ ~_ N __ Z~_I 
DEC Decrement memory location -N-
DEX Decrement X register N 
DEY Decrement Y register N Z I 
EOR Logical exclusive OR memory with A N Z 

~n~~~:~:~~ ~e~:i~t~Orcation ... -- --- - ~-- - ---nzZ . 

IN Y Increment Y regi ster N 
JMP ~ to new a~dress __ ~ _____ ~~ _______ ~ ________ ~ __ ~ 
JSR Jump to new address, saving return 
LDA Load accumulator from memory N ZZz I 
LDX Load X register from memory N 
LDY Load Y register from memory N 
~. Shift memoryorUaccumUTator one bit rTgFit .. - --~- - 0 - Z ·C I 

NOP No operation 
ORA Logical inclusive OR memory with A N Z 
PHA Push accumulator onto stack 

f-pj:fp- Push ·pr()cessor status-ITags ontc)stac~- ~----.--. --

PLA Pull stack into accumulator N Z 
PLP Pull stack into processor status flags N V B D I Z C ' 

~g~ {ci~~{~*~~~~~ 6~ ~-6~~t! ~~*t~n'C:\ ---- --~ -V S- -D-I· -z~·· ~C I 

RT I Return from interrupt N 
RTS Return from subroutine called by JSR _ I 

SBC Subtract memory and C-complement from A N V Z ~ 
r-sEC~ettfie-carr-yblt~ -. ~ ----- -- . --- - - 1 I 

SED Set the decimal flag (for BCD arithmetic) 
SEI Set the interrupt disable flag 
STA Store accumulat~!rlto memory __ ~ ____ .. _______ _ 
S TX Store X into memory 
STY Store Y into memory 
TAX Transfer accumulator to X register 
TA Y Transfer accumulator to Y register 
TSX Transfer stack pointer to )(register 
TXA Transfer X register to A 
TXS Transfer X register to stack pointer 
TY A Transfer Y reg ister to A 

N 
N 
N 
N 

N 

Z 
Z 
Z 
Z 

z 



Appendix N 

)
cr 
en 
X 

)
cr 
en 

-< 

N 
/1) , 

N 
/1) , 
x 

60 4 70*4 79*4 65 3 75 4 
20 4 30*4 39*4 25 3 35 4 
OE 6 IE 7 06 5 16 6 

2C 4 24 3 

40 4 50*4 59*4 45 3 55 41 
EE 6 FE 7 E6 5 F6 61 

4C 3 
20 6 
AD 4 BO*4 B9*4 AS 3 B5 4 
AE 4 BE*4 A6 3 

iAC 4 BC*4 A4 3 B4 4 
4E 6 5E 7 46 5 56 6 

N 
/1) , 
-< 

B6 4 

00 7 

18 2 
08 2 
58 2 

CA 2 
88 2 

E8 2 
C8 2 

3" 
3 
[ 

69 2 
29 2 

49 2 

90 2 2 
B022 
F022 

30 2 2 
00 2 2 
10 2 2 

50 2 2 

70 2 21 

I 

I 
, 

)
n 
n 

OA 2 

:J 
Q. 

X 

61 6 71*5 
21 6 31*5 

:J 
Q. 

AOC 
ANO 
ASl 
BCC 
BCS 
BEQ 
BIT 
8M1 
BNE 
BPl 
BRK 
BVC 
BVS 
ClC 
ClO 
Cli 
ClV 
CMP 
CPX 
CPY 

lJE"C" 
OEX 
DEY 

4 1 6 5,-,1_*--=5,-+-_-+ ___ E~0=-=oR;..t 
I INC 

I NX 
I NY 

6C 5 ~~ 

1 

JSR 
A9 2 I Al 6 Bl *5 lOA 

~~ ~I ~~~ 
EA 21 ! 4A 2 I ~~~ 

00 4 10*4 19*4 05 3 +-1_S_4-+--__ --+" 3; 09 '1--4 01' 11 5 .~::; 

H ~ I 12 A 2 I ~~~ 2E 6 3E 7 26 5 36 6 
6E 6 7E 7 66 5 76 6 

EO 4 FO*4 F9*4 E5 3 F5 41 

40 6 
60 6 

138 2 
F8 2 
78 2 

r'6A 2 i ROR 
I I I RTI 

I I! ! RTS 

1

--rEl 6 Fl*5 ~.~ 
I SED 

! I SEI 

E9 2 

80 4 90 5 99 S 85 3 95 4 --+ 81 6 1 91 6 STA 

:~ : :: :" '1._9_6_4--h~~8---;~_+----__ +-__ +-II_-___ .f-__ +__ !_+ __ +S=~~=,:c':-l 
* +1 if index crosses page 
2 +1 if branch is taken, 

+1 more if page crossed 
1 

Ig ! I! ill 
591 



\Jl 
\0 
N 

G) 

:a 
.a 
> 
Z 
.c 
en 
% 
G) 

" o 
u 
Co 
o 

o BRK 

BPL 

2 I JSR 

o 

lORA 

ORA 

(Ind,X) I 
(Ind) ,Y I 

AND (Ind,X) 

3 ~ ~(1_' n_d_)_,_Y~ ___ ---; 

4 I RTI EOR (Ind,X) 

5 I BVC i EOR (Ind), Y , 

6 I RTS ADC (Ind,X) I 

7 ~BV~ :~D<:. (I nd) '~ 
8 STA (Ind,X) 

4 

BIT Zer 

Opcode Low Nybble 

lORA 

ORA 
I 

AND 

AND 

Zer I ASL 

Zer,X I ASL 

Zer RaL 

Zer,X I ROL 

6 

Zer 

Zer,X 

Zer 

Zer,X 

8 9 A 

PHP lORA 

CLC lORA 

Imm ASL A 

Abs,Y 

PLP AND Imm ROL A 

SEC AND Abs, Y 

c 

BIT Abs 

o 

ORA Aba 

ORA Aba,X 

I AND Abs 

AND Aba,X 

EOR Zer ~R-z-e-r--+--p-H-A--l EOR Imm LSR~ JMP Abs I EOR 

EOR Zer,X 1 LSR Zer,X CLI I EOR Abs,Y ! EOR Abs,X 

Aba 

E 

ASL Aba 

ASL Abs, X 

ROL Abs 

ROL Abs,X 

LSR Aba 

LSR Aba,X 

ADC Zer : ROR Zer 1:1PLA ~ ADC Imm ROR A I JMP Ind ADC Aba ROR Abs 

_~~C zer,X_LR()H Zer,X SEI ,ADC Abs,Y 1___ _ ADC Aba,X ROR Abs,X 

STY Ze r i STA Zer I STX Zer DEY TXA 1 STY Abs STA Aba I STX Aba 

STY zer,x! STA Zer,X STX Zer,Y TYA I STA Abs,Y I TXS STA Abs,X I 91 BCC STA (Ind) ,Y 

A LOY Imm LDA (Ind,X) 

B ~CS LDA (Ind) , Y 

LDX Imm LDY Zer I LDA Zer i LDX Zer I' TAY ! LDA Imm TAX LOY Aba LDA Aba I LOX Abs 

I I I I 
LDY ~er~~DA Zer, X 1 LOX Zer, Y "_CLV+A Abs, Y L'I'S~ LOY Abs, X LDA Aba, X i LDX Abs, Y 

- -~- -----

C Cpy Imm I CMP (Ind, X) I 

D 

E 

F 

BNE CMP 

CPX Imm SEC 

BEQ SBC 

(Ind) ,Y i 
(lnd,X) I 

(Ind),Y I 

CPY Zer I CMP Zer I DEC Zer : INY I CMP Imm I DEX CPY Abs CMP Abs -, I DEC Aba 

I CMP Zer,X DEC Zer,X I CLD I CMP Abs,Y, CMP Abs,X DEC Abs,X 

CPX Zer I SHC Zer INC Zer I INX I SHC Imm NOP CPX Abs SHC Abs . INC Abs 

J SBC Zer, X INC Zer,X SED SBC Abs,Y SBC Abs,X INC Aba,X 

~ 
0--CD 
o ... 
0-
Ut o 
t-.) 

o 
" n o 
0. 
CD en 

» 
u 
u 
(I) 
~ 
a. x· 
o 



Appendix P 

6502 Quasi-Opcodes 

6502 Quasi-Opcodes 

Instruction Abs Abs,X Abs,Y Zer Zer,X Zer,Y 

ASO (ASL,ORA) OF IF IB 07 17 
RLA (ROL,AND) 2F 3F 3B 27 37 
LSE (LSR,EOR) 4F 5F 5B 47 57 
RRA (ROR,ADC) 6F 7F 7B 67 77 
AXS (STX,STA) 8F 87 97 
LAX (LDX,LDA) AF BF A7 B7 
DCM (DEC,CMP) CF DF DB C7 D7 
INS (lNCSBC) EF FF FB E7 F7 
ALR (LSR,EOR) 
ARR (ROR,ADC) 
XAA (TXA,AND) 
OAL (TAX,LDA) 
SAX (DEX,CMP) 

NOP lA, 3A, 5A, 7 A, DA, FA 
SKB 80, 82, C2, E2, 04, 14, 34, 44, 54, 64, 74, 04, F4 
SKW OC, lC, 3C, 5C, 7C, DC, FC 

ASO ASL then ORA the result with the accumulator 
RLA ROL then AND the result with the accumulator 
LSE LSR then EOR the result with the accumulator 
RRA ROR then ADC the result from the accumulator 
AXS Store the result of A AND X 
LAX LOA and LOX with the same data 
DCM DEC memory and CMP the result with the accumulator 
INS INC memory then SBe the result with the accumulator 
ALR AND the accumulator with data and LSR the result 
ARR AND the accumulator with data and ROR the result 
XAA Store X AND data in the accumulator 

(lnd,X) (lnd),Y 

03 13 
23 33 
43 53 
63 73 
83 
A3 B3 
C3 D3 
E3 F3 

OAL ORA the accumulator with #$EE, AND the result with data, then TAX 
SAX SBe data from A AND X and store result in X 
NOP No operation 
SKB Skip byte (that is, branch of + 1) 
SKW Skip word of two bytes (that is, branch of + 2) 

Imm 

OB 
2B 
4B 
6B 

4B 
6B 
8B 
AB 
CB 

A number of bit patterns which do not appear in Appendices Nand 0 will still 
be interpreted by the 6502 as opcodes. These commands are not part of the 6502's 
specification. Types X3, X7 XB, and XF (and most of X2) aren't defined. Generally, 
these quasi-opcodes arise from the processor attempting to execute two instructions 
simultaneously. 

593 



Appendix P 

There are many regularities in these results. Codes ending in bits 11 execute two 
standard instructions ending with bits 01 and 10, simultaneously; if the addressing 
modes of the instructions don't match, the higher may be executed first. Those 
quasi-opcodes shown in the table in boldface seem likely to be more reliable than 
the others. 

While there are no guarantees that these opcodes will continue to work with all 
revisions of the 6502, it is a fact that some published software containing these codes 
has given no problems. All 6502s seem to be produced from the same masks, as is 
shown by the well-known bug in indirect JMP, where JMP ($OlFF) takes its two-byte 
address from $OlFF and $0100. 

Besides providing some programming shortcuts, quasi-opcodes allow some mea
sure of concealment from disassembly, as no standard disassembler program will be 
able to interpret them. For example, 
033C ASO $0342 ;Shift Left contents of $0324 
033F DCM $0345 ;Decrement contents of $0345 
0342 ML program 

shows on VICMON as 
033C OF 42 03 CF 45 
0341 03 XX?? ?? yy 

where XX, ??, and YY are parts of the ML program. Disassembly starting at 033C 
will produce at least ten bytes of garbage. However, the program will run properly, 
but only once. You must compensate for the first two instructions, which halve the 
contents of $0345 and decrement the contents of $0345. If you set up a loop to 
change some other portion of the ML-for example, by EORing it with some set 
values-the whole of a large section of RAM ML can be made hard to decipher. 

594 



Appendix Q 

Interconverting VIC-20, Com
modore 64, and CIM Programs 

"Conversion" is a de(.~ptively simple word, hiding the reality that one machine's 
programs must often be rewritten for use on another. First you'll see how to transfer 
programs between machines. Then you'll see how to convert them to run in their 
new environments. Generally, tr..:!se remarks apply only to BASIC. ML programs 
usually have to be rewritten. 

LOADing Other Programs into the VIC-20 
Commodore 64 programs. Commodore 64 disk programs should load without 

difficulty into VIC-20. However, Commodore 64 tape programs may give problems, 
since recording speeds differ even though the format is the same. If loading is un
successful, try saving the original as a file with OPENI,I: CMDI: LIST: PRINT#I: 
CLOSEl and using MERGE from Chapter 6 to read it into VIC-20. This writes the 
program in smaller chunks, so loading is easier. If this fails, loading into a CBM first 
(see below), and then into the VIC, is likely to work. Alternately, the program could 
even be transferred by modem. 

PET ICBM programs. PET ICBM disk programs should load into VIC-20, but 
only if formatted with CBM's 4040 disk drive. Tape should be trouble-free; if there 
are LOAD errors, try using the same recorder with both CBM and VIC to be sure the 
head alignment isn't a factor. 

Note that the earliest (tiny keyboard) PETs don't operate in quite the same man
ner; they have an extra zero byte at the start which usually scrambles the first line 
after loading into VIC (the rest of the program is OK). 

To load a program from one of these very early PETs into the VIC, add 3K 
expansion and force-load with LOAD "NAME",I,l. Alternately, you can add a 
redundant first line to the PET program and delete the meaningless line number at 
the start when it's loaded into VIC. You can also load the program into a newer 
CBM and save it, giving a VIC-loadable program. 

Loading VIC Programs into Other Computers 
Loading VIC-20 programs into the 64. This is no problem with disks. However, 

tape may be unsuccessful, because of timing differences. Use the same cures as you 
would when loading 64 programs into the VIC. 

Loading VIC-20 programs into PET ICBMs. CBMs didn't need, and don't have, 
VIC's relocating LOAD feature. They cannot recognize forced-LOAD programs (that 
is, those saved with SAVE "NAME",l,I) as programs at all. CBMs expect all pro
grams to start at $0400. 

If the VIC-20 program can run with a 3K memory expander, and no other extra 
RAM (and if you have access to such an expander), save the program with the extra 
3K in place. Then either tape or disk will load into a CBM and be ready to run. (The 
CBM must have a 4040 disk drive if disks are used.) 

If 3K expansion isn't appropriate for the program, loading into CBM is still easy. 
First, load the program into VIC and enter PRINT PEEK(830) to find the start ad-

595 



Appendix Q 

dress as recorded on tape, and note this number. With a disk program, find the 
LOAD address by reading the first two bytes. The relevant byte is usually 16 or 18. 
Hit's 4, the program will load as it stands; it was saved with 3K expansion in place. 
Then load the program into CBM, type the line 0 REM and enter POKE 1025,7: 
POKE 1026,16 (or 18, or whatever number you got from the PEEK(830)). Now delete 
line 0 by typing 0 and RETURN. The POKEs alter the link address after the tiny pro
gram 0 REM, and the built-in editor moves the program down to $0400. The result 
can be saved and reloaded without trouble with the CBM, and it will load into VIC 
successfully. 

Another method, which keeps BASIC in the same part of RAM as in VIC, is to 
use: 
POKE 256*16,0: POKE 41,16: CLR 

before LOADing into CBM. This moves the start of BASIC to coincide with VIC's 
start of BASIC. (If the PEEK(830) didn't give you 16, replace the 16 in the line above 
with the correct value.) 

These methods work with all PET ICBMs. 

Program Conversion 
Programs which are pure BASIC, even for non-CBM computers, can often be con
verted to run on the VIC-20. Difficulties are likely, though, particularly if a program 
is long, since the VIC's memory may not be large enough. You may also have prob
lems if the program assumes a 40-column screen width or if much disk or tape ac
cess is needed. Sometimes a 40-column screen utility will allow the VIC to run 
40-column software; alternately, the screen layout can be cut down to VIC's size. 

VIC can perform any Commodore disk operation, although CBM BASIC 4.0 re
quires translation into the lower-level version, since it includes disk commands not 
available on the VIC or 64. Other computers' disk operations may well be rewritten 
to operate with the VIC-20. 

There are often other subtle differences between computers, too. For instance, 
some interpret logical "true" as I, rather than -1 as with CBM, so logical operations 
may work incorrectly. And of course some commands (like PRINT USING) are sim
ply missing from CBM BASIC. 

CBM BASICs are all more or less transportable between machines. However, the 
earliest PETs and latest CBMs are a bit different from VIC in several small ways
GO TO isn't allowed in one, for example, and DS is a reserved variable in the other. 
Pure BASIC (without SYS, PEEK, POKE, WAIT, or USR) is compatible to a very 
large extent; apart from memory size, only the 22-column screen of VIC is a big 
problem, with reiated features like the bug in INPUT "LONG PROMPT";X$, dif
ferences with POS, Spc, and TAB, and cursor movements which may scroll the 
screen. 

You can expect that calculation programs and programs which print out results 
will work with little change; so will programs written without PEEKs or POKEs. 
With luck, programs which use the built-in graphics set may convert quite easily. A 
checkers program, with complicated logic and a simple board display, may need 
work on the display but can be expected to run properly if the graphics are right. 

596 



Appendix Q 

POKE, PEEK, SYS, WAIT, and USR. These are the problem areas when 
converting programs; very little ML is transportable between machines. Some ML 
has an exact equivalent in each CBM machine, for example, screen POKEs and 
POKEs into the keyboard buffer. But other ML is machine-specific. For example, 
sprites in the 64 have no equivalent in other CBM machines. 

If you're lucky, and the BASIC program has many REMarks, conversion can be 
a simple matter of looking up the location in one memory map and finding the 
equivalent in another. Disabling the STOP key and manipulating the keyboard buffer 
are examples. You may be able to delete some commands; disabling STOP isn't very 
important. In addition, you may be able to replace some PEEKs amd POKEs. For in
stance, VIC's POKE 198,0 has a BASIC equivalent, FOR J = 1 TO 10: GET X$: NEXT, 
which clears the keyboard buffer. CBM's POKE 59468,14 to switch to lowercase is 
replaceable by PRINT CHR$(14) on the VIC and 64. 

Generally, POKEs, PEEKs, and WAITs involving locations 140-250 are likely to 
apply to the screen or keyboard. Low memory values often alter BASIC pointers. 
Most low RAM locations have the same sort of effect with VIC and the 64. CBM is 
rather different, though as a rule BASIC 2's usage of locations up to 120 or so are 
just three addresses less than VIC/64 values (a POKE to location 41 in a PET ICBM 
has the same effect as a POKE to location 44 on a VIC or 64). 

SYS commands can be converted only if you have ML knowledge. A routine 
may call some Kernal addresses, and be usable unchanged; more likely, disassembly 
will show up a few addresses which have to be changed. Without ML knowledge 
you can't be sure what ML POKEd to RAM does. The only exception is published 
routines, as in this book, where an alternative routine can be typed in to perform the 
same function. 

POKE commands are usually the most difficult to convert, because they can 
change the whole program configuration. Screen POKEs and the color RAM, graph
ics definitions and sound, interface chip manipulations, and uses of multicolor mode 
illustrate this sort of thing. PEEKs to interface chips (to read joysticks, for example) 
are also tricky, but they can be routinized more easily in view of the narrower pur
poses they serve. 

The following table gives relevant POKE and PEEK locations for a variety of 
functions. It cannot possibly be exhaustive, but at least it will help you identify the 
purpose of those mysterious POKEs in other people's programs. 

597 



Appendix Q 

Equivalent Memory Locations 

VIC-20 64 CBM BASIC 2 & 4 

7680-8185 32768-33767 
(unexpanded) (40 column) 

Screen Memory 1024-2023 
4096-4591 32768-34767 
(with 8K or more (80 column) 
expansion) 

37888-38393 
Color Memory (unexpanded) 55296-56295 -

38400-38905 
(with 8K or more 
expansion) 

Character ROM 32768-36863 53248-57343 -

Registers to Control 36866, 36867, 36869 53272 -
Character Set Location 

Sound Registers 36874-36878 54272-54300 59464, 59466 

Joystick Registers 37151,37152 56320, 56321 -

Light Pen Registers 36870, 36871 53267, 53268 -

Paddle Registers 36872, 36873 54297, 54298 -

PIA159408-59411 
Interface Chip VIAl 37136-37151 CIA1 56320-56335 PIA2 59424-59427 
Registers VIA2 37152-37167 CIA2 56576-56591 VIA 59456-59471 

Start-of-BASIC Pointer 43,44 43,44 40,41 

Top-of-BASIC Pointer 55,56 55,56 52,53 

598 



Index 
IIBS function 20 
IIDC opcode 304 
"lidding Hex Numbers to BIISIC" program 

287-88 
addressing modes, 6502 chip 214-10 
liND operator 20-21 
liND ML instruction 247- 48 
IIPPEND BIISIC extension 185-86 
appending sequential files 508 
"lIpproximating fractions" program 85-86 
architecture, VIC-20 97-151 
arrays 91-92, 162--63, 16f,-67 
i\rro\",: tape operating system 479 
IISC function 21 
ASCII codes 179, 197, 581-84 
IISL opcode 306 
assem bl y 229 
!lTN function 22 
Automatic Line Numbt:'ring BASIC e\tt:'n~ion 

18f, 
"Automatic Proofreader" program 4. 573-75 
autostart ROM cartridges 112-13, 149-50 
"Auxiliary Color" program 132-33 
BIIM (Block Allocation Map) 520, 525-26 
BIISIC 11-12, 15-64, f,9-% 

advanced 153-225 
disk files and 497-511 
extensions to 185-22 
mixing with ML 295-JOO 
modifying 281-91 

"BASIC Autoloader" program 486-87 
"BASIC Monitor" program 231, 257-f,1I 
BASIC ROM 354-68 
"BASIC \\'cdge DemoJ1!-Jtration" program 

283-84 
BCC opcode 307 
BCS opcode 307-8 
Bell 103 

modem convention 55Y-6l 
BEQ opcode 308-9 
"Bills and Coin'" pmgram 83-84 
bit 99-100 
BIT opcade 30'1-lll 
block commands 527-28 
BLOCK LOAD BIISIC extension 188 
BLOCK SAVE BIISIC extenslOn 187 -88 
BMI opeode 3111 
BNE opcode 31 J 
"Booting Disb" program 209 
BPL opcode 31 J-12 
BRK opcode 312- J 4 
BVS opcode 3J4 
byte 100 
cassette port 9 
CHAIN BASIC extension 189 
chaining programs 168 
"Changing Colors" program 134 
"Changing Load Address" program 504-5 
channel J5, disk 496-97,531-32 
"Character Editor" program 409- J 2 

character set, VIC 373-429 
saving 413 

characters, user-defined 401-29 
chords 461-62 
CHR$ function 22·-23 
CHRGET routine 281-82 
CHRIN Kernal routine 272-73 
CHROUT Kernal routine 271-72 
CLC opcode 314 
CLD opcode 315 
CLI opcode 3 J 5 
clock 173-74,470 
CLOSE statement 23, 474- 75, 4YY 
CLR statement 23-24 
CIY "pcode 315-J6 
CMD statement 24-25, 554 
C\1I' opwde 31f,-17 
color 132-35, 189 

the"rv of 393 
color I{A\1 393-95 

~1L and 389 
comparisons, Ml and 233-34 
compilation 1 R9-90 
CONT commclnd 25 
control port 1 
control strllctures 94-95 
conventions, programming 76-78 
copying disk files 495-96 
COS function 25-26 
CPX opcode 317-18 
CPY opeode 318-19 
crunching programs 1 '11-92 
"DATil Maker" program 295-96 
DIITA statement 26, 91 
Datassette 470, 477-79 
"Day of the Week" program 95-96 
debugging 78-79, 250-51 
decimal arithmetic 249-50 
'Decimal Input" program 80-81 

DEC opcode 319-20 
DEEK BASIC extension 192 
DE[' IN statement 2f,-27 
DEI,ETE BASIC extension 192-93 
device nurnber table 5RS 
device number, disk 515, 517-18 
DEX opcode 320 
DEY opcode 32IJ 
"Dice" program 91 
"Diet Analvsis" program 83 
DIM statement 27-28 
direct access commands 526-27 
directorv, disk 493, 521 
director}', tape 481-82 
disassembly 229 
disk 12, 491-532 

commands 492-97,511-12 
messages 512--11 
operating system 492 
utility programs 514-15 

"Disk Wedge" program 299 

599 



DOKE BASIC extension 193 
double-density graphics 387-88 
"Double-Density Plotting" program 387 
diskettes 515-17 
dumps 193-94 
"Eight-Byte Graphics Displav, with Addresses" 

program 374 
END statement 2-29 
end-of-tape marker 471 
EOR opcode 321-22 
EPROM 103 
"Error Detection" program 285-86 
error messages 64-68 
EXP function 29 
expansion cartridges 119~22 
expansion port 9, 99, 116-19 
expressions, BASIC 17-18 
1~40 disk drive 491 
1541 disk drive 491 
files, tape 472-75 
FOR . .,TO".[STEP] statement 29-31 
formatting a disk 492-93 
FRE function 31 
free memory, calculating 167 
"Frog-style Graphics" program 379-80 
"Full-screen High-resolution Screen Editor" 

program 421-22 
"Full-screen Multicolor Mode Screen Editor" 

program 422-24 
"Function Key Handler" program 175 
function kevs 175-76 
functions, BASIC 17 
games port S35-4S 
garbage collection 166-67 
GET statement 31-32 
GET# statement 32-33, 501 
GETIN Kernal routine 272 
GO statement 33. 34 
GOSCB statement 33-34, 201-2 

computed 190-91 
GOTO statement 34 

computed 190-91 
graphics 373-451 

ML and 384-92 
mixed configurations 407-9, 578-79 
PRINT and 378-80 
storage of 403-6 

graphics tablets 546 
"Graphics with Shapes" program 379 
"Graphics with Strings" program 378 
"Guessing Game" program 74-75 
halftones 4'i9 
"Handling RelatIve Files" program 510-11 
hard"vare vectors 369 
harmonies, Pythagorean 458 
headers, tape 480-8 I 
"Hex-to-Decimal Conversion" program 277·-78 
hexadecimal notation 101-2 
high-resolution graphics, incomplete 406-7, 

413-16 
"Histogram" program 386-87 
"Horizontal Motion" program 440 
IF conditional command 35 
incomplete addressing 1 03-4 

600 

INC opcode 322-23 
"Incomplete Graphics with Text" program 415 
index 232 
initializing the VlC-20 114-16 
input buffer 172-73 
INPUT statement 35-36 
INPUT# statement 36-37, 500-501 
instructions, ML 239-41 
INT function 37 
interfaces 148-49 
"Interrupt Music" program 464 
"Interrupt Noise" program 465 
interrupts 288-91. 463-65 
INX opcode 323 
INY opcode 324 
"Islamic Designs" program 412-13 
"Jesu" program 460 
IMP opcode 324-25 
joysticks 535-38 
J5R opcode 325-26 
"Kaleidoscope" program 380 
Kernal 4 
Kernal jump table 368-69 
Kernal ROM 347, 354-68 
Kernal routines 265-71 
keyboard 10-11, 176-84,274 
kevboard buffer 172-73, 209 
keyboard vector 179-80 
keyboard, piano 456-57 
keyboard, redefining 181-83 
kevcodes 178-79 
keywords, BASIC 12, 19-63 
"Large Lettering" program 424-25 
LOA opcode 326-27 
LDX opcode 327 
LDY opcode 327-28 
LEFT$ function 38 
LEN function 38 
LET statement 39 
light pens 541-45 
line, BASIC 157-58 
LIST command 39-40, 195-96 
LOAD command 40-41. 168, 469, 470-72, 

482-84, 494, 529-30 
LOG function 41-42 
logical instructions, ML 247-48 
loops, ML and 232-33, 244-46 
LSI{ opcode 328-29 
machine language, 6502 227-61 
"Matrix Inversion" program 92-94 
"Maze" program 3 83 
memory commands, disk 528-29 
memory map, VIC-20 347-69 

expanded 109-11 
unexpanded 104-8 

memory size, reducing 297-98 
memory, storage of BASIC in 1'i~-71 
MERGE BASIC extension 197-99 
MID$ function 42 
modems 557-62 
modulo 199 
motion 432-40 

character redefinition and 437-40 
"Multicolor Characters" program 397 



"Multi color Demo" program 396 
multicolor mode 395-97 
"ML Autorun" program 505-6 
"ML File Reader" program 531 
"ML Screen Dump" program 555 
NEW command 42-43 
NEXT statement 43 
"Nonstandard Size VIC-20 screen" program 

398-99 
NOP opcode 329 
NOT operator 44 
notes, musical 456-60 
numbers 15, 169-71 
OLD BASIC extension 199-200 
ON statement 44-45 
ONERR BASIC extension 200-201 
opcodes 239-41, 303-43, 590-92 
OPEN statement 45-46, 473-75, 496-97, 499, 

549 
operators, BASIC 16-17 
OR operator 46 
ORa ML instruction 247-48, 330 
"Overprinting Strings" program 379 
"Packing Numbers" program 86-87 
paddles 538-41 
PAUSE BASIC extension 201 
PEEK function 46-47 
PHA opcode 331 
PHP opcode 331-32 
"Plot Character Anywhere on Screen" program 

437-38 
PLA opcode 332 
PLOT Kernal routine 272 
plotters 556-57 
PLP opcode 333 
POKE statement 47-48, 380-84 
POP BASIC extension 201-2 
PRINT @ BASIC extension 202-3 
PRINT statement 48-49 
PRINT USING BASIC extension 203-6 
PRINT# statement 49-50,500-501,549-50, 

554 
printer control characters 553 
printers 549-56 

non-Commodore 551-52 
program conversion 595-98 
program counter 238-39 
program design 72-75 
program lines, ML and 296 
program files, disk 502-3 
Programmer's Aid 3, 479 
Programmer's Aid cartridge (VIC-1212) 222-26 
programming 69-96 
quasi-opcodes 593-94 
"Queens" program 90-91 
Rabbit tape operating system 479 
RAM 102-3 
"Random Card Deal" program 89-90 
random numbers, in ML 278-80 
raster interrupt 429-32 
READ statement 50-51 
"Reading BAM" program 525-26 
"Reading the Directory Track" program 526 
"Reading the Directory" program 523 

reconfiguring memory 111-12, 206-9 
"Redefining LET" program 286-87 
relative files 509-11 
"Relocating ML" program 300 
REM statement 51, 210 
RENUMBER BASIC extension 211 
"Replacing Zeros" program 86 
RESTORE key 113-14 
RESTORE statement 51-52 
RETURN statement 52 
reverse bit 397 
reverse characters 385-86 
"Reverse Flag Toggle" program 135 
RIGHT$ function 52-53 
RND function 53-54 
ROL apcode 333-34 
ROM 102-3 
ROM routines, BASIC 274-75 
root tones 459 
ROR apcode 334 
rotate instructions, ML 246-47 
"Rounding" program 81-82 
RS-232 files 560-62 
RS-232 interface 562-65 
RTI opcode 334-35 
RTS opcode 335-36 
RUN command 54 
SAVE command 54-55, 168,469,470-72, 

482-83, 493-94, 529-30 
SBC ope ode 336-37 
scratch-proof programs 528 
scratching a disk file 495 
screen and border color table 580 
screen codes 585-86 
screen color memory table 577 
screen dimensions, modifying 397-99 
screen location table 576 
screen manipulation, ML 230-32 
screen memory 229, 381-82 
scrolling 389-92 

smooth 399-401 
Search and Replace BASIC extension 211-13 
search, binary 89 
SEC opcode 337 
SED opcode 338 
sectors, disk 516, 519-21 
security 218-21, 299,484-87 
SEI opcade 338-39 
sequential files 506-8 
serial part 9, 566 
SGN function 55-56 
shift instructions, ML 246-47 
"Shift Screen Demo" program 398 
"Shifting the Screen" program 128 
shuffle 88, 90-91 
SIN function 56 
6502 chip 100, 234-51, 303-43 
small lettering 425-29 
"Solving Equations" program 84-85 
"Sorted Directory" program 524-25 
sorting 213-16 
sound 130-32, 455-65 

ML and 463-65 
sound registers 455-57 

601 



SPC function 56 
"Split Screen Demonstration" program 430 
SQR function 58 
ST reserved variable 57-58, 501 
STA opcode 339 
stack 238-39 
statements, BASIC 18-19 
status register 236-38 
"Steam Engine" program 131-32 
STOP and STOP-RESTORE, disabling 174-75 
STOP statement 58 
STR$ function 59 
"String and Integer Input" program 80 
strings 15, 86, 164-65 
STX opcode 340 
STY opcode 340 
subroutines, ML and 233-34, 295-300 
Super Expander cartridge 3, 440-51 

graphics and 445-51 
modes 445 
programming with 444-51 
sound and 455, 462-63 

symbolic assemblers 261 
SYS statement 59-60 
svstem 71 
TAB function 60 
TAN function 60 
tape l2, 469-87 

ML and 475-77 
tape programming 480-87 
TAX opcode 340-41 
TAY opcode 341 
"Thin Lettering BASIC Loader" program 

427-28 
"Thin Lettering Demonstration" program 428 
"3 X 3 Character Editor" program 416-18 
"3 X 3 Multicolor Mode Screen Editor" pro-

gram 418-21 
TI and TI$ reserved variables 61,173-74 
timing 241 
tokenization, BASIC 159-60 
TRACE BASIC extension 216-18 
tracks, disk 516, 519-21 
TSX opcode 341-42 

602 

two-byte operations 242-44 
twos complement arithmetic 248-49 
typing in programs 57l-72 
TV, VIC chip and 124-29 
TXA opcode 342 
TXS opcode 342-43 
TYA opcode 343 
U commands 527 
UNLIST BASIC extension 218-21 
user port 9-10 
USR statement 61-62, 275-77 
utilities, ML 295-300 
VAL function 62 
"Values vs. Pitch" program l30-31 
variables, BASIC 12, 15-16, 160-62, 167-68, 

274-75 
VARPTR BASIC extension 221-22 
vectors 281-84 
VERIFY command 62-63, 47l-72 
"Vertical Motion" program 438 
VIA (Versatile Interface Adapter) chips 99, 

135-47,177 
"VIC Character Sets" program 375 
VIC chip 99, 123-35, 393-400 
VIC chip registers 587 
"VIC Chord Organ" program 462 
"VIC Keyboard" program 460-61 
VIC terminal program 562 
VIC-ISIS printer 550-51 
VIC-1525 printer 550-51 
VIC-1526 printer 550-51 
VIC-1530. See Datassette 
VIC-1650 AUTOMODEM 557 
VICmodem 557, 559-60 
VICMON 3,149,229-31. 251-56, 299-300 

command summary 252-56 
"VICTERM Loader" program 558 
"VICTERM" program 299 
video/audio port 9 
WAIT statement 63-64 
warning light, disk drive 502 
wedge 281-84 
"Wordscore" program 87-88 
zero page 238-39 





,. , ' 

Commodore's VIC-20 is one of the most popular computers ever 
produced. It has astonishing capabilities for a machine of its price and 
size, but there has never been a book which thoroughly explains how to 
get the most out of your VIC. 

Until now. 
Written by noted Commodore authority Raeto Collin West, 

Programming the VIC is the definitive work on the VIC-20. It's packed 
with information on every aspect of the VIC-20, from elementary BASIC, 
sound, and graphics techniques to advanced hardware applications 
and machine language programming. Here's just a sample of what 
you'll find : 
o Dozens of programming techniques and tricks for you to experiment 

with. 
o Detailed descriptions of every BASIC command in VIC's vocabulary. 
o Thorough discussions, including numerous program examples, of BASIC 

and machine language programming techniques. 
o A comprehensive guide to VIC sound and graphics. 
o Complete explanations of tape and disk operation. 
o An annotated list of 6502 opcodes. 
o A thorough mapping of the VIC-20's ROM. 
o Clear explanations of how the VIC user port works, with suggestions on 

how to use it in your own programming. 
o A practical guide to selecting and using printers, plotters, and 

modems. 

This book addresses virtually every programming situation that the 
VIC user is likely to encounter. How can you use interrupt-driven routines? 
To DIM, or not to DIM? Can you back up ROM cartridges or add com
mands to VIC BASIC? Here are answers to these questions and many, 
many more. Its 17 chapters contain hundreds of examples, each de
signed to clarify or illustrate a particular concept or technique. There are 
also dozens of complete programs, thoroughly tested and ready to type 
in and run, as well as hundreds of short routines that you can incorporate 
into programs of your own. 

For beginning programmers, Programming the VIC serves as a com
prehensive introduction. More advanced program~ers will find it an 
instructive tutorial and valuable reference. But every VIC owner, regard
less of experience level, will find it to be the definitive, indispensable VIC 
resource book-one that will be referred to again and again. 

ISBN 0-942386-52-3 




